KR102090726B1 - Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same - Google Patents

Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same Download PDF

Info

Publication number
KR102090726B1
KR102090726B1 KR1020170172249A KR20170172249A KR102090726B1 KR 102090726 B1 KR102090726 B1 KR 102090726B1 KR 1020170172249 A KR1020170172249 A KR 1020170172249A KR 20170172249 A KR20170172249 A KR 20170172249A KR 102090726 B1 KR102090726 B1 KR 102090726B1
Authority
KR
South Korea
Prior art keywords
metal structure
coating slurry
catalyst
coating
oxide
Prior art date
Application number
KR1020170172249A
Other languages
Korean (ko)
Other versions
KR20190071305A (en
Inventor
임동하
정해영
이치현
구윤장
임은미
김태용
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020170172249A priority Critical patent/KR102090726B1/en
Priority to PCT/KR2017/014867 priority patent/WO2019117382A1/en
Publication of KR20190071305A publication Critical patent/KR20190071305A/en
Application granted granted Critical
Publication of KR102090726B1 publication Critical patent/KR102090726B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/30
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

본 발명은 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 전처리 공정을 거치지 않은 금속 구조체 상에 1회 코팅 및 열처리하는 단일공정(One-step Process)을 통하여 경제성이 우수할 뿐만 아니라 촉매 성능이 우수한 고효율의 탈질 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry and a method for manufacturing the same, and more specifically, a one-step process of coating and heat-treating once on a metal structure that has not been subjected to a pretreatment process. It relates to a high-efficiency denitration catalyst and a method for producing the catalyst having excellent economic performance through).

Description

코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매 및 이의 제조방법{Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same}Metal structure based NOx removal catalyst for selective catalyst reduction using coating slurry and method for manufacturing same

본 발명은 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 금속 구조체 표면 전처리 공정을 거치지 않은 금속 구조체 상에 1회 코팅 및 열처리하는 단일(One Step) 공정을 통하여 높은 열전도성 및 열적 안정성을 가지는 강건하고 우수한 촉매성능을 가질 뿐만 아니라 가격 경쟁력을 가지는 고효율의 금속 구조체 기반 탈질 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry and a method for manufacturing the same, and more specifically, a single step of coating and heat treatment on a metal structure that has not undergone a surface pretreatment process of the metal structure (One Step) ) Through a process, it relates to a high-efficiency metal structure-based denitration catalyst having a high thermal conductivity and thermal stability, as well as having a strong and excellent catalytic performance and price competitiveness, and a method for manufacturing the same.

가솔린 또는 디젤 연료와 같은 탄화수소계 연료를 연소시킬 때 배출되는 가스는 심각한 대기환경오염을 일으킬 수 있다. 이러한 배기가스 내 오염물질들은 탄화수소와 산소를 함유하는 화합물로서, 질소산화물(NOx), 황산화물(SOx), 일산화탄소(CO) 등을 포함한다. 따라서, 석탄화력발전소, 소각로, 자동차, 선박 등의 연소 시스템으로부터 배출되는 유해가스의 배출량을 감소시키기 위한 노력이 수십 년 간에 걸쳐 전 세계적으로 시도되어 오고 있다.Gases emitted when burning hydrocarbon-based fuels such as gasoline or diesel fuel can cause serious air pollution. Contaminants in these exhaust gases are hydrocarbon and oxygen-containing compounds, and include nitrogen oxides (NOx), sulfur oxides (SOx), and carbon monoxide (CO). Therefore, efforts to reduce the amount of harmful gas emitted from combustion systems such as coal-fired power plants, incinerators, automobiles, ships, etc. have been attempted worldwide for decades.

종래부터 질소산화물을 효과적으로 제거하기 위해 사용되는 기술로서는, 첫째, 촉매와 환원제를 함께 사용하는 선택적 촉매 환원(Selective Catalytic Reduction; SCR) 기술, 둘째, 촉매 없이 환원제만을 사용하는 선택적 비촉매 환원(Selective Non Catalytic Reduction; SNCR) 기술, 및 셋째, 연소 시스템 내의 연소상태를 제어하는 저 낙스 버너(Low-NOx Burner) 기술로 크게 세 가지로 나누어 볼 수 있다.As a technique conventionally used to effectively remove nitrogen oxides, first, selective catalytic reduction (SCR) technology using a catalyst and a reducing agent together, second, selective non-catalytic reduction using only a reducing agent without a catalyst (Selective Non Catalytic Reduction (SNCR) technology, and third, a low-nox burner (Low-NOx Burner) technology that controls the combustion state in the combustion system can be roughly divided into three categories.

상기 언급된 세 가지 기술 중에서, 2차 오염, 제거효율, 운전비 등을 종합적으로 고려해 볼 때 선택적 촉매 환원 기술이 가장 효과적인 기술로서 평가되며, 통상적인 선택적 촉매 환원 상용 기술의 경우, 질소산화물의 제거효율은 90% 이상으로 사용 내구기간은 2~3년 정도로 평가되고 있다. Among the above-mentioned three technologies, selective catalytic reduction technology is evaluated as the most effective technology when considering secondary pollution, removal efficiency, operating cost, etc., and in the case of conventional selective catalytic reduction commercial technology, nitrogen oxide removal efficiency Silver is 90% or more, and its useful life is estimated to be about 2-3 years.

이러한 선택적 촉매 환원 기술에서 사용되는 탈질 촉매는 일반적으로 활성금속(Active Site)과 담지체(Support)로 크게 구성된다. 활성금속으로는 바나디윰(Vanadium), 텅스텐(Tungsten), 몰리브덴(Molybdenum) 등 산화물(Oxide) 형태가 주를 이루며, 담지체로는 티타니아(TiO2), 알루미나(Al2O3), 실리카(SiO2) 및 이들의 혼합물이 주로 사용되고 있다. 특히, 촉매 활성 및 피독성 여부에 따라 티타니아가 통상적인 선택적 환원 촉매의 담지체로서 주로 사용된다.The denitration catalyst used in the selective catalytic reduction technology is generally composed of an active metal (Active Site) and a support (Support). As an active metal, oxide forms such as vanadium, tungsten, and molybdenum are mainly used. Titania (TiO 2 ), alumina (Al 2 O 3 ), and silica (SiO) are mainly supported. 2 ) and mixtures thereof are mainly used. In particular, titania is mainly used as a carrier for a typical selective reduction catalyst depending on catalytic activity and toxicity.

상기 선택적 촉매 환원 기술은 전술한 산화물 형태의 활성금속들을 세라믹 담지체에 담지하여 탈질 촉매를 제조하고, 제조된 촉매를 바인더 등의 여러 가지 첨가물과 배합하여 사출 성형하고 최종적으로 허니컴(Honeycomb) 형태의 지지체로 제조한다. 제조된 허니컴 형태의 지지체 탈질 촉매에 배기가스가 통과하여 질소산화물과 같은 유독성 가스와 반응하여 환원시킴으로써 무해한 물질로 전환시키는 방법이다.In the selective catalytic reduction technology, a denitration catalyst is prepared by supporting the above-mentioned oxide-type active metals on a ceramic carrier, and the prepared catalyst is mixed with various additives such as a binder, injection-molded, and finally in a honeycomb form. Prepared as a support. Exhaust gas passes through the prepared honeycomb support denitration catalyst and reacts with a toxic gas such as nitrogen oxide to reduce it to a harmless material.

대한민국 등록특허 제10-0584961호는 배연탈질용 선택적 환원 촉매의 코팅 방법 및 이의 제조 방법으로 제조된 지지체에 관한 것으로, 활성금속 촉매를 함유하는 세라믹 허니컴 형태의 지지체가 개시되어 있다.Republic of Korea Patent No. 10-0584961 relates to a support prepared by a coating method of a selective reduction catalyst for flue gas denitrification and a method for manufacturing the same, and a ceramic honeycomb type support containing an active metal catalyst is disclosed.

그러나, 상기 허니컴 형태의 세라믹 지지체를 제조하는 경우, 세라믹 파우더 지지체 상에 활성금속이 담지된 촉매와 바인더 등의 첨가물을 혼합하여 반죽, 사출, 성형 등의 다단계 공정을 거치므로 제조 공정이 매우 복잡할 뿐만 아니라 제조 공정 중에 발생하는 다량의 먼지로 인해 생산, 설치 및 보수 작업을 수행하는 데 어려움이 있었다.However, in the case of manufacturing the honeycomb type ceramic support, the manufacturing process is very complicated because the catalyst carrying the active metal on the ceramic powder support is mixed with additives such as a binder and subjected to multi-step processes such as kneading, injection and molding. In addition, due to the large amount of dust generated during the manufacturing process, it was difficult to perform production, installation and maintenance work.

또한, 상기 허니컴 형태의 지지체 제조 시 세라믹 담지체와 탈질 촉매 원료와의 결합력을 증대시키기 위한 바인더 등 여러 가지의 첨가제를 다량 사용하게 되는데, 이러한 첨가제들을 다량 사용함으로써 촉매의 탈질 성능이 저하되고, 이로 인해 촉매 원료인 고가의 활성금속 산화물을 다량 사용하게 되는 문제점이 있었다.In addition, when preparing the honeycomb support, a large amount of various additives such as a binder for increasing the bonding force between the ceramic carrier and the denitrification catalyst raw material is used. By using a large amount of these additives, the denitrification performance of the catalyst is deteriorated. Therefore, there is a problem in that a large amount of expensive active metal oxide, which is a catalyst raw material, is used.

그리고, 상기 허니컴 형태의 세라믹 지지체를 이용한 탈질 촉매는 배기가스가 일방향으로만 통과하여 정화되기 때문에 탈질효율이 다소 떨어지며, 탄화 또는 암모늄 염에 의한 오염(Fouling) 및 약한 강도로 인해 쉽게 부셔지는 등 탈질 촉매의 재생방법에 있어 어려운 문제점을 가지고 있다. In addition, the denitration catalyst using the honeycomb-type ceramic support has a slight denitrification efficiency because the exhaust gas is purified through only one direction, and denitrification such as fouling due to carbonization or ammonium salts and easily broken due to weak strength. It has a difficult problem in the catalyst regeneration method.

또한, 종래 금속 구조체를 사용하여 탈질 촉매를 제조하는 경우, 상기 금속 구조체를 열처리 또는 표면처리를 하고, 상기 금속 구조체의 표면 상에 개질 전처리 산화물 층을 형성하고, 열처리 공정을 추가로 수행하여 프라이머(Primer) 산화물 층을 형성하는 단계를 반복하는 복잡한 공정을 통해 수행하였다.In addition, when a denitration catalyst is prepared using a conventional metal structure, the metal structure is subjected to heat treatment or surface treatment, a modified pretreatment oxide layer is formed on the surface of the metal structure, and a heat treatment process is further performed to perform primer ( Primer) was performed through a complicated process that repeated the step of forming an oxide layer.

이와 같은 반복되는 여러 단계에서 소요되는 시간 및 부가적인 비용 문제 등 생산 효율성을 극대화할 수 있는 방법에 대해서는 아직까지 연구개발이 활발히 이루어지지 않은 상태이다.Research and development have not yet been actively conducted on methods for maximizing production efficiency, such as time and additional cost problems in such repeated steps.

대한민국 등록특허 제10-0584961호Republic of Korea Registered Patent No. 10-0584961 대한민국 등록특허 제10-0781726호Republic of Korea Registered Patent No. 10-0781726 일본 공개특허 제2001-347164호Japanese Patent Publication No. 2001-347164

본 발명의 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법에 있어서 상기한 문제점을 해결하고자 예의 연구를 검토한 결과, 본 발명에 따른 전처리 공정을 거치지 않은 금속 구조체 상에 코팅 슬러리를 코팅, 건조, 열처리하는 단일(One Step) 공정으로 제조공정 간소화를 통한 경제성 향상 및 높은 열전도성 및 열적 안전성을 가지는 강건하고 우수한 촉매성능을 가질 수 있음을 알아내고, 본 발명을 완성하게 되었다.As a result of examining the studies of the present invention to solve the above problems in the method of manufacturing a metal structure-based denitrification catalyst for selective catalytic reduction (SCR) using the coating slurry of the present invention, as a result, on a metal structure not subjected to a pretreatment process according to the present invention It is a single step process of coating, drying, and heat-treating the coating slurry to find that it can have a robust and excellent catalytic performance with improved economic efficiency and high thermal conductivity and thermal safety through simplification of the manufacturing process, and to complete the present invention. Became.

또한, 기존의 파우더 또는 세라믹 기반 허니컴 형태가 아닌 배기가스가 다방향으로 관통하도록 다수의 공극이 형성된 금속 재질의 입체 형상을 가지는 구조물을 제조하고, 상기 구조체 내부 및 외부 표면에 촉매가 함유된 코팅 슬러리를 최소한의 양으로 얇게 코팅시킴으로써 경제적이고 고효율의 금속 구조체 기반 배연 탈질 촉매를 제조할 수 있다. 따라서, 본 발명의 목적은 전처리 공정 없는 단일 공정을 통해 제조되어 경제성이 우수할 뿐만 아니라 촉매 성능이 우수한 고효율의 금속 구조체 기반 탈질 촉매 및 이의 제조방법을 제공하는 것이다.In addition, a structure having a three-dimensional shape of a metal material in which a plurality of pores are formed so that exhaust gas, which is not a conventional honeycomb form based on powder or ceramic, penetrates in multiple directions, and a coating slurry containing a catalyst on the inner and outer surfaces of the structure It is possible to manufacture an economical and highly efficient metal structure based flue gas denitration catalyst by coating the coating in a minimal amount. Accordingly, an object of the present invention is to provide a high-efficiency metal structure-based denitration catalyst and a method of manufacturing the same, which are manufactured through a single process without a pretreatment process, and have excellent economic performance as well as excellent catalyst performance.

한편으로, 본 발명은 On the one hand, the present invention

i) 배기가스를 다방향으로 관통하도록 하는 다공극성 금속 구조체를 제조하는 단계;i) manufacturing a porous metal structure to penetrate exhaust gas in multiple directions;

ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및 ii) preparing a coating slurry comprising an active material precursor, ceramic powder, modifier and binder; And

iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법을 제공한다.iii) directly coating the coating slurry on the surface of the porous metal structure, and heat-treating it at 450 to 500 ° C. for 2 to 4 hours to prepare a catalyst; for selective catalytic reduction (SCR) using a coating slurry comprising Provided is a method of manufacturing a denitration catalyst based on a metal structure.

다른 한편으로, 본 발명은On the other hand, the present invention

금속 지지체 간의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 배출되도록 하는 다공극성 금속 구조체; 및 A porous metal structure in which a plurality of pores are formed between the metal supports such that exhaust gas is discharged in multiple directions through the pores; And

상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매를 제공한다.It provides a metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry comprising; a catalyst layer containing the active material formed by coating, drying and heat treatment of the coating slurry on the surface of the porous metal structure.

본 발명에 따른 금속 구조체 기반 탈질 촉매는 배기가스 또는 기체가 다방향으로 관통하도록 다수의 기공을 형성한 고비표면적의 다공극성 금속 구조체를 파우더 또는 세라믹 허니컴 형태가 아닌 메쉬 형태, 포일 형태, 와이어 형태 등의 입체 형상의 금속 구조물로 제조하여 사용함으로써, 강건한 구조형태를 가지고 있어 선박용 배연 탈질 설비의 생산, 설치, 유지 및 보수를 보다 용이하게 할 수 있고, 값 비싼 활성금속을 소량 사용하고도 열전달 및 물질전달이 우수하여 높은 촉매 성능을 나타낼 수 있다.The metal structure-based denitration catalyst according to the present invention is not a powder or ceramic honeycomb form, but a mesh form, a foil form, a wire form, etc., of a porous metal structure having a high specific surface area in which a plurality of pores are formed to allow exhaust gas or gas to penetrate in multiple directions. By manufacturing and using it as a three-dimensional metal structure, it has a robust structural form, which makes it easier to produce, install, maintain and repair ship flue gas denitrification facilities, and transfer heat and materials even if a small amount of expensive active metal is used. It has excellent delivery and can show high catalyst performance.

또한, 상기 다공극성 금속 구조체 상에 코팅 슬러리를 단 1회 도포를 통해 코팅 슬러리 내에 포함된 활성금속 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등으로 인해 전처리 공정 없이도 상기 금속 구조체 상에 고부착 코팅될 수 있으므로 촉매가 포함된 슬러리 입자의 탈리현상이 없이 우수한 촉매 활성 및 내구성을 나타낼 수 있고, 단일 공정으로 인해 제조방법이 간단해지므로 생산성 및 경제성이 우수하다.In addition, the coating slurry on the porous metal structure can be coated with high adhesion on the metal structure without a pretreatment process due to the active metal precursor, ceramic powder, modifier, dispersant, binder, etc. included in the coating slurry through only one application. Since it can exhibit excellent catalytic activity and durability without desorption of the slurry particles containing the catalyst, it is excellent in productivity and economy because the manufacturing method is simplified due to a single process.

또한, 본 발명에 따른 탈질 촉매는 선박용 탈질 시스템의 구조에 따라 상기 다공극성 금속 구조체의 형상을 원형, 사각형 등 다양하게 변화시킬 수 있으므로, 선박 내 한정된 공간에서 최소화 및 최적화하여 설치할 수 있을 뿐만 아니라 설치가 용이하고 유지보수 및 관리가 편리하다.In addition, the denitration catalyst according to the present invention can be variously changed in the shape of the porous metal structure according to the structure of the ship's denitrification system, such as circular or square, so it can be installed by minimizing and optimizing in a limited space in the ship and installing It is easy and convenient for maintenance and management.

도 1은 본 발명의 일 실시형태에 따른 금속 구조체 상에 코팅 슬러리가 코팅된 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매를 나타낸 사진이다.
도 2는 본 발명의 일 실시형태에 따른 단일공정으로 코팅된 금속 기반 탈질 촉매와 종래 사용되는 다단 공정의 금속 기반 탈질 촉매의 단면도를 비교한 그림이다.
도 3 은 본 발명의 일 실시형태에 따른 코팅 슬러리가 단일공정으로 코팅된 금속 구조체 기반 탈질 촉매의 SEM 이미지이다.
도 4는 본 발명의 일 실시형태에 따른 코팅 슬러리를 단일공정으로 코팅하는 금속 구조체 기반 탈질 촉매를 제조하는 전체 공정에 대해 나타낸 그림이다.
1 is a photograph showing a metal structure-based denitration catalyst for selective catalytic reduction (SCR) coated with a coating slurry on a metal structure according to an embodiment of the present invention.
2 is a diagram comparing a cross-sectional view of a metal-based denitration catalyst coated in a single process according to an embodiment of the present invention and a metal-based denitration catalyst in a multi-step process conventionally used.
3 is an SEM image of a denitration catalyst based on a metal structure coated with a single coating slurry according to an embodiment of the present invention.
Figure 4 is a diagram showing the entire process of manufacturing a metal structure-based denitration catalyst for coating a coating slurry according to an embodiment of the present invention in a single process.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 실시형태에 따른 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법은Method for producing a metal structure-based denitration catalyst for selective catalytic reduction (SCR) using a coating slurry according to an embodiment of the present invention

i) 배기가스를 다방향으로 관통하도록 하는 다공극성 금속 구조체를 제조하는 단계;i) manufacturing a porous metal structure to penetrate exhaust gas in multiple directions;

ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및 ii) preparing a coating slurry comprising an active material precursor, ceramic powder, modifier and binder; And

iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함한다.iii) directly coating the coating slurry on the surface of the porous metal structure, and heat-treating it at 450 to 500 ° C. for 2 to 4 hours to prepare a catalyst.

본 발명에 따른 금속 구조체 기반 탈질 촉매는 금속 표면 개질을 위한 전처리(Pre-Oxidation) 공정 없이 코팅 슬러리를 이용한 단일공정을 통해 탈질 촉매를 제조하는데 그 특징이 있다. The denitration catalyst based on the metal structure according to the present invention is characterized by preparing a denitration catalyst through a single process using a coating slurry without a pre-oxidation process for metal surface modification.

종래 사용되던 금속 구조체는 금속 구조체 상에 코팅 물질의 부착력을 높이기 위하여 물리적 또는 화학적 처리를 통해 표면 조도(Surface Roughness) 형성하기 위한 전처리 공정을 먼저 수행하고, 프라이머(Primer) 산화물 층을 코팅하고 약 950 내지 1050 ℃에서 5 내지 30시간 동안 열처리를 하고, 상기 프라이머 산화층 상에 활성금속이 포함된 촉매층을 코팅한 후 약 400 내지 550 ℃에서 2 내지 5 시간 동안 열처리를 수행하였다. 일반적으로 금속 구조체 상에 프라이머 산화물 층을 형성하는 데 물리적 또는 화학적 처리 방법이나 양극산화법과 같은 전기화학적 방법을 적용하였다(도 2 참조).In order to increase the adhesion of the coating material on the metal structure, a metal structure that has been used in the prior art first performs a pre-treatment process to form surface roughness through physical or chemical treatment, coats a primer oxide layer, and about 950 Heat treatment was performed at 1050 ° C. for 5 to 30 hours, and a catalyst layer containing an active metal was coated on the primer oxide layer, followed by heat treatment at about 400 to 550 ° C. for 2 to 5 hours. Generally, an electrochemical method such as a physical or chemical treatment method or an anodization method is applied to form a primer oxide layer on a metal structure (see FIG. 2).

본 발명은 종래 기술과 비교하여 전처리 공정을 거치지 않은 금속 구조체 표면 상에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등이 포함된 슬러리를 직접 코팅하고 열처리하는 단일공정(One-Step)을 통하여 제조공정 간소화를 통한 생산성 및 경제성이 우수한 금속 구조체 기반 선택적 탈질 환원 촉매 및 그 제조 방법을 제공하기 위한 것이다.The present invention is compared with the prior art through a single process (One-Step) to directly coat and heat-treat the slurry containing the active material precursor, ceramic powder, modifier, dispersant, binder, etc. on the surface of the metal structure that has not undergone a pretreatment process. It is to provide a metal structure-based selective denitrification reduction catalyst having excellent productivity and economic efficiency through a simplified manufacturing process and a method for manufacturing the same.

또한, 상기 금속 구조체 상에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등이 포함된 슬러리를 코팅하여 상기 금속 구조체의 내부 및 외부 표면에 코팅용 슬러리를 고분산 도포시키는 방법도 그 특징으로 한다. In addition, a method of coating a slurry containing an active material precursor, ceramic powder, modifier, dispersant, binder, etc. on the metal structure to apply a highly dispersed coating slurry to the inner and outer surfaces of the metal structure is also featured. .

본 발명에 따른 다공극성 금속 구조체는 파우더 또는 세라믹 허니컴 형태가 아닌 입체 형상의 금속 구조체로서, 종래 파우더 촉매 및 첨가제를 이용하여 반죽, 사출, 성형 등의 다단계 공정을 거쳐 허니컴, 플레이트, 콜로게이트 등의 형태로 제조되는 촉매에 비해 단순화된 공정으로 제조될 수 있으므로 생산이 용이하고, 설치하거나 유지 보수하는 작업이 용이하다. 아울러, 상기 입체 형상의 금속 구조체는 원형, 사각형 등 다양한 형상으로 구현될 수 있으므로, 한정된 공간에 따라 탈질 시스템의 구조 및 형상을 변화시켜 용이하게 사용할 수 있으므로 공간에 최적화된 탈질 촉매 시스템, 예를 들면 선박 배연 탈질용 SCR 촉매를 제조할 수 있다.The porous metal structure according to the present invention is a three-dimensional metal structure, not a powder or ceramic honeycomb form, and uses a conventional powder catalyst and additives to perform multi-step processes such as kneading, injection, and molding to form a honeycomb, plate, or collogate. Since it can be manufactured in a simplified process compared to the catalyst produced in the form, production is easy, and installation or maintenance is easy. In addition, since the metal structure of the three-dimensional shape can be implemented in various shapes such as a circle or a square, the structure and shape of the denitrification system can be easily changed according to a limited space, and thus a denitration catalyst system optimized for space, for example SCR catalyst for ship flue gas denitrification can be produced.

본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체는 스테인레스 스틸, 알루미늄, 티타늄, 니켈 등 다양한 금속 또는 합금 재질로 형성되는 것을 특징으로 한다.In one embodiment of the present invention, the porous metal structure is characterized by being formed of various metal or alloy materials such as stainless steel, aluminum, titanium, and nickel.

상기 다공극성 금속 구조체는 메쉬, 포일 또는 와이어 형태일 수도 있다.The porous metal structure may be in the form of a mesh, foil or wire.

상기 메쉬 또는 포일 형태의 금속 구조체는 한 개의 메쉬 또는 포일 형태 구조체가 단독으로 사용될 수도 있고, 복수 개의 메쉬 또는 포일 형태 구조체가 서로 적층된 구조의 형태일 수도 있다.The mesh or foil-shaped metal structure may be a single mesh or foil-shaped structure alone, or may be a structure in which a plurality of mesh or foil-shaped structures are stacked on top of each other.

상기 와이어 형태는 상기 와이어가 규칙적인 또는 불규칙적인 방향으로 구성된 디미스터(Demister)와 같은 형태일 수도 있다.The wire shape may be in the form of a demister in which the wire is configured in a regular or irregular direction.

상기 메쉬, 포일 또는 와이어 형태의 금속 구조체 길이, 높이, 넓이 등의 물리적인 형상은 원형, 사각형 등의 다양한 형태로 변화시킬 수 있다.The physical shape such as the length, height, and width of the metal structure in the form of a mesh, foil, or wire can be changed into various shapes such as a circle and a square.

상기 다공극성 금속 구조체는 배기가스 또는 기체가 다방향으로 관통하도록 서로 연통된 다수의 기공이 형성된 고비표면적을 가지는 다공극성 금속 구조체로서, 상기 구조체의 전체 표면 상에 상기 활성촉매가 함유된 슬러리를 직접적으로 코팅할 수 있다. The porous metal structure is a porous metal structure having a high specific surface area in which a plurality of pores are formed in communication with each other so that exhaust gas or gas penetrates in multiple directions. The slurry containing the active catalyst is directly on the entire surface of the structure. Can be coated with.

본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체의 기공도는 60 % 이상, 바람직하게는 70 내지 95 %일 수 있다.In one embodiment of the present invention, the porosity of the porous metal structure may be 60% or more, preferably 70 to 95%.

상기 다공극성 금속 구조체의 기공도가 상기 범위를 만족하지 않는 경우, 탄화 또는 암모늄 염에 의한 오염으로 인한 막힘 현상(Fouling)이 일어날 수 있거나 배기가스 유동에 문제가 발생함에 따라 압력강하 등의 심각한 현상을 일으킬 수 있으므로 일정 이상의 기공도를 가질 수 있도록 해야 한다.When the porosity of the porous metal structure does not satisfy the above range, a serious phenomenon such as pressure drop may occur due to fouling due to contamination by carbonization or ammonium salt or a problem in exhaust gas flow. Since it can cause the porosity, it is necessary to have a porosity higher than a certain level.

본 발명의 일 실시형태에서, 상기 코팅 슬러리는 증류수에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등을 혼합하여 구성되는 것을 특징으로 한다.In one embodiment of the present invention, the coating slurry is characterized in that it is formed by mixing an active material precursor, a ceramic powder, a modifier, a dispersing agent, a binder, etc. in distilled water.

상기 활성물질은 주 활성물질과 보조 활성물질으로 구성될 수 있다.The active material may be composed of a main active material and an auxiliary active material.

상기 주 활성물질로는 바나듐산화물(V2O5)을 사용하고, 상기 보조 활성물질로는 텅스텐산화물(WO3), 몰리브덴산화물(MoO3), 코발트산화물(Co2O3), 철산화물(Fe2O3), 크롬산화물(Cr2O3) 구리산화물(CuO), 망간산화물(MnO), 니켈산화물(NiO), 세슘산화물(CsO), 니오븀산화물(Nb2O5) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. As the main active material, vanadium oxide (V 2 O 5 ) is used, and as the auxiliary active material, tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), cobalt oxide (Co 2 O 3 ), iron oxide ( Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ) copper oxide (CuO), manganese oxide (MnO), nickel oxide (NiO), cesium oxide (CsO), niobium oxide (Nb 2 O 5 ), etc. can be used. However, it is not limited thereto.

상기 활성물질은 상기 세라믹 분말 100 중량%에 대하여 0.1 내지 10.0 중량%로 포함될 수 있다.The active material may be included in an amount of 0.1 to 10.0% by weight based on 100% by weight of the ceramic powder.

상기 개질제는 (i) 단계에서 표면처리 되지 않은 금속 구조체에 상기 활성금속을 고부착시키기 위한 것으로, 상기 금속 구조체의 표면 개질을 통한 표면 조도(Surface Roughness) 증가를 위해 사용된다. 또한, 상기 개질제는 분산제의 역할도 할 수 있으며, 이로 인해 코팅 슬러리 내 상기 세라믹 분말의 분산도가 증가되어 금속 구조체 표면 상에 활성물질이 균일하게 코팅될 수 있다.The modifier is for attaching the active metal to the metal structure that is not surface-treated in step (i), and is used to increase the surface roughness through surface modification of the metal structure. In addition, the modifier may also act as a dispersant, thereby increasing the dispersibility of the ceramic powder in the coating slurry, so that the active material can be uniformly coated on the surface of the metal structure.

따라서, 금속 표면 개질을 위한 전처리 과정 없이 코팅 슬러리에 본 발명에 따른 개질제를 포함하여 코팅하는 것으로도 금속 표면을 개질하는 효과를 가짐으로써 상기 활성물질을 금속 구조체에 강건하게 고부착시킬 수 있으므로, 코팅된 슬러리 입자의 탈리 없이 높은 촉매성능 및 장기 안정성을 나타낼 수 있다.Therefore, even by coating the coating slurry with the modifier according to the present invention without a pre-treatment process for metal surface modification, it has the effect of modifying the metal surface, so that the active material can be strongly and strongly adhered to the metal structure. It can show high catalytic performance and long-term stability without removing the slurry particles.

상기 개질제 또는 분산제로는 포름산, 아세틸아세톤, 아세트산, 카르복시산, 옥살산 및 시트르산로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다.As the modifier or dispersant, one or more selected from the group consisting of formic acid, acetylacetone, acetic acid, carboxylic acid, oxalic acid, and citric acid may be used.

상기 개질제 또는 분산제는 코팅 슬러리 100 중량%에 대하여 0.1 내지 5 중량%로 포함될 수 있다. 상기 개질제 또는 분산제가 0.1 중량% 미만으로 포함되는 경우, 금속 지지체 표면 개질효과가 감소하여 표면 조도가 거의 없는 금속 구조체 표면상으로 슬러리를 고부착시키기 어려워지고, 코팅이 되더라도 소성 후 금속 구조체와 코팅 슬러리 간의 탈리현상이 쉽게 발생하게 된다. 또한, 슬러리 내 분산제 역할이 감소함에 따라 세라믹 분말의 분산도가 떨어져 첨가된 세라믹 분말이 슬러리 내에서 서로 응집되어 금속 구조체 표면 상에 균일한 코팅이 이루어지지 않는다. 상기 개질제 또는 분산제가 5 중량% 초과로 포함되는 경우에는 슬러리 내부 활성물질 전구체의 pH에 영향을 주어 요구하는 활성물질의 이온 형태를 얻을 수 없으며, 또한 금속 표면을 과도하게 개질됨으로써 금속구조를 약화시키고 금속 표면에 슬러리가 고부착되지 않기 때문에 코팅된 슬러리가 쉽게 탈리된다.The modifier or dispersant may be included in an amount of 0.1 to 5% by weight based on 100% by weight of the coating slurry. When the modifier or dispersant is contained in an amount of less than 0.1% by weight, the surface modification effect of the metal support decreases, making it difficult to adhere the slurry to the surface of the metal structure with little surface roughness, and even after coating, the metal structure and the coating slurry after firing The taliation of the liver easily occurs. Further, as the role of the dispersant in the slurry decreases, the degree of dispersion of the ceramic powder is lowered, and the added ceramic powders are aggregated with each other in the slurry to prevent uniform coating on the surface of the metal structure. When the modifier or dispersant is contained in an amount of more than 5% by weight, the ionic form of the required active material cannot be obtained by affecting the pH of the active material precursor in the slurry, and the metal structure is weakened by excessively modifying the metal surface. Since the slurry does not adhere to the metal surface, the coated slurry is easily detached.

상기 세라믹 분말은 상기 활성물질을 담지하기 위한 지지체의 역할을 하며, 실리카(SiO2)계, 알루미나(Al2O3)계, 지르코니아(ZrO2)계, 티타니아(TiO2)계 등의 분말을 사용할 수 있다.The ceramic powder serves as a support for supporting the active material, and powders such as silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and titania (TiO 2 ) are used. Can be used.

상기 세라믹 분말은 코팅 슬러리 100 중량%에 대하여 20 내지 50 중량%로 포함될 수 있다. 상기 세라믹 분말이 20 중량% 미만으로 포함되는 경우, 낮은 슬러리 점도로 인하여 금속 구조체 상에 슬러리가 쉽게 흘러 내려 코팅되지 않거나, 소량 코팅이 되더라도 촉매활성을 가지는 일정량 만큼 코팅하기 위해 여러 번의 반복적인 공정이 필요하다. 50 중량% 초과로 포함되는 경우에는 금속 표면 상에 많은 양의 슬러리가 코팅되어, 건조 및 소성 후 산화물 촉매 표면 상에 균열된 형태로 슬러리가 코팅되어 쉽게 부서지는 현상이 발생한다.The ceramic powder may be included in 20 to 50% by weight based on 100% by weight of the coating slurry. When the ceramic powder is contained in an amount of less than 20% by weight, the slurry is easily flowed down on the metal structure due to low slurry viscosity, or even if a small amount of coating is performed, several repetitive processes are performed to coat a certain amount having catalytic activity. need. When included in excess of 50% by weight, a large amount of the slurry is coated on the metal surface, and after drying and firing, the slurry is coated in a cracked form on the surface of the oxide catalyst to easily break.

상기 결합제는 상기 금속 구조체와 상기 세라믹 분말을 서로 고정시켜주거나 또는 상기 세라믹 분말 간 서로 고정시켜는 역할 등을 하여 금속 구조체 표면 상에 고부착되는 특성을 가진다. 상기 결합제는 유기 및/또는 무기 결합제가 단독 또는 혼합되어 사용된다.The binder has a property of being highly adhered to the surface of the metal structure by fixing the metal structure and the ceramic powder to each other or by fixing the ceramic powder to each other. The binder may be used alone or in combination with organic and / or inorganic binders.

상기 유기 결합제는 아크릴레이트계, 폴리비닐알코올계, 폴리비닐아세테이트계, 폴리비닐부트랄계, 폴리비닐피롤리돈계, 에틸셀룰로오스계, 메틸셀룰로오스계, 나이트로셀룰로오스계, 카르복시 메틸셀룰로오스계, 하이드록시 프로필메틸셀룰로오스계, 메틸하이드록시 에틸셀룰로오스계 및 에폭시계로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 이중, 아크릴 변성 에폭시를 사용하는 것이 바람직하다.The organic binder is an acrylate-based, polyvinyl alcohol-based, polyvinyl acetate-based, polyvinyl butral-based, polyvinylpyrrolidone-based, ethylcellulose-based, methylcellulose-based, nitrocellulose-based, carboxymethylcellulose-based, hydroxypropyl One or more selected from the group consisting of methyl cellulose, methyl hydroxy ethyl cellulose, and epoxy may be used. Among them, it is preferable to use an acrylic modified epoxy.

상기 무기 결합제는 실리카이트계 졸, 알루미나계 졸, 티타니아계 졸, 지르코니아계 졸, 세라믹울 및 벤토나이트로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 이중, 티타니아계 졸을 사용하는 것이 바람직하다.The inorganic binder may be one or more selected from the group consisting of silicaite sol, alumina sol, titania sol, zirconia sol, ceramic wool, and bentonite. Among them, it is preferable to use a titania-based sol.

상기 유기 결합제는 코팅 슬러리 전체 100 중량%에 대하여 1 내지 10 중량%로 포함되고, 상기 무기 결합제는 코팅 슬러리 전체 100 중량%에 대하여 5 내지 20 중량%로 포함될 수 있다.The organic binder may be included in 1 to 10% by weight relative to the total 100% by weight of the coating slurry, the inorganic binder may be included in 5 to 20% by weight relative to the total 100% by weight of the coating slurry.

상기 유기 및 무기 결합제가 상기 범위로 포함되지 않는 경우, 슬러리의 점도 및 젖음성이 떨어져서 코팅 시 금속 구조체 표면 상에 고부착되지 않고 쉽게 흘러내리며 코팅이 되지 않으며 일부 슬러리가 부착되더라도 건조 후 외부 충격에 의해 쉽게 떨어지게 된다.When the organic and inorganic binders are not included in the above range, the viscosity and wettability of the slurry are poor, so that they do not adhere to the surface of the metal structure upon coating and easily flow down and are not coated. It falls off easily.

본 발명에 따른 코팅 슬러리는 상술한 구성요소 외에 점도제, pH조정제 등의 추가적인 첨가제를 포함할 수 있다.The coating slurry according to the present invention may include additional additives such as a viscosity modifier and a pH adjuster in addition to the above-described components.

본 발명에 따른 코팅 슬러리의 점도는 20 내지 500 mPaS를 나타낼 수 있다. The viscosity of the coating slurry according to the present invention may represent 20 to 500 mPaS.

상기 점도제로는 폴리에틸렌글리콜계, 디에틸렌글리콜계, 글리세롤계, 에틸렌글리콜계, 디메틸설폭시드계, 폼아마이드계 및 N-메틸폼아마이드계로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 점도제는 코팅 슬러리 전체 100 중량%에 대하여 0.5 내지 10 중량%로 포함될 수 있다.As the viscosity agent, one or more selected from the group consisting of polyethylene glycol-based, diethylene glycol-based, glycerol-based, ethylene glycol-based, dimethyl sulfoxide-based, formamide-based, and N-methylformamide-based may be used. The viscosity agent may be included in 0.5 to 10% by weight relative to the total 100% by weight of the coating slurry.

상기 pH 조정제로는 옥살산, 시트르산, 염산, 질산, 황산 및 인산으로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 pH 조정제는 코팅 슬러리 전체 100 중량%에 대하여 0.5 내지 10 중량%로 포함될 수 있다.As the pH adjusting agent, one or more selected from the group consisting of oxalic acid, citric acid, hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid may be used. The pH adjusting agent may be included in 0.5 to 10% by weight based on 100% by weight of the total coating slurry.

또한, 상기 증류수 외에 추가적으로 첨가되는 용매로서 메탄올, 에탄올, 아세톤 등의 유기용매를 첨가하여 사용할 수 있다.In addition, an organic solvent such as methanol, ethanol, or acetone may be added as a solvent to be added in addition to the distilled water.

본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체 상에 상기 코팅 슬러리를 코팅, 건조, 열처리를 통한 단일공정으로 금속 구조체 기반 탈질 촉매를 제조할 수 있다.In one embodiment of the present invention, a metal structure-based denitration catalyst may be prepared in a single process through coating, drying, and heat treatment of the coating slurry on the porous metal structure.

상기 제조된 코팅 슬러리를 상기 금속 구조체의 내부 및 외부 표면 상에 고분산 부착시키기 위한 코팅공정(Coating Process)을 거치게 된다. 상기 슬러리의 코팅공정은 다공극성 금속 구조체 표면에 바르거나(Coating), 뿌리거나(Spraying), 담지(Dipping)하는 등 여러 가지 방법을 적용할 수 있다.The prepared coating slurry is subjected to a coating process for high dispersion adhesion on the inner and outer surfaces of the metal structure. In the coating process of the slurry, various methods such as coating, spraying, dipping, etc. may be applied to the surface of the porous metal structure.

상기 다공극성 금속 구조체 상에 슬러리가 코팅된 후, 일반적인 코팅 두께는 90 내지 130 ㎛를 나타낼 수 있다.After the slurry is coated on the porous metal structure, a typical coating thickness may be 90 to 130 μm.

상기 슬러리 코팅이 완료된 다공극성 금속 구조체는 건조로에서 분당 0.1 ~ 1 ℃의 느린 승온속도로 60 ~ 80 ℃ 에서 약 1 내지 3 시간 동안 온화한 건조과정을 거치고, 100 ~ 120 ℃에서 약 1 내지 3 시간 동안 완전 건조하는 것을 특징으로 한다.The porous porous metal structure with the slurry coating is subjected to a gentle drying process at 60 to 80 ° C for about 1 to 3 hours at a slow heating rate of 0.1 to 1 ° C per minute in a drying furnace, and for about 1 to 3 hours at 100 to 120 ° C It is characterized by being completely dry.

상기 코팅된 슬러리의 건조가 완료된 다공극성 금속 구조체는 450 ~ 500 ℃에서 약 2 내지 4시간 소성하는 열처리 공정을 거치는 것을 특징으로 한다. 이때 지지체 및 활성물질 성분들은 열처리 공정을 통해 지지체는 아나타제 결정을 가지고 활성물질은 금속 산화물 형태를 가지게 된다.The porous metal structure in which drying of the coated slurry is completed is characterized in that it undergoes a heat treatment process that is fired at 450 to 500 ° C. for about 2 to 4 hours. At this time, the support and the active material components have anatase crystals and the active material has a metal oxide form through a heat treatment process.

상기 열처리 과정에 의해서, 지지체 분말은 아나타제 결정상을 가짐으로써 열적 안정성 및 활성금속 분산도를 향상시킬 뿐만 아니라 배기가스 내부에 포함된 황 피독(Sulphur Deactivation)을 저감하는 역할을 하게 된다. 또한 활성물질을 금속 산화물 형태로 전환함으로써 배기가스 내 오염물질과 반응을 하게 된다.By the heat treatment process, the support powder not only improves thermal stability and dispersion of active metals by having an anatase crystal phase, but also serves to reduce sulfur poisoning contained in the exhaust gas. In addition, by converting the active material into a metal oxide form, it reacts with pollutants in the exhaust gas.

이때, 열처리 시 공기분위기 하에서 산화물 층 형성이 용이하게 조성하는 것이 중요하기 때문에, 상기 열처리 시간은 2 내지 4 시간인 것이 바람직하다. At this time, since it is important to easily form an oxide layer under an air atmosphere during heat treatment, the heat treatment time is preferably 2 to 4 hours.

상기 건조 및 소성 단계를 통해 코팅 슬러리 용액에 포함된 수분 및 불순물을 제거할 수 있고, 무정형의 지지체 및 활성금속을 활성을 가지는 결정형의 산화물로 전환할 수 있다.Through the drying and firing steps, moisture and impurities contained in the coating slurry solution may be removed, and the amorphous support and the active metal may be converted into crystalline oxide having activity.

본 발명의 일 실시형태에 따른 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매는Metal structure based denitration catalyst for selective catalytic reduction (SCR) using a coating slurry according to an embodiment of the present invention

금속 지지체 간의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 관통하도록 하는 다공극성 금속 구조체; 및 A porous metal structure in which a plurality of pores are formed between the metal supports to allow exhaust gas to pass through the pores in multiple directions; And

상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함한다.It includes; a catalyst layer containing the active material formed by coating, drying, and heat-treating the coating slurry on the surface of the porous metal structure.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail by examples. It is apparent to those skilled in the art that these examples are only for describing the present invention, and the scope of the present invention is not limited to these examples.

실시예 1: 다공극성 금속 구조체 상에 슬러리가 코팅된 금속 구조체 기반 탈질 촉매 제조Example 1: Preparation of a denitrification catalyst based on a metal structure coated with a slurry on a porous metal structure

활성물질 전구체로서 바나듐 전구체 1.2 g 및 텅스텐 전구체 3.9 g, 개질제 및 pH 조정제로서 옥살산 3.5 g을 증류수 80 ml에 투입하고 혼합하여 용액을 제조하였다. 그런 다음, 상기 용액에 담체로서 티타니아(TiO2) 분말 40 g, 무기결합제로서 Ti-sol 6.9 ml, 유기결합제로서 아크릴 변성 에폭시를 1.5 ml 투입하고 혼합하여 코팅 슬러리를 제조하였다.As an active material precursor, 1.2 g of a vanadium precursor and 3.9 g of a tungsten precursor, and 3.5 g of oxalic acid as a modifier and pH adjuster were added to 80 ml of distilled water and mixed to prepare a solution. Then, 40 g of titania (TiO 2 ) powder as a carrier, 6.9 ml of Ti-sol as an inorganic binder, and 1.5 ml of acrylic modified epoxy as an organic binder were added to the solution and mixed to prepare a coating slurry.

그리고, 메쉬, 포일 또는 와이어 형태의 티타늄 금속 구조체를 제조된 상기 코팅 슬러리에 함침하여 금속 구조체 표면에 코팅하였다. 그런 다음, 60 ℃에서 1 시간, 100 ℃에서 1 시간 동안 건조시킨 후, 500 ℃에서 4 시간 동안 열처리 소성과정을 거쳐 다공성 금속 구조체의 내부 및 외부 표면 상에 슬러리를 코팅하여 최종적으로 금속 구조체 기반 탈질 촉매를 제조하였다.Then, a titanium metal structure in the form of a mesh, foil, or wire was impregnated into the prepared coating slurry to coat the surface of the metal structure. Then, after drying at 60 ° C. for 1 hour and at 100 ° C. for 1 hour, after undergoing heat treatment firing at 500 ° C. for 4 hours, the slurry is coated on the inner and outer surfaces of the porous metal structure to finally denitrate based on the metal structure. Catalysts were prepared.

이때, 활성물질인 바나듐 산화물이 금속 구조체 표면 상에 고분산 코팅됨을 주사전자현미경(Scanning Electron Microscope)과 에너지 분산 X선(Energy Dispersive X-ray Spectrometer) 분석을 통해 확인할 수 있었고, X선 회절분석 분석 결과에서 바나듐 전구체가 바나듐 산화물 형태의 결정구조로 전이되었다.At this time, it was confirmed through the scanning electron microscope (Scanning Electron Microscope) and Energy Dispersive X-ray Spectrometer analysis that the active material vanadium oxide was highly dispersed on the surface of the metal structure, and analyzed by X-ray diffraction analysis. In the result, the vanadium precursor has been transferred to a crystal structure of vanadium oxide.

또한, 금속 구조체 표면상에 산화물 촉매가 균일하게 분포되어 있으며, 100℃ 건조에서 수분이 증발하고, 소성 공정을 통해 400℃ 이하에서 유기물 등이 증발하여 빈 공간이 형성되어 다공질 표면을 나타내었다(도 3 참조). In addition, the oxide catalyst is uniformly distributed on the surface of the metal structure, moisture evaporates at 100 ° C. drying, and organic substances and the like evaporate at 400 ° C. or lower through a firing process to form a void surface (FIG. 3).

비교예 1: 탈질 촉매 제조Comparative Example 1: Preparation of denitrification catalyst

종래 사용되던 금속 구조체는 금속 구조체 상에 코팅 물질의 부착력을 높이기 위하여 물리적 또는 화학적 처리를 통해 표면 조도(Surface Roughness)를 형성하기 위한 전처리 공정을 먼저 수행하고, 프라이머(Primer) 산화물 층을 코팅하고 약 950 내지 1050 ℃에서 5 내지 30시간 동안 열처리를 하고, 상기 프라이머 산화물 층 상에 활성금속이 포함된 촉매층을 코팅한 후 약 400 내지 550 ℃에서 2 내지 5 시간 동안 열처리를 수행하여 탈질 촉매를 제조하였다.In order to increase the adhesion of the coating material on the metal structure, a metal structure that has been used in the prior art first performs a pre-treatment process for forming surface roughness through physical or chemical treatment, coats a primer oxide layer, and A denitration catalyst was prepared by performing a heat treatment at 950 to 1050 ° C. for 5 to 30 hours, coating a catalyst layer containing an active metal on the primer oxide layer, and then performing heat treatment at about 400 to 550 ° C. for 2 to 5 hours. .

실험예 1: 탈질 촉매에 대한 촉매 성능 평가Experimental Example 1: Evaluation of catalyst performance for denitrification catalyst

실시예 1 및 비교예 1에서 제조된 탈질 촉매를 아래 표 1과 같은 조건에서 촉매 성능을 측정하여, 그 결과를 아래 표 2에 기재하였다.The denitration catalysts prepared in Example 1 and Comparative Example 1 were measured for catalyst performance under the conditions shown in Table 1 below, and the results are shown in Table 2 below.

반응온도Reaction temperature 250 ~ 500 ℃250 ~ 500 ℃ 공간속도Space velocity 5,000/hr5,000 / hr 암모니아/질소산화물 몰비Ammonia / nitrogen oxide molar ratio 1.01.0 질소산화물Nitrogen oxides 300 ppm300 ppm 산소Oxygen 4%4%

탈질 활성 (%)Denitrification activity (%) 250℃250 ℃ 300℃300 ℃ 350℃350 ℃ 400℃400 ℃ 450℃450 ℃ 500℃500 ℃ 실시예 1의 탈질 촉매Denitrification catalyst of Example 1 82.582.5 89.789.7 98.598.5 97.597.5 95.995.9 89.589.5 비교예 1의 탈질 촉매Denitration catalyst of Comparative Example 1 79.479.4 86.886.8 94.294.2 92.392.3 90.490.4 87.987.9

표 2를 참조로, 상기 표 1과 같은 조건으로 250 ~ 500 ℃ 사이에서 50 ℃ 간격으로 승온하면서 탈질 촉매의 성능을 분석한 결과, 실시예 1에 따른 탈질 촉매는 250 ~ 500 ℃에서 80% 이상의 촉매 활성을 나타내었으며, 최고활성은 350 ℃에서 98.5%로 나타났다.Referring to Table 2, as a result of analyzing the performance of the denitration catalyst while heating at 50 ° C. intervals between 250 and 500 ° C. under the same conditions as in Table 1, the denitration catalyst according to Example 1 was 80% or more at 250 to 500 ° C. It showed catalytic activity, and the highest activity was 98.5% at 350 ° C.

반면, 비교예 1에 따른 탈질 촉매는 250 ~ 500 ℃에서 약 80% 이상의 촉매 활성을 나타내었으며, 최고활성은 350 ℃에서 94.2%로 나타났다.On the other hand, the denitration catalyst according to Comparative Example 1 showed a catalytic activity of about 80% or more at 250 to 500 ° C, and the highest activity was 94.2% at 350 ° C.

따라서, 본 발명에 따른 다공극성 금속 구조체 기반 탈질 촉매는 코팅 슬러리를 단 1회 도포하여도, 코팅 슬러리 내에 포함된 개질제, 분산제, 결합제 등으로 인해 금속 표면 조도를 위한 전처리 공정 없이도 우수한 탈질 효과를 나타낼 수 있다.Therefore, the denitrification catalyst based on the porous metal structure according to the present invention exhibits excellent denitrification effect even without the pretreatment process for metal surface roughness due to the modifier, dispersant, binder, etc. included in the coating slurry even when the coating slurry is applied only once. You can.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.As the specific parts of the present invention have been described in detail above, it is obvious that for those skilled in the art to which the present invention pertains, this specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Do. Those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above.

따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

i) 배기가스를 다방향으로 관통하도록 하는 기공도 70 내지 95 %의 다공극성 금속 구조체를 제조하는 단계;
ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및
iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함하며,
상기 코팅 슬러리는 점도제 또는 pH조정제를 추가로 포함하여 상기 코팅 슬러리의 점도는 20 내지 500 mPaS를 나타내는; 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.
i) manufacturing a porous metal structure having a porosity of 70 to 95% to penetrate exhaust gas in multiple directions;
ii) preparing a coating slurry comprising an active material precursor, ceramic powder, modifier and binder; And
iii) directly coating the coating slurry on the surface of the porous metal structure, and heat-treating it at 450 to 500 ° C. for 2 to 4 hours to prepare a catalyst.
The coating slurry further comprises a viscosity modifier or a pH adjuster, and the viscosity of the coating slurry represents 20 to 500 mPaS; Method for manufacturing a metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry.
제1항에 있어서, 상기 코팅 및 열처리 단계는 2회 미만으로 수행되어 금속 표면 조도 형성을 위한 전처리 공정을 수행하지 않은 상기 i) 단계의 금속 구조체 상에 상기 코팅 슬러리가 고부착 코팅되는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method of claim 1, wherein the coating and the heat treatment step is performed less than twice, characterized in that the coating slurry on the metal structure of the step i) is not subjected to a pre-treatment process for forming a metal surface roughness is coated with high adhesion Metal structure-based denitration catalyst manufacturing method for selective catalytic reduction using a coating slurry. 제1항에 있어서, 상기 다공극성 금속 구조체는 스테인레스 스틸, 알루미늄 또는 티타늄의 금속 또는 합금 재질의 메쉬(mesh), 포일(foil) 또는 와이어(wire) 형태인 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The selective catalyst using a coating slurry according to claim 1, wherein the porous metal structure is in the form of a mesh, foil or wire of a metal or alloy material of stainless steel, aluminum or titanium. Method for manufacturing a denitrification catalyst based on a metal structure for reduction. 삭제delete 제1항에 있어서, 상기 활성물질 전구체로는 주 활성금속 전구체로 바나듐산화물(V2O5)의 전구체를 사용하고, 보조 활성금속 전구체로 텅스텐산화물(WO3), 몰리브덴산화물(MoO3), 코발트산화물(Co2O3), 철산화물(Fe2O3), 크롬산화물(Cr2O3) 구리산화물(CuO), 망간산화물(MnO), 니켈산화물(NiO), 세슘산화물(CsO) 및 니오븀산화물(Nb2O5) 로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.According to claim 1, As the active material precursor, a precursor of vanadium oxide (V 2 O 5 ) is used as a main active metal precursor, and tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), as an auxiliary active metal precursor, Cobalt oxide (Co 2 O 3 ), iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ) copper oxide (CuO), manganese oxide (MnO), nickel oxide (NiO), cesium oxide (CsO) and Method for producing a denitration catalyst based on a metal structure for selective catalytic reduction using a coating slurry, characterized in that at least one selected from the group consisting of niobium oxide (Nb 2 O 5 ) is used. 제1항에 있어서, 상기 세라믹 분말은 실리카(SiO2)계, 알루미나(Al2O3)계, 지르코니아(ZrO2)계 또는 티타니아(TiO2)계 분말을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.According to claim 1, The ceramic powder is a silica (SiO 2 ) -based, alumina (Al 2 O 3 ) -based, zirconia (ZrO 2 ) -based or titania (TiO 2 ) -based powder using a coating slurry, characterized in that using a powder Method for producing denitrification catalyst based on metal structure for selective catalytic reduction. 제1항에 있어서, 상기 개질제로는 포름산, 아세틸아세톤, 아세트산, 카르복시산, 옥살산 및 시트르산로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry according to claim 1, wherein at least one selected from the group consisting of formic acid, acetylacetone, acetic acid, carboxylic acid, oxalic acid and citric acid is used as the modifier. Method of manufacturing. 제1항에 있어서, 상기 결합제는 유기 또는 무기 결합제가 사용되며, 상기 유기 결합제는 아크릴레이트계, 폴리비닐알코올계, 폴리비닐아세테이트계, 폴리비닐부트랄계, 폴리비닐피롤리돈계, 에틸셀룰로오스계, 메틸셀룰로오스계, 나이트로셀룰로오스계, 카르복시 메틸셀룰로오스계, 하이드록시 프로필메틸셀룰로오스계, 메틸하이드록시 에틸셀룰로오스계 및 에폭시계로 구성된 군으로부터 선택된 1종이고, 상기 무기 결합제는 실리카이트계 졸, 알루미나계 졸, 티타니아계 졸, 지르코니아계 졸, 세라믹울 및 벤토나이트로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method of claim 1, wherein the binder is an organic or inorganic binder is used, the organic binder is an acrylate-based, polyvinyl alcohol-based, polyvinyl acetate-based, polyvinyl butal-based, polyvinylpyrrolidone-based, ethyl cellulose-based, Methylcellulose, nitrocellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, methylhydroxyethylcellulose and epoxy-based, and the inorganic binder is a silicaite sol, alumina sol , Titania-based sol, zirconia-based sol, ceramic wool and a method for producing a metal structure-based denitration catalyst for selective catalytic reduction using a coating slurry, characterized in that one or more selected from the group consisting of bentonite. 금속 지지체 간의 기공도 70 내지 95 %의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 관통하도록 하는 다공극성 금속 구조체; 및
상기 다공극성 금속 구조체 표면 상에 제1항에 따른 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매.
A porous metal structure in which a plurality of pores having a porosity of 70 to 95% between metal supports is formed to allow exhaust gas to pass through the pores in multiple directions; And
A catalyst structure-based denitrification catalyst for selective catalytic reduction using a coating slurry comprising; a catalyst layer containing the active material formed by coating, drying, and heat-treating the coating slurry according to claim 1 on the surface of the porous metal structure.
KR1020170172249A 2017-12-14 2017-12-14 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same KR102090726B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170172249A KR102090726B1 (en) 2017-12-14 2017-12-14 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same
PCT/KR2017/014867 WO2019117382A1 (en) 2017-12-14 2017-12-15 Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170172249A KR102090726B1 (en) 2017-12-14 2017-12-14 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same

Publications (2)

Publication Number Publication Date
KR20190071305A KR20190071305A (en) 2019-06-24
KR102090726B1 true KR102090726B1 (en) 2020-04-28

Family

ID=66819633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170172249A KR102090726B1 (en) 2017-12-14 2017-12-14 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same

Country Status (2)

Country Link
KR (1) KR102090726B1 (en)
WO (1) WO2019117382A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054132A1 (en) * 2020-09-08 2022-03-17 中国電力株式会社 Denitration catalyst molded body and method for manufacturing denitration catalyst molded body
EP4212244A1 (en) * 2020-09-08 2023-07-19 The Chugoku Electric Power Co., Inc. Nox reduction catalyst coating liquid
KR102498427B1 (en) * 2021-02-01 2023-02-13 주식회사 비에이치피 Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process Using Metal Foam and Preparation Methods Thereof
KR102498425B1 (en) * 2021-02-01 2023-02-13 주식회사 비에이치피 Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process and Preparation Methods Thereof
KR102476863B1 (en) * 2021-11-09 2022-12-14 대영씨엔이(주) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781726B1 (en) * 2006-09-15 2007-12-03 한국중부발전(주) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240250B2 (en) * 1999-06-29 2009-03-18 株式会社豊田中央研究所 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
KR100584961B1 (en) 1999-11-10 2006-05-29 에스케이 주식회사 A coating method of catalyst for selective catalytic reduction of nitrogen oxides, and a supporting body using the same
US20010049339A1 (en) 2000-04-11 2001-12-06 Adolf Schafer-Sindlinger Process for the preparation of a vanadia SCR-catalyst supported on titania
KR100641694B1 (en) * 2005-01-28 2006-11-03 주식회사 나노 Titania manufacturing method for denitrification catalyst extrusion
KR20100093823A (en) * 2009-02-17 2010-08-26 고려대학교 산학협력단 Method for catalysts coating on microchannels
KR101891233B1 (en) * 2015-08-20 2018-08-28 주식회사 에코프로 Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof
KR101733171B1 (en) * 2016-06-21 2017-05-08 한국생산기술연구원 NOx Removal Catalyst using Ceramic Nanotube on Metal Structure with Gaps for Ship and Method for Manufacturing Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781726B1 (en) * 2006-09-15 2007-12-03 한국중부발전(주) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate

Also Published As

Publication number Publication date
WO2019117382A1 (en) 2019-06-20
KR20190071305A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
KR102090726B1 (en) Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same
EP1985353B1 (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
KR101733171B1 (en) NOx Removal Catalyst using Ceramic Nanotube on Metal Structure with Gaps for Ship and Method for Manufacturing Same
US20240082827A9 (en) Extruded honeycomb catalyst
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
KR101460437B1 (en) Nano-catalytic filter and manufacturing method thereof
KR20060090222A (en) Layered ammonia oxidation catalyst
JP6047477B2 (en) NOx removal catalyst and method for producing the same
KR101670075B1 (en) Manufacturing Method of De-NOx Catalyst for Selective Catalytic Reduction
JPWO2014054607A1 (en) Marine exhaust gas treatment equipment
EP1484109B1 (en) Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
CN108136372B (en) Monolithic honeycomb oxidation catalyst and preparation method thereof
KR101891233B1 (en) Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof
CN114011400A (en) Preparation method of acid system waste incineration SCR denitration catalyst and prepared denitration catalyst
KR101631487B1 (en) Catalyst for Removal of Nitrogen Oxides by Selective Catalytic reduction
KR20180064929A (en) NOx Removal Catalyst using Porous Ceramic Structures with Three-Dimensional Network for Exhaust Gases Discharged from Marine Engine and Process for Preparing the Same
CN107149941B (en) Low-temperature denitration catalyst using selective reduction reaction of catalytic waste and method for manufacturing same
EP2719454A1 (en) Thermostable Vanadia SCR catalyst and a process of preparation thereof
KR101367023B1 (en) MANGANESE/TITANIA-BASED CATALYST, METHOD OF PREPARING THE SAME AND METHOD OF REMOVING NOx BY USING THE SAME
CN111185217A (en) Solid phase method preparation method and application of chromium-based carbon nitride catalyst
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
KR102498427B1 (en) Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process Using Metal Foam and Preparation Methods Thereof
KR102498425B1 (en) Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process and Preparation Methods Thereof
KR102503324B1 (en) Catalyst structure for DeNOx-oxidation and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant