JPH02307532A - Catalyst for removing nitrogen oxides - Google Patents

Catalyst for removing nitrogen oxides

Info

Publication number
JPH02307532A
JPH02307532A JP1126456A JP12645689A JPH02307532A JP H02307532 A JPH02307532 A JP H02307532A JP 1126456 A JP1126456 A JP 1126456A JP 12645689 A JP12645689 A JP 12645689A JP H02307532 A JPH02307532 A JP H02307532A
Authority
JP
Japan
Prior art keywords
catalyst
inorg
fine particles
fiber
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126456A
Other languages
Japanese (ja)
Inventor
Naomi Yoshida
直美 吉田
Hitoshi Yamazaki
均 山崎
Ikuhisa Hamada
幾久 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1126456A priority Critical patent/JPH02307532A/en
Priority to DE69010984T priority patent/DE69010984T3/en
Priority to US07/525,535 priority patent/US5155083A/en
Priority to EP90305431A priority patent/EP0398752B2/en
Publication of JPH02307532A publication Critical patent/JPH02307532A/en
Priority to US07/771,403 priority patent/US5294584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst becoming a high strength large-scale structure suitable for a large capacity denitrification apparatus by supporting fine inorg. oxide particles in the fiber interstices of an inorg. fiber fabric and specifying the diameter ratio and wt. ratio of both of them. CONSTITUTION:Fine particles of inorg. oxide consisting of titanium oxide and oxide of one or more kind of an element selected from vanadium, molybdenum and tungsten are supported within the fiber interstices of an inorg. fiber fabric composed of a ceramic fiber or a glass fiber. The ratio of the diameter of fine particles of inorg oxide to that of the inorg. fiber of the inorg. fiber fabric is set to 0.2 or less and the ratio of the wt. of the fine particles of inorg. oxide to that of the inorg. fiber fabric is set to 0.05-0.8. By this method, a high strength denitrification catalyst having elasticity in itself and capable of holding a shape by itself and suitable for a large capacity denitrification apparatus can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野〕      ゛ 本発明は窒素酸化物の除去用触媒に係り、特に高強度で
通風損失が少なく、煤あるいは灰の堆積が生じにくい窒
素酸化物除去用触媒に関する。
[Detailed Description of the Invention] (Industrial Application Field) [The present invention relates to a catalyst for removing nitrogen oxides, particularly a catalyst for removing nitrogen oxides that has high strength, has low ventilation loss, and is less likely to cause soot or ash accumulation. Regarding catalysts.

〔従来の技術〕[Conventional technology]

一般に排ガス中の窒素酸化物を除去する触媒(以下、単
に触媒と呼ぶ)には、酸化チタン(TiOりとモリブデ
ン(Mo)、タングステン(W)、バナジウム(V)等
の酸化物からなる触媒組成物を、粒状、板状、ハニカム
状などに成形したものが用いられている。中でも重油や
石炭などを燃料にするボイラ排ガスの場合には、煤や灰
を多量に含むガスを低圧損で処理する必要があり、板状
触媒を組合わせたものや、開口率の大きいハニカム状触
媒などのガスの流れ方向に平行な通路を有するものが用
いられている。かかる触媒としては、金属基板に触媒成
分を塗布したもの(特公昭6l−28377)、触媒成
分をハニカム状に押出成形したもの(特公昭60−38
56など)、あるいはセラミック繊維マットや紙をハニ
カム状に成形後、触媒前駆体物質を被覆したもの(特公
昭58−11253など)等の数多くのものが知られて
おり、すでに実用に供されている。
In general, catalysts that remove nitrogen oxides from exhaust gas (hereinafter simply referred to as catalysts) have a catalyst composition consisting of titanium oxide (TiO) and oxides such as molybdenum (Mo), tungsten (W), and vanadium (V). Materials formed into granules, plates, honeycomb shapes, etc. are used.In particular, in the case of boiler exhaust gas that uses fuel such as heavy oil or coal, gas containing large amounts of soot and ash is treated with low pressure drop. Therefore, a combination of plate-shaped catalysts or a catalyst with passages parallel to the gas flow direction, such as a honeycomb-shaped catalyst with a large aperture ratio, is used.Such catalysts include a catalyst on a metal substrate. (Special Publication No. 61-28377), and one in which the catalyst component was extruded into a honeycomb shape (Special Publication No. 60-38)
56, etc.), or one in which ceramic fiber mat or paper is formed into a honeycomb shape and then coated with a catalyst precursor material (Japanese Patent Publication No. 58-11253, etc.) are known, and have already been put into practical use. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち、金属基板に触媒を塗布したものは
平板部分が多いため圧損が小さく、灰が堆積しにくいと
いう点では優れたものであるが、重量が大きく、また金
属基板が酸化されるという難点があった。
Among the conventional techniques mentioned above, those in which a catalyst is coated on a metal substrate have many flat plate parts, so the pressure drop is small and ash is less likely to accumulate, which is an excellent method, but it is heavy and the metal substrate is oxidized. There was a problem.

また、触媒成分を押出成形法によってハニカム状に成形
したものは、その成形技術の限界によって成形体が15
0鴫角程度の寸法に制限され、数100ydも必要とす
る大容量装置に充填するためにはそれらの小型形状のも
のを多数組み上げる必要があった。さらに、成形体が衝
撃力に弱いという問題があった。
In addition, when the catalyst component is molded into a honeycomb shape by extrusion molding, the molded body can reach 15 mm due to the limitations of the molding technology.
In order to fill a large-capacity device, which is limited to dimensions of approximately 0 square meters and requires several hundred yards, it was necessary to assemble a large number of these small-sized devices. Furthermore, there was a problem that the molded body was weak against impact force.

また、無機繊維布、紙の表面に触媒成分を被覆するもの
は衝撃力に強い反面、機械的強度が低く排ガス中に含ま
れる灰粒子によって摩耗するという問題を有していた。
Furthermore, inorganic fiber cloth or paper whose surface is coated with a catalytic component has a problem in that although it is strong against impact forces, it has low mechanical strength and is abraded by ash particles contained in exhaust gas.

本発明の目的は、従来技術の有するかかる問題点をなく
し、大容量脱硝装置に適する高強度大型構造体を得るこ
とのできる触媒とその製造法を提供するにある。
An object of the present invention is to provide a catalyst and a method for manufacturing the same that can eliminate such problems of the prior art and provide a high-strength, large-sized structure suitable for large-capacity denitrification equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、セラミックまたはガラス繊維製織布に無機
酸化物微粒子を含浸して強化し、これに酸化チタンを主
成分とする触媒組成物と、綿状無機繊維を水に溶かして
混合したペースト、またはスラリを塗布して被覆し、ロ
ーラプレス等で圧密化することにより達成される。
The above purpose is to strengthen a ceramic or glass fiber woven cloth by impregnating it with inorganic oxide fine particles, and to prepare a paste made by mixing a catalyst composition mainly composed of titanium oxide and cotton-like inorganic fibers dissolved in water. Alternatively, this can be accomplished by coating with a slurry and compacting it using a roller press or the like.

〔作用〕[Effect]

本発明のごとく、酸化物微粒子を含む無機繊維織布にス
ラリまたはペースト状態の触媒を塗布し、適度に圧延処
理を施した後乾燥焼成することによって、酸化物微粒子
によって繊維間隙が満たされた無機繊維織布に被覆され
た触媒層からなる触媒体を得る。無機繊維繊布は糸径3
〜20μmの繊維をデンプンやプラスチックエマルジョ
ン等の集束剤を用いて200〜800本に束ね、これを
さらに5〜lO本程度に縫って縦横方向に縫い合わせた
ものである。したがって、このように多数の無機繊維を
縫った糸からなるクロスは極め°ζ強反が高く、また無
機物であるため耐熱性に優れている。しかしながら、繊
維は摩擦には弱く、単繊維同士が直接接触しているよう
な場合強度は低くなる。末法で用いられる触媒のように
、実機で300°C以上の高温に曝されるような場合、
前記の集束剤は熱分解して繊維同士の接触が起こり、単
繊維が耐熱性を有していても織布としての強度は落ちる
0本発明の触媒においては、酸化物微粒子が織布を構成
する繊維の間隙を埋めており、このような高温に曝され
ても単繊維同士が接触することはない、第1図は、酸化
物微粒子を含浸した無機繊維織布の内部を電子顕微鏡に
よって映した例である0本写真はEガラス繊維(線径9
μm、主成分:SLOg  52〜56%、/l!03
 12〜16%、CaO12〜25%、Mg0O〜6%
、81038〜13%)に、SiOxゾル(粒径7〜9
X10−”μm)を含浸して550°C/2hで焼成し
たもので、焼成後の重量比(無機酸化物微粒子/ガラス
繊維)は約0.12であった。
As in the present invention, a catalyst in the form of a slurry or paste is applied to an inorganic fiber woven fabric containing oxide fine particles, which is appropriately rolled and then dried and fired. A catalyst body consisting of a catalyst layer coated on a fibrous fabric is obtained. Inorganic fiber fabric has a thread diameter of 3
Fibers of ~20 μm are bundled into 200 to 800 fibers using a sizing agent such as starch or plastic emulsion, and these are further sewn into approximately 5 to 10 fibers in the vertical and horizontal directions. Therefore, a cloth made of threads sewn from a large number of inorganic fibers has extremely high resilience, and since it is an inorganic material, it has excellent heat resistance. However, fibers are weak against friction, and the strength is low when single fibers are in direct contact with each other. In cases where the catalyst is exposed to high temperatures of 300°C or higher in actual equipment, such as catalysts used in powder-processing processes,
The above-mentioned sizing agent thermally decomposes, causing contact between the fibers, and even if the single fibers have heat resistance, the strength as a woven fabric decreases.In the catalyst of the present invention, the oxide fine particles constitute the woven fabric. Figure 1 shows an electron microscope image of the inside of an inorganic fiber woven fabric impregnated with oxide fine particles. The photo of 0 wires is an example of E glass fiber (wire diameter 9
μm, main component: SLOg 52-56%, /l! 03
12-16%, CaO12-25%, Mg0O-6%
, 81038-13%), SiOx sol (particle size 7-9
It was impregnated with X10-''μm) and fired at 550°C for 2 hours, and the weight ratio (inorganic oxide fine particles/glass fiber) after firing was about 0.12.

本図から明らかなように、本発明に用いられている繊維
はその間隙を微粒の酸化物が埋めており、単繊維同士の
直接接触が起こりにくい。しかも微粒の酸化物は繊維間
に散在しており、繊維自身の動きを拘束することはない
、このような状態においては、高温下でも織布繊維の強
度は高い。さらに、繊維の拘束は緩いので伸びと柔軟性
がある。
As is clear from this figure, the gaps between the fibers used in the present invention are filled with fine particles of oxide, making it difficult for single fibers to come into direct contact with each other. Moreover, the fine particles of oxide are scattered between the fibers and do not restrict the movement of the fibers themselves. In such a state, the strength of the woven fibers is high even at high temperatures. Furthermore, the fibers are loosely constrained, allowing for elongation and flexibility.

したがって、このように酸化物微粒子を含浸した繊維を
用いた触媒は、強度と弾性を兼ね備えたものとなる。第
8図は、触媒中の無機繊維織布の効果を示したものであ
る。(a)は触媒と綿状無機繊維の混合物(重量比79
/21 )を水分量23%のペースト状態にし、ローラ
で圧延処理を施し、550℃/2hで焼成したものであ
る。一方、(b)は前記の酸化物微粒子を含む無機繊維
織布に、上記した触媒と綿状無機繊維の混合物ペースト
を圧延しながら塗布し、同様に焼成したものである。(
a)の繊維織布なしの触媒の荷重−変位曲線から明らか
なように、触媒だけでは曲げ強度はあるが変形量が少な
く、いわゆる硬いが脆い構造体となっている。一方、(
b)の本発明の実hiI1例のように、酸化物微粒子を
含む繊維織布に触媒層を被覆したものは、曲げ強度、弾
性ともに優れている。本発明の上記実施例の構造におい
ては、触媒成分層の粒子同士が凝集結合しながら綿状無
機繊維に絡み合って、掻めて緻密で強固な組織を形成し
て、前記繊維織布に絡みついている。その結果、構造体
として得られる触媒体の強度は、前記繊維織布と触媒層
がそれぞれに持つ強度に加え、触媒成分層と織布との複
合強化がなされ、さきにしめしたように触媒と綿状無機
繊維の混合物を圧延処理したもの、あるいはセラミック
シート等の表面に触媒成分をコーティングしたものや、
単にセラミックシートに触媒成分溶液を含浸したものに
較べて飛躍的に高い、また、本発明の実施例では触媒組
成物ペースト、またはスラリにて無機繊維織布に塗布ま
たは含浸した後、無機繊維織布を含む構造体として多孔
板金型に挟んで乾燥、またはロール成形乾燥を行うため
、触媒は所定の形状を保持したまま緻密で高強度なもの
に変わる。このため、任意の形状で大きな寸法の触媒体
を容易に得ることが可能になり、前述した灰の堆積の少
ない板状形状の触媒体をも簡単な工程で製造することが
できる。
Therefore, a catalyst using fibers impregnated with oxide fine particles has both strength and elasticity. FIG. 8 shows the effect of the inorganic fiber woven fabric in the catalyst. (a) is a mixture of catalyst and cotton-like inorganic fiber (weight ratio 79
/21) was made into a paste state with a water content of 23%, rolled with rollers, and fired at 550°C/2 hours. On the other hand, in (b), the above-mentioned mixture paste of the catalyst and cotton-like inorganic fibers was applied to the inorganic fiber woven fabric containing the above-mentioned oxide fine particles while rolling it, and the same was fired. (
As is clear from the load-displacement curve of the catalyst without woven fiber fabric in a), the catalyst alone has bending strength but has a small amount of deformation, resulting in a so-called hard but brittle structure. on the other hand,(
As in Example hiI of the present invention in b), a fabric in which a fibrous fabric containing fine oxide particles is coated with a catalyst layer has excellent bending strength and elasticity. In the structure of the above embodiment of the present invention, the particles of the catalyst component layer are coagulated and bonded to each other, intertwined with the flocculent inorganic fibers, and are raked to form a dense and strong structure, and are entangled with the woven fiber fabric. There is. As a result, the strength of the catalyst body obtained as a structure is due to the composite reinforcement of the catalyst component layer and the woven fabric, in addition to the strength of the fibrous fabric and the catalyst layer, respectively. Those made by rolling a mixture of cotton-like inorganic fibers, or those coated with a catalyst component on the surface of ceramic sheets, etc.
This is significantly higher than when a ceramic sheet is simply impregnated with a catalyst component solution.In addition, in the examples of the present invention, after coating or impregnating an inorganic fiber woven fabric with a catalyst composition paste or slurry, the inorganic fiber woven fabric is Because the catalyst is dried as a structure containing cloth by being sandwiched between perforated sheet metal molds or roll-formed, the catalyst maintains its predetermined shape and becomes dense and strong. Therefore, it is possible to easily obtain a catalyst body of any shape and large size, and it is also possible to manufacture the above-mentioned plate-shaped catalyst body with less ash accumulation through a simple process.

〔実施例〕〔Example〕

本発明を具体的実施例により詳細に説明する。 The present invention will be explained in detail using specific examples.

実施例1 本発明触媒の製造プロセスを第2図に示す。また、本発
明で用いたガラス繊維織布の組成を第2表に示す。
Example 1 The manufacturing process of the catalyst of the present invention is shown in FIG. Further, Table 2 shows the composition of the glass fiber woven fabric used in the present invention.

酸化チタン(TiO2)を30W(%有する硫酸法によ
るメタチタン酸スラリ60kgに、メタバナジン酸77
 モニ’y ム(N Ha V Os ) 0.62 
kgおよびモリブデン酸アンモニウム((NH,)。
77 kg of metavanadate was added to 60 kg of metatitanic acid slurry prepared by the sulfuric acid method containing 30 W (%) of titanium oxide (TiO2).
Mon'y m(N HaV Os) 0.62
kg and ammonium molybdate ((NH,).

MO? Osm’ 4 Hz O)4.51kgを加え
、140°Cに加熱したニーダを用いて水を蒸発させな
がら混練した。得られた水分38%のペースト状物質を
押出造粒機により外径3φ鴫、長さ1OIrI[11の
柱状に成形し、次いで流動層乾燥機により乾燥した。
MO? 4.51 kg of Osm' 4 Hz O) was added and kneaded while evaporating water using a kneader heated to 140°C. The obtained paste-like material having a moisture content of 38% was formed into a columnar shape with an outer diameter of 3φ and a length of 10IrI[11] using an extrusion granulator, and then dried using a fluidized bed dryer.

この乾燥顆粒を空気を流しながら、560°Cで2h焼
成後、ハンマミルを用いて20J1m以ドが!10%以
上の粒度になるように粉砕し、触媒微粒を得た。
After baking the dried granules at 560°C for 2 hours with air flowing through them, we used a hammer mill to produce more than 20J1m! The catalyst was pulverized to a particle size of 10% or more to obtain fine catalyst particles.

上記触媒粉7.9 kgと綿状無機繊維2.1 kgの
混合物に水3 kgを加え、ニーダで30分間混練し、
水分量23wt%の触媒ペーストを得た。
3 kg of water was added to a mixture of 7.9 kg of the above catalyst powder and 2.1 kg of cotton-like inorganic fibers, and the mixture was kneaded with a kneader for 30 minutes.
A catalyst paste with a moisture content of 23 wt% was obtained.

次に、ガラス繊維織布(Eガラス、10本/1nch、
460℃/2hヒートクリーニンリ材)に、粒子濃度2
0wt%の5iftゾル(粒子径7〜9×lO−um)
を含浸した後、120°Cで乾燥した。
Next, glass fiber woven fabric (E glass, 10 pieces/1nch,
460℃/2h heat cleaning material), particle concentration 2
0wt% 5ift sol (particle size 7-9×1O-um)
After impregnation, it was dried at 120°C.

前記無機繊維織布を500mn+角に切断したものを、
前記触媒ペーストととも加圧力1.4 t o n、速
度7.5m/minで回転ローラによって圧延しなから
織布にペーストを塗布した後、5US304製メタルラ
ス加工して得た2枚の多孔板金型2に、第4図のように
挟んで180°Cでlh乾燥した。その後、金型を取り
外し、空気中で550°Cで2h焼成して第3図のよう
な触媒成形体を得た。
The inorganic fiber woven fabric was cut into 500 mm + square pieces,
Two porous sheet metals obtained by rolling the catalyst paste with a rotating roller at a pressure of 1.4 ton and a speed of 7.5 m/min, applying the paste to a woven fabric, and then processing the 5US304 metal lath. It was sandwiched between molds 2 as shown in Figure 4 and dried at 180°C for 1 hour. Thereafter, the mold was removed, and the catalyst was fired in air at 550° C. for 2 hours to obtain a catalyst molded body as shown in FIG.

実施例2.3 実施例1におけるStowゾルに代えて、それぞれ粒径
、濃度が(粒径lO〜20X10−3μm、濃度20w
t%)、(粒径16〜20×10−3〜3μm、濃度4
0wL%)であるSiO,ゾルを用いて、他は同様な方
法で触媒を製造した。
Example 2.3 In place of the Stow sol in Example 1, the particle size and concentration were (particle size lO~20X10-3 μm, concentration 20W
t%), (particle size 16-20 x 10-3 ~ 3 μm, concentration 4
A catalyst was produced using a SiO sol having a concentration of 0 wL%), but in the same manner as above.

実施例4.5 実施例1における5iOzの代わりに(StOl /T
 ich /PVA=14/84/2 (重量比)、6
0wt%スラリ、SiO□ :粒子径 10〜20 X
 I O−3μm、 S i O,:平均粒径 0゜5
μm5PVA:ポリビニルアルコールの略)を用いて、
ガラス繊維織布をそれぞれ(Eガラス、io本/1nc
h、460”C/2hヒートクリーニンリ材)、(Eガ
ラス、8本/1nch、460°C/2hヒートクリー
ニンリ材)として、他は同様な方法で触媒を製造した。
Example 4.5 Instead of 5iOz in Example 1 (StOl /T
ich/PVA=14/84/2 (weight ratio), 6
0wt% slurry, SiO□: particle size 10-20X
IO-3 μm, S i O,: average particle size 0°5
Using μm5PVA (abbreviation for polyvinyl alcohol),
Each glass fiber woven fabric (E glass, IO pieces/1nc
Catalysts were produced in the same manner as above (E glass, 8 pieces/1 nch, 460°C/2h heat cleaning material).

実施例6 実施例1におけるSin、の代わりに、平均粒径0.8
 u mの実施例1の触媒(560°C/2 h焼成)
を水に溶かして50wt%スラリに調製して、前記ガラ
ス繊維織布に含浸した。これを2枚用い、間に触媒ペー
ストを挟むような形で圧延を施し、他は同様な方法で触
媒を製造した。
Example 6 Instead of Sin in Example 1, the average particle size was 0.8
U m catalyst of Example 1 (calcined at 560°C/2 h)
was dissolved in water to prepare a 50 wt % slurry, and the slurry was impregnated into the glass fiber woven fabric. Two sheets of this were used and rolled with the catalyst paste sandwiched between them, but otherwise a catalyst was produced in the same manner.

実施例7 実施例6の平均粒径0.8μmの触媒を、SiO!/触
媒=2/ 4 B (S i Oxは実施例2と同じも
の)の成分比で水に溶かして、濃度50wt%の触媒ス
ラリを調製して無機繊維織布に含浸し、他は実施例6と
同様な方法で触媒を製造した。
Example 7 The catalyst of Example 6 with an average particle size of 0.8 μm was mixed with SiO! /Catalyst = 2/4 B (S i Ox is the same as in Example 2) was dissolved in water to prepare a catalyst slurry with a concentration of 50 wt %, and impregnated into an inorganic fiber woven fabric, and the rest were as in Example 2. A catalyst was produced in the same manner as in Example 6.

比較例1 無機繊維織布に(Eガラス、10本/1nch。Comparative example 1 Inorganic fiber woven fabric (E glass, 10 pieces/1nch.

集束剤フェノール樹脂)を用いて、成形織布強化処理を
行わず、他は実施例7と同様な方法で触媒を製造した。
A catalyst was produced in the same manner as in Example 7 except that the molded woven fabric was not reinforced using a sizing agent (phenolic resin).

実施例1〜7の各触媒体について、ガラス繊維織布に無
機酸化物微粒子を含浸した際の重量変化を限定し、重量
比を(1)式で算出した。なおこの際、含浸によって成
形外表面に付着した粒子はブロアで吹き飛ばし、繊維間
にある酸化物粒子の重量を正確に測定した。
For each of the catalyst bodies of Examples 1 to 7, the weight change when the glass fiber woven fabric was impregnated with the inorganic oxide fine particles was limited, and the weight ratio was calculated using equation (1). At this time, particles adhering to the outer surface of the molding due to impregnation were blown away with a blower, and the weight of the oxide particles between the fibers was accurately measured.

また、径比は(2)式により求めた。Further, the diameter ratio was determined using equation (2).

なお、多成分の無機酸化物微粒子を用いた場合は、最も
粗粒を持つ粒子の平均径を用いた。
In addition, when multi-component inorganic oxide fine particles were used, the average diameter of the coarsest particles was used.

さらに、このガラス繊維織布と触媒体を第6図に示すよ
うに幅15mm、長さ50mmに切断し、精密引張試験
機により、引張りによる破断強度を求めた。さらに幅2
0mm、長さ30In11に切断し、荷重負荷による曲
げ強度を求め、変形量をダイヤルゲージで測定した(第
7図)。
Further, the glass fiber woven fabric and the catalyst body were cut into pieces of 15 mm in width and 50 mm in length as shown in FIG. 6, and the tensile strength at break was determined using a precision tensile tester. Width 2 more
It was cut into pieces of 0 mm and 30 In 11 in length, the bending strength under load was determined, and the amount of deformation was measured using a dial gauge (Figure 7).

得られた結果を第1表にまとめて示す。この結果から明
らかなように、本発明になる実施例触媒は比較例触媒と
同じ触媒組成物を用いているにもかかわらず、引張強度
、曲げ強度とも優れている。
The results obtained are summarized in Table 1. As is clear from these results, the example catalyst according to the present invention has excellent tensile strength and bending strength even though it uses the same catalyst composition as the comparative example catalyst.

これは、本発明の方法によれば触媒がガラス繊維織布の
持つ伸縮性、弾性の性質に加えて、触媒粒同士あるいは
触媒と一緒にペースト中に混ぜた綿状無機繊維と触媒が
強固な組織を形成して、第1表に示す高強度な触媒を実
現していることを示すものである。
This is because, according to the method of the present invention, the catalyst has the stretchability and elasticity properties of the glass fiber woven fabric, and also the catalyst particles are strong with each other or with the cotton-like inorganic fibers mixed in the paste together with the catalyst. This shows that the structure was formed to realize the high-strength catalyst shown in Table 1.

第1表に示すごとく、本発明の触媒は機械的強度が極め
て高く、また適度な弾性も兼ね備えている。これはガラ
ス繊維織布と触媒の特性が合わさって、このような強度
に関する効果が発現したものである。一般的にはガラス
繊維は摩擦に対して弱く、単繊維同士が直接接触するよ
うな場合、その強度は低下するとされている。特に、本
触媒のように実機において300°C以上という苛酷な
環境に置かれた場合、繊維の周りを、保護しているデン
プン等の集束剤が熱分解してその効力を失ってしまい、
そのため繊維強度の低下が免れない。しかし、本発明の
ように繊維同士接触することがないよう、またその動き
を拘束しないよう通量の無機酸化物微粒子で繊維の間隙
を埋めてやることによって、このような高温でも強度の
低下を抑えることができる。第9図は、本発明の実施例
3の触媒の荷重−変位曲線を示したものである。
As shown in Table 1, the catalyst of the present invention has extremely high mechanical strength and also has appropriate elasticity. This is due to the combination of the properties of the glass fiber woven fabric and the catalyst, resulting in this strength-related effect. It is generally believed that glass fibers are weak against friction, and that their strength decreases when single fibers come into direct contact with each other. In particular, when the actual catalyst is placed in a harsh environment of 300°C or higher, the sizing agent such as starch that protects the fibers will thermally decompose and lose its effectiveness.
Therefore, a decrease in fiber strength is inevitable. However, as in the present invention, by filling the gaps between the fibers with a sufficient amount of inorganic oxide fine particles so that the fibers do not come into contact with each other and do not restrict their movement, the strength decreases even at such high temperatures. It can be suppressed. FIG. 9 shows the load-displacement curve of the catalyst of Example 3 of the present invention.

本実施例3.の触媒では、ガラス繊維中SiO□微粒子
を前記の重量比で0.64として含まれており、比較例
の触媒のような強度的な脆さはなく、触媒の持つ機械的
強度を無機酸化物微粒子を含んだガラス繊維織布が弾性
を付与した形で補強されている。また、本実施例6.7
のように、jjj% i、IJ 1’俤化物微粒子とし
て触媒粒子を用いることによって、ガラス繊維とペース
ト触媒のなじみをよくして、成形後の触媒層の剥離を防
止することもできる。
This example 3. The catalyst contains SiO□ fine particles in the glass fiber at the above weight ratio of 0.64, and does not have the strength brittleness of the catalyst of the comparative example, and the mechanical strength of the catalyst is improved by inorganic oxide. Glass fiber woven fabric containing fine particles is reinforced to give it elasticity. In addition, this example 6.7
By using catalyst particles as the jjj% i, IJ 1' compound particles, it is possible to improve the compatibility between the glass fibers and the paste catalyst and prevent the catalyst layer from peeling off after molding.

これはガラス繊維にペーストを塗布した後、ガラス繊維
表面近くに散在する触媒粒子がペースト中に溶は出し、
その界面で混ざり合い、′この状態で焼成することによ
って、ガラス繊維中の触媒とペースト触媒の結合が凍る
ためである。また、本実施例6の触媒のように、触媒粒
子を含むガラス繊維複数枚で触媒ペーストを挟むように
して圧密化することによって、触媒層の剥離防止(脱落
防止)と多軸応力場での強度向上が図れる。これは複数
枚の繊維の向きを互いにずらすことによって、多軸応力
に耐えることができるのである。また、この触媒におい
てはガラス繊維が触媒表面に露出していても、ガラス繊
維の間隙には触媒粒子が含浸されているため、触媒活性
を低下させることなく、前記の特性向上が図れる。この
ように、触媒粒子を含むガラス繊維を複数枚用いること
によって、触媒活性を低下させることなく、強度の向上
、触媒の剥離防止が可能となる。
This is because after the paste is applied to the glass fibers, the catalyst particles scattered near the glass fiber surface dissolve into the paste.
This is because they mix at the interface, and by firing in this state, the bond between the catalyst in the glass fiber and the paste catalyst is frozen. In addition, as in the catalyst of Example 6, by compressing the catalyst paste by sandwiching it between multiple glass fibers containing catalyst particles, it is possible to prevent the catalyst layer from peeling off (prevent it from falling off) and improve its strength in a multiaxial stress field. can be achieved. This can withstand multiaxial stress by shifting the orientation of multiple fibers from each other. Furthermore, in this catalyst, even if the glass fibers are exposed on the catalyst surface, the gaps between the glass fibers are impregnated with catalyst particles, so the above characteristics can be improved without reducing the catalytic activity. In this way, by using a plurality of glass fibers containing catalyst particles, it is possible to improve the strength and prevent the catalyst from peeling off without reducing the catalyst activity.

(発明の効果〕 本発明によれば、触媒自体が弾性を有し、かつ自己で形
状を保持できる高強度脱硝触媒を容易に得ることができ
る。このため第5図の例のごとく触媒を組込むことによ
って、圧力損失が少なくダストが堆積しにくい形状の触
媒構造体を形成することが可能である。
(Effects of the Invention) According to the present invention, it is possible to easily obtain a high-strength denitrification catalyst in which the catalyst itself has elasticity and can maintain its shape by itself.For this reason, the catalyst is incorporated as in the example shown in Fig. 5. By doing so, it is possible to form a catalyst structure having a shape that causes less pressure loss and is less likely to accumulate dust.

また、金型の形状を変えれば、波型、凹凸状などどのよ
うな形状のものでも作ることができ、大きさも自由であ
る。このため500w角を超える大型触媒構造体を種々
の流路形状で作ることができる。これにより、排ガス性
状にあった形状と活性の触媒を用いた排ガス処理装置が
設計できる。
Moreover, by changing the shape of the mold, it is possible to create any shape such as wavy or uneven, and the size is also free. Therefore, large catalyst structures exceeding 500W square can be made with various flow path shapes. As a result, it is possible to design an exhaust gas treatment device using a catalyst whose shape and activity match the exhaust gas properties.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に用いたS10□微粒子を含
むガラス繊維織布の内部写真拡大図、第2図は、本発明
の触媒の製造プロセスを示す図、第3図は、本発明の触
媒成形体の一例を示す図、第4図は、第3図の触媒の成
形方法を示す図、第5図は、本発明になる触媒を用いた
触媒構造体の断面図、第6図は、引張試験片の形状を示
す図、。 第7図は、曲げ試験の条件および方法を示す図、第8図
は、曲げ方向に対する触媒中のガラス繊維の効果を示す
図、第9図は、本実施例の触媒の荷重−変位曲線を示す
図である。 l・・・触媒、2・・・多孔金型、3・・・保持枠。 出願人 バブコック日立株式会社 代理人 弁理士 川 北 武 長 第3図 第4図 ? 第5図 1so−一 15mm(繊維数 :土3 ユ) 」    1 ガラス繊維           触媒成形体にて測定
     良形量 荷重(に9) 変位(mm) 本実施例3の触媒 変位(mm) 本実施例3の触媒 手続補正書 平成 元年 7月25日 1、事件の表示 平成 1年 特 許 願 第126456号λ発明の名
称 窒素酸化物除去用触媒 3、補正をする者 事件との関係  特許出願人 住 所 東京都千代田区大手町二丁目6番2号名 称 
(544)バブコック日立株式会社代表者 横 1)−
部 4、代理人  〒103 住 所 東京都中央区日本橋゛茅場町−丁目11番8号
6、補正の対象 明細書の発明の詳細な説明の欄7、補
正の内容 (1)明細書筒4頁11行目と122行目間に下記を加
える。 r すなわち、本発明は、無機繊維織布に触媒組成物を
被覆した窒素酸化物除去用触媒において、該無機繊維織
布の繊維間隙に無機酸化物微粒子を担持させ、かつ無機
酸化物微粒子直径の無機繊維直径に対する比が0.2以
下で、無機酸化物微粒子重量の無機繊維織布重量に対す
る割合が0.05〜0、8であることを特徴とする。 前記無機酸化物微粒子直径の無機繊維直径に対する比が
0.2を超えると、無機酸化物微粒子の付着が充分でな
く、また無機酸化物微粒子重量の無機繊維織布重量に対
する割合が0.05未満では触媒効果が充分に得られず
、また0、 8を超えると耐摩耗性が劣り、また触媒効
果も飽和状態となる。 (2)明細書第9頁10行目の「ヒートクリー二ンリ材
」を「ヒートクリーニング材1に改める。 (3)明細書第1O頁5〜6行目のrlo−3〜3um
Jをr 10−’IJrrBに改める。 (4)明細書第11頁12行目の’5iOz」をrTi
o□1に改める。 (5)明細書第1O頁下から5〜6行目および下から4
行目の「ヒートクリーニング材」をそれぞれ「ヒートク
リーニング材jに改める。 (6)明細書筒11頁11行目の「実施例6」を「実施
例11に改める。 (7)明細書筒11頁11行目と122行目間に下記を
加える。 r実施例8 実施例4の(SfO□/ T i Ot / P V 
A = 14/84/2 (重量比)60wt%スラリ
)を含浸したガラス繊維織布を乾燥した後、55wt%
触媒スラリを付着、乾燥して2%PVAを塗布した。こ
れを2枚用い、間に触媒ペーストを挟むような形で圧延
を施し、ローラプレスで成形、乾燥した後、空気中55
0 ’Cで2h焼成して触媒を得た。1 (8)明細書第11頁下から6行目の「実施例7」をt
実施例11に改める。 (9)明細書第11真下から4行目の「実施例1〜7」
をt実施例1〜81に改める。 (10)明細書第14頁の第1表を別紙のように改める
。 (11)明細書箱16頁11行目の「凍る1をr起こる
1に改める。 (12)明細書筒16頁11〜12行目の「本実施例6
」を1本実施例6.8Jに改める。 (13)明細書筒16頁19〜20行目の「間隙には触
媒粒子が含浸され」をr間隙または表面には触媒粒子が
付着され1に改める。 (14)明細書筒17頁2行目の「含む」をr含浸・付
着した1に改める。 以上
FIG. 1 is an enlarged internal photograph of the glass fiber woven fabric containing S10□ fine particles used in the examples of the present invention, FIG. 2 is a diagram showing the manufacturing process of the catalyst of the present invention, and FIG. FIG. 4 is a diagram showing an example of the catalyst molded article of the invention, FIG. 4 is a diagram showing a method of molding the catalyst of FIG. 3, FIG. 5 is a cross-sectional view of a catalyst structure using the catalyst of the invention, and FIG. The figure shows the shape of a tensile test piece. Fig. 7 is a diagram showing the conditions and method of the bending test, Fig. 8 is a diagram showing the effect of glass fiber in the catalyst on the bending direction, and Fig. 9 is a diagram showing the load-displacement curve of the catalyst of this example. FIG. 1... Catalyst, 2... Porous mold, 3... Holding frame. Applicant Babcock Hitachi Co., Ltd. Agent Patent Attorney Takeshi Kawakita Figure 3 Figure 4? Fig. 5: 15 mm (Number of fibers: 3 mm) 1 Glass fiber Measured using a catalyst molded body Load (9 mm) Displacement (mm) Catalyst displacement of Example 3 (mm) This example 3. Amendment to Catalyst Procedure July 25, 1989 1. Indication of Case 1999 Patent Application No. 126456 Address: 2-6-2 Otemachi, Chiyoda-ku, Tokyo Name:
(544) Babcock Hitachi Co., Ltd. Representative horizontal 1) -
Department 4, Agent 103 Address: 11-8-6, Kayabacho-chome, Nihonbashi, Chuo-ku, Tokyo Subject of amendment Column 7 for detailed explanation of the invention in the specification, Contents of amendment (1) Description cylinder 4 Add the following between lines 11 and 122 of the page. r That is, the present invention provides a catalyst for removing nitrogen oxides in which an inorganic fiber woven fabric is coated with a catalyst composition, in which inorganic oxide fine particles are supported in the fiber gaps of the inorganic fiber woven fabric, and the diameter of the inorganic oxide fine particles is It is characterized in that the ratio to the inorganic fiber diameter is 0.2 or less, and the ratio of the weight of the inorganic oxide fine particles to the weight of the inorganic fiber woven fabric is 0.05 to 0.8. When the ratio of the diameter of the inorganic oxide fine particles to the inorganic fiber diameter exceeds 0.2, the adhesion of the inorganic oxide fine particles is insufficient, and the ratio of the weight of the inorganic oxide fine particles to the weight of the inorganic fiber woven fabric is less than 0.05. If it exceeds 0.8, the wear resistance will be poor and the catalytic effect will be saturated. (2) "Heat cleaning material" on page 9, line 10 of the specification is changed to "heat cleaning material 1." (3) rlo-3-3um on page 1, line 5-6 of the specification.
Change J to r 10-'IJrrB. (4) '5iOz' on page 11, line 12 of the specification is rTi
Changed to o□1. (5) Lines 5-6 from the bottom and 4 from the bottom of page 1O of the specification
"Heat cleaning material" in each line is changed to "heat cleaning material j." (6) "Example 6" in line 11 on page 11 of the specification tube is changed to "Example 11." (7) Specification tube 11 Add the following between lines 11 and 122 of the page: rExample 8 (SfO□/T i Ot/PV
A = 14/84/2 (weight ratio) After drying the glass fiber woven fabric impregnated with 60 wt% slurry), 55 wt%
A catalyst slurry was deposited, dried and coated with 2% PVA. Using two sheets of this, they were rolled with a catalyst paste sandwiched between them, formed with a roller press, dried, and then placed in the air for 55 minutes.
The catalyst was calcined at 0'C for 2 hours to obtain a catalyst. 1 (8) "Example 7" in the 6th line from the bottom of page 11 of the specification.
This is changed to Example 11. (9) “Examples 1 to 7” on the 4th line from the bottom of No. 11 of the specification
be changed to Examples 1 to 81. (10) Table 1 on page 14 of the specification is revised as shown in the attached sheet. (11) Change ``Freeze 1'' on page 16, line 11 of the specification box to ``1 that occurs r''.
" has been changed to Example 6.8J. (13) On page 16 of the specification, lines 19-20, ``Catalyst particles are impregnated in the gaps'' is changed to 1, ``Catalyst particles are attached to r gaps or surfaces''. (14) In the second line of page 17 of the specification cylinder, "contains" was changed to "r impregnated and attached". that's all

Claims (3)

【特許請求の範囲】[Claims] (1)ガラスを含む無機繊維織布に触媒組成物を被覆し
た窒素酸化物除去用触媒において、該無機繊維織布の繊
維間隙に無機酸化物微粒子を担持させ、かつ無機酸化物
微粒子直径の無機繊維直径に対する比が0.2以下で、
無機酸化物微粒子重量の無機繊維織布重量に対する割合
が0.05〜0.8であることを特徴とする窒素酸化物
除去用触媒。
(1) In a nitrogen oxide removal catalyst in which an inorganic fiber woven fabric containing glass is coated with a catalyst composition, inorganic oxide fine particles are supported in the fiber gaps of the inorganic fiber woven fabric, and the inorganic oxide fine particles have a diameter of The ratio to the fiber diameter is 0.2 or less,
A catalyst for removing nitrogen oxides, characterized in that the ratio of the weight of the inorganic oxide fine particles to the weight of the inorganic fiber woven fabric is 0.05 to 0.8.
(2)請求項(1)において、触媒組成物が酸化チタン
とバナジウム、モリブデン、タングステンの1種以上の
元素の酸化物からなることを特徴とする窒素酸化物除去
用触媒。
(2) The catalyst for removing nitrogen oxides according to claim (1), wherein the catalyst composition comprises titanium oxide and an oxide of one or more elements of vanadium, molybdenum, and tungsten.
(3)請求項(1)または(2)において、無機酸化物
微粒子が触媒組成物あるいは触媒組成物とSiO_2か
らなることを特徴とする窒素酸化物除去用触媒。
(3) The catalyst for removing nitrogen oxides according to claim (1) or (2), wherein the inorganic oxide fine particles are composed of a catalyst composition or a catalyst composition and SiO_2.
JP1126456A 1989-05-19 1989-05-19 Catalyst for removing nitrogen oxides Pending JPH02307532A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1126456A JPH02307532A (en) 1989-05-19 1989-05-19 Catalyst for removing nitrogen oxides
DE69010984T DE69010984T3 (en) 1989-05-19 1990-05-18 Catalyst for the reduction of nitrogen oxides.
US07/525,535 US5155083A (en) 1989-05-19 1990-05-18 Catalyst for reducing nitrogen oxides and process for making the catalyst
EP90305431A EP0398752B2 (en) 1989-05-19 1990-05-18 Catalyst for reducing nitrogen oxides
US07/771,403 US5294584A (en) 1989-05-19 1991-10-02 Process for producing a denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126456A JPH02307532A (en) 1989-05-19 1989-05-19 Catalyst for removing nitrogen oxides

Publications (1)

Publication Number Publication Date
JPH02307532A true JPH02307532A (en) 1990-12-20

Family

ID=14935675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126456A Pending JPH02307532A (en) 1989-05-19 1989-05-19 Catalyst for removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH02307532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097343A (en) * 2014-11-20 2016-05-30 花王株式会社 Method for producing catalyst fiber structure
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
CN113289467A (en) * 2021-06-29 2021-08-24 成都达奇环境科技有限公司 Treatment method of flue gas produced by metal catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097343A (en) * 2014-11-20 2016-05-30 花王株式会社 Method for producing catalyst fiber structure
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
CN113289467A (en) * 2021-06-29 2021-08-24 成都达奇环境科技有限公司 Treatment method of flue gas produced by metal catalyst
CN113289467B (en) * 2021-06-29 2022-08-26 成都达奇环境科技有限公司 Treatment method of flue gas produced by metal catalyst

Similar Documents

Publication Publication Date Title
CN100408817C (en) Honeycomb structure
CN101053719B (en) Honeycomb structure
US5155083A (en) Catalyst for reducing nitrogen oxides and process for making the catalyst
EP0375391B1 (en) Process for producing a catalyst for removing nitrogen oxides
JP5528691B2 (en) Honeycomb structure
US20070130897A1 (en) Honeycomb structured body, method for manufacturing honeycomb structured body, and exhaust gas purifying device
WO2009118868A1 (en) Honeycomb structure
CN101679129B (en) Honeycomb structure
JPH01293136A (en) Honeycomb structural body carrying activated carbon and production thereof
US8518852B2 (en) Base for catalyst, catalyst and methods for producing those
JP5681431B2 (en) Honeycomb structure
EP2105423B1 (en) Honeycomb structure
JP2001137713A (en) Honeycomb structure
JPH02307532A (en) Catalyst for removing nitrogen oxides
WO2011061840A1 (en) Honeycomb structure
JP2009190022A (en) Honeycomb structure and its manufacturing method
JP4873326B2 (en) Honeycomb structure
JPH0338256A (en) Manufacture of plate-shaped catalyst for removing nitrogen oxide
JP3066044B2 (en) Plate catalyst for removing nitrogen oxides and method for producing the same
JP3264498B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP2013144640A (en) Honeycomb structure
JPH0440241A (en) Flat catalyst for nitrogen oxide removal and its preparation
KR102065691B1 (en) Multi layered filter for removing dust, system and manufacturing method for the same
JP2851634B2 (en) Method for producing catalyst for removing nitrogen oxides
JP2854321B2 (en) Method for producing plate catalyst for removing nitrogen oxides