JP2000126615A - Production of wear-resistant catalyst - Google Patents

Production of wear-resistant catalyst

Info

Publication number
JP2000126615A
JP2000126615A JP10299736A JP29973698A JP2000126615A JP 2000126615 A JP2000126615 A JP 2000126615A JP 10299736 A JP10299736 A JP 10299736A JP 29973698 A JP29973698 A JP 29973698A JP 2000126615 A JP2000126615 A JP 2000126615A
Authority
JP
Japan
Prior art keywords
catalyst
paste
titanium oxide
silica sol
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10299736A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kato
泰良 加藤
Koichi Yokoyama
公一 横山
Eiji Miyamoto
英治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10299736A priority Critical patent/JP2000126615A/en
Publication of JP2000126615A publication Critical patent/JP2000126615A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the wear resistance of a catalyst by rolling and applying a catalyst paste obtained by adding a specified oxide or salt to titanium oxide and kneading on a reticular substrate, then drying and/or baking the paste to obtain a catalytic body and impregnating the catalytic body with a sol-like liq. contg. colloidal silica. SOLUTION: Molydbenum(Mo) and/or tungsten (W), the oxide or salt of vanadium(V), inorg. fiber and water are added to a titanium oxide (titania) row material having a high specific surface area, kneaded and made into paste. The obtained catalyst paste is applied on a metallic substrate or a ceramic reticular substrate and formed into sheet. The obtained catalyst-coated body is put between rollers or dies, formed into a specified shape, e.g. corrugated, and then baked to obtain a baked catalytic body. The baked catalytic body is impregnated with silica sol and finally dried and/or baked. Consequently, the colloidal silica grain is easily infiltrated, and a high-strength catalyst is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性触媒の製
造方法に係り、特に、アンモニア(NH3 )による接触
還元用窒素酸化物(NOx)除去触媒の製造方法であっ
て、排ガス中に含まれる煤塵(ダスト)による摩耗を受
けにくい、耐摩耗性触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an abrasion-resistant catalyst, and more particularly to a method for producing a catalyst for removing nitrogen oxides (NOx) for catalytic reduction using ammonia (NH 3 ). The present invention relates to a method for producing an abrasion-resistant catalyst that is less susceptible to abrasion caused by dust contained therein.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグや酸性雨の原
因物質であり、その効果的な除去方法として、アンモニ
ア(NH3 )等を還元剤とした選択的接触還元による排
煙脱硝法が火力発電所を中心に幅広く用いられている。
このような脱硝触媒としてはバナジウム(V)、モリブ
デン(Mo)またはタングステン(W)を活性成分とし
た酸化チタン(TiO2)系触媒が使用されており、特
に活性成分の1つとしてバナジウムを含むものは活性が
高いだけでなく、排ガス中に含まれる不純物による劣化
が小さいこと、より低温から使用できること等の理由か
ら、現在の脱硝触媒の主流になっている(特開昭50−
128681号公報等)。脱硝触媒は、通常、ハニカム
状または板状に成形される。
2. Description of the Related Art NOx in flue gas emitted from power plants, various factories, automobiles, and the like is a substance that causes photochemical smog and acid rain, and ammonia (NH 3 ) and the like are effectively removed therefrom. Flue gas denitration by selective catalytic reduction as a reducing agent is widely used mainly in thermal power plants.
As such a denitration catalyst, a titanium oxide (TiO 2 ) catalyst using vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. In particular, vanadium is contained as one of the active components. These catalysts have become the mainstream of the current denitration catalysts because of their high activity, small degradation by impurities contained in the exhaust gas, and their use at lower temperatures (Japanese Patent Laid-Open No.
No. 128681). The denitration catalyst is usually formed into a honeycomb shape or a plate shape.

【0003】ところで、このような脱硝触媒を石炭焚き
ボイラをはじめとする多量のダストを含む排ガスに適用
した場合、摩耗強度が低いと前記ダストによって摩耗
し、脱硝装置の運転に重大な支障を生じることがある。
このため、脱硝触媒の耐摩耗強度の向上には細心の注意
が払われており、各種の提案がなされている。その代表
的なものとして、例えば触媒体にシリカゾルのような結
合材を含浸させる方法(特開昭57−174143号公
報)、酸化モリブデンを多量に添加した触媒を高温で焼
成した後、硫酸アルミニウムなどの結合材と共に混練す
る方法(特開平1−215345号公報)などが挙げら
れる。
When such a denitration catalyst is applied to an exhaust gas containing a large amount of dust such as a coal-fired boiler, if the abrasion strength is low, the abrasion is caused by the dust, which causes a serious hindrance to the operation of the denitration apparatus. Sometimes.
For this reason, great care has been taken to improve the wear resistance of the denitration catalyst, and various proposals have been made. Typical examples thereof include a method of impregnating a catalyst with a binder such as silica sol (Japanese Patent Application Laid-Open No. 57-174143), a method of adding a large amount of molybdenum oxide to a catalyst, calcining the catalyst at a high temperature, and then adding aluminum sulfate or the like. (Japanese Patent Application Laid-Open No. 1-215345).

【0004】図3は、触媒体に、シリカゾルを結合材と
して含浸させる、従来の耐摩耗性触媒の製造工程を示す
説明図である。図において、この方法は、酸化チタン原
料にW、Mo、V等の触媒活性成分を添加、混練する工
程と、触媒混練物を乾燥し、例えば500℃で2時間焼
成する、予備焼成工程と、予備焼成後の触媒成分を、粒
径50μm以下50wt%に粉砕する、粉砕工程と、粉
砕物に、無機繊維および/または結合材を添加し、混練
して触媒ペーストとする、触媒ペーストの調製工程と、
該触媒ペーストを触媒基材に塗布する、塗布工程と、得
られた触媒塗布体を成形する成形工程と、触媒成形体を
乾燥または焼成する焼成工程と、得られた触媒焼成体
に、シリカゾルを含浸させる強化工程と、シリカゾル含
浸後の触媒体を乾燥または焼成する最終焼成工程とから
なる。
FIG. 3 is an explanatory view showing a process for producing a conventional wear-resistant catalyst in which a catalyst body is impregnated with silica sol as a binder. In the figure, this method comprises the steps of adding and kneading a catalytically active component such as W, Mo, V, etc. to a titanium oxide raw material, drying the kneaded catalyst, and firing it at, for example, 500 ° C. for 2 hours, A pulverizing step of pulverizing the catalyst component after the preliminary calcination to a particle size of 50 wt% or less and 50 wt%, and a step of preparing a catalyst paste by adding an inorganic fiber and / or a binder to the pulverized material and kneading to obtain a catalyst paste. When,
Applying the catalyst paste to a catalyst substrate, a coating step, a forming step of forming the obtained catalyst-coated body, a firing step of drying or firing the catalyst formed body, and a silica sol on the obtained fired catalyst body. It comprises a strengthening step of impregnation and a final baking step of drying or baking the catalyst body after impregnation of the silica sol.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術における、シリカゾルを含浸して強化する方法
は、脱硝活性への影響が少なく優れた方法であるが、次
のような問題点があった。すなわち、触媒の種類や製
造法によりシリカゾルの含浸効果が異なり、充分な摩耗
強度を得るのが困難であった。また、シリカゾル含浸
時に、ゾルの分散媒である水だけが選択的に触媒中に吸
い込まれるので、シリカゾルの濃度を高くしても含浸さ
れるシリカの量が一定以上に増加せず、高い摩耗強度の
ものが得られない。さらに、充分な強度を得ようとす
ると、触媒原料をあらかじめ焼成するなどの前処理が必
要になり製造プロセスが煩雑となる。本発明の目的は、
上記従来技術の問題点を解決し、シリカゾルの含浸によ
り耐摩耗性を著しく向上させることができる、耐摩耗性
触媒の製造方法を提供することにある。
However, the method of strengthening by impregnating with silica sol in the above prior art is an excellent method with little influence on the denitration activity, but has the following problems. That is, the impregnation effect of the silica sol differs depending on the type of catalyst and the production method, and it has been difficult to obtain sufficient wear strength. Also, at the time of silica sol impregnation, only water, which is a dispersion medium of the sol, is selectively sucked into the catalyst. Therefore, even if the concentration of the silica sol is increased, the amount of impregnated silica does not increase more than a certain amount, and high wear strength is obtained. I can't get anything. Furthermore, in order to obtain sufficient strength, pretreatment such as pre-firing the catalyst raw material is required, and the production process becomes complicated. The purpose of the present invention is
An object of the present invention is to provide a method for producing an abrasion-resistant catalyst which can solve the above-mentioned problems of the prior art and can significantly improve abrasion resistance by impregnation with silica sol.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、まず、図3の従来技術において、シ
リカゾルの含浸による充分な耐摩耗強度の向上が図れな
い原因について研究したところ、シリカゾルのようなコ
ロイド状シリカを含む結合材が触媒体に含浸されるため
には、前記触媒体が、コロイド状シリカの粒径より充分
大きな細孔を有していることが必要であること、および
上記従来方法では、酸化チタン原料と触媒成分とを混練
した後、予備焼成するので、水分が低減して、その後の
乾燥または焼成による収縮が小さくなり、比較的強度の
高い触媒が得られるものの、触媒が緻密で高密度なもの
となるのでコロイド状シリカ粒子が入り得る大きな細孔
の割合が減少してシリカゾルが含浸され難くなり、これ
によって、シリカゾル含浸による体摩耗強度の向上が十
分達成できないという知見を得た。
Means for Solving the Problems In order to achieve the above object, the present inventors first studied the reason why the prior art shown in FIG. 3 could not achieve sufficient improvement in wear resistance due to impregnation with silica sol. In order for the binder containing colloidal silica, such as silica sol, to be impregnated into the catalyst, the catalyst must have pores sufficiently larger than the particle size of the colloidal silica. In the conventional method, and after kneading the titanium oxide raw material and the catalyst component, preliminary firing is performed, so that the moisture is reduced, and shrinkage due to subsequent drying or firing is reduced, and a relatively strong catalyst is obtained. However, since the catalyst becomes dense and dense, the proportion of large pores into which colloidal silica particles can enter is reduced, making it difficult for silica sol to be impregnated. Improved body wear strength by impregnation to obtain a finding that can not be sufficiently achieved.

【0007】すなわち、上記従来技術は、触媒基材に塗
布する前の触媒成分をあらかじめ予備焼成して強度を一
定限度まで高めておき、該触媒成分を基板に塗布して触
媒体とした後、シリカゾルを含浸してさらに強度を高め
ようとするものであるが、前記予備焼成が却ってシリカ
ゾルの含浸による強度向上効果を阻害していたと考えら
れる。
That is, in the above prior art, the catalyst component before being applied to the catalyst substrate is preliminarily calcined to increase the strength to a certain limit, and then the catalyst component is applied to a substrate to form a catalyst. Although it is intended to further increase the strength by impregnating with silica sol, it is considered that the preliminary baking has rather hindered the strength improvement effect by impregnation with silica sol.

【0008】そして、本発明者は、上記知見に基づき、
シリカゾルの含浸により耐摩耗強度を著しく向上させる
ことができる、耐摩耗性触媒の製造方法について鋭意研
究した結果、高比表面積のチタニア原料に触媒成分を添
加し混練したペースト状物(触媒ペースト)を、予備焼
成することなく直ちに触媒基材に塗布し、乾燥もしくは
焼成し、得られた触媒焼成体にシリカゾルを含浸させる
ことにより、コロイド状シリカ粒子が入り得る大きな細
孔の割合を十分確保し状態でシリカゾルを含浸させるこ
とができるので、シリカゾルの含浸効果が高まり、触媒
の耐摩耗強度が向上することを見出し、本発明に到達し
た。
[0008] Based on the above findings, the present inventors
As a result of intensive research on a method for producing a wear-resistant catalyst that can significantly improve wear resistance by impregnation with silica sol, a paste-like material (catalyst paste) obtained by adding a catalyst component to a titania raw material having a high specific surface area and kneading the same is obtained. Immediately applied to the catalyst substrate without preliminary firing, dried or fired, and impregnated with silica sol in the obtained fired catalyst body to ensure a sufficient ratio of large pores into which colloidal silica particles can enter. It has been found that the silica sol can be impregnated with the compound, so that the effect of impregnation with the silica sol is enhanced and the abrasion resistance of the catalyst is improved.

【0009】すなわち、本願で特許請求する発明は、以
下のとおりである。 (1)酸化チタンに、少なくともモリブデンおよび/ま
たはタングステンの酸化物もしくは塩類、バナジウムの
酸化物もしくは塩類を添加し、混練した触媒ペースト
を、網状基材に圧延、塗布した後、乾燥および/または
焼成して触媒体とし、該触媒体に、コロイド状シリカを
含むゾル状液体を含浸させることを特徴とする耐摩耗性
触媒の製造方法。
That is, the invention claimed in the present application is as follows. (1) At least molybdenum and / or tungsten oxides or salts, vanadium oxides or salts are added to titanium oxide, and the kneaded catalyst paste is rolled and applied to a net-like substrate, and then dried and / or fired. A method for producing an abrasion-resistant catalyst, characterized by impregnating the catalyst body with a sol-like liquid containing colloidal silica.

【0010】(2)前記酸化チタンとして、平均比表面
積が90〜230m2 /gのものを用いることを特徴と
する上記(1)に記載の耐摩耗性触媒の製造方法。 (3)前記酸化チタンが、比表面積90〜120m2
gの酸化チタンと比表面積180〜230m2 /gの酸
化チタンの混合物であることを特徴とする上記(2)に
記載の耐摩耗性触媒の製造方法。 (4)前記触媒ペーストが、蓚酸を含有することを特徴
とする上記(1)〜(3)の何れかに記載の耐摩耗性触
媒の製造方法。
(2) The method for producing a wear-resistant catalyst according to the above (1), wherein the titanium oxide having an average specific surface area of 90 to 230 m 2 / g is used. (3) The titanium oxide has a specific surface area of 90 to 120 m 2 /
g. and a mixture of titanium oxide having a specific surface area of 180 to 230 m 2 / g. (4) The method for producing an abrasion-resistant catalyst according to any one of the above (1) to (3), wherein the catalyst paste contains oxalic acid.

【0011】(5)前記触媒ペーストが、コロイド状シ
リカを含有することを特徴とする上記(1)〜(4)の
何れかに記載の耐摩耗性触媒の製造方法。 (6)前記網状基材が、金属性基板または無機繊維製基
板であることを特徴とする上記(1)〜(5)の何れか
に記載の耐摩耗製触媒の製造方法。 (7)前記ゾル状液体のSiO2 濃度が、5〜20重量
%であることを特徴とする上記(1)〜(6)の何れか
に記載の耐摩耗性触媒の製造方法。
(5) The method for producing a wear-resistant catalyst according to any one of the above (1) to (4), wherein the catalyst paste contains colloidal silica. (6) The method for producing an abrasion-resistant catalyst according to any one of the above (1) to (5), wherein the network substrate is a metal substrate or an inorganic fiber substrate. (7) The method for producing an abrasion-resistant catalyst according to any one of the above (1) to (6), wherein the SiO 2 concentration of the sol-like liquid is 5 to 20% by weight.

【0012】本発明は、高比表面積の酸化チタン(以
下、チタニアともいう)原料に触媒成分を添加し混練し
た後、直ちに触媒基材に塗布し、得られた触媒塗布体を
乾燥または焼成して触媒焼成体とし、該触媒焼成体にシ
リカゾルを含浸させる、耐摩耗性触媒の製造方法であ
る。
According to the present invention, a catalyst component is added to a titanium oxide (hereinafter also referred to as titania) material having a high specific surface area, kneaded, immediately applied to a catalyst substrate, and the obtained catalyst coated body is dried or calcined. This is a method for producing an abrasion-resistant catalyst, in which a calcined catalyst body is prepared, and the calcined catalyst body is impregnated with silica sol.

【0013】図1は、本発明の耐摩耗性触媒の製造方法
の一例を示す説明図である。図において、この触媒製造
方法は、(a)チタニア原料にモリブデン(Mo)およ
び/またはタングステン(W)、バナジウム(V)の酸
化物もしくは塩類、無機繊維ならびに水を添加し、混練
してペースト状にする触媒ペースト調製工程、(b)得
られた触媒ペーストを金属基板またはセラミックス製網
状基板に塗布して板状にする塗布工程、(c)触媒塗布
体をローラまたは金型に挟んで波形等の所定形状に成形
する成形工程、(d)乾燥または焼成工程、(e)シリ
カゾルを含浸させる含浸工程、ならびに(f)最終的な
乾燥および/または焼成工程からなっている。
FIG. 1 is an explanatory view showing one example of a method for producing a wear-resistant catalyst of the present invention. In the figure, this catalyst production method comprises the steps of (a) adding an oxide or salt of molybdenum (Mo) and / or tungsten (W), vanadium (V), inorganic fibers and water to a titania raw material, kneading the mixture, and forming a paste. (B) a step of applying the obtained catalyst paste to a metal substrate or a ceramic net-like substrate to form a plate, and (c) a waveform obtained by sandwiching the catalyst-coated body between rollers or a mold. (D) drying or baking step, (e) impregnation step of impregnating with silica sol, and (f) final drying and / or baking step.

【0014】上記乾燥または焼成工程において、活性成
分塩類や溶解促進成分の熱分解または酸化チタンの焼結
等により、触媒成分は収縮しようとするが、本発明にお
いては、触媒ペーストを網状基材に塗布したのち焼成等
することにより、剛性の高い前記網状基材が触媒成分の
収縮を抑制するようにはたらく。従って、基材に塗布す
る以前に予備焼成を行う従来技術において収縮する体積
変化に相当する体積分だけの細孔(マクロポア)容積が
増大し、大きい細孔の相対的割合が増大するので、シリ
カ粒子が侵入し易くなり、高強度の触媒が得られる。
In the drying or baking step, the catalyst component tends to shrink due to thermal decomposition of active ingredient salts and dissolution promoting components or sintering of titanium oxide. In the present invention, however, the catalyst paste is applied to a net-like base material. By baking after application, the highly rigid net-like base material works to suppress shrinkage of the catalyst component. Therefore, in the prior art in which pre-baking is performed before application to the base material, the volume of macropores corresponding to the volume change that shrinks is increased, and the relative proportion of large pores is increased. Particles easily penetrate, and a high-strength catalyst can be obtained.

【0015】通常、高比表面積のチタニアに活性成分を
添加して混練したペーストを、予備焼成することなく板
状に成形し、乾燥および/または焼成した場合、体積は
約20%収縮するが、本発明では、触媒基材によってこ
の収縮が抑制されるので、マクロポアを多量に生成させ
ることができる。図2は、触媒ペーストを、予備焼成す
ることなく板状に成形し、乾燥および/または焼成した
板状触媒における、触媒基材の有無による収縮度合いの
相違を示す説明図である。図において、触媒成分を予め
基材に塗布した場合(b)は、基材を用いない場合
(a)に比べて触媒の収縮度合いが低減していることが
分かる。
Usually, when a paste obtained by adding an active ingredient to titania having a high specific surface area and kneading the mixture is formed into a plate without preliminary firing, and dried and / or fired, the volume shrinks by about 20%. In the present invention, since the contraction is suppressed by the catalyst substrate, a large amount of macropores can be generated. FIG. 2 is an explanatory diagram showing the difference in the degree of shrinkage depending on the presence or absence of a catalyst substrate in a plate-like catalyst obtained by forming a catalyst paste into a plate shape without preliminary firing, and drying and / or firing. In the figure, it can be seen that the degree of shrinkage of the catalyst is lower when the catalyst component is applied to the substrate in advance (b) than when the substrate is not used (a).

【0016】このように、本発明においては、触媒の収
縮を抑制して、例えば口径1000オングストローム
(Å)以上のマクロポアを大量に生成させることができ
るので、コロイド状シリカ粒子が容易に侵入して触媒の
耐摩耗強度が向上する。また、コロイド状シリカ粒子が
触媒内に容易に侵入するので、シリカ粒子と分散媒であ
る水とが分離しにくくなり、水だけが触媒体内に担持さ
れるという、従来技術の問題も生じない。従って、耐摩
耗強度にバラツキが少なく、高強度の触媒を効率よく得
ることができる。
As described above, in the present invention, since the shrinkage of the catalyst is suppressed and a large amount of macropores having a diameter of, for example, 1000 Å (Å) or more can be generated, the colloidal silica particles easily penetrate. The wear resistance of the catalyst is improved. Further, since the colloidal silica particles easily penetrate into the catalyst, it is difficult to separate the silica particles and water as a dispersion medium, and there is no problem of the prior art that only water is supported in the catalyst. Therefore, a high-strength catalyst with little variation in wear resistance can be obtained efficiently.

【0017】本発明において、触媒原料であるチタニア
は、高温の熱処理を受けていないものであることが好ま
しい。チタニアの比表面積は、平均90〜230m2
g、好ましくは平均120〜230m2 /gである。特
に、比較的高比表面積(180〜230m2 /g)のチ
タニアと比較的低比表面積(90〜120m2 /g)の
チタニアを組合わせ、平均比表面積を前記範囲内に調整
した場合には好結果が得られ易い。本発明において、チ
タニアに活性成分をはじめ、水、無機繊維等を添加し、
混練した触媒ペーストには、前記活性成分の溶解を促進
させるために蓚酸、アミン類を添加することが好まし
く、シリカゾル(コロイド状シリカ)、硫酸アルミニウ
ムなどの結合剤を同時に添加することもできる。
In the present invention, titania as a catalyst raw material is preferably not subjected to high-temperature heat treatment. The specific surface area of titania averages 90 to 230 m 2 /
g, preferably 120 to 230 m 2 / g on average. In particular, when the titania having a relatively high specific surface area (180 to 230 m 2 / g) and the titania having a relatively low specific surface area (90 to 120 m 2 / g) are combined and the average specific surface area is adjusted within the above range, Good results are easily obtained. In the present invention, the active ingredient, titania, water, inorganic fibers and the like are added,
Oxalic acid and amines are preferably added to the kneaded catalyst paste in order to promote the dissolution of the active ingredient, and a binder such as silica sol (colloidal silica) or aluminum sulfate can be added at the same time.

【0018】本発明において、網状基材としてはSUS
製メタルラスをはじめとする金属製基板または絡み織り
したガラス繊維製織布をはじめとする無機繊維製基板が
用いられ、触媒ペーストは、前記基板に、例えば圧延ロ
ーラ等を用いてその網目の間を埋めるように塗布され
る。
In the present invention, SUS is used as the reticulated base material.
A metal substrate including a metal lath or an inorganic fiber substrate including a glass fiber woven fabric entangled is used, and the catalyst paste is applied to the substrate using, for example, a rolling roller or the like. It is applied to fill.

【0019】本発明において、触媒ペーストを網状基材
に塗布したのち、ローラもしくは金型に挟んで成形する
ことが好ましい。この成形工程では、板状触媒を多数枚
重ねた場合にスペーサとして機能する山形、波形などが
成形される。触媒成形体は、乾燥および/または焼成さ
れて触媒焼成体となり水分が蒸発し、活性成分である塩
類などが分解し、その後のシリカゾルの含浸が容易とな
る。本発明において、成形工程と乾燥または焼成工程と
は、別々に行われる必要はなく、加熱した金型の間に触
媒塗布体を挟んで、成形と乾燥または焼成を同時に行う
こともできる。
In the present invention, it is preferable that the catalyst paste is applied to a net-like base material and then molded by being sandwiched between rollers or a mold. In this forming step, a chevron, a corrugation or the like that functions as a spacer when a large number of plate catalysts are stacked is formed. The catalyst molded body is dried and / or calcined to form a calcined catalyst body, which evaporates water, decomposes salts and the like as active components, and facilitates subsequent impregnation with silica sol. In the present invention, the forming step and the drying or baking step do not need to be performed separately, and the forming and drying or baking can be performed at the same time with the catalyst-coated body interposed between heated molds.

【0020】本発明において、シリカゾルの含浸は、所
定濃度のシリカゾルに乾燥もしくは焼成した触媒体を浸
漬するか、またはシリカゾルをスプレ等で触媒体に吹き
付けることによって行われ、シリカゾルは触媒細孔内に
侵入する。シリカゾルとしては、特に限定されないが、
SiO2 含有量が5〜20%のものを用いると高強度の
触媒が得られ易い。
In the present invention, the impregnation of the silica sol is carried out by immersing the dried or calcined catalyst in a silica sol having a predetermined concentration, or by spraying the silica sol on the catalyst with a spray or the like. invade. The silica sol is not particularly limited,
Easily SiO 2 content obtained using a high intensity catalyst things 5-20%.

【0021】[0021]

【発明の実施の形態】以下、実施例により本発明をより
詳細に説明する。 実施例1 繊維径9μmのEガラス製繊維1400本の撚糸を10
本/25.4mmの粗さで平織りした網状物にチタニア
40%、シリカゾル20%、ポリビニルアルコール1%
を含むスラリを含浸し、150℃で乾燥して剛性を有す
る触媒基材とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to examples. Example 1 1400 twisted yarns of E glass fiber having a fiber diameter of 9 μm
Book / 40% titania, 20% silica sol, 1% polyvinyl alcohol on a net woven with a roughness of 25.4 mm
Was impregnated with the slurry and dried at 150 ° C. to obtain a rigid catalyst substrate.

【0022】他方、これとは別に、比表面積約230m
2 /gのチタニア1.5kgにモリブデン酸アンモニウ
ム((NH4 6 ・Mo7 24・4H2 O)を0.10
kg、メタバナジン酸アンモニウム0.046kg、お
よび蓚酸0.081kg、さらに20wt%シリカゾル
をSiO2 として5wt%添加し、水を加えながら混練
してペースト状態にした。これにカオリン系無機繊維
(商品名カオウール)を0.32kg加えてさらに混練
し、水分30.5%の触媒ペーストを得た。得られた触
媒ペーストを、先に調製した幅500mmの触媒基材2
枚の間に置き、一対の圧延ローラを用いて基材の網目間
および網表面に塗布した後、長さ480mmに切断して
厚み0.7mmの板状塗布体を得た。
On the other hand, a specific surface area of about 230 m
2 / g ammonium molybdate titania 1.5kg of ((NH 4) 6 · Mo 7 O 24 · 4H 2 O) 0.10
kg, 0.046 kg of ammonium metavanadate, 0.081 kg of oxalic acid, and 5 wt% of 20 wt% silica sol as SiO 2 were added and kneaded while adding water to form a paste. 0.32 kg of kaolin-based inorganic fiber (trade name: kao wool) was added thereto and further kneaded to obtain a catalyst paste having a water content of 30.5%. The obtained catalyst paste was mixed with the previously prepared catalyst substrate 2 having a width of 500 mm.
The sheet was placed between the sheets and applied to the mesh and the mesh surface of the base material using a pair of rolling rollers, and then cut to a length of 480 mm to obtain a 0.7 mm thick plate-like coated body.

【0023】得られた触媒塗布体を、加熱金型の間に挟
んで高さ6mmの波形を120mm間隔で4条成形し、
500℃で2時間焼成した。得られた触媒焼成体を、S
iO 2 濃度20%のシリカゾル(日産化学製、スノーテ
ックス−O)に浸漬してコロイド状シリカを担持させ、
乾燥し、450℃で2時間焼成して触媒を得た。 実施例2 繊維径9μmのEガラス製繊維1000本の撚糸を10
本/25.4mmの粗さで絡み織りした網状物に、上記
実施例1で用いたスラリと同様のスラリを含浸して剛性
を持たせ触媒基材とした。
The obtained catalyst-coated body is sandwiched between heating molds.
, 4 waveforms are formed at intervals of 120mm with a waveform of height 6mm,
It was baked at 500 ° C. for 2 hours. The fired catalyst body obtained was
iO Two20% silica sol (Nissan Chemical, Snowte
X-O) to support colloidal silica,
The catalyst was dried and calcined at 450 ° C. for 2 hours to obtain a catalyst. Example 2 Ten twisted yarns of 1,000 E glass fibers having a fiber diameter of 9 μm were used.
Book / 25.4 mm
Stiffness impregnated with the same slurry as the slurry used in Example 1.
To give a catalyst substrate.

【0024】他方、これとは別に、比表面積約90m2
/gのチタニア1.05kgと比表面積230m2 /g
のチタニア0.45kgとにパラタングステン酸アンモ
ニウム((NH4 1010・W1246・6H2 O)を
0.14kg、メタバナジン酸アンモニウム0.046
kg、および蓚酸0.084kg、さらに20wt%シ
リカゾルをSiO2 として5wt%添加し、水を加えな
がら混練してペースト状態にし、これにカオリン系無機
繊維(商品名カオウール)を0.33kg加えてさらに
混練して水分31.5%の触媒ペーストを得た。
On the other hand, separately from this, the specific surface area is about 90 m 2.
/ G titania 1.05 kg and specific surface area 230 m 2 / g
Titania 0.45kg and the ammonium paratungstate ((NH 4) 10 H 10 · W 12 O 46 · 6H 2 O) and 0.14 kg, ammonium metavanadate 0.046
and 0.084 kg of oxalic acid, and 5 wt% of 20 wt% silica sol as SiO 2 , kneaded while adding water to form a paste, and 0.33 kg of kaolin-based inorganic fiber (trade name: kao wool) was added thereto. The mixture was kneaded to obtain a catalyst paste having a water content of 31.5%.

【0025】得られたペーストと先に調製した触媒基材
を用い、上記実施例1と同様にして触媒塗布体とし、得
られた触媒塗布体を実施例1と同様の条件で成形し、焼
成して触媒焼成体とした。得られた触媒焼成体を実施例
1と同様のシリカゾルに浸漬してコロイド状シリカを担
持させた後、実施例1と同様の条件で焼成して板状触媒
とした。
Using the obtained paste and the previously prepared catalyst base material, a catalyst-coated body was formed in the same manner as in Example 1, and the obtained catalyst-coated body was molded under the same conditions as in Example 1 and calcined. Thus, a catalyst fired body was obtained. The obtained catalyst fired body was immersed in the same silica sol as in Example 1 to support colloidal silica, and fired under the same conditions as in Example 1 to obtain a plate-like catalyst.

【0026】実施例3〜5 実施例2で用いた比表面積90m2 /gのチタニアと比
表面積230m2 /のチタニアの混合比を、それぞれ
1.5/0kg/kg、0.75/0.75kg/kg
および0.45/1.05kg/kgとした以外は、上
記実施例2と同様にして同様の板状触媒を調製し、実施
例3〜5とした。
[0026] The mixing ratio of the titania and a specific surface area of 230 m 2 / titania having a specific surface area of 90m 2 / g used in Example 3-5 Example 2, respectively 1.5 / 0kg / kg, 0.75 / 0. 75kg / kg
A similar plate-like catalyst was prepared in the same manner as in Example 2 except that the amount was 0.45 / 1.05 kg / kg.

【0027】実施例6および7 実施例2で触媒焼成体の含浸に用いたシリカゾルのSi
2 濃度を、それぞれ10wt%および5wt%に変更
した以外は上記実施例2と同様にして板状触媒を調製
し、実施例6および7とした。 実施例8 500℃で2時間焼成する触媒焼成工程を省略し、加熱
成形後の触媒塗布体を直ちにシリカゾルに浸漬した以外
は上記実施例1と同様の方法で板状触媒を調製した。
Examples 6 and 7 The silica sol used in Example 2 for impregnation of the calcined catalyst was used.
Except that the O 2 concentration was changed to 10 wt% and 5 wt%, respectively, plate-like catalysts were prepared in the same manner as in Example 2 above, and Examples 6 and 7 were obtained. Example 8 A plate-like catalyst was prepared in the same manner as in Example 1 except that the catalyst baking step of baking at 500 ° C. for 2 hours was omitted, and the catalyst-coated body after heating was immediately immersed in silica sol.

【0028】比較例1 触媒体へのシリカゾルの含浸を行わない以外は、上記実
施例1と同様にして板状触媒を得た。 比較例2 触媒体へのシリカゾルの含浸を行わない以外は、上記実
施例2と同様にして板状触媒を得た。
Comparative Example 1 A plate-like catalyst was obtained in the same manner as in Example 1 except that the catalyst body was not impregnated with silica sol. Comparative Example 2 A plate catalyst was obtained in the same manner as in Example 2 except that the catalyst body was not impregnated with silica sol.

【0029】比較例3 シリカゾルとカオリン系無機繊維を混入させない以外
は、上記実施例1と同様にして触媒ペーストを調製し、
乾燥し、500℃で2時間予備焼成したのち、粒径50
μm以下50重量%に粉砕したもの1.62kgに、実
施例1で用いたと同様の、20wt%シリカゾルをSi
2 として5wt%、カオリン系無機繊維を0.32k
gおよび水を加えて混練し、水分28.5%のペースト
とし、該ペースト状物を触媒ペーストとして用いた以外
は上記実施例1と同様の方法で板状触媒を調製した。
Comparative Example 3 A catalyst paste was prepared in the same manner as in Example 1 except that silica sol and kaolin-based inorganic fiber were not mixed.
After drying and pre-firing at 500 ° C for 2 hours,
The same 20 wt% silica sol as used in Example 1 was added to
5 wt% as O 2 , 0.32 k of kaolin-based inorganic fiber
g and water were added and kneaded to obtain a paste having a water content of 28.5%. A plate-like catalyst was prepared in the same manner as in Example 1 except that the paste was used as a catalyst paste.

【0030】比較例4 シリカゾルとカオリン系無機繊維を混入させない以外
は、上記実施例2と同様にして触媒ペーストを調製し、
乾燥し、550℃で2時間予備焼成したのち、粒径50
μm以下50重量%に粉砕したもの1.66kgに、実
施例2で用いたと同様の、20wt%シリカゾルをSi
2 として5wt%、カオリン系無機繊維を0.32k
gおよび水を加えて混練し、水分29.0%のペースト
とし、該ペースト状物を触媒ペーストとして用いた以外
は上記実施例2と同様の方法で板状触媒を調製した。
Comparative Example 4 A catalyst paste was prepared in the same manner as in Example 2 except that silica sol and kaolin-based inorganic fiber were not mixed.
After drying and pre-baking at 550 ° C. for 2 hours,
20 wt% silica sol similar to that used in Example 2 was added to 1.66 kg of pulverized to 50% by weight or less
5 wt% as O 2 , 0.32 k of kaolin-based inorganic fiber
g and water were added and kneaded to obtain a paste having a water content of 29.0%, and a plate-like catalyst was prepared in the same manner as in Example 2 except that the paste was used as a catalyst paste.

【0031】比較例5 触媒体へのシリカゾルの含浸を行わない以外は、上記実
施例3と同様にして板状触媒とした。 比較例6 触媒体へのシリカゾルの含浸を行わない以外は、上記実
施例4と同様にして板状触媒とした。
Comparative Example 5 A plate catalyst was prepared in the same manner as in Example 3 except that the catalyst was not impregnated with silica sol. Comparative Example 6 A plate catalyst was prepared in the same manner as in Example 4 except that the catalyst body was not impregnated with silica sol.

【0032】実施例1〜8および比較例1〜6の触媒を
それぞれ100mm角に切断したものを45度に傾けた
表面に、70メッシュの鋼鉄製グリットを高さ500m
mの位置から8kg落下させて摩耗試験を行い、摩耗強
度を評価した。得られた結果を表1にまとめて示す。な
お、表1において、摩耗量が少ないほど摩耗強度が高い
触媒であることを示している。
Each of the catalysts of Examples 1 to 8 and Comparative Examples 1 to 6 was cut into 100 mm squares, and a 70-mesh steel grit having a height of 500 m was placed on the surface inclined at 45 degrees.
The abrasion test was performed by dropping 8 kg from the position of m to evaluate the abrasion strength. Table 1 summarizes the obtained results. In Table 1, it is shown that the smaller the wear amount, the higher the wear strength of the catalyst.

【0033】[0033]

【表1】 表1において、触媒焼成体にシリカゾルを含浸させた実
施例1および2の板状触媒は、シリカゾルを含浸しなか
った比較例1、2の板状触媒に比べて摩耗量がきわめて
小さく、シリカゾルの含浸により耐摩耗強度が大幅に向
上したことが分かる。
[Table 1] In Table 1, the plate-shaped catalysts of Examples 1 and 2 in which the calcined catalyst body was impregnated with silica sol had extremely small abrasion amounts as compared with the plate-shaped catalysts of Comparative Examples 1 and 2 in which silica sol was not impregnated. It can be seen that the impregnation significantly improved the wear resistance.

【0034】また、実施例1および2と比較例1および
2、ならびに比較例3および4と比較例5および6を比
較すると、実施例1および2の触媒はシリカゾルを含浸
することにより比較例1および2に比べて耐摩耗強度が
大きく向上しているのに対し、比較例3および4はシリ
カゾル含浸工程を経ても比較例5および6に比べて耐摩
耗強度がほとんど向上していないことが分かる。このこ
とから、ペースト状の触媒成分を予備焼成しない本発明
方法は、触媒成分を予備焼成する従来技術に比べて触媒
の耐摩耗強度を大幅に向上できることが分かる。
When Examples 1 and 2 are compared with Comparative Examples 1 and 2, and Comparative Examples 3 and 4 are compared with Comparative Examples 5 and 6, the catalysts of Examples 1 and 2 are impregnated with silica sol. It can be seen that the abrasion resistance of Comparative Examples 3 and 4 is substantially improved compared to Comparative Examples 5 and 6, even after the silica sol impregnation step, while the abrasion resistance is significantly improved as compared with Comparative Examples 2 and 3. . From this, it is understood that the method of the present invention in which the paste-like catalyst component is not pre-fired can greatly improve the abrasion resistance of the catalyst as compared with the prior art in which the catalyst component is pre-fired.

【0035】さらに実施例2〜5の比較から、本発明に
おいてはチタニア原料の平均比表面積が大きいものほど
耐摩耗強度向上効果が大きいことが分かる。さらに実施
例2、6および7の比較から含浸するシリカゾルのSi
2 濃度は高いほど好結果を与えることが分かる。ま
た、実施例1と実施例8とを比較すると両者の摩耗量に
は差がなく、触媒塗布体の加熱成形後の焼成は必ずしも
必要ではなく、シリカゾルが含浸される程度に乾燥して
いればよいことが分かる。
Further, from the comparison of Examples 2 to 5, it can be seen that in the present invention, the greater the average specific surface area of the titania raw material, the greater the effect of improving the wear resistance. Further, from the comparison of Examples 2, 6 and 7, the silica sol impregnated with Si
It can be seen that the higher the O 2 concentration, the better the results. In addition, comparing Example 1 and Example 8, there is no difference in the amount of wear between them, and baking after heat molding of the catalyst-coated body is not always necessary, as long as it is dried to the extent that silica sol is impregnated. It turns out to be good.

【0036】[0036]

【発明の効果】本願の請求項1記載の発明によれば、酸
化チタンに、少なくともモリブデンおよび/またはタン
グステンの酸化物もしくは塩類、バナジウムの酸化物も
しくは塩類を添加し、混練した触媒ペーストを、網状基
材に圧延、塗布した後、乾燥および/または焼成して触
媒焼成体とし、この触媒焼成体に、コロイド状シリカを
含むゾル状液体を含浸、担持させることにより、耐摩耗
性に優れた高強度の触媒が得られる。また予備焼成が不
要となって触媒の製造工程が簡略化できるので、経済的
にも大きな効果が得られる。
According to the first aspect of the present invention, a catalyst paste obtained by adding at least an oxide or salt of molybdenum and / or tungsten, or an oxide or salt of vanadium to titanium oxide and kneading the mixture is formed into a network. After being rolled and applied to a substrate, dried and / or calcined to obtain a calcined catalyst body, and impregnated with a sol-like liquid containing colloidal silica and carried on the calcined catalyst body to obtain a high abrasion resistant high A strong catalyst is obtained. In addition, since the preliminary calcination is not required and the production process of the catalyst can be simplified, a great effect can be obtained economically.

【0037】本願の請求項2記載の発明によれば、前記
酸化チタンとして、平均比表面積が90〜230m2
gのものを用いることにより、上記発明の効果に加え、
コロイド状シリカが含浸し易くなり、より耐摩耗性に優
れた触媒が得られる。本願の請求項3記載の発明によれ
ば、酸化チタンとして、比表面積90〜120m2 /g
の酸化チタンと比表面積180〜230m2 /gの酸化
チタンの混合物を用いることにより、上記発明の効果に
加え、シリカゾル含浸による耐摩耗強度向上効果がより
大きくなる。
According to the second aspect of the present invention, the titanium oxide has an average specific surface area of 90 to 230 m 2 /
In addition to the effects of the present invention,
Colloidal silica is easily impregnated, and a catalyst having more excellent wear resistance can be obtained. According to the invention described in claim 3 of the present application, the specific surface area is 90 to 120 m 2 / g as titanium oxide.
By using a mixture of titanium oxide having a specific surface area of 180 to 230 m 2 / g, the effect of improving the abrasion resistance by impregnation with silica sol is further increased in addition to the effect of the present invention.

【0038】本願の請求項4記載の発明によれば、触媒
ペーストが、蓚酸を含有することにより、上記発明の効
果に加え、触媒活性成分の溶解が促進してより高い触媒
性能が発揮される。本願の請求項5記載発明によれば、
前記触媒ペーストが、コロイド状シリカを含有すること
により、上記発明の効果に加え、より高強度の触媒が得
られる。本願の請求項6記載の発明によれば、前記網状
基材が、金属性基板または無機繊維製基板であることに
より、上記発明の効果に加え、触媒焼成時の収縮がより
抑制され、シリカゾルがより有効に含浸されて高強度の
触媒が得られる。
According to the invention of claim 4 of the present application, since the catalyst paste contains oxalic acid, in addition to the effects of the above-mentioned invention, the dissolution of the catalytically active component is promoted and higher catalytic performance is exhibited. . According to the fifth aspect of the present invention,
When the catalyst paste contains colloidal silica, a catalyst having higher strength can be obtained in addition to the effects of the present invention. According to the invention as set forth in claim 6 of the present application, the reticulated substrate is a metal substrate or an inorganic fiber substrate. A more effective impregnation results in a higher strength catalyst.

【0039】本願の請求項7記載の発明によれば、前記
ゾル状液体のSiO2 濃度を5〜20重量%としたこと
により、より高強度の触媒が得られる。
According to the invention of claim 7 of the present application, a higher strength catalyst can be obtained by setting the SiO 2 concentration of the sol-like liquid to 5 to 20% by weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒の製造工程を示す説明図。FIG. 1 is an explanatory view showing a production process of a catalyst of the present invention.

【図2】本発明の特徴を示す模式図。FIG. 2 is a schematic diagram showing features of the present invention.

【図3】従来技術を示す説明図。FIG. 3 is an explanatory view showing a conventional technique.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/06 B01D 53/36 102C (72)発明者 宮本 英治 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 4D048 AA06 AB02 BA06X BA07X BA23X BA26X BA27X BA41X BB03 4G069 AA01 AA03 AA08 AA09 BA02A BA02B BA04A BA04B BA14B BB06A BB06B BC54A BC54B BC59A BC59B BC60A BC60B CA02 CA03 CA08 DA06 EA12 EA13 EC02X EC02Y EC03X EC03Y ZF02A ZF02B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 35/06 B01D 53/36 102C (72) Inventor Eiji Miyamoto 3-36 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi F-term in Kure Research Laboratories Co., Ltd. (Reference) 4D048 AA06 AB02 BA06X BA07X BA23X BA26X BA27X BA41X BB03 4G069 AA01 AA03 AA08 AA09 BA02A BA02B BA04A BA04B BA14B BB06A BB06B BC54A BC54B BC59A BC02 EC02 EC02 CA03B02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタンに、少なくともモリブデンお
よび/またはタングステンの酸化物もしくは塩類、バナ
ジウムの酸化物もしくは塩類を添加し、混練した触媒ペ
ーストを、網状基材に圧延、塗布した後、乾燥および/
または焼成して触媒体とし、該触媒体に、コロイド状シ
リカを含むゾル状液体を含浸させることを特徴とする耐
摩耗性触媒の製造方法。
Claims 1. At least an oxide or salt of molybdenum and / or tungsten or an oxide or salt of vanadium is added to titanium oxide, and the kneaded catalyst paste is rolled and applied to a net-like substrate, and then dried and / or dried.
Alternatively, a method for producing an abrasion-resistant catalyst, comprising calcining to form a catalyst, and impregnating the catalyst with a sol-like liquid containing colloidal silica.
【請求項2】 前記酸化チタンとして、平均比表面積が
90〜230m2 /gのものを用いることを特徴とする
請求項1に記載の耐摩耗性触媒の製造方法。
2. The method according to claim 1, wherein the titanium oxide has an average specific surface area of 90 to 230 m 2 / g.
【請求項3】 前記酸化チタンが、比表面積90〜12
0m2 /gの酸化チタンと比表面積180〜230m2
/gの酸化チタンの混合物であることを特徴とする請求
項2に記載の耐摩耗性触媒の製造方法。
3. The titanium oxide has a specific surface area of 90 to 12
0 m 2 / g titanium oxide and specific surface area of 180 to 230 m 2
3. The method for producing an abrasion-resistant catalyst according to claim 2, wherein the mixture is a mixture of titanium oxide / g of titanium oxide.
【請求項4】 前記触媒ペーストが、蓚酸を含有するこ
とを特徴とする請求項1〜3の何れかに記載の耐摩耗性
触媒の製造方法。
4. The method for producing an abrasion-resistant catalyst according to claim 1, wherein the catalyst paste contains oxalic acid.
【請求項5】 前記触媒ペーストが、コロイド状シリカ
を含有することを特徴とする請求項1〜4の何れかに記
載の耐摩耗性触媒の製造方法。
5. The method for producing a wear-resistant catalyst according to claim 1, wherein the catalyst paste contains colloidal silica.
【請求項6】 前記網状基材が、金属性基板または無機
繊維製基板であることを特徴とする請求項1〜5の何れ
かに記載の耐摩耗製触媒の製造方法。
6. The method for producing an abrasion-resistant catalyst according to claim 1, wherein the mesh substrate is a metal substrate or an inorganic fiber substrate.
【請求項7】 前記ゾル状液体のSiO2 濃度が、5〜
20重量%であることを特徴とする請求項1〜6の何れ
かに記載の耐摩耗性触媒の製造方法。
7. The sol-like liquid having an SiO 2 concentration of 5 to 5.
The method for producing an anti-wear catalyst according to any one of claims 1 to 6, wherein the amount is 20% by weight.
JP10299736A 1998-10-21 1998-10-21 Production of wear-resistant catalyst Pending JP2000126615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299736A JP2000126615A (en) 1998-10-21 1998-10-21 Production of wear-resistant catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299736A JP2000126615A (en) 1998-10-21 1998-10-21 Production of wear-resistant catalyst

Publications (1)

Publication Number Publication Date
JP2000126615A true JP2000126615A (en) 2000-05-09

Family

ID=17876352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299736A Pending JP2000126615A (en) 1998-10-21 1998-10-21 Production of wear-resistant catalyst

Country Status (1)

Country Link
JP (1) JP2000126615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
CN104383912A (en) * 2014-11-11 2015-03-04 中国石油大学(华东) Flue gas denitrification catalyst and preparation method thereof
WO2016159038A1 (en) * 2015-03-31 2016-10-06 日立造船株式会社 Catalyst treatment device and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
CN104383912A (en) * 2014-11-11 2015-03-04 中国石油大学(华东) Flue gas denitrification catalyst and preparation method thereof
WO2016159038A1 (en) * 2015-03-31 2016-10-06 日立造船株式会社 Catalyst treatment device and method for manufacturing same
JP2016190226A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Catalyst processing device and method for production thereof

Similar Documents

Publication Publication Date Title
US8703636B2 (en) Method of manufacturing a catalyst body by post-impregnation
US5137855A (en) Catalysts for selective catalytic reduction denox technology
DE112014000588T5 (en) Ammonia oxidation catalyst
KR101330442B1 (en) Base for catalyst, catalyst and methods for producing those
KR102090726B1 (en) Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same
US11266977B2 (en) Vanadium-based selective catalytic reduction catalyst
JP4225735B2 (en) Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
CN111298802B (en) Preparation method of flue gas denitration catalyst
JPH05293385A (en) Catalyst structural body and its production
JPH105591A (en) Catalyst for cleaning of waste gas and device for cleaning waste gas with same
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
JP2000126615A (en) Production of wear-resistant catalyst
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
JP4344102B2 (en) Catalyst slurry for exhaust gas denitration and method for producing the same
CN112973766B (en) Preparation method of ammonium bisulfate-resistant flat-plate denitration catalyst and catalyst obtained by preparation method
JPS63171615A (en) Catalytic filter for treating exhaust gas
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JP2002119868A (en) Catalytic structural body for purifying waste gas
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP2014046299A (en) Manufacturing method of denitration catalyst
JP3234239B2 (en) Method for removing nitrogen oxides from high-temperature exhaust gas and catalyst for removal
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JP2854321B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP4511920B2 (en) Method for producing denitration catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228