JPH0338256A - Manufacture of plate-shaped catalyst for removing nitrogen oxide - Google Patents

Manufacture of plate-shaped catalyst for removing nitrogen oxide

Info

Publication number
JPH0338256A
JPH0338256A JP1172780A JP17278089A JPH0338256A JP H0338256 A JPH0338256 A JP H0338256A JP 1172780 A JP1172780 A JP 1172780A JP 17278089 A JP17278089 A JP 17278089A JP H0338256 A JPH0338256 A JP H0338256A
Authority
JP
Japan
Prior art keywords
catalyst
plate
silica sol
woven fabric
shaped catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172780A
Other languages
Japanese (ja)
Inventor
Kyoichi Murakami
恭一 村上
Ikuhisa Hamada
幾久 浜田
Toshifumi Mukai
利文 向井
Katsuhiro Yashiro
克洋 矢代
Naomi Yoshida
直美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1172780A priority Critical patent/JPH0338256A/en
Publication of JPH0338256A publication Critical patent/JPH0338256A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength of the end parts of a plate-shaped catalyst liable to damage and thereby obtain the catalyst high in strength and wear resistance by impregnating or coating the end faces of the catalyst in the form of a plate with the silica sol having a size not larger than a predetermined diameter. CONSTITUTION:An inorg. fiber-woven fabric is impregnated with inorg. oxide particles contg. silica sol and then dried. After drying, this inorg. fiber-woven fabric is thereafter coated with the catalytic composition contg. preconditioned titanium oxide and formed into a predetermined shape and size, followed by drying and then baking so as to be formed into a plate-shaped catalyst body. Moreover, the end faces of this plate-shaped catalyst body are impregnated or coated with the silica sol having a size of at most 20mum in diameter and then dried. Since the catalyst thus formed has the gaps between the fibers in the inorg. fiber-woven fabric filled with the inorg. oxide particles and the end faces reinforced, this catalyst provides a long lifetime due to a high strength and wear resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素酸化物除去用板状触媒の製造方法に係り、
特に端部の圧壊防止に好適な窒素酸化物除去用板状触媒
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a plate-shaped catalyst for removing nitrogen oxides,
In particular, the present invention relates to a method for producing a plate-shaped catalyst for removing nitrogen oxides, which is suitable for preventing crushing of the ends.

〔従来の技術〕[Conventional technology]

一般に排ガス中の窒素酸化物を除去する触媒(以下、単
に触媒と呼ぶ)には、酸化チタン(Ti0.)とモリブ
デン(Mo)、タングステン(W)、バナジウム(V)
等の酸化物からなる触媒組成物を、粒状、板状、ハニカ
ム状などに成形したものが用いられている。−中でも重
油や石炭などを燃料とするボイラ排ガスの場合には、煤
や灰を多量に含むガスを低圧力損失で処理する必要があ
り、板状触媒を組合わせたものや、開口率の大きいハニ
カム状触媒などのガスの流れ方向に平行な通路を有する
ものが用いられている。かかる触媒としては、金属基板
に触媒成分を塗布したもの(特公昭61−28377号
公報)、触媒成分をハニカム状に押出成形したもの(特
公昭60−3856号公報など)、セラミック繊維マ・
ントや紙をハニカム状に成形後、触媒前駆体物質を被覆
したもの(特公昭5B−11253号公報など)等数多
くのものが知られており、すでに実用に供されている。
In general, catalysts that remove nitrogen oxides from exhaust gas (hereinafter simply referred to as catalysts) include titanium oxide (Ti0.), molybdenum (Mo), tungsten (W), and vanadium (V).
Catalyst compositions made of oxides such as catalytic converters and the like are used in the form of particles, plates, honeycombs, etc. -In particular, in the case of boiler exhaust gas fueled by heavy oil or coal, gas containing large amounts of soot and ash needs to be treated with low pressure loss, so it is necessary to treat the gas with a combination of plate catalysts and large aperture ratios. A catalyst having passages parallel to the gas flow direction, such as a honeycomb catalyst, is used. Examples of such catalysts include those in which a catalyst component is coated on a metal substrate (Japanese Patent Publication No. 61-28377), catalyst components extruded into a honeycomb shape (Japanese Patent Publication No. 60-3856, etc.), ceramic fiber matrix, etc.
Many products are known and have already been put into practical use, such as those in which a honeycomb or paper is formed into a honeycomb shape and then coated with a catalyst precursor material (Japanese Patent Publication No. 5B-11253, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち、金属基板に触媒を塗布したものは
平板部分が多いため圧損が小さく、灰が堆積しにくいと
いう点および耐摩耗性では優れたものであるが、重量が
重く、また特別の条件下では金属基板が酸化されるとい
う難点があった。
Among the conventional technologies mentioned above, those in which a catalyst is coated on a metal substrate have many flat plate parts, so the pressure drop is small, ash does not easily accumulate, and the abrasion resistance is excellent, but it is heavy and requires special The problem was that the metal substrate was oxidized under these conditions.

また、無機繊維、紙等の表面に触媒成分を被覆するもの
は衝撃力に強い反面、機械的強度が低く排ガス中に含ま
れる灰粒子によって摩耗するという問題を有していた。
In addition, inorganic fibers, paper, etc. whose surfaces are coated with catalyst components are strong against impact forces, but have low mechanical strength and suffer from wear due to ash particles contained in exhaust gas.

そこでこれらの問題点を解決するために、セラミックま
たはガラス繊維製織布に無機酸化物微粒子を含浸して強
化し、これに酸化チタンを主成分とする触媒組成物と綿
状無機繊維を水に溶かして混合したペースト、またはス
ラリを塗布して被覆し、ローラブレス等で圧密化したの
ち乾燥、焼成した触媒が本発明者らにより提案され、出
願中である(未公開)。
In order to solve these problems, ceramic or glass fiber woven cloth is impregnated with inorganic oxide fine particles to strengthen it, and then a catalyst composition mainly composed of titanium oxide and cotton-like inorganic fibers are added to water. The present inventors have proposed a catalyst that is coated with a melted and mixed paste or slurry, compacted using a roller press or the like, then dried and calcined, and an application is pending (unpublished).

しかしながら、このセラミック製織布などのスクリーン
材を基材とする板状触媒の端部では、薄板のためεこハ
ンドリング時に損傷を起こしたり、特に石炭を主燃料と
するボイラの脱硝装置においては、排ガス中に含まれる
多量の煤塵によって容易に摩耗あるいは破損するという
大きな問題が残されていた。
However, the edges of plate-shaped catalysts based on screen materials such as ceramic woven cloth are thin and can be damaged during handling, especially in denitrification equipment for boilers that use coal as the main fuel. The major problem remained that they were easily worn out or damaged by the large amount of soot and dust contained in the exhaust gas.

本発明の目的は、前記技術の問題点をなくし、セラミッ
ク・スクリーン等を基材とする板状触媒において、端部
の圧壊防止に好適な端部処理を行う窒素酸化物除去用板
状触媒の製造方法を提供することにある。
An object of the present invention is to eliminate the problems of the above-mentioned techniques, and to provide a plate-shaped catalyst for removing nitrogen oxides, which is subjected to edge treatment suitable for preventing crushing of the edges of a plate-shaped catalyst based on a ceramic screen or the like. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、無機繊維織布に触媒組成物を担持させた窒
素酸化物除去用板状触媒の製造方法において、シリカゾ
ルを含む無機酸化物微粒子を無機繊維織布に含浸したの
ち乾燥する工程と、あらかじめ調整した酸化チタンを含
む触媒組成物を上記乾燥後の無機繊維織布に塗布する工
程と、これを所定の形状および寸法の成形棒に底形する
工程と、この成形棒を乾燥、焼成して板状触媒体とする
工程と、この板状触媒体の端部面に粒径が20μm以下
のシリカゾルを含浸または塗布して乾燥する工程とから
なることを特徴とする窒素酸化物除去用板状触媒の製造
方法により達成される。
The above object is a method for producing a plate-shaped catalyst for removing nitrogen oxides in which a catalyst composition is supported on an inorganic fiber woven fabric, which includes a step of impregnating the inorganic fiber woven fabric with inorganic oxide fine particles containing silica sol and then drying it; A step of applying a pre-prepared catalyst composition containing titanium oxide to the dried inorganic fiber woven fabric, a step of forming the bottom of this into a molded rod having a predetermined shape and dimensions, and drying and baking this molded rod. A plate for removing nitrogen oxides, comprising the steps of: forming a plate-shaped catalyst body by impregnating or coating the end face of the plate-shaped catalyst body with silica sol having a particle size of 20 μm or less and drying the same. This is achieved by a method for producing a shaped catalyst.

〔作用〕[Effect]

本発明における触媒は、酸化物微粒子を含む無機繊維織
布に、触媒微粒と綿状の無機繊維とを混合したものに水
を加え、加熱しながら混練して得られるスラリまたはペ
ースト状態の触媒を塗布し、適度に圧延処理を施した後
乾燥焼成することにより、酸化物微粒子によって繊維間
隙が満たされた無機繊維織布に被覆された触媒層からな
る触媒体として得られる。
The catalyst in the present invention is a slurry or paste catalyst obtained by adding water to an inorganic fiber woven fabric containing oxide particles, mixing catalyst particles and cotton-like inorganic fibers, and kneading the mixture while heating. By coating, appropriately rolling, and then drying and baking, a catalyst body consisting of a catalyst layer coated on an inorganic fiber woven fabric with fiber gaps filled with oxide fine particles is obtained.

本発明に用いられる無機繊維織布は、たとえば糸径3〜
20μmの無機繊維をデンプンやプラスチックエマルジ
ョン等の集束剤を用いて200〜800本に束ね、これ
をさらに5〜10本程度によって縦横方向に縫い合わせ
たものである。したがって、このように多数の無機繊維
をよった糸からなるクロスは極めて強度が高く、また無
機物であるため耐熱性に優れている。しかしながら、繊
維は摩擦には弱く、単繊維同士が直接接触しているよう
な場合強度は低くなる恐れがある。末法で用いられる触
媒のように、実機で300 ’C以上の高温に曝される
ような場合、前記の集束剤は熱分解して繊維同士の接触
が起こり、単繊維が耐熱性を有していても織布としての
強度は落ちる。本発明の触媒においては、酸化物微粒子
が織布を構成する繊維の間隙を埋めており、このような
高温に曝されても単繊維同士が接触することはない。後
述する本発明の実施例では、主成分として5iOt :
52〜56%、Alz 03  : 12〜16%、C
aO:12〜25%、MgO:0〜6%、B!01=8
〜13%からなるEガラス繊維(線径9am)に、5i
Ozゾル(粒径7〜9X10−”am)を含浸して55
0°C/2 hで焼成したものが用いられ、焼成後のf
fi量比(無機酸化物微粒子/ガラス繊維)は約0.1
2であった。
The inorganic fiber woven fabric used in the present invention is, for example, a yarn diameter of 3 to
20 μm inorganic fibers are bundled into 200 to 800 fibers using a sizing agent such as starch or plastic emulsion, and these are further sewn together in the vertical and horizontal directions using about 5 to 10 fibers. Therefore, a cloth made of yarn made of a large number of twisted inorganic fibers has extremely high strength, and since it is an inorganic material, it has excellent heat resistance. However, fibers are weak against friction, and if single fibers are in direct contact with each other, the strength may be reduced. In cases where the sizing agent is exposed to high temperatures of 300'C or higher in actual equipment, such as catalysts used in the powder processing, the above-mentioned sizing agent thermally decomposes and contacts between fibers occur, causing the single fibers to have heat resistance. However, the strength of the woven fabric decreases. In the catalyst of the present invention, the oxide fine particles fill the gaps between the fibers constituting the woven fabric, and the single fibers do not come into contact with each other even when exposed to such high temperatures. In the examples of the present invention described later, 5iOt is used as the main component:
52-56%, Alz 03: 12-16%, C
aO: 12-25%, MgO: 0-6%, B! 01=8
~13% E glass fiber (wire diameter 9am), 5i
Impregnated with Oz sol (particle size 7-9X10-”am)
Those fired at 0°C/2 h are used, and f after firing is
fi amount ratio (inorganic oxide fine particles/glass fiber) is approximately 0.1
It was 2.

本発明に用いられている繊維はその間隙を微粒の酸化物
が埋めており、単繊維同士の直接接触が起こりにくい。
In the fibers used in the present invention, the gaps between them are filled with fine particles of oxide, making it difficult for single fibers to come into direct contact with each other.

しかも微粒の酸化物は繊維間に散在しており、繊維自身
の動きを拘束することはない。このような状態において
は、高温下でも織布繊維の強度は高い。さらに、繊維の
拘束は緩いので伸びと柔軟性がある。したがって、この
ように酸化物微粒子を含浸した繊維を用いた触媒は、強
度と弾性を兼ね備えたものとなる。
Moreover, the fine particles of oxide are scattered between the fibers and do not restrict the movement of the fibers themselves. Under such conditions, the strength of the woven fabric fibers is high even at high temperatures. Furthermore, the fibers are loosely constrained, allowing for elongation and flexibility. Therefore, a catalyst using fibers impregnated with oxide fine particles has both strength and elasticity.

本発明のように酸化物微粒子を含む繊維に触媒層を被覆
したものは、曲げ強度、弾性ともに優れている。
A fiber containing oxide fine particles coated with a catalyst layer as in the present invention has excellent bending strength and elasticity.

本発明の構造においては、触媒成分層の粒子同士が凝集
結合しながら綿状無機繊維に絡み合って、極めて緻密で
強固な組織を形成して、前記繊維織布に絡みついている
。その結果、構造体として得られる触媒体は、前記繊維
織布と触媒層がそれぞれに持つ強度に加え、触媒成分層
と織布との複合強化がなされ、さきに示したように触媒
と綿状無機繊維の混合物を圧延処理したもの、セラミッ
クシート等の表面に触媒成分をコーティングしたもの、
単にセラミックシートに触媒成分溶液を含浸したものな
どに較べて飛躍的に高い強度を有する。
In the structure of the present invention, the particles of the catalyst component layer are intertwined with the cotton-like inorganic fibers while coagulating and bonding with each other, forming an extremely dense and strong structure that is entangled with the fibrous fabric. As a result, the catalyst body obtained as a structure has the combined strength of the catalyst component layer and the woven fabric in addition to the strength of the fibrous fabric and the catalyst layer, and as shown above, the catalyst and cotton-like Rolled inorganic fiber mixtures, ceramic sheets etc. coated with catalyst components,
It has significantly higher strength than a ceramic sheet simply impregnated with a catalyst component solution.

さらに、本発明では酸化物微粒子を無機繊維織布に含浸
後乾燥したものに、触媒成分ペーストを塗布、乾燥、焼
成したのち、この焼成物の端部にシリカゾルを含浸担持
させたのち、所定時間乾燥して使用するようにしたので
、多孔の触媒内部にシリカゾルを浸透させ、強度の高い
端部を有する脱硝触媒を得ることができる。この際に用
いられるシリカゾルの粒径は20μm以下であり、その
担持量は50〜250g/rrfとすることが好ましい
、該シリカゾルの粒径が20μmを超えると、曲げ強さ
が低下する。
Furthermore, in the present invention, after impregnating an inorganic fiber woven fabric with oxide fine particles and drying it, a catalyst component paste is applied, dried, and fired, and then silica sol is impregnated and supported on the end of this fired product, and then the silica sol is impregnated and supported on the end of the fired product. Since it is used after drying, the silica sol can be infiltrated into the porous catalyst, and a denitrification catalyst having strong end portions can be obtained. The particle size of the silica sol used in this case is preferably 20 μm or less, and the supported amount is preferably 50 to 250 g/rrf. If the particle size of the silica sol exceeds 20 μm, the bending strength decreases.

〔実施例〕〔Example〕

本実施例の触媒の製造プロセスを第4図に示す。 The manufacturing process of the catalyst of this example is shown in FIG.

また、本発明で用いたガラス繊維織布の組成を第1表に
示す。
Further, Table 1 shows the composition of the glass fiber woven fabric used in the present invention.

第 ■ 表 (1)触媒ペーストの調製 酸化チタン(TiO2)を30重量%有する硫酸法によ
るメタチタンスラリ60kgに、メタバナジン酸ア7モ
ニ’yム(NHs VOs )0.62kgおよびモリ
ブデン酸アンモニウム((N)1.)AMo、O,、・
4 HtO)4.51kgを加え、140°Cに加熱し
たニーダを用いて水を蒸発させながら混練した。得られ
た水分38重量%のペースト状物質を押出造粒機により
直径3Mの柱状に成形し、次いで流動層乾燥機により乾
燥した。この乾燥顆粒を空気を流しながら、560℃で
2h焼成後、ハンマミルを用いて20μm以下が90重
量%以上の粒度になるように粉砕し、触媒微粒を得た。
Table (1) Preparation of catalyst paste To 60 kg of metatitanium slurry prepared by the sulfuric acid method containing 30% by weight of titanium oxide (TiO2), 0.62 kg of ammonium metavanadate (NHs VOs) and ammonium molybdate ((N ) 1.) AMo, O,...
4.51 kg of 4 HtO) was added and kneaded while evaporating water using a kneader heated to 140°C. The resulting paste-like material with a water content of 38% by weight was formed into a columnar shape with a diameter of 3M using an extrusion granulator, and then dried using a fluidized bed dryer. The dried granules were calcined at 560° C. for 2 hours while flowing air, and then ground using a hammer mill to a particle size of 90% by weight or less of 20 μm or less to obtain catalyst fine particles.

上記触媒粉7.9 kgと綿状無機繊維2.1kgの混
合物に水3kgを加えニーダで30分間混練し、水分1
23重量%の触媒ペーストを得た。
Add 3 kg of water to a mixture of 7.9 kg of the above catalyst powder and 2.1 kg of cotton-like inorganic fibers, and knead with a kneader for 30 minutes.
A 23% by weight catalyst paste was obtained.

(2)無機繊維織布の強化 ガラス繊維織布(Eガラス、10本/ i n c h
、460°C/2 hヒートクリーニング材)に、粒子
濃度20重量%のSiO*ゾル(粒子径7〜9×10−
3μm)を含浸した後、120℃で乾燥した。
(2) Reinforced glass fiber woven fabric made of inorganic fiber woven fabric (E glass, 10 pieces/inch
, 460°C/2 h heat cleaning material) with a particle concentration of 20% by weight (particle size 7 to 9 x 10-
3 μm) and then dried at 120°C.

(3)触媒の成形と焼成 前記無機繊維織布を500−角に切断したものを、前記
触媒ペーストととも加圧1.4ton、速度7.5m/
minで回転ローラによって圧延しなから織布にペース
トを塗布した後、5US304製メタルラス加工して得
た2枚の多孔金型に挟んで180℃で1時間乾燥した。
(3) Molding and firing of catalyst The inorganic fiber woven fabric cut into 500-square pieces was heated with the catalyst paste at a pressure of 1.4 tons and a speed of 7.5 m/min.
After applying the paste to the woven fabric, which was rolled with a rotating roller at a speed of 100 min, the woven fabric was sandwiched between two perforated metal molds made of 5US304 metal lath and dried at 180°C for 1 hour.

その後、金型を取り外し、空気中で550℃で2時間焼
成して第1図に示すような触媒成形体を得た。
Thereafter, the mold was removed and the catalyst was fired in air at 550° C. for 2 hours to obtain a catalyst molded body as shown in FIG.

なお、上記した無機繊維織布に強化剤を含浸後触媒を塗
布した例を含め、具体的例を第2表に示す。第2表から
れかるように、無機繊維微粒子直径の無機繊維直径に対
する比が0.2以下で、無機酸化物微粒子重量の無機繊
維織布重量に対する割合が0.05〜0.8程度が好ま
しい。
Specific examples are shown in Table 2, including an example in which the above-mentioned inorganic fiber woven fabric was impregnated with a reinforcing agent and then coated with a catalyst. As shown in Table 2, it is preferable that the ratio of the inorganic fiber fine particle diameter to the inorganic fiber diameter is 0.2 or less, and the ratio of the inorganic oxide fine particle weight to the inorganic fiber woven fabric weight is about 0.05 to 0.8. .

以下余白 (4)触媒端部強化 第3表に示す平均粒子系および濃度を有する各銘柄のシ
リカゾル原液をそのまま、あるいは水により希釈して1
/2の濃度したシリカゾル溶液を用意して、前記焼成触
媒成形体の端部から30m+幅につき゛(第1図参照)
浸漬、あるいは塗布してシリカゾルを含浸し、180″
Cで1時間乾燥後、550 ’Cで2時間焼成した。含
浸部分をテストピースにとり、曲げ強さを測定し、結果
を第5図に示す、いずれの銘柄についても、シリカゾル
を含浸しないものより曲げ強度は向上している。
Margin below (4) Catalyst end reinforcement Each brand of silica sol stock solution having the average particle system and concentration shown in Table 3 can be used as it is or diluted with water.
Prepare a silica sol solution with a concentration of
Impregnated with silica sol by dipping or coating, 180″
After drying at C for 1 hour, it was fired at 550'C for 2 hours. The impregnated portion was taken as a test piece and the bending strength was measured. The results are shown in FIG. 5. For all brands, the bending strength was improved compared to the one not impregnated with silica sol.

なお、第6図は前記した触媒成形体を焼成することなく
常温で乾燥したままの状態で、同一シリカゾル溶液に浸
漬し、同一条件で乾燥、焼成したものの曲げ強度を示す
、すなわち、シリカゾル含浸による強度向上は、触媒焼
成後のものに含浸するのがよい。
In addition, Figure 6 shows the bending strength of the catalyst molded body described above, which was dried at room temperature without being fired, immersed in the same silica sol solution, dried and fired under the same conditions. To improve the strength, it is best to impregnate the catalyst after it has been fired.

第2図には、シリカゾルの粒径による含浸触媒の曲げ強
度の変化を示す、シリカゾルの粒径が20t1m以下の
ものが強度向上に特に有効である。
FIG. 2 shows the change in the bending strength of the impregnated catalyst depending on the particle size of the silica sol. Silica sol with a particle size of 20 t1m or less is particularly effective in improving strength.

第7図は、濃度8重量%のシリカゾルおよびアルミナゾ
ルを含浸させた場合の触媒の引張強度の向上状況を示す
。また、第3図は、シリカゾルの単位面積当たりの含浸
量と曲げ強度の関係を示す。
FIG. 7 shows the improvement in the tensile strength of the catalyst when impregnated with silica sol and alumina sol at a concentration of 8% by weight. Moreover, FIG. 3 shows the relationship between the amount of silica sol impregnated per unit area and the bending strength.

テスト結果には多少のバラツキがあるが、担持量が50
g/rd以上あれば、曲げ強度は400kg/c4以上
を確保できる。なお、含浸担持量を150g/rrfを
超えて増加させても曲げ強度は向上しない。
There are some variations in the test results, but the loading amount is 50%.
g/rd or more, it is possible to ensure a bending strength of 400 kg/c4 or more. Note that even if the amount of impregnated support is increased beyond 150 g/rrf, the bending strength does not improve.

第8図は、第3表に示したCataffioidS  
5I−350の固形分15重量%のシリカゾルを、触媒
焼成体に1回含浸したものを、180〜550°Cの酸
化雰囲気で処理した場合の曲げ強さと処理温度の関係を
示す。最終焼成温度が180〜550″Cの範囲であれ
ば、触媒の強度はほとんど変化しない。したがって、含
浸後は180″C程度で乾燥し、300〜400″Cの
排ガス中で使用すれば、あえて500〜550°Cの高
温で最終焼成しなくてもよいことがわかる。
Figure 8 shows the CataffoidS shown in Table 3.
The relationship between bending strength and treatment temperature is shown when a catalyst calcined body is impregnated once with 5I-350 silica sol having a solid content of 15% by weight and treated in an oxidizing atmosphere at 180 to 550°C. If the final calcination temperature is in the range of 180 to 550"C, the strength of the catalyst will hardly change. Therefore, if it is dried at about 180"C after impregnation and used in exhaust gas at 300 to 400"C, It can be seen that the final firing at a high temperature of 500 to 550°C is not necessary.

第9図は、触媒粒子とシリカゾルの混合スラリであって
、触媒とシリカゾルの割合が10:90.30:70.
50:50のものを触媒焼成体に含浸塗布したものの曲
げ強さを示す、混合スラリの含浸はいずれも強度向上に
有効であるばかりでなく、触媒活性の面から見ればシリ
カゾルのみの含浸よりは高い値を示す。
FIG. 9 shows a mixed slurry of catalyst particles and silica sol in which the ratio of catalyst and silica sol is 10:90.30:70.
Impregnation with mixed slurry is not only effective in improving strength, but is also superior to impregnation with only silica sol in terms of catalyst activity. Indicates a high value.

なお、シリカゾルの含浸は、同じ担持量で比較すると、
固形分濃度を低くして含浸回数を増したほうが高強度を
示す。
In addition, when comparing the impregnation of silica sol with the same loading amount,
Higher strength is obtained by lowering the solid content concentration and increasing the number of impregnations.

以下余白 〔発明の効果〕 本発明になる触媒は無機繊維織布に、無機酸化物粒子を
担持させて織布を構成する繊維の間隙を埋めているので
、高温での使用時に単繊維同士が接触して強度が低下す
ることがなく、また、触媒を取扱う際や脱硝装置での使
用時において、破損し易い板状触媒の端部の強度向上が
行われているので、高強度かつ耐摩耗性であり長寿命で
ある。
Blank space below [Effects of the Invention] The catalyst of the present invention has an inorganic fiber woven fabric support inorganic oxide particles to fill the gaps between the fibers constituting the woven fabric, so that when used at high temperatures, the single fibers do not interact with each other. The strength does not decrease due to contact, and the strength of the edges of the plate-shaped catalyst, which are easily damaged when handling the catalyst or when used in denitrification equipment, has been improved, resulting in high strength and wear resistance. It is durable and has a long lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による板状触媒および端部処理の模式
図、第2図は、端部処理におけるシリカゾルの粒径と曲
げ強さの関係図、第3図は、シリカゾルの触媒への担持
量と曲げ強さの関係図、第4図は、本発明における触媒
製造工程の系統図、第5図および第6図は、触媒を焼成
後および焼成なしでシリカゾルを含浸した場合の触媒曲
げ強さを示す図、第7図は、8重量%のシリカゾルおよ
びアルミナゾルを1〜2回含浸した場合の引張り強さを
示す図、第8図は、シリカゾル含浸後の最終焼成温度と
触媒曲げ強さの関係図、第9図は、触媒とシリカゾルの
混合スラリ含浸による曲げ強度の向上を示す図である。 l・・・板状脱硝触媒、2・・・端部処理部、3・・・
含浸範囲、4・・・排ガス流路。
Figure 1 is a schematic diagram of the plate-shaped catalyst and end treatment according to the present invention, Figure 2 is a relationship between the particle size of silica sol and bending strength in end treatment, and Figure 3 is a diagram of the relationship between the silica sol particle size and bending strength in the end treatment. Figure 4 is a diagram showing the relationship between supported amount and bending strength. Figure 4 is a systematic diagram of the catalyst manufacturing process in the present invention. Figures 5 and 6 are diagrams showing the bending of the catalyst when the catalyst is impregnated with silica sol after and without firing. Figure 7 shows the tensile strength when impregnated with 8% by weight silica sol and alumina sol once or twice. Figure 8 shows the final firing temperature and catalyst bending strength after silica sol impregnation. FIG. 9 is a diagram showing the improvement in bending strength due to impregnation with a mixed slurry of catalyst and silica sol. l... Plate-shaped denitrification catalyst, 2... End treatment section, 3...
Impregnation range, 4...exhaust gas flow path.

Claims (2)

【特許請求の範囲】[Claims] (1)無機繊維織布に触媒組成物を担持させた窒素酸化
物除去用板状触媒の製造方法において、シリカゾルを含
む無機酸化物微粒子を無機繊維織布に含浸したのち乾燥
する工程と、あらかじめ調整した酸化チタンを含む触媒
組成物を上記乾燥後の無機繊維織布に塗布する工程と、
これを所定の形状および寸法の成形体に成形する工程と
、この成形体を乾燥、焼成して板状触媒体とする工程と
、この板状触媒体の端部面に粒径が20μm以下のシリ
カゾルを含浸または塗布して乾燥する工程とからなるこ
とを特徴とする窒素酸化物除去用板状触媒の製造方法。
(1) A method for manufacturing a plate-shaped catalyst for removing nitrogen oxides in which a catalyst composition is supported on an inorganic fiber woven fabric, which includes a step of impregnating an inorganic fibrous woven fabric with inorganic oxide fine particles containing silica sol and then drying it; a step of applying the prepared catalyst composition containing titanium oxide to the dried inorganic fiber woven fabric;
A process of forming this into a molded body of a predetermined shape and size, a process of drying and firing this molded body to form a plate-shaped catalyst body, and a process of forming a particle size of 20 μm or less on the end surface of this plate-shaped catalyst body. 1. A method for producing a plate-shaped catalyst for removing nitrogen oxides, comprising the steps of impregnating or applying silica sol and drying.
(2)請求項(1)において、板状触媒体の端部面に含
浸または塗布するシリカゾルの担持量を50〜250g
/m^2とすることを特徴とする窒素酸化物除去用板状
触媒の製造方法。
(2) In claim (1), the supported amount of silica sol to be impregnated or applied on the end surface of the plate-shaped catalyst body is 50 to 250 g.
/m^2. A method for producing a plate-shaped catalyst for removing nitrogen oxides.
JP1172780A 1989-07-04 1989-07-04 Manufacture of plate-shaped catalyst for removing nitrogen oxide Pending JPH0338256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172780A JPH0338256A (en) 1989-07-04 1989-07-04 Manufacture of plate-shaped catalyst for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172780A JPH0338256A (en) 1989-07-04 1989-07-04 Manufacture of plate-shaped catalyst for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0338256A true JPH0338256A (en) 1991-02-19

Family

ID=15948215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172780A Pending JPH0338256A (en) 1989-07-04 1989-07-04 Manufacture of plate-shaped catalyst for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0338256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
EP2818243A4 (en) * 2012-02-22 2015-11-04 Hitachi Shipbuilding Eng Co End-treating method for catalyst-carrying honeycomb structure in exhaust gas denitration system
CN110801869A (en) * 2019-11-28 2020-02-18 国惠环保新能源有限公司 Denitration catalyst end hardening device and hardening method
JP2020032388A (en) * 2018-08-31 2020-03-05 日立造船株式会社 Gas treatment apparatus, and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
EP2818243A4 (en) * 2012-02-22 2015-11-04 Hitachi Shipbuilding Eng Co End-treating method for catalyst-carrying honeycomb structure in exhaust gas denitration system
US9802179B2 (en) 2012-02-22 2017-10-31 Hitachi Zosen Corporation Method for processing an edge of catalyst-supporting honeycomb structure in exhaust gas denitration apparatus
JP2020032388A (en) * 2018-08-31 2020-03-05 日立造船株式会社 Gas treatment apparatus, and method of manufacturing the same
CN110801869A (en) * 2019-11-28 2020-02-18 国惠环保新能源有限公司 Denitration catalyst end hardening device and hardening method

Similar Documents

Publication Publication Date Title
US5155083A (en) Catalyst for reducing nitrogen oxides and process for making the catalyst
EP0552715B1 (en) A NOx removal catalyst containing an inorganic fiber
EP0375391B1 (en) Process for producing a catalyst for removing nitrogen oxides
JP5140243B2 (en) Catalyst base material, catalyst, and production method thereof
KR100524182B1 (en) Exhaust emission control catalyst element, catalyst structure, production method thereof, exhaust emission control apparatus and exhaust emission control method using the apparatus
US5294584A (en) Process for producing a denitration catalyst
JPH0338256A (en) Manufacture of plate-shaped catalyst for removing nitrogen oxide
JP2001137713A (en) Honeycomb structure
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP3264498B2 (en) Method for producing plate catalyst for removing nitrogen oxides
US5004718A (en) Process for calcining a denitrating catalyst
JP2854321B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP2851634B2 (en) Method for producing catalyst for removing nitrogen oxides
JP3066044B2 (en) Plate catalyst for removing nitrogen oxides and method for producing the same
JPH07163876A (en) Ammonia reducing catalyst of nitrogen oxide exhaust gas and production thereof
JP3076353B2 (en) Plate catalyst for removing nitrogen oxides and method for producing the same
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JPH05192586A (en) Denitrification catalyst and production thereof
JPH03114545A (en) Platy catalyst for nitrogen oxide removal and its preparation
JPH0365246A (en) Denitrification catalyst and its preparation
JPH1119511A (en) Method and apparatus for preparation of catalyst carrier
JP3234217B2 (en) Plate catalyst for removing nitrogen oxides, base material thereof, and methods for producing them
JP3145382B2 (en) Inorganic fiber plate catalyst
JPH02307532A (en) Catalyst for removing nitrogen oxides
JP3110033B2 (en) Nitrogen oxide removal catalyst