JPS5911340B2 - Improved shaped catalyst for nitrogen oxide purification - Google Patents

Improved shaped catalyst for nitrogen oxide purification

Info

Publication number
JPS5911340B2
JPS5911340B2 JP52136187A JP13618777A JPS5911340B2 JP S5911340 B2 JPS5911340 B2 JP S5911340B2 JP 52136187 A JP52136187 A JP 52136187A JP 13618777 A JP13618777 A JP 13618777A JP S5911340 B2 JPS5911340 B2 JP S5911340B2
Authority
JP
Japan
Prior art keywords
catalyst
dust
molded
supported
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52136187A
Other languages
Japanese (ja)
Other versions
JPS5469587A (en
Inventor
哲嗣 小野
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP52136187A priority Critical patent/JPS5911340B2/en
Publication of JPS5469587A publication Critical patent/JPS5469587A/en
Publication of JPS5911340B2 publication Critical patent/JPS5911340B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は排ガス中の窒素酸化物(一酸化窒素、二酸化窒
素など、以下NOxとする)除去用成型触媒の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a shaped catalyst for removing nitrogen oxides (nitrogen monoxide, nitrogen dioxide, etc., hereinafter referred to as NOx) from exhaust gas.

詳しく述べると、本発明は重油焚き、石炭焚きボイラー
の排ガス、セメント工場あるいは焼結炉排ガスなどダス
トを多量に含有する排ガス中のNOxを、アンモニアな
どの還元剤を用いて、無害な窒素に還元するためのダス
ト吹き抜け(ダストフリー)型成型触媒の改良に関する
Specifically, the present invention reduces NOx in exhaust gas containing a large amount of dust, such as exhaust gas from heavy oil-fired or coal-fired boilers, cement factory or sintering furnace exhaust gas, to harmless nitrogen using a reducing agent such as ammonia. This invention relates to improvements in dust-free molded catalysts.

さらに詳しく述べると、本発明は、上記NOx浄化用触
媒を、該触媒ガス入口側接触部のガス流れ方向に対面す
る端面部に触媒活性を有する物質の溶融物を溶着担持せ
しめて、ダストによる損耗を軽微ならしめてなるNOx
浄化用成型触媒の改良に関するものである。
More specifically, the present invention provides the above-mentioned NOx purification catalyst by welding and carrying a molten substance having catalytic activity on the end face facing the gas flow direction of the catalyst gas inlet side contact part, so that wear and tear due to dust is prevented. NOx that becomes minor
This invention relates to improvements in shaped catalysts for purification.

重油焚き、石炭焚きボイラーの排ガス、またはセメント
工場あるいは焼結炉よりの排ガス中には多量のダストが
含有され、これらの排ガス中に含まれるNOxを浄化す
るには、このダスト対策が先決課題である。
Exhaust gas from heavy oil-fired or coal-fired boilers, cement factories, or sintering furnaces contains a large amount of dust, and countermeasures against this dust are a priority issue in order to purify the NOx contained in these exhaust gases. be.

とくにダストを可及的に排ガスより除去してのち、NO
xを浄化処理することは種々の経済的不利益を余儀なく
されるため、近年はダストを含有した排ガスをそのまま
触媒層に通し、NOx浄化反応せしめるプロセスが支配
的となってきている。
In particular, after removing as much dust as possible from the exhaust gas, NO
Since purification of x incurs various economic disadvantages, in recent years, a process in which dust-containing exhaust gas is directly passed through a catalyst layer and subjected to a NOx purification reaction has become dominant.

そのために適した触媒プロセスとしては、その粒子径を
大きくすることによる触媒充填層内部の空間部分を大き
くさせ、ダスト類を通過させる方法、触媒充填層を移動
することで触媒表面に付着しているダストを吹き飛ばす
かまたはふるい落とす方法、排ガスの流れる方向を切り
替えることで触媒に付着しているダストを逆流除去する
方法などが提案されているが、いずれもプロセス的に複
雑となるが、えられる効果が不十分なものばかりである
A suitable catalytic process for this purpose is to increase the particle size to increase the space inside the catalyst packed bed and allow dust to pass through, or to move the dust to the catalyst surface. Methods that have been proposed include blowing or sieving off the dust, and switching the flow direction of the exhaust gas to remove the dust adhering to the catalyst in reverse flow, but both methods are complicated in terms of process, but they can achieve the desired effect. Many of them are insufficient.

そこで触媒形状を変えることによりダストの通過を容易
にし触媒表面へのダスト付着を減少せしめる方法がいろ
いろと試みられている。
Various attempts have therefore been made to change the shape of the catalyst to facilitate the passage of dust and reduce the amount of dust adhering to the surface of the catalyst.

たとえば、代表径5〜40閣、長さ200〜2000問
の棒状触媒、内径5〜30Nn,外径10〜40關、長
さ200〜2.000問の円筒状触媒、相当直径3〜2
0rrvn,流通孔を隔てる隔壁の厚さが0.5〜4
rran−,断面の開孔比が30〜90チ、ガス流れ方
向の長さ200〜2.000rrrIrLのハニカム状
触媒、一辺の長さが200〜2.000Tran1厚さ
3〜10mmの正方形もしくは長方形の板状触媒といっ
た各形状に触媒を成型し、これらの成型触媒を棒状、円
筒状触媒の場合はその外周面を、ハニカム触媒の場合は
その隔壁面を、また板状触媒の場合はその板表面を各々
ガス流れ方向に並行に、適当な充填ピッチで配置してダ
ストによる閉塞をみることなく高い脱NOx(脱硝)性
能を得ることが出来るプロセスである。
For example, a rod-shaped catalyst with a representative diameter of 5 to 40 mm and a length of 200 to 2000 mm, a cylindrical catalyst with an inner diameter of 5 to 30 Nn, an outer diameter of 10 to 40 mm, and a length of 200 to 2,000 mm, and an equivalent diameter of 3 to 2 mm.
0rrvn, the thickness of the partition wall separating the communication holes is 0.5 to 4
rran-, a honeycomb-shaped catalyst with an aperture ratio of 30 to 90 inches in cross section, a length in the gas flow direction of 200 to 2.000 rrrIrL, a square or rectangular catalyst with a side length of 200 to 2.000 Tran1 and a thickness of 3 to 10 mm. Catalysts are molded into various shapes such as plate-shaped catalysts, and these molded catalysts are shaped into rod-shaped catalysts, the outer peripheral surface of cylindrical catalysts, the partition wall surface of honeycomb catalysts, and the plate surface of plate-shaped catalysts. This is a process in which high deNOx (denitrification) performance can be obtained by arranging the gases in parallel with the gas flow direction at appropriate filling pitches without clogging with dust.

この様なプロセスで使用されるダストフリー型触媒の場
合、上記各形状を呈した基体をコージエライト、ムライ
ト、シリコンカーバイド、α−アルミナ、γ−アルミナ
等のセラミック材料を用いて予め成型調整し、この基体
上に触媒物質を塗布するか、含浸する方法が考えられる
が、基体と触媒物質両者の熱膨張係数の違いとか、基体
上への触媒物質の相持強度の弱さなど、根本的な欠点が
あるため、長時間の使用に耐えず、最も問題の少い方法
としては、触媒物質を或は場合によっては担体基体原料
と触媒物質とを混合して上記形状にする方法が考えられ
ている。
In the case of dust-free catalysts used in such processes, substrates with the above shapes are pre-molded using ceramic materials such as cordierite, mullite, silicon carbide, α-alumina, and γ-alumina. A method of coating or impregnating the catalyst material on the substrate is considered, but there are fundamental drawbacks such as differences in the coefficient of thermal expansion between the substrate and the catalyst material and weak mutual strength of the catalyst material on the substrate. Therefore, as a method that does not withstand long-term use and causes the least problems, a method has been considered that involves mixing the catalyst material or, in some cases, the carrier substrate raw material and the catalyst material to form the above-mentioned shape.

一般に、触媒活性は触媒の表面積、細孔容積と比例関係
にあり、低温高活性の成型触媒を得るためには、あまり
高圧をかけずに押し出すとか、予め調製された型に流し
込むなどして成型し、触媒の細孔容積を高める方法が好
ましい。
In general, catalytic activity is proportional to the surface area and pore volume of the catalyst, and in order to obtain a molded catalyst with high activity at low temperatures, it can be molded by extruding it without applying too high pressure or by pouring it into a pre-prepared mold. However, a method of increasing the pore volume of the catalyst is preferred.

したがって、この様に低温高空間速度でも高性能を示す
高活性触媒を得んとする場合、成型触媒の強度が弱く、
特に磨耗に弱いという欠点が避けられない。
Therefore, when trying to obtain a highly active catalyst that exhibits high performance even at low temperatures and high space velocities, the strength of the shaped catalyst is weak;
In particular, the disadvantage of being susceptible to wear cannot be avoided.

従って、排ガス中に25〜3 0 ?/rrlと云った
多量のダストを含む石炭焚きボイラー排ガスを処理する
場合は触媒のガス入口側接触部のガス流れ方向に対面す
る端面は多量のダストが2〜30メートル/秒といった
速い流速で衝突するために非常に激しく磨耗し、長時間
の反応中には触媒が著しく損耗し、経済的な運転が不能
になる事態を招くこととなる。
Therefore, 25 to 30? When processing coal-fired boiler exhaust gas that contains a large amount of dust such as /rrl, a large amount of dust collides with the end face facing the gas flow direction of the gas inlet side contact part of the catalyst at a high flow velocity of 2 to 30 meters/second. As a result, the catalyst wears out extremely severely, and during long-term reactions, the catalyst is severely worn out, resulting in a situation where economical operation becomes impossible.

この磨耗現象は触媒端面均一に起るとはかぎらず、押し
出し圧力のわづかな違い等で生じた触媒成型体の基質の
強度の不均一音医即ち強度の弱い個所を中心に浸触的に
損耗が進行し、均一に磨耗が進む場合に比べて著しく短
時間の内に甚大な損耗を与えると云った実用上大きな問
題点が残されていた。
This abrasion phenomenon does not necessarily occur uniformly on the catalyst end surface, but may occur due to slight differences in the extrusion pressure, etc. due to unevenness in the strength of the matrix of the catalyst molded body. In practical terms, there remained a serious problem in that the wear progressed and caused a huge amount of wear in a much shorter time than if the wear progressed uniformly.

これらの問題点を解決するために本発明者らは脱硝触媒
活性成分として用いられている金属成分、たとえばVX
W,Mo XCu,Fe,Cr,Mn,Cei Sn,
Zn,Pb1Ti,Ni,CosNb,TaXpX B
XBiXAl% Sb%アルカリ金属及びアルカリ士類
金属の一種または二種以上の複合系を溶融状態にし、こ
の溶融物を前記成型触媒の端面部、とくに端面先端から
中心部へ2〜20rrrm深さの範囲で担持せしめ、そ
の部分の触媒基材の強度を上げることにより前記問題点
に対して卓越した効果が得られることを知見し本発明を
完成した。
In order to solve these problems, the present inventors have developed metal components used as denitrification catalyst active components, such as VX.
W, Mo XCu, Fe, Cr, Mn, Cei Sn,
Zn, Pb1Ti, Ni, CosNb, TaXpX B
X Bi The present invention was completed based on the finding that an outstanding effect on the above-mentioned problems can be obtained by increasing the strength of the catalyst base material in that part.

上記触媒物質の溶融体を触媒端面に担持せしめる場合、
成型触媒を所定の方法で成型し、焼成した後で担持して
もよく、また成型品を乾燥後、焼成する前に担持しても
よい。
When supporting the molten body of the catalyst substance on the catalyst end face,
The shaped catalyst may be supported after being molded by a predetermined method and fired, or the molded product may be supported after drying and before being fired.

溶融は通常法、例えば電気炉、重油バーナー加熱炉を用
いて容易に実施出来る。
Melting can be easily carried out using a conventional method, such as an electric furnace or a heavy oil burner heating furnace.

この溶融体中に触媒成型物端而を機械的に含浸せしめて
担持することも可能であるが、溶射法の利用も出来る。
Although it is possible to mechanically impregnate and support the catalyst molded material in this melt, it is also possible to use a thermal spraying method.

溶射法とは、化合物粉末、もしくは金属粉末を溶射法装
置に連続的に供給し、炎中に入れて、溶融と噴出を同時
に行い、成型体端部に溶射担持せしめる。
In the thermal spraying method, compound powder or metal powder is continuously supplied to a thermal spraying device, placed in a flame, melted and ejected at the same time, and is deposited on the end of the molded body by thermal spraying.

一般の溶射法の装置としては粉末式ガス溶射装置(例:
サーモスプレイ)やプラズマ炎溶射装置(例:プラズマ
ジェット式)などがある。
As equipment for general thermal spraying, powder type gas spraying equipment (e.g.
thermo spray) and plasma flame spraying equipment (e.g. plasma jet type).

前装置ではアセチレンー酸素炎使用の場合に約3,10
0℃、水素一酸素炎使用の場合に約2,7 0 0℃の
高温度で粉末を溶融、噴出できる。
In the previous device, when using acetylene-oxygen flame, approximately 3.10
Powder can be melted and ejected at temperatures as high as 0°C and approximately 2,700°C when using a hydrogen-oxygen flame.

後装置ではアルゴン、窒素などを用いてプラズマ炎をつ
くり、5,0 0 0℃以上の高温度で化合物を溶融す
ることができる。
In the rear device, a plasma flame is created using argon, nitrogen, etc., and the compound can be melted at a high temperature of 5,000°C or higher.

いずれの装置も金属も勿論溶射することができ、金属溶
射はすでに工業的規模で実施されている。
Both devices are of course capable of spraying metals, and metal spraying is already practiced on an industrial scale.

本発明において、溶融にか\る前記成分は金属、酸化物
、炭化物、窒化物、硫酸塩、硫化物、硝酸塩、塩化物、
リン酸塩、炭酸塩、有機酸塩などの何れでもよく、また
その2種以上の混合物でもよい0 実施例 1 酸化チタン一酸化ケイ素の複合相体(Ti02−Si0
2)を以下に述べる方法で調製した。
In the present invention, the components involved in melting include metals, oxides, carbides, nitrides, sulfates, sulfides, nitrates, chlorides,
Any of phosphates, carbonates, organic acid salts, etc. may be used, or a mixture of two or more thereof may be used.Example 1 A composite phase of titanium oxide and silicon monoxide (Ti02-Si0
2) was prepared by the method described below.

水80tVfC四塩化fタ/ ( T i C 14
) 1 1.4Kgヲ水冷攪拌下、徐々に滴下し、次に
スノーテックス一〇(日産化学製シリカゾルsio2と
して20〜21重量係含有)4.5Kgを加えた。
Water 80tVfC tetrachloride fta/(T i C 14
) 1 1.4 kg was gradually added dropwise while stirring under water cooling, and then 4.5 kg of Snowtex 10 (containing 20 to 21 weight coefficient as silica sol sio2 manufactured by Nissan Chemical) was added.

これを温度約30℃ニ維持しつつ、よく攪拌しながらア
ンモニア水を徐々に滴下し、PHが7になるまで加え、
さらにそのま\放置して2時間熟成した。
While maintaining the temperature at about 30°C, aqueous ammonia was gradually added dropwise while stirring well until the pH reached 7.
Furthermore, it was left to mature for 2 hours.

かくして得られたTi02−Si02ゲルを沢過、水洗
後120℃で10時間乾燥し、さらに水洗した後500
℃にて3時間焼成した。
The thus obtained Ti02-Si02 gel was filtered, washed with water, dried at 120°C for 10 hours, further washed with water, and then dried at 500°C.
It was baked at ℃ for 3 hours.

得られた粉体の組成は、酸化物としてTi02/Si0
2=4(モル比)で、BET表面積は220rr?/?
であった。
The composition of the obtained powder was Ti02/Si0 as an oxide.
2=4 (molar ratio), BET surface area is 220rr? /?
Met.

ここで得られた粉体を以後1−TSjと呼ぶ。The powder obtained here is hereinafter referred to as 1-TSj.

シュウ酸140fIを水60−に溶解し、これにメタバ
ナジン酸アンモニウム7 1.5 rを加え溶解した液
に、上記のTS500fを加え、よく混合し、ニーダー
でよく練り合わせた。
140 fI of oxalic acid was dissolved in 60 mm of water, and 7 1.5 r of ammonium metavanadate was added thereto. The above TS 500 f was added to the solution, mixed well, and kneaded well with a kneader.

さらに適量の水を加えつつ練った後、外径30rIrr
rL1内径20關、長さ500wnの円筒状に押出機で
成型し、120℃で6時間乾燥した後空気中400℃で
5時間焼成した。
After kneading while adding an appropriate amount of water, the outer diameter is 30rIrr.
rL1 was molded into a cylindrical shape with an inner diameter of 20 cm and a length of 500 wn using an extruder, dried at 120°C for 6 hours, and then calcined in air at 400°C for 5 hours.

得られた円筒状触媒の組成は酸化物としての重量百分率
でTS:V205=90=10であった。
The composition of the obtained cylindrical catalyst was TS:V205=90=10 in weight percentage as oxide.

次に、磁製ルツボに入れたメタバナジン酸アンモニウム
を電気炉で750℃に加熱し溶融状態とし、この溶融物
中に上記の円筒状触媒の端面部を含浸し、和持せしめた
Next, ammonium metavanadate placed in a porcelain crucible was heated to 750° C. in an electric furnace to melt it, and the end face of the cylindrical catalyst was impregnated into the melt and allowed to hold.

金属バナジウムを担持された部分は触媒の端面部より中
心部に5閣の深さであった。
The part on which metal vanadium was supported was 5 cm deep in the center from the end face of the catalyst.

得られた触媒につき、次のような方法で机上活性試験を
行った。
A desktop activity test was conducted on the obtained catalyst using the following method.

円筒状触媒1本を溶融塩浴に浸漬された内径38.87
lEll1のステンレス製反応管に充填し、ボイラー排
ガスに近似した下記組成の合成ガスにNH3を下記の通
り添加しつつ、14.7t/分の流速(SV3,000
hr” )で触媒層に導入し、反応温度とNOx還元
率(チ)の関係を求めた(NOx分析は柳本製ケミルミ
弐CLD/S型を使用した)。
One cylindrical catalyst was immersed in a molten salt bath with an inner diameter of 38.87 mm.
The stainless steel reaction tube of 1Ell1 was filled, and NH3 was added to the synthesis gas having the composition shown below, which is similar to boiler exhaust gas, at a flow rate of 14.7t/min (SV3,000).
hr") into the catalyst layer, and the relationship between reaction temperature and NOx reduction rate (Q) was determined (NOx analysis was carried out using a Chemilumi 2 CLD/S model manufactured by Yanagimoto Co., Ltd.).

NO 200ppm So 2 80 0 p pQl02
4容量係 CO2 10 tt H20 10 〃 N2 残 り さらに NH3 200 ppm 得られたNOx還元率は200℃の時70チ、250℃
の時76%、300℃の時83%、350℃の時84%
、400℃の時86%であって、溶融酸化バナジウムの
担持の有無による差異は認められなかった。
NO 200ppm So 2 80 0p pQl02
4 volumetric CO2 10 tt H20 10 〃 N2 Remaining NH3 200 ppm The obtained NOx reduction rate is 70% at 200℃, 250℃
76% at 300℃, 83% at 350℃, 84% at 350℃
, 86% at 400° C., and no difference was observed depending on whether molten vanadium oxide was supported or not.

触媒の硬度は鉛筆引かき試験機によって試験した(JI
S−K−5400 )。
The hardness of the catalyst was tested by a pencil scratch tester (JI
S-K-5400).

溶融酸化バナジウムを担持しない触媒の端面部の硬度は
2Hで、溶融酸化バナジウムを担持した触媒の端面部の
硬度は9H以上であった。
The hardness of the end face portion of the catalyst not supporting molten vanadium oxide was 2H, and the hardness of the end face portion of the catalyst supporting molten vanadium oxide was 9H or more.

実施例 2 リン酸チタンを以下に述べる方法で調製した。Example 2 Titanium phosphate was prepared by the method described below.

水6tに98q6硫酸300vを加え四塩化チタン76
0グを氷冷攬拌下徐々に溶解した。
Add 300v of 98q6 sulfuric acid to 6t of water and add 76t of titanium tetrachloride.
0g was gradually dissolved under ice cooling and stirring.

これを温度8.0℃に保った後、水3.5tに薄めた8
5%オルトリン酸46 1fIを滴下し、そのまま80
℃で5時間熟成した。
After keeping this at a temperature of 8.0℃, diluted with 3.5 tons of water.
Add 46 1fI of 5% orthophosphoric acid dropwise and leave it at 80%
It was aged for 5 hours at ℃.

かくして得られたリン酸チタンゲルを沢過、水洗後11
0℃で乾燥し、さらに水洗後570℃にて3時間焼成し
た。
After filtering the thus obtained titanium phosphate gel and washing with water,
It was dried at 0°C, washed with water, and then fired at 570°C for 3 hours.

得られた粉末の組成は酸化物としてT i 02 /P
2 05 =2 (モル比)で嵩比重は0.1 5 5
f/C.C. 、細孔容積は4.14C.C./7,
表面積は6 3.37?Z2/S’であった。
The composition of the obtained powder is T i 02 /P as an oxide.
2 05 = 2 (molar ratio), bulk specific gravity is 0.1 5 5
f/C. C. , the pore volume is 4.14C. C. /7,
The surface area is 6 3.37? It was Z2/S'.

なおX線回折分析の結果は不定形であった。Note that the result of X-ray diffraction analysis was that the shape was amorphous.

一方、シュウ酸6001を水260rnlに溶解し、こ
れにメタバナジン酸アンモニウム276S’を加え溶解
した液に、上記のリン酸チタン5001を加え、よく混
合し、ニーダーでよく練り合わせた。
On the other hand, oxalic acid 6001 was dissolved in 260 rnl of water, and ammonium metavanadate 276S' was added to the dissolved solution.The above titanium phosphate 5001 was added, mixed well, and kneaded well with a kneader.

さらに適量の水を加えつつ練った後、外殻80mm角、
ピッチ7 .7 mm、セルの肉厚i .7 mm (
外壁2−3rrrIrL)のハニカム状に押出機で成
型し、120℃で6時間乾燥した後、空気中400℃で
5時間焼成した。
After kneading while adding an appropriate amount of water, the outer shell is 80 mm square,
Pitch 7. 7 mm, cell wall thickness i. 7 mm (
It was molded into a honeycomb shape with an outer wall 2-3rrrIrL) using an extruder, dried at 120°C for 6 hours, and then fired in air at 400°C for 5 hours.

得られた・・ニカム状触媒の組成は酸化物としての重量
百分率でリン酸チタン:v205=70:30であった
The composition of the obtained nicum-like catalyst was titanium phosphate:v205=70:30 in weight percentage as an oxide.

上記のハニカム状触媒の端面部にCuO粉のプラズマ溶
射を施こした。
Plasma spraying of CuO powder was applied to the end face of the honeycomb-shaped catalyst described above.

溶射するCuO粉は100〜300メッシュのものを用
い、プラズマガスとしてはアルゴンtoo(SCPH)
に対し水素4(SCPH)の割合(体積)とし、60V
,400Aの直流電流を用いた。
The CuO powder to be thermally sprayed is 100 to 300 mesh, and the plasma gas is argon too (SCPH).
The ratio (volume) of hydrogen 4 (SCPH) to 60V
, 400 A of direct current was used.

溶射された部分は5咽の深さまでに金属銅が担持された
Metallic copper was supported up to a depth of 5 mm in the sprayed area.

得られた触媒につき、触媒のNOx還元性能試験を実施
例1に準じて行ねった結果、CuOの担持の有無による
差異は認められなかった。
Regarding the obtained catalyst, a catalyst NOx reduction performance test was conducted according to Example 1, and as a result, no difference was observed depending on whether CuO was supported or not.

また、触媒の硬度は実施例1に準じて試験した結果、C
uOを担持しない触媒の端面部の硬度は2Hで、CuO
を担持した触媒の端面部の硬度は9H以上であった。
In addition, the hardness of the catalyst was tested according to Example 1, and as a result, C
The hardness of the end surface of the catalyst that does not support uO is 2H, and CuO
The hardness of the end face portion of the catalyst supporting the was 9H or more.

実施例 3 メタバナジン酸アンモニウム7 5.6 f% 硝酸銅
8 9.3 fを含む水溶液60mA!に、実施例1で
用いたと同じTS500fを加え、よく混合し、ニーダ
ーでよく練り合わせた。
Example 3 Aqueous solution containing ammonium metavanadate 7 5.6 f% copper nitrate 8 9.3 f 60 mA! The same TS500f as used in Example 1 was added to the mixture, mixed well, and kneaded well using a kneader.

さらに適量の水を加えつつ練った後、厚さ5 rran
,幅160喘、長さ450圏の板状に押出機で成型し、
その成型物を金型に入れ60K4/cr!の圧力でプレ
スし、120℃で6時間乾燥した後、空気中400℃で
5時間焼成した。
After kneading while adding an appropriate amount of water, the thickness is 5 rran.
, molded into a plate shape with a width of 160 mm and a length of 450 mm using an extruder,
Put the molded product into a mold and make it 60K4/cr! After pressing at a pressure of 100° C. and drying at 120° C. for 6 hours, it was fired in air at 400° C. for 5 hours.

得られた板状触媒の組成は酸化物としての重量百分率で
TS :V2 05 :CuO= 85:10:5で
あった。
The composition of the obtained plate-shaped catalyst was TS:V205:CuO=85:10:5 in weight percentage as an oxide.

次に、上記の板状触媒の端面部にCu粉のプラズマ溶射
を施こした。
Next, plasma spraying of Cu powder was applied to the end face of the plate-shaped catalyst.

溶射するCu粉は100〜300メッシュのものを用い
、プラズマ溶射条件および担持深さは実施例2と同様で
あった。
The Cu powder to be thermally sprayed had a size of 100 to 300 mesh, and the plasma spraying conditions and supporting depth were the same as in Example 2.

得られた触媒につき、触媒のNOx還元性能試験を実施
例1に準じて行なった結果、Cuの担持の有無による差
異は認められなかった。
Regarding the obtained catalyst, a catalyst NOx reduction performance test was conducted according to Example 1, and as a result, no difference was observed depending on whether Cu was supported or not.

また、触媒の硬度は実施例1に準じて試験した結果、C
uを担持しない触媒の端面部の硬度は3HでCuを担持
した触媒の端面部の硬度は9H以上であった。
In addition, the hardness of the catalyst was tested according to Example 1, and as a result, C
The hardness of the end face portion of the catalyst not supporting U was 3H, and the hardness of the end face portion of the catalyst supporting Cu was 9H or more.

実施例 4 メタバナジン酸アンモニウム75.6f,タングステン
酸アンモニウム33.11を含むシュウ酸酸性水溶液6
0−に、実施例1で用いたTS 50 02を加え、よ
く混合し、ニーダーでよく練り合わせた。
Example 4 Oxalic acid acidic aqueous solution 6 containing 75.6f of ammonium metavanadate and 33.11f of ammonium tungstate
TS 50 02 used in Example 1 was added to 0-, mixed well, and kneaded well with a kneader.

さらに適量の水を加えつつ練った後、実施例1に準じて
円筒状触媒を調製した。
After kneading the mixture while adding an appropriate amount of water, a cylindrical catalyst was prepared according to Example 1.

得られた円筒状触媒の組成は酸化物としての重量百分率
でTS:V205 :WO3二85 :10 :5であ
った。
The composition of the obtained cylindrical catalyst was TS:V205:WO3285:10:5 in weight percentage as oxide.

次に、二酸化マンガンをガス溶射法によって上記円筒状
触媒の端面部に担持せしめた。
Next, manganese dioxide was supported on the end surface of the cylindrical catalyst by a gas spraying method.

炎にはアセチレンー酸素炎(アセチレン:13PSI、
酸素:20PSI)を使用した。
The flame is an acetylene-oxygen flame (acetylene: 13 PSI,
Oxygen: 20 PSI) was used.

マンガンの担持深さは約5咽であった。The loading depth of manganese was approximately 50 mm.

得られた触媒につき、触媒のNOx還元性能試験を実施
例1に準じて行なった結果、MnO2の担持の有無によ
る差異は認められなかった。
Regarding the obtained catalyst, a catalyst NOx reduction performance test was conducted according to Example 1, and as a result, no difference was observed depending on whether MnO2 was supported or not.

また、触媒の硬度は実施例1に準じて試験した結果、M
nO2を担持しない触媒の端面部の硬度ぱ2Hで、M
n 0 2を担持した触媒の端面部の硬度は9H以上で
あった。
In addition, as a result of testing the hardness of the catalyst according to Example 1, M
The hardness of the end surface of the catalyst that does not support nO2 is P2H, and M
The hardness of the end face portion of the catalyst supporting n 0 2 was 9H or more.

実施例 5 実施例1において溶融五酸化バナジウムの代りに金属ア
ルミニウムを用いて同様にして触媒を調製した。
Example 5 A catalyst was prepared in the same manner as in Example 1 except that metallic aluminum was used instead of molten vanadium pentoxide.

触媒のNOx還元性能は無担持および担持について差異
は認められなかった八触媒の硬度は無担持の触媒は2H
であつ゜〔、担持の触媒は9H以上であった。
There was no difference in the NOx reduction performance of the catalyst between unsupported and supported catalysts.The hardness of the unsupported catalyst was 2H.
The supported catalyst was 9H or higher.

実施例 6 実施例1の触媒素材を実施例2に準じてハニカム状触媒
を調製した。
Example 6 A honeycomb-shaped catalyst was prepared from the catalyst material of Example 1 according to Example 2.

得られた触媒の端面部に実施例1に準じて溶融五酸化バ
ナジウムを担持せしめた。
Molten vanadium pentoxide was supported on the end face of the obtained catalyst in accordance with Example 1.

バナジウムの担持深さは約58であった。The loading depth of vanadium was approximately 58 mm.

得られた触媒につき、触媒のNOx還元性能試験を実施
例1に準じて行なった結果、V205の担持の有無によ
る差異は認められなかった。
Regarding the obtained catalyst, a catalyst NOx reduction performance test was performed according to Example 1, and as a result, no difference was observed depending on whether V205 was supported or not.

また、触媒の硬度は実施例1に準じて試験した結果、v
205を担持しない触媒の端面部の硬度は2Hで、v2
05を担持した触媒の端面部の硬度は9H以上であった
In addition, the hardness of the catalyst was tested according to Example 1, and the results showed that v
The hardness of the end surface of the catalyst that does not support 205 is 2H, v2
The hardness of the end face portion of the catalyst supporting 05 was 9H or more.

実施例 7 実施例1および実施例4で得られた触媒について、実ガ
スによる耐久試験を行なった。
Example 7 The catalysts obtained in Example 1 and Example 4 were subjected to a durability test using actual gas.

円筒状触媒196本を横2 1 0wm、たて210調
、長さ2000mmの箱型反応器にガスの流れと平行に
して固定した。
196 cylindrical catalysts were fixed in a box-shaped reactor with a width of 210 wm, a length of 210 wm, and a length of 2000 mm in parallel with the gas flow.

この反応器に石炭を燃・料として使用するボイラーの排
ガスにNH3を添加してNOxを除去を行なった。
NOx was removed by adding NH3 to the exhaust gas of a boiler that uses coal as fuel in this reactor.

排ガス組成はNOx250〜300ppm1S O x
8 0 0 〜1 ,2 0 0 p ’p rn
N酸素3〜4容量係、炭酸ガス10〜12容量係、水蒸
気10〜14容量係、残り窒素であり、これにNH3を
NH3/NO x= 1 (モル比)となるように添加
してなるものであり、排ガス中に含まれる煤塵は25〜
30S’/Nrr?である。
Exhaust gas composition is NOx250-300ppm1SOx
800~1,200p'prn
3 to 4 volumes of N oxygen, 10 to 12 volumes of carbon dioxide, 10 to 14 volumes of water vapor, and the remainder nitrogen, to which NH3 is added so that NH3/NO x = 1 (molar ratio) The soot and dust contained in the exhaust gas is 25~
30S'/Nrr? It is.

上記排ガスをあらかじめ加熱して反応器入口温度を33
0℃に設定し441Ni/hrで供給した(線速は空筒
基準で4.9メートル/秒に相当する。
The above exhaust gas is heated in advance to bring the reactor inlet temperature to 33℃.
It was set at 0° C. and supplied at 441 Ni/hr (the linear velocity corresponds to 4.9 m/sec based on the empty cylinder).

)。触媒の耐久試験の結果を表1に示した。). Table 1 shows the results of the catalyst durability test.

3000時間の耐久試験後、触媒を取り出してみると、
無担持の触媒と担持せしめた触媒とに顕著な差異が認め
られた。
After the 3000 hour durability test, when we took out the catalyst, we found that
A significant difference was observed between the unsupported and supported catalysts.

すなわち、無担持の触媒では触媒層のガス入口接触部の
,端面部が、浸触的に損耗しており、一方、担持せしめ
た触媒は殆ど損耗していなかった。
That is, in the case of the unsupported catalyst, the end face of the gas inlet contacting part of the catalyst layer was catalytically worn, whereas in the case of the supported catalyst, there was almost no wear.

Claims (1)

【特許請求の範囲】[Claims] 1 ダスト含有排ガス中の窒素酸化物を浄化するダスト
吹き抜け可能な形状に成型された触媒において、該触媒
ガス入口側接触部のガス流れ方向に対面する端面部に触
媒活性を示す溶融体を溶着担持せしめてダストによる触
媒端面の損耗を防止せしめてなることを特徴とする改良
された窒素酸化物浄化用成型触媒。
1. In a catalyst molded into a shape that allows dust to blow through to purify nitrogen oxides in dust-containing exhaust gas, a molten material exhibiting catalytic activity is welded and supported on the end face facing the gas flow direction of the catalyst gas inlet side contact part. An improved molded catalyst for purifying nitrogen oxides, which is characterized in that it at least prevents wear and tear of the end face of the catalyst due to dust.
JP52136187A 1977-11-15 1977-11-15 Improved shaped catalyst for nitrogen oxide purification Expired JPS5911340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52136187A JPS5911340B2 (en) 1977-11-15 1977-11-15 Improved shaped catalyst for nitrogen oxide purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52136187A JPS5911340B2 (en) 1977-11-15 1977-11-15 Improved shaped catalyst for nitrogen oxide purification

Publications (2)

Publication Number Publication Date
JPS5469587A JPS5469587A (en) 1979-06-04
JPS5911340B2 true JPS5911340B2 (en) 1984-03-14

Family

ID=15169371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52136187A Expired JPS5911340B2 (en) 1977-11-15 1977-11-15 Improved shaped catalyst for nitrogen oxide purification

Country Status (1)

Country Link
JP (1) JPS5911340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423193A (en) * 2016-09-21 2017-02-22 中国建筑材料科学研究总院 Honeycomb manganese denitration catalyst and preparation method thereof
CN109364935A (en) * 2018-12-10 2019-02-22 江苏奥利思特环保科技有限公司 A kind of low-temperature denitration catalyst and preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2879738B2 (en) * 1989-03-28 1999-04-05 触媒化成工業株式会社 Exhaust gas purification method and molded catalyst used therefor
DE19635385B4 (en) * 1996-08-31 2011-07-14 Envirotherm GmbH, 45136 Process for the reductive destruction of nitrogen oxides in dust-laden waste gases from plants for the production of cement
JP4922651B2 (en) * 2000-01-20 2012-04-25 株式会社日本触媒 Method for producing wear-resistant catalyst molded body
JP5081420B2 (en) * 2006-09-21 2012-11-28 日立造船株式会社 Catalyst production method and catalyst produced by the method
CN106955698B (en) * 2017-04-07 2019-05-31 太原理工大学 Denitrating catalyst preparation method based on meso-porous titanium dioxide titanium carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423193A (en) * 2016-09-21 2017-02-22 中国建筑材料科学研究总院 Honeycomb manganese denitration catalyst and preparation method thereof
CN109364935A (en) * 2018-12-10 2019-02-22 江苏奥利思特环保科技有限公司 A kind of low-temperature denitration catalyst and preparation method

Also Published As

Publication number Publication date
JPS5469587A (en) 1979-06-04

Similar Documents

Publication Publication Date Title
JP3502878B2 (en) Monolithic catalyst for converting sulfur dioxide to sulfur trioxide
EP1212135B1 (en) Catalyst for the selective oxidation of carbon monoxide and its preparation
US11020732B2 (en) Catalyst bed and method for reducing nitrogen oxides
JPS5982930A (en) Reduction of nitrogen oxide
JPH0736895B2 (en) Catalyst for gas effluent treatment and method for effluent treatment
US6696386B2 (en) Exhaust gas purification catalyst and exhaust gas purification material
US11911728B2 (en) Reactor for reducing nitrogen oxides
US5264200A (en) Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
US3993731A (en) Selective removal of nitrogen oxides from waste gas
JPS6164334A (en) Production of catalyst for purifying nitrogen oxide
JPH02169032A (en) New catalyst usable for selective
EP3393629B1 (en) A catalyst bed and method for reducing nitrogen oxides
JPS5911340B2 (en) Improved shaped catalyst for nitrogen oxide purification
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
JPH03193140A (en) Catalyst for treating gas effluence and method for treating said effluence
JPS603859B2 (en) catalyst molded product
JPS6257382B2 (en)
JP2005313161A (en) Method for manufacturing denitration catalyst
DK170529B1 (en) Ammonia oxidation catalyst
JPH0417091B2 (en)
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JPS6050489B2 (en) Catalyst for purifying exhaust gas containing sulfur compounds
JPS61230748A (en) Catalyst for purifying nitrogen oxide
JPH09276659A (en) Catalyst for removal of nitrogen oxide contained in exhaust gas by reduction and manufacture of catalyst
JP2002331241A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning material