WO2019117382A1 - Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same - Google Patents

Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same Download PDF

Info

Publication number
WO2019117382A1
WO2019117382A1 PCT/KR2017/014867 KR2017014867W WO2019117382A1 WO 2019117382 A1 WO2019117382 A1 WO 2019117382A1 KR 2017014867 W KR2017014867 W KR 2017014867W WO 2019117382 A1 WO2019117382 A1 WO 2019117382A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal structure
catalyst
oxide
coating
coating slurry
Prior art date
Application number
PCT/KR2017/014867
Other languages
French (fr)
Korean (ko)
Inventor
임동하
정해영
이치현
구윤장
임은미
김태용
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019117382A1 publication Critical patent/WO2019117382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a metal catalyst-based denitration catalyst for selective catalytic reduction using a coating slurry and a method for preparing the same, and more particularly, to a metal catalyst having a single step of coating and heat treatment on a metal structure not subjected to a pretreatment step
  • the present invention relates to a high-efficiency metal structure-based denitration catalyst having high thermal conductivity and thermal stability and having robust and excellent catalytic performance and cost competitiveness, and a method for manufacturing the denitration catalyst.
  • techniques for effectively removing nitrogen oxides include: first, selective catalytic reduction (SCR) using a catalyst and a reducing agent; second, selective non-catalytic reduction using a reducing agent only Catalytic Reduction (SNCR) technology, and third, Low-NOx burner technology that controls the combustion state in the combustion system.
  • SCR selective catalytic reduction
  • SNCR reducing agent only Catalytic Reduction
  • the selective catalytic reduction technology is evaluated as the most effective technology considering the secondary pollution, the removal efficiency, the operation cost, etc.
  • the removal efficiency of nitrogen oxide Is more than 90%, and the endurance period is estimated to be about 2 ⁇ 3 years.
  • the denitration catalyst used in this selective catalytic reduction technique generally consists of an active site and a support.
  • the active metal include oxides such as vanadium, tungsten, and molybdenum. Titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ) 2 ) and mixtures thereof are mainly used. Particularly, depending on the catalytic activity and toxicity, titania is mainly used as a support for a conventional selective reduction catalyst.
  • the above-described oxide-type active metals are supported on a ceramic carrier to prepare a denitration catalyst, and the prepared catalyst is mixed with various additives such as binders to perform injection molding, and finally, a honeycomb- .
  • Exhaust gas passes through a honeycomb-shaped support denitration catalyst, which is then reacted with a toxic gas such as nitrogen oxides and reduced, thereby converting into a harmless substance.
  • Korean Patent No. 10-0584961 relates to a method for coating a selective reduction catalyst for flue gas denitrification and a support made by the method, and a ceramic honeycomb type support containing an active metal catalyst is disclosed.
  • the denitration catalyst using the honeycomb-shaped ceramic support supports the exhaust gas only in one direction and is purified, the denitrification efficiency is somewhat lowered, and the denitration catalyst is easily broken due to fouling and weak strength due to carbonization or ammonium salt. And has a difficult problem in the regeneration method of the catalyst.
  • a heat treatment or a surface treatment is performed on the metal structure, a modification pretreatment oxide layer is formed on the surface of the metal structure, and a heat treatment process is further performed to form a primer Primer oxide layer was repeated.
  • an object of the present invention is to provide a metal structure-based denitration catalyst having a high efficiency, which is produced through a single process without a pretreatment process and which is excellent in economical efficiency as well as excellent catalytic performance and a method for producing the same.
  • a method for manufacturing a denitration catalyst based on a metal structure is provided.
  • a porous metal structure for forming a plurality of voids between the metal supports to exhaust the exhaust gas in multiple directions through the voids;
  • the metal structure-based denitration catalyst according to the present invention is characterized in that a porous metal structure having a high specific surface area in which a plurality of pores are formed such that exhaust gas or gas penetrates in various directions is formed into a mesh shape, a foil shape, a wire shape or the like instead of a powder or ceramic honeycomb It is possible to easily manufacture, install, maintain and repair the exhaust gas denitrifying equipment for ships, and it is also possible to use a small amount of expensive active metal, And can exhibit high catalytic performance.
  • the coating slurry is coated on the porous metal structure through the coating slurry only once, and is coated on the metal structure without any pretreatment due to the active metal precursor, ceramic powder, modifier, dispersant, binder, etc. contained in the coating slurry It is possible to exhibit excellent catalytic activity and durability without the desorption of the slurry particles containing the catalyst, and the production process is simplified due to the single process, so that productivity and economy are excellent.
  • the NOx removal catalyst according to the present invention can vary the shape of the porous metal structure in various shapes such as a circular shape and a square shape according to the structure of the ship denitrification system, it can be minimized and optimized in a limited space in the ship, And it is convenient to maintenance and management.
  • FIG. 1 is a photograph showing a metal structure-based denitration catalyst for selective catalytic reduction (SCR) coated with a coating slurry on a metal structure according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a metal-based denitration catalyst coated with a single process according to an embodiment of the present invention and a conventionally used multi-stage process metal-based denitration catalyst.
  • FIG. 3 is an SEM image of a metal structure-based denitration catalyst in which a coating slurry according to one embodiment of the present invention is coated in a single process.
  • FIG. 4 is a view illustrating an entire process for manufacturing a metal structure-based denitration catalyst for coating a coating slurry according to an embodiment of the present invention in a single process.
  • the metal structure-based denitration catalyst according to the present invention is characterized in that a denitration catalyst is produced through a single process using a coating slurry without a pre-oxidation process for metal surface modification.
  • Conventional metal structures are formed by first performing a pretreatment process to form surface roughness through physical or chemical treatment in order to increase the adhesion of a coating material on a metal structure, coating a primer oxide layer, To 1050 < 0 > C for 5 to 30 hours, a catalyst layer containing an active metal was coated on the primer oxidation layer, and heat treatment was performed at about 400 to 550 DEG C for 2 to 5 hours.
  • an electrochemical method such as physical or chemical treatment or anodic oxidation is applied to form a primer oxide layer on a metal structure (see FIG. 2).
  • the present invention relates to a method of coating a slurry containing an active material precursor, a ceramic powder, a modifier, a dispersant, a binder, etc. on a surface of a metal structure that has not undergone a pretreatment process, A selective denitrification reduction catalyst based on a metal structure having excellent productivity and economical efficiency by simplifying a manufacturing process, and a manufacturing method thereof.
  • a slurry containing an active material precursor, a ceramic powder, a modifier, a dispersant, a binder and the like is coated on the metal structure to coat the slurry for coating on the inner and outer surfaces of the metal structure with high dispersion .
  • the porous metal structure according to the present invention is a three-dimensional metal structure which is not in the form of a powder or a ceramic honeycomb, and is a multi-stage process such as kneading, injection molding, or the like using a conventional powder catalyst and additives, It is easy to produce, and it is easy to install or maintain the catalyst.
  • the three-dimensional metal structure can be embodied in various shapes such as a circular shape and a quadrangular shape, the structure and shape of the denitration system can be easily changed according to the limited space, so that a denitration catalyst system optimized for a space, SCR catalyst for ship flue gas denitrification can be produced.
  • the porous metal structure is formed of various metals or alloys such as stainless steel, aluminum, titanium, and nickel.
  • the porous metal structure may be in the form of a mesh, foil or wire.
  • the metal structure in the form of a mesh or a foil may be a single mesh or a foil structure alone or may be a structure in which a plurality of meshes or foil structures are laminated to each other.
  • the wire form may be in the form of a demister in which the wire is arranged in a regular or irregular direction.
  • the physical shape such as the length, height, and width of the metal structure of the mesh, foil or wire can be changed into various shapes such as a circle, a square, and the like.
  • the porous metal structure is a porous metal structure having a high specific surface area in which a plurality of pores are formed so as to communicate with each other so as to pass through the exhaust gas or gas in multiple directions and in which the slurry containing the active catalyst is directly .
  • the porosity of the porous metal structure may be 60% or more, preferably 70 to 95%.
  • porosity of the porous metal structure does not satisfy the above range, fouling may occur due to contamination by carbonization or ammonium salt, or a serious phenomenon such as pressure drop may occur due to a problem in exhaust gas flow So that it can have a degree of porosity above a certain level.
  • the coating slurry is characterized in that distilled water is mixed with an active material precursor, a ceramic powder, a modifier, a dispersant, a binder, and the like.
  • the active material may be composed of a main active material and an auxiliary active material.
  • the main active material is vanadium oxide (V 2 O 5 ) and the auxiliary active material is tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), cobalt oxide (Co 2 O 3 ), iron oxide Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ) copper oxide (CuO), manganese oxide (MnO), nickel oxide (NiO), cesium oxide (CsO), niobium oxide (Nb 2 O 5 ) But is not limited thereto.
  • the active material may be contained in an amount of 0.1 to 10.0% by weight based on 100% by weight of the ceramic powder.
  • the modifier is used to adhere the active metal to a metal structure that has not been surface-treated in step (i), and is used for increasing surface roughness through surface modification of the metal structure.
  • the modifier may also act as a dispersant, thereby increasing the degree of dispersion of the ceramic powder in the coating slurry and uniformly coating the active material on the surface of the metal structure.
  • the active material can be firmly adhered to the metal structure, Can exhibit high catalyst performance and long-term stability without desorption of the slurry particles.
  • At least one selected from the group consisting of formic acid, acetylacetone, acetic acid, carboxylic acid, oxalic acid and citric acid may be used.
  • the modifier or dispersant may be included in an amount of 0.1 to 5% by weight based on 100% by weight of the coating slurry.
  • the modifier or the dispersant is contained in an amount of less than 0.1% by weight, the effect of modifying the surface of the metal support is reduced and it is difficult to adhere the slurry on the surface of the metal structure having little surface roughness, The desorption phenomenon of the liver easily occurs.
  • the dispersing agent in the slurry is reduced, the dispersibility of the ceramic powder is decreased, and the added ceramic powder is coagulated in the slurry so that the uniform coating is not formed on the surface of the metal structure.
  • the modifier or dispersant is contained in an amount of more than 5% by weight, the pH of the precursor of the active material in the slurry is affected and the ionic form of the required active material can not be obtained. Further, the metal surface is excessively modified, Since the slurry is not adhered to the metal surface, the coated slurry is easily removed.
  • the ceramic powder serves as a support for supporting the active material and may be formed of a powder of silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ) Can be used.
  • the ceramic powder may be contained in an amount of 20 to 50% by weight based on 100% by weight of the coating slurry.
  • the ceramic powder When the ceramic powder is contained in an amount of less than 20% by weight, slurry easily flows down on the metal structure due to low slurry viscosity, or a plurality of repetitive processes need.
  • it When it is contained in an amount exceeding 50% by weight, a large amount of slurry is coated on the metal surface, and after the drying and firing, the slurry is coated on the surface of the oxide catalyst in a form of being cracked and easily broken.
  • the binder has a property of sticking to the surface of the metal structure by fixing the metal structure and the ceramic powder to each other or fixing them to each other between the ceramic powders.
  • the binder is used either singly or in combination with an organic and / or inorganic binder.
  • the organic binder may be at least one selected from the group consisting of acrylate, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polyvinyl pyrrolidone, ethyl cellulose, methyl cellulose, nitrocellulose, carboxymethyl cellulose, Methylcellulose, methylhydroxyethylcellulose, and an epoxy-based one. Of these, it is preferable to use an acrylic-modified epoxy.
  • the inorganic binder may be at least one selected from the group consisting of silicate sol, alumina sol, titania sol, zirconia sol, ceramic wool, and bentonite. Of these, it is preferable to use a titania-based sol.
  • the organic binder may be contained in an amount of 1 to 10 wt% based on 100 wt% of the entire coating slurry, and the inorganic binder may be included in an amount of 5 to 20 wt% based on 100 wt% of the entire coating slurry.
  • the organic and inorganic binders are not included in the above range, the viscosity and wettability of the slurry deteriorate, so that they do not stick to the surface of the metal structure at the time of coating, but easily flow down and are not coated. Even if some slurry is attached, It falls easily.
  • the coating slurry according to the present invention may contain, in addition to the above-mentioned components, additional additives such as a viscosity agent, a pH adjusting agent and the like.
  • the viscosity of the coating slurry according to the present invention may represent from 20 to 500 mPaS.
  • the viscosity agent at least one selected from the group consisting of polyethylene glycol type, diethylene glycol type, glycerol type, ethylene glycol type, dimethyl sulfoxide type, formamide type and N-methyl formamide type can be used.
  • the viscosity agent may be contained in an amount of 0.5 to 10% by weight based on 100% by weight of the total coating slurry.
  • the pH adjusting agent at least one selected from the group consisting of oxalic acid, citric acid, hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid can be used.
  • the pH adjuster may be contained in an amount of 0.5 to 10% by weight based on 100% by weight of the total coating slurry.
  • an organic solvent such as methanol, ethanol, or acetone may be added as a further added solvent.
  • a metal structure-based denitration catalyst can be produced by a single process through coating, drying, or heat treatment of the coating slurry on the porous metal structure.
  • the coating slurry is subjected to a coating process to deposit the coating slurry on the inner and outer surfaces of the metal structure with high dispersion.
  • the slurry coating process may be performed by various methods such as coating, spraying, and dipping on the surface of the porous metal structure.
  • a typical coating thickness may range from 90 to 130 ⁇ .
  • the slurry-coated porous metal structure is gently dried at 60 to 80 ° C. for about 1 to 3 hours at a slow heating rate of 0.1 to 1 ° C. per minute in a drying furnace, and is then dried at 100 to 120 ° C. for about 1 to 3 hours And is completely dried.
  • porous metal structure having been dried with the coated slurry is subjected to a heat treatment process at 450 to 500 ° C for about 2 to 4 hours.
  • the support and the active material components are subjected to a heat treatment process so that the support has the anatase crystal and the active material has the metal oxide form.
  • the support powder has an anatase crystal phase to improve not only the thermal stability and the active metal dispersion but also to reduce the sulfur poisoning (sulfur deactivation) contained in the exhaust gas. It also reacts with contaminants in the exhaust gas by converting the active material into a metal oxide form.
  • the heat treatment time is preferably 2 to 4 hours.
  • the drying and calcination steps can remove water and impurities contained in the coating slurry solution, and convert the amorphous support and the active metal into a crystalline oxide having activity.
  • a metal structure-based denitration catalyst for selective catalytic reduction (SCR) using a coating slurry according to an embodiment of the present invention comprises
  • a porous metal structure having a plurality of voids formed between metal supports to allow the exhaust gas to penetrate through the voids in multiple directions;
  • a catalyst layer containing an active material formed by coating, drying and heat-treating the coating slurry on the surface of the porous metal structure.
  • Example 1 Manufacture of a metal structure-based denitration catalyst with a slurry coated on a porous metal structure
  • a titanium metal structure in the form of a mesh, foil or wire was impregnated into the prepared coating slurry and coated on the surface of the metal structure. Then, after drying at 60 ° C for 1 hour and at 100 ° C for 1 hour, the slurry was coated on the inner and outer surfaces of the porous metal structure through heat treatment and firing at 500 ° C for 4 hours, Catalyst.
  • vanadium oxide which is an active material
  • X-ray diffraction analysis it was confirmed by Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer analysis that vanadium oxide, which is an active material, was highly dispersed on the surface of the metal structure, and X-ray diffraction analysis In the result, the vanadium precursor was transferred to the crystal structure of the vanadium oxide type.
  • the oxide catalyst is uniformly distributed on the surface of the metal structure, and moisture is evaporated at 100 ⁇ drying, and the organic material is evaporated at a temperature of 400 ⁇ or lower through the sintering process, 3).
  • Conventionally used metal structures include a pretreatment process for forming surface roughness through physical or chemical treatment in order to increase the adhesion of a coating material on a metal structure, coating a primer oxide layer, A catalyst layer containing an active metal is coated on the primer oxide layer for 5 to 30 hours at 950 to 1050 ° C, and then heat treatment is performed at about 400 to 550 ° C for 2 to 5 hours to prepare a denitration catalyst .
  • Example 1 The NO x removal catalysts prepared in Example 1 and Comparative Example 1 were measured for catalyst performance under the conditions shown in Table 1 below, and the results are shown in Table 2 below.
  • Denitrification activity (%) 250 °C 300 ° C 350 °C 400 ° C 450 °C 500 °C
  • the performance of the denitration catalyst was examined at 250 ° C. to 500 ° C. under the same conditions as those shown in Table 1. As a result, it was found that the denitration catalyst according to Example 1 had an 80% Catalytic activity, and the highest activity was found to be 98.5% at 350 °C.
  • the NO x removal catalyst according to Comparative Example 1 showed a catalytic activity of about 80% or more at 250 to 500 ° C, and the maximum activity was 94.2% at 350 ° C.
  • the porous metal structure-based denitration catalyst according to the present invention exhibits excellent denitrification effect even without a pretreatment process for metal surface roughness due to the modifier, dispersant, binder, etc. contained in the coating slurry .
  • the porous metal structure-based denitration catalyst according to the present invention is excellent in productivity and economy and can be used not only for ships but also for power plants, incinerators, paper industry, cement industry, glass industry, large diesel vehicles, diesel farm equipment, railway engines, And the like as a denitration catalyst.

Abstract

The present invention relates to a metal structure-based denitrification catalyst, for selective catalytic reduction, using a coating slurry and a method for preparing same and, more specifically, to a highly efficient denitrification catalyst and a method for preparing same, the denitrification catalyst highly economical and showing excellent catalytic performance by means of a one-step process in which one-time coating and heat treating is performed for a metal structure for which a pretreatment process has not been performed.

Description

코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매 및 이의 제조방법Metal structure-based denitration catalyst for selective catalytic reduction using coating slurry and method for manufacturing the same
본 발명은 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 금속 구조체 표면 전처리 공정을 거치지 않은 금속 구조체 상에 1회 코팅 및 열처리하는 단일(One Step) 공정을 통하여 높은 열전도성 및 열적 안정성을 가지는 강건하고 우수한 촉매성능을 가질 뿐만 아니라 가격 경쟁력을 가지는 고효율의 금속 구조체 기반 탈질 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a metal catalyst-based denitration catalyst for selective catalytic reduction using a coating slurry and a method for preparing the same, and more particularly, to a metal catalyst having a single step of coating and heat treatment on a metal structure not subjected to a pretreatment step The present invention relates to a high-efficiency metal structure-based denitration catalyst having high thermal conductivity and thermal stability and having robust and excellent catalytic performance and cost competitiveness, and a method for manufacturing the denitration catalyst.
가솔린 또는 디젤 연료와 같은 탄화수소계 연료를 연소시킬 때 배출되는 가스는 심각한 대기환경오염을 일으킬 수 있다. 이러한 배기가스 내 오염물질들은 탄화수소와 산소를 함유하는 화합물로서, 질소산화물(NOx), 황산화물(SOx), 일산화탄소(CO) 등을 포함한다. 따라서, 석탄화력발전소, 소각로, 자동차, 선박 등의 연소 시스템으로부터 배출되는 유해가스의 배출량을 감소시키기 위한 노력이 수십 년 간에 걸쳐 전 세계적으로 시도되어 오고 있다.Gas emitted when combusting hydrocarbon-based fuels such as gasoline or diesel fuel can cause severe atmospheric pollution. Such contaminants in the exhaust gas are compounds containing hydrocarbon and oxygen, including nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO) and the like. Thus, efforts have been made worldwide for decades to reduce the emission of harmful gases emitted from combustion systems such as coal-fired power plants, incinerators, automobiles, ships and the like.
종래부터 질소산화물을 효과적으로 제거하기 위해 사용되는 기술로서는, 첫째, 촉매와 환원제를 함께 사용하는 선택적 촉매 환원(Selective Catalytic Reduction; SCR) 기술, 둘째, 촉매 없이 환원제만을 사용하는 선택적 비촉매 환원(Selective Non Catalytic Reduction; SNCR) 기술, 및 셋째, 연소 시스템 내의 연소상태를 제어하는 저 낙스 버너(Low-NOx Burner) 기술로 크게 세 가지로 나누어 볼 수 있다.Conventionally, techniques for effectively removing nitrogen oxides include: first, selective catalytic reduction (SCR) using a catalyst and a reducing agent; second, selective non-catalytic reduction using a reducing agent only Catalytic Reduction (SNCR) technology, and third, Low-NOx burner technology that controls the combustion state in the combustion system.
상기 언급된 세 가지 기술 중에서, 2차 오염, 제거효율, 운전비 등을 종합적으로 고려해 볼 때 선택적 촉매 환원 기술이 가장 효과적인 기술로서 평가되며, 통상적인 선택적 촉매 환원 상용 기술의 경우, 질소산화물의 제거효율은 90% 이상으로 사용 내구기간은 2~3년 정도로 평가되고 있다. Of the three technologies mentioned above, the selective catalytic reduction technology is evaluated as the most effective technology considering the secondary pollution, the removal efficiency, the operation cost, etc. In the case of the conventional selective catalytic reduction commercial technology, the removal efficiency of nitrogen oxide Is more than 90%, and the endurance period is estimated to be about 2 ~ 3 years.
이러한 선택적 촉매 환원 기술에서 사용되는 탈질 촉매는 일반적으로 활성금속(Active Site)과 담지체(Support)로 크게 구성된다. 활성금속으로는 바나디윰(Vanadium), 텅스텐(Tungsten), 몰리브덴(Molybdenum) 등 산화물(Oxide) 형태가 주를 이루며, 담지체로는 티타니아(TiO2), 알루미나(Al2O3), 실리카(SiO2) 및 이들의 혼합물이 주로 사용되고 있다. 특히, 촉매 활성 및 피독성 여부에 따라 티타니아가 통상적인 선택적 환원 촉매의 담지체로서 주로 사용된다.The denitration catalyst used in this selective catalytic reduction technique generally consists of an active site and a support. Examples of the active metal include oxides such as vanadium, tungsten, and molybdenum. Titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ) 2 ) and mixtures thereof are mainly used. Particularly, depending on the catalytic activity and toxicity, titania is mainly used as a support for a conventional selective reduction catalyst.
상기 선택적 촉매 환원 기술은 전술한 산화물 형태의 활성금속들을 세라믹 담지체에 담지하여 탈질 촉매를 제조하고, 제조된 촉매를 바인더 등의 여러 가지 첨가물과 배합하여 사출 성형하고 최종적으로 허니컴(Honeycomb) 형태의 지지체로 제조한다. 제조된 허니컴 형태의 지지체 탈질 촉매에 배기가스가 통과하여 질소산화물과 같은 유독성 가스와 반응하여 환원시킴으로써 무해한 물질로 전환시키는 방법이다.In the selective catalytic reduction technique, the above-described oxide-type active metals are supported on a ceramic carrier to prepare a denitration catalyst, and the prepared catalyst is mixed with various additives such as binders to perform injection molding, and finally, a honeycomb- . Exhaust gas passes through a honeycomb-shaped support denitration catalyst, which is then reacted with a toxic gas such as nitrogen oxides and reduced, thereby converting into a harmless substance.
대한민국 등록특허 제10-0584961호는 배연탈질용 선택적 환원 촉매의 코팅 방법 및 이의 제조 방법으로 제조된 지지체에 관한 것으로, 활성금속 촉매를 함유하는 세라믹 허니컴 형태의 지지체가 개시되어 있다.Korean Patent No. 10-0584961 relates to a method for coating a selective reduction catalyst for flue gas denitrification and a support made by the method, and a ceramic honeycomb type support containing an active metal catalyst is disclosed.
그러나, 상기 허니컴 형태의 세라믹 지지체를 제조하는 경우, 세라믹 파우더 지지체 상에 활성금속이 담지된 촉매와 바인더 등의 첨가물을 혼합하여 반죽, 사출, 성형 등의 다단계 공정을 거치므로 제조 공정이 매우 복잡할 뿐만 아니라 제조 공정 중에 발생하는 다량의 먼지로 인해 생산, 설치 및 보수 작업을 수행하는 데 어려움이 있었다.However, in the case of manufacturing the above-mentioned honeycomb type ceramic support, since the catalyst having the active metal supported on the ceramic powder support and additives such as binders are mixed and subjected to a multistage process such as kneading, injection molding and molding, In addition, there has been a difficulty in performing production, installation and maintenance work due to the large amount of dust generated during the manufacturing process.
또한, 상기 허니컴 형태의 지지체 제조 시 세라믹 담지체와 탈질 촉매 원료와의 결합력을 증대시키기 위한 바인더 등 여러 가지의 첨가제를 다량 사용하게 되는데, 이러한 첨가제들을 다량 사용함으로써 촉매의 탈질 성능이 저하되고, 이로 인해 촉매 원료인 고가의 활성금속 산화물을 다량 사용하게 되는 문제점이 있었다.In addition, a large amount of various additives such as a binder for increasing the bonding force between the ceramic carrier and the denitration catalyst raw material is used during the production of the honeycomb-shaped support. The denitration performance of the catalyst is decreased by using a large amount of such additives, There is a problem that a large amount of expensive active metal oxide as a catalyst raw material is used.
그리고, 상기 허니컴 형태의 세라믹 지지체를 이용한 탈질 촉매는 배기가스가 일방향으로만 통과하여 정화되기 때문에 탈질효율이 다소 떨어지며, 탄화 또는 암모늄 염에 의한 오염(Fouling) 및 약한 강도로 인해 쉽게 부셔지는 등 탈질 촉매의 재생방법에 있어 어려운 문제점을 가지고 있다. Since the denitration catalyst using the honeycomb-shaped ceramic support supports the exhaust gas only in one direction and is purified, the denitrification efficiency is somewhat lowered, and the denitration catalyst is easily broken due to fouling and weak strength due to carbonization or ammonium salt. And has a difficult problem in the regeneration method of the catalyst.
또한, 종래 금속 구조체를 사용하여 탈질 촉매를 제조하는 경우, 상기 금속 구조체를 열처리 또는 표면처리를 하고, 상기 금속 구조체의 표면 상에 개질 전처리 산화물 층을 형성하고, 열처리 공정을 추가로 수행하여 프라이머(Primer) 산화물 층을 형성하는 단계를 반복하는 복잡한 공정을 통해 수행하였다.Also, in the case of manufacturing a denitration catalyst using a conventional metal structure, a heat treatment or a surface treatment is performed on the metal structure, a modification pretreatment oxide layer is formed on the surface of the metal structure, and a heat treatment process is further performed to form a primer Primer oxide layer was repeated.
이와 같은 반복되는 여러 단계에서 소요되는 시간 및 부가적인 비용 문제 등 생산 효율성을 극대화할 수 있는 방법에 대해서는 아직까지 연구개발이 활발히 이루어지지 않은 상태이다.Research and development have not yet been actively pursued to maximize production efficiency, such as the time required for such repeated steps and additional cost problems.
본 발명의 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법에 있어서 상기한 문제점을 해결하고자 예의 연구를 검토한 결과, 본 발명에 따른 전처리 공정을 거치지 않은 금속 구조체 상에 코팅 슬러리를 코팅, 건조, 열처리하는 단일(One Step) 공정으로 제조공정 간소화를 통한 경제성 향상 및 높은 열전도성 및 열적 안전성을 가지는 강건하고 우수한 촉매성능을 가질 수 있음을 알아내고, 본 발명을 완성하게 되었다.As a result of intensive study to solve the above-mentioned problems in the method of preparing a denitration catalyst based on metal structure for selective catalytic reduction (SCR) using the coating slurry of the present invention, it has been found that on the metal structure not subjected to the pretreatment process according to the present invention The present invention has been accomplished on the basis of the finding that it is possible to obtain a robust and excellent catalytic performance having a high economical efficiency and a high thermal conductivity and thermal stability by simplifying the manufacturing process by coating, drying and heat treating the coating slurry. .
또한, 기존의 파우더 또는 세라믹 기반 허니컴 형태가 아닌 배기가스가 다방향으로 관통하도록 다수의 공극이 형성된 금속 재질의 입체 형상을 가지는 구조물을 제조하고, 상기 구조체 내부 및 외부 표면에 촉매가 함유된 코팅 슬러리를 최소한의 양으로 얇게 코팅시킴으로써 경제적이고 고효율의 금속 구조체 기반 배연 탈질 촉매를 제조할 수 있다. 따라서, 본 발명의 목적은 전처리 공정 없는 단일 공정을 통해 제조되어 경제성이 우수할 뿐만 아니라 촉매 성능이 우수한 고효율의 금속 구조체 기반 탈질 촉매 및 이의 제조방법을 제공하는 것이다.In addition, it is also possible to manufacture a structure having a three-dimensional shape of a metal material, in which a plurality of voids are formed so that exhaust gas passes through the honeycomb, not the conventional powder or ceramic-based honeycomb, The metal structure-based flue gas denitration catalyst can be manufactured with a low cost and a high efficiency. Accordingly, an object of the present invention is to provide a metal structure-based denitration catalyst having a high efficiency, which is produced through a single process without a pretreatment process and which is excellent in economical efficiency as well as excellent catalytic performance and a method for producing the same.
한편으로, 본 발명은 On the other hand,
i) 배기가스를 다방향으로 관통하도록 하는 다공극성 금속 구조체를 제조하는 단계;i) fabricating a porous metal structure that allows the exhaust gas to pass through in multiple directions;
ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및 ii) preparing a coating slurry comprising an active material precursor, a ceramic powder, a modifier and a binder; And
iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법을 제공한다.iii) directly coating the coating slurry on the surface of the porous metal structure, and then heat-treating the coated slurry at 450 to 500 ° C for 2 to 4 hours to prepare a catalyst; and a selective catalytic reduction (SCR) A method for manufacturing a denitration catalyst based on a metal structure is provided.
다른 한편으로, 본 발명은On the other hand,
금속 지지체 간의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 배출되도록 하는 다공극성 금속 구조체; 및 A porous metal structure for forming a plurality of voids between the metal supports to exhaust the exhaust gas in multiple directions through the voids; And
상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매를 제공한다.And a catalyst layer including an active material formed by coating, drying and heat-treating the coating slurry on the surface of the porous metal structure, wherein the catalyst slurry is used.
본 발명에 따른 금속 구조체 기반 탈질 촉매는 배기가스 또는 기체가 다방향으로 관통하도록 다수의 기공을 형성한 고비표면적의 다공극성 금속 구조체를 파우더 또는 세라믹 허니컴 형태가 아닌 메쉬 형태, 포일 형태, 와이어 형태 등의 입체 형상의 금속 구조물로 제조하여 사용함으로써, 강건한 구조형태를 가지고 있어 선박용 배연 탈질 설비의 생산, 설치, 유지 및 보수를 보다 용이하게 할 수 있고, 값 비싼 활성금속을 소량 사용하고도 열전달 및 물질전달이 우수하여 높은 촉매 성능을 나타낼 수 있다.The metal structure-based denitration catalyst according to the present invention is characterized in that a porous metal structure having a high specific surface area in which a plurality of pores are formed such that exhaust gas or gas penetrates in various directions is formed into a mesh shape, a foil shape, a wire shape or the like instead of a powder or ceramic honeycomb It is possible to easily manufacture, install, maintain and repair the exhaust gas denitrifying equipment for ships, and it is also possible to use a small amount of expensive active metal, And can exhibit high catalytic performance.
또한, 상기 다공극성 금속 구조체 상에 코팅 슬러리를 단 1회 도포를 통해 코팅 슬러리 내에 포함된 활성금속 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등으로 인해 전처리 공정 없이도 상기 금속 구조체 상에 고부착 코팅될 수 있으므로 촉매가 포함된 슬러리 입자의 탈리현상이 없이 우수한 촉매 활성 및 내구성을 나타낼 수 있고, 단일 공정으로 인해 제조방법이 간단해지므로 생산성 및 경제성이 우수하다.Further, the coating slurry is coated on the porous metal structure through the coating slurry only once, and is coated on the metal structure without any pretreatment due to the active metal precursor, ceramic powder, modifier, dispersant, binder, etc. contained in the coating slurry It is possible to exhibit excellent catalytic activity and durability without the desorption of the slurry particles containing the catalyst, and the production process is simplified due to the single process, so that productivity and economy are excellent.
또한, 본 발명에 따른 탈질 촉매는 선박용 탈질 시스템의 구조에 따라 상기 다공극성 금속 구조체의 형상을 원형, 사각형 등 다양하게 변화시킬 수 있으므로, 선박 내 한정된 공간에서 최소화 및 최적화하여 설치할 수 있을 뿐만 아니라 설치가 용이하고 유지보수 및 관리가 편리하다.In addition, since the NOx removal catalyst according to the present invention can vary the shape of the porous metal structure in various shapes such as a circular shape and a square shape according to the structure of the ship denitrification system, it can be minimized and optimized in a limited space in the ship, And it is convenient to maintenance and management.
도 1은 본 발명의 일 실시형태에 따른 금속 구조체 상에 코팅 슬러리가 코팅된 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매를 나타낸 사진이다. 1 is a photograph showing a metal structure-based denitration catalyst for selective catalytic reduction (SCR) coated with a coating slurry on a metal structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 단일공정으로 코팅된 금속 기반 탈질 촉매와 종래 사용되는 다단 공정의 금속 기반 탈질 촉매의 단면도를 비교한 그림이다.2 is a cross-sectional view of a metal-based denitration catalyst coated with a single process according to an embodiment of the present invention and a conventionally used multi-stage process metal-based denitration catalyst.
도 3 은 본 발명의 일 실시형태에 따른 코팅 슬러리가 단일공정으로 코팅된 금속 구조체 기반 탈질 촉매의 SEM 이미지이다. 3 is an SEM image of a metal structure-based denitration catalyst in which a coating slurry according to one embodiment of the present invention is coated in a single process.
도 4는 본 발명의 일 실시형태에 따른 코팅 슬러리를 단일공정으로 코팅하는 금속 구조체 기반 탈질 촉매를 제조하는 전체 공정에 대해 나타낸 그림이다.4 is a view illustrating an entire process for manufacturing a metal structure-based denitration catalyst for coating a coating slurry according to an embodiment of the present invention in a single process.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 실시형태에 따른 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매의 제조방법은A method for preparing a metal structure-based denitration catalyst for selective catalytic reduction (SCR) using a coating slurry according to an embodiment of the present invention
i) 배기가스를 다방향으로 관통하도록 하는 다공극성 금속 구조체를 제조하는 단계;i) fabricating a porous metal structure that allows the exhaust gas to pass through in multiple directions;
ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및 ii) preparing a coating slurry comprising an active material precursor, a ceramic powder, a modifier and a binder; And
iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함한다.iii) directly coating the coating slurry on the surface of the porous metal structure, and heat-treating the coated slurry at 450 to 500 ° C for 2 to 4 hours to prepare a catalyst.
본 발명에 따른 금속 구조체 기반 탈질 촉매는 금속 표면 개질을 위한 전처리(Pre-Oxidation) 공정 없이 코팅 슬러리를 이용한 단일공정을 통해 탈질 촉매를 제조하는데 그 특징이 있다. The metal structure-based denitration catalyst according to the present invention is characterized in that a denitration catalyst is produced through a single process using a coating slurry without a pre-oxidation process for metal surface modification.
종래 사용되던 금속 구조체는 금속 구조체 상에 코팅 물질의 부착력을 높이기 위하여 물리적 또는 화학적 처리를 통해 표면 조도(Surface Roughness) 형성하기 위한 전처리 공정을 먼저 수행하고, 프라이머(Primer) 산화물 층을 코팅하고 약 950 내지 1050 ℃에서 5 내지 30시간 동안 열처리를 하고, 상기 프라이머 산화층 상에 활성금속이 포함된 촉매층을 코팅한 후 약 400 내지 550 ℃에서 2 내지 5 시간 동안 열처리를 수행하였다. 일반적으로 금속 구조체 상에 프라이머 산화물 층을 형성하는 데 물리적 또는 화학적 처리 방법이나 양극산화법과 같은 전기화학적 방법을 적용하였다(도 2 참조).Conventional metal structures are formed by first performing a pretreatment process to form surface roughness through physical or chemical treatment in order to increase the adhesion of a coating material on a metal structure, coating a primer oxide layer, To 1050 < 0 > C for 5 to 30 hours, a catalyst layer containing an active metal was coated on the primer oxidation layer, and heat treatment was performed at about 400 to 550 DEG C for 2 to 5 hours. In general, an electrochemical method such as physical or chemical treatment or anodic oxidation is applied to form a primer oxide layer on a metal structure (see FIG. 2).
본 발명은 종래 기술과 비교하여 전처리 공정을 거치지 않은 금속 구조체 표면 상에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등이 포함된 슬러리를 직접 코팅하고 열처리하는 단일공정(One-Step)을 통하여 제조공정 간소화를 통한 생산성 및 경제성이 우수한 금속 구조체 기반 선택적 탈질 환원 촉매 및 그 제조 방법을 제공하기 위한 것이다.The present invention relates to a method of coating a slurry containing an active material precursor, a ceramic powder, a modifier, a dispersant, a binder, etc. on a surface of a metal structure that has not undergone a pretreatment process, A selective denitrification reduction catalyst based on a metal structure having excellent productivity and economical efficiency by simplifying a manufacturing process, and a manufacturing method thereof.
또한, 상기 금속 구조체 상에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등이 포함된 슬러리를 코팅하여 상기 금속 구조체의 내부 및 외부 표면에 코팅용 슬러리를 고분산 도포시키는 방법도 그 특징으로 한다. A slurry containing an active material precursor, a ceramic powder, a modifier, a dispersant, a binder and the like is coated on the metal structure to coat the slurry for coating on the inner and outer surfaces of the metal structure with high dispersion .
본 발명에 따른 다공극성 금속 구조체는 파우더 또는 세라믹 허니컴 형태가 아닌 입체 형상의 금속 구조체로서, 종래 파우더 촉매 및 첨가제를 이용하여 반죽, 사출, 성형 등의 다단계 공정을 거쳐 허니컴, 플레이트, 콜로게이트 등의 형태로 제조되는 촉매에 비해 단순화된 공정으로 제조될 수 있으므로 생산이 용이하고, 설치하거나 유지 보수하는 작업이 용이하다. 아울러, 상기 입체 형상의 금속 구조체는 원형, 사각형 등 다양한 형상으로 구현될 수 있으므로, 한정된 공간에 따라 탈질 시스템의 구조 및 형상을 변화시켜 용이하게 사용할 수 있으므로 공간에 최적화된 탈질 촉매 시스템, 예를 들면 선박 배연 탈질용 SCR 촉매를 제조할 수 있다.The porous metal structure according to the present invention is a three-dimensional metal structure which is not in the form of a powder or a ceramic honeycomb, and is a multi-stage process such as kneading, injection molding, or the like using a conventional powder catalyst and additives, It is easy to produce, and it is easy to install or maintain the catalyst. In addition, since the three-dimensional metal structure can be embodied in various shapes such as a circular shape and a quadrangular shape, the structure and shape of the denitration system can be easily changed according to the limited space, so that a denitration catalyst system optimized for a space, SCR catalyst for ship flue gas denitrification can be produced.
본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체는 스테인레스 스틸, 알루미늄, 티타늄, 니켈 등 다양한 금속 또는 합금 재질로 형성되는 것을 특징으로 한다.In one embodiment of the present invention, the porous metal structure is formed of various metals or alloys such as stainless steel, aluminum, titanium, and nickel.
상기 다공극성 금속 구조체는 메쉬, 포일 또는 와이어 형태일 수도 있다.The porous metal structure may be in the form of a mesh, foil or wire.
상기 메쉬 또는 포일 형태의 금속 구조체는 한 개의 메쉬 또는 포일 형태 구조체가 단독으로 사용될 수도 있고, 복수 개의 메쉬 또는 포일 형태 구조체가 서로 적층된 구조의 형태일 수도 있다.The metal structure in the form of a mesh or a foil may be a single mesh or a foil structure alone or may be a structure in which a plurality of meshes or foil structures are laminated to each other.
상기 와이어 형태는 상기 와이어가 규칙적인 또는 불규칙적인 방향으로 구성된 디미스터(Demister)와 같은 형태일 수도 있다.The wire form may be in the form of a demister in which the wire is arranged in a regular or irregular direction.
상기 메쉬, 포일 또는 와이어 형태의 금속 구조체 길이, 높이, 넓이 등의 물리적인 형상은 원형, 사각형 등의 다양한 형태로 변화시킬 수 있다.The physical shape such as the length, height, and width of the metal structure of the mesh, foil or wire can be changed into various shapes such as a circle, a square, and the like.
상기 다공극성 금속 구조체는 배기가스 또는 기체가 다방향으로 관통하도록 서로 연통된 다수의 기공이 형성된 고비표면적을 가지는 다공극성 금속 구조체로서, 상기 구조체의 전체 표면 상에 상기 활성촉매가 함유된 슬러리를 직접적으로 코팅할 수 있다. Wherein the porous metal structure is a porous metal structure having a high specific surface area in which a plurality of pores are formed so as to communicate with each other so as to pass through the exhaust gas or gas in multiple directions and in which the slurry containing the active catalyst is directly . ≪ / RTI >
본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체의 기공도는 60 % 이상, 바람직하게는 70 내지 95 %일 수 있다.In one embodiment of the present invention, the porosity of the porous metal structure may be 60% or more, preferably 70 to 95%.
상기 다공극성 금속 구조체의 기공도가 상기 범위를 만족하지 않는 경우, 탄화 또는 암모늄 염에 의한 오염으로 인한 막힘 현상(Fouling)이 일어날 수 있거나 배기가스 유동에 문제가 발생함에 따라 압력강하 등의 심각한 현상을 일으킬 수 있으므로 일정 이상의 기공도를 가질 수 있도록 해야 한다.If the porosity of the porous metal structure does not satisfy the above range, fouling may occur due to contamination by carbonization or ammonium salt, or a serious phenomenon such as pressure drop may occur due to a problem in exhaust gas flow So that it can have a degree of porosity above a certain level.
본 발명의 일 실시형태에서, 상기 코팅 슬러리는 증류수에 활성물질 전구체, 세라믹 분말, 개질제, 분산제, 결합제 등을 혼합하여 구성되는 것을 특징으로 한다.In one embodiment of the present invention, the coating slurry is characterized in that distilled water is mixed with an active material precursor, a ceramic powder, a modifier, a dispersant, a binder, and the like.
상기 활성물질은 주 활성물질과 보조 활성물질으로 구성될 수 있다.The active material may be composed of a main active material and an auxiliary active material.
상기 주 활성물질로는 바나듐산화물(V2O5)을 사용하고, 상기 보조 활성물질로는 텅스텐산화물(WO3), 몰리브덴산화물(MoO3), 코발트산화물(Co2O3), 철산화물(Fe2O3), 크롬산화물(Cr2O3) 구리산화물(CuO), 망간산화물(MnO), 니켈산화물(NiO), 세슘산화물(CsO), 니오븀산화물(Nb2O5) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. The main active material is vanadium oxide (V 2 O 5 ) and the auxiliary active material is tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), cobalt oxide (Co 2 O 3 ), iron oxide Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ) copper oxide (CuO), manganese oxide (MnO), nickel oxide (NiO), cesium oxide (CsO), niobium oxide (Nb 2 O 5 ) But is not limited thereto.
상기 활성물질은 상기 세라믹 분말 100 중량%에 대하여 0.1 내지 10.0 중량%로 포함될 수 있다.The active material may be contained in an amount of 0.1 to 10.0% by weight based on 100% by weight of the ceramic powder.
상기 개질제는 (i) 단계에서 표면처리 되지 않은 금속 구조체에 상기 활성금속을 고부착시키기 위한 것으로, 상기 금속 구조체의 표면 개질을 통한 표면 조도(Surface Roughness) 증가를 위해 사용된다. 또한, 상기 개질제는 분산제의 역할도 할 수 있으며, 이로 인해 코팅 슬러리 내 상기 세라믹 분말의 분산도가 증가되어 금속 구조체 표면 상에 활성물질이 균일하게 코팅될 수 있다.The modifier is used to adhere the active metal to a metal structure that has not been surface-treated in step (i), and is used for increasing surface roughness through surface modification of the metal structure. The modifier may also act as a dispersant, thereby increasing the degree of dispersion of the ceramic powder in the coating slurry and uniformly coating the active material on the surface of the metal structure.
따라서, 금속 표면 개질을 위한 전처리 과정 없이 코팅 슬러리에 본 발명에 따른 개질제를 포함하여 코팅하는 것으로도 금속 표면을 개질하는 효과를 가짐으로써 상기 활성물질을 금속 구조체에 강건하게 고부착시킬 수 있으므로, 코팅된 슬러리 입자의 탈리 없이 높은 촉매성능 및 장기 안정성을 나타낼 수 있다.Therefore, even if the coating material containing the modifier according to the present invention is coated on the coating slurry without the pretreatment for the modification of the metal surface, the active material can be firmly adhered to the metal structure, Can exhibit high catalyst performance and long-term stability without desorption of the slurry particles.
상기 개질제 또는 분산제로는 포름산, 아세틸아세톤, 아세트산, 카르복시산, 옥살산 및 시트르산로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다.As the modifier or dispersant, at least one selected from the group consisting of formic acid, acetylacetone, acetic acid, carboxylic acid, oxalic acid and citric acid may be used.
상기 개질제 또는 분산제는 코팅 슬러리 100 중량%에 대하여 0.1 내지 5 중량%로 포함될 수 있다. 상기 개질제 또는 분산제가 0.1 중량% 미만으로 포함되는 경우, 금속 지지체 표면 개질효과가 감소하여 표면 조도가 거의 없는 금속 구조체 표면상으로 슬러리를 고부착시키기 어려워지고, 코팅이 되더라도 소성 후 금속 구조체와 코팅 슬러리 간의 탈리현상이 쉽게 발생하게 된다. 또한, 슬러리 내 분산제 역할이 감소함에 따라 세라믹 분말의 분산도가 떨어져 첨가된 세라믹 분말이 슬러리 내에서 서로 응집되어 금속 구조체 표면 상에 균일한 코팅이 이루어지지 않는다. 상기 개질제 또는 분산제가 5 중량% 초과로 포함되는 경우에는 슬러리 내부 활성물질 전구체의 pH에 영향을 주어 요구하는 활성물질의 이온 형태를 얻을 수 없으며, 또한 금속 표면을 과도하게 개질됨으로써 금속구조를 약화시키고 금속 표면에 슬러리가 고부착되지 않기 때문에 코팅된 슬러리가 쉽게 탈리된다.The modifier or dispersant may be included in an amount of 0.1 to 5% by weight based on 100% by weight of the coating slurry. When the modifier or the dispersant is contained in an amount of less than 0.1% by weight, the effect of modifying the surface of the metal support is reduced and it is difficult to adhere the slurry on the surface of the metal structure having little surface roughness, The desorption phenomenon of the liver easily occurs. In addition, as the dispersing agent in the slurry is reduced, the dispersibility of the ceramic powder is decreased, and the added ceramic powder is coagulated in the slurry so that the uniform coating is not formed on the surface of the metal structure. When the modifier or dispersant is contained in an amount of more than 5% by weight, the pH of the precursor of the active material in the slurry is affected and the ionic form of the required active material can not be obtained. Further, the metal surface is excessively modified, Since the slurry is not adhered to the metal surface, the coated slurry is easily removed.
상기 세라믹 분말은 상기 활성물질을 담지하기 위한 지지체의 역할을 하며, 실리카(SiO2)계, 알루미나(Al2O3)계, 지르코니아(ZrO2)계, 티타니아(TiO2)계 등의 분말을 사용할 수 있다.The ceramic powder serves as a support for supporting the active material and may be formed of a powder of silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ) Can be used.
상기 세라믹 분말은 코팅 슬러리 100 중량%에 대하여 20 내지 50 중량%로 포함될 수 있다. 상기 세라믹 분말이20 중량% 미만으로 포함되는 경우, 낮은 슬러리 점도로 인하여 금속 구조체 상에 슬러리가 쉽게 흘러 내려 코팅되지 않거나, 소량 코팅이 되더라도 촉매활성을 가지는 일정량 만큼 코팅하기 위해 여러 번의 반복적인 공정이 필요하다. 50 중량% 초과로 포함되는 경우에는 금속 표면 상에 많은 양의 슬러리가 코팅되어, 건조 및 소성 후 산화물 촉매 표면 상에 균열된 형태로 슬러리가 코팅되어 쉽게 부서지는 현상이 발생한다.The ceramic powder may be contained in an amount of 20 to 50% by weight based on 100% by weight of the coating slurry. When the ceramic powder is contained in an amount of less than 20% by weight, slurry easily flows down on the metal structure due to low slurry viscosity, or a plurality of repetitive processes need. When it is contained in an amount exceeding 50% by weight, a large amount of slurry is coated on the metal surface, and after the drying and firing, the slurry is coated on the surface of the oxide catalyst in a form of being cracked and easily broken.
상기 결합제는 상기 금속 구조체와 상기 세라믹 분말을 서로 고정시켜주거나 또는 상기 세라믹 분말 간 서로 고정시켜는 역할 등을 하여 금속 구조체 표면 상에 고부착되는 특성을 가진다. 상기 결합제는 유기 및/또는 무기 결합제가 단독 또는 혼합되어 사용된다.The binder has a property of sticking to the surface of the metal structure by fixing the metal structure and the ceramic powder to each other or fixing them to each other between the ceramic powders. The binder is used either singly or in combination with an organic and / or inorganic binder.
상기 유기 결합제는 아크릴레이트계, 폴리비닐알코올계, 폴리비닐아세테이트계, 폴리비닐부트랄계, 폴리비닐피롤리돈계, 에틸셀룰로오스계, 메틸셀룰로오스계, 나이트로셀룰로오스계, 카르복시 메틸셀룰로오스계, 하이드록시 프로필메틸셀룰로오스계, 메틸하이드록시 에틸셀룰로오스계 및 에폭시계로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 이중, 아크릴 변성 에폭시를 사용하는 것이 바람직하다.The organic binder may be at least one selected from the group consisting of acrylate, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polyvinyl pyrrolidone, ethyl cellulose, methyl cellulose, nitrocellulose, carboxymethyl cellulose, Methylcellulose, methylhydroxyethylcellulose, and an epoxy-based one. Of these, it is preferable to use an acrylic-modified epoxy.
상기 무기 결합제는 실리카이트계 졸, 알루미나계 졸, 티타니아계 졸, 지르코니아계 졸, 세라믹울 및 벤토나이트로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 이중, 티타니아계 졸을 사용하는 것이 바람직하다.The inorganic binder may be at least one selected from the group consisting of silicate sol, alumina sol, titania sol, zirconia sol, ceramic wool, and bentonite. Of these, it is preferable to use a titania-based sol.
상기 유기 결합제는 코팅 슬러리 전체 100 중량%에 대하여 1 내지 10 중량%로 포함되고, 상기 무기 결합제는 코팅 슬러리 전체 100 중량%에 대하여 5 내지 20 중량%로 포함될 수 있다.The organic binder may be contained in an amount of 1 to 10 wt% based on 100 wt% of the entire coating slurry, and the inorganic binder may be included in an amount of 5 to 20 wt% based on 100 wt% of the entire coating slurry.
상기 유기 및 무기 결합제가 상기 범위로 포함되지 않는 경우, 슬러리의 점도 및 젖음성이 떨어져서 코팅 시 금속 구조체 표면 상에 고부착되지 않고 쉽게 흘러내리며 코팅이 되지 않으며 일부 슬러리가 부착되더라도 건조 후 외부 충격에 의해 쉽게 떨어지게 된다.When the organic and inorganic binders are not included in the above range, the viscosity and wettability of the slurry deteriorate, so that they do not stick to the surface of the metal structure at the time of coating, but easily flow down and are not coated. Even if some slurry is attached, It falls easily.
본 발명에 따른 코팅 슬러리는 상술한 구성요소 외에 점도제, pH조정제 등의 추가적인 첨가제를 포함할 수 있다.The coating slurry according to the present invention may contain, in addition to the above-mentioned components, additional additives such as a viscosity agent, a pH adjusting agent and the like.
본 발명에 따른 코팅 슬러리의 점도는 20 내지 500 mPaS를 나타낼 수 있다. The viscosity of the coating slurry according to the present invention may represent from 20 to 500 mPaS.
상기 점도제로는 폴리에틸렌글리콜계, 디에틸렌글리콜계, 글리세롤계, 에틸렌글리콜계, 디메틸설폭시드계, 폼아마이드계 및 N-메틸폼아마이드계로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 점도제는 코팅 슬러리 전체 100 중량%에 대하여 0.5 내지 10 중량%로 포함될 수 있다.As the viscosity agent, at least one selected from the group consisting of polyethylene glycol type, diethylene glycol type, glycerol type, ethylene glycol type, dimethyl sulfoxide type, formamide type and N-methyl formamide type can be used. The viscosity agent may be contained in an amount of 0.5 to 10% by weight based on 100% by weight of the total coating slurry.
상기 pH 조정제로는 옥살산, 시트르산, 염산, 질산, 황산 및 인산으로 구성된 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 pH 조정제는 코팅 슬러리 전체 100 중량%에 대하여 0.5 내지 10 중량%로 포함될 수 있다.As the pH adjusting agent, at least one selected from the group consisting of oxalic acid, citric acid, hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid can be used. The pH adjuster may be contained in an amount of 0.5 to 10% by weight based on 100% by weight of the total coating slurry.
또한, 상기 증류수 외에 추가적으로 첨가되는 용매로서 메탄올, 에탄올, 아세톤 등의 유기용매를 첨가하여 사용할 수 있다.In addition to the distilled water, an organic solvent such as methanol, ethanol, or acetone may be added as a further added solvent.
본 발명의 일 실시형태에서, 상기 다공극성 금속 구조체 상에 상기 코팅 슬러리를 코팅, 건조, 열처리를 통한 단일공정으로 금속 구조체 기반 탈질 촉매를 제조할 수 있다.In one embodiment of the present invention, a metal structure-based denitration catalyst can be produced by a single process through coating, drying, or heat treatment of the coating slurry on the porous metal structure.
상기 제조된 코팅 슬러리를 상기 금속 구조체의 내부 및 외부 표면 상에 고분산 부착시키기 위한 코팅공정(Coating Process)을 거치게 된다. 상기 슬러리의 코팅공정은 다공극성 금속 구조체 표면에 바르거나(Coating), 뿌리거나(Spraying), 담지(Dipping)하는 등 여러 가지 방법을 적용할 수 있다.The coating slurry is subjected to a coating process to deposit the coating slurry on the inner and outer surfaces of the metal structure with high dispersion. The slurry coating process may be performed by various methods such as coating, spraying, and dipping on the surface of the porous metal structure.
상기 다공극성 금속 구조체 상에 슬러리가 코팅된 후, 일반적인 코팅 두께는 90 내지 130 ㎛를 나타낼 수 있다.After the slurry is coated on the porous metal structure, a typical coating thickness may range from 90 to 130 탆.
상기 슬러리 코팅이 완료된 다공극성 금속 구조체는 건조로에서 분당 0.1 ~ 1 ℃의 느린 승온속도로 60 ~ 80 ℃ 에서 약 1 내지 3 시간 동안 온화한 건조과정을 거치고, 100 ~ 120 ℃에서 약 1 내지 3 시간 동안 완전 건조하는 것을 특징으로 한다.The slurry-coated porous metal structure is gently dried at 60 to 80 ° C. for about 1 to 3 hours at a slow heating rate of 0.1 to 1 ° C. per minute in a drying furnace, and is then dried at 100 to 120 ° C. for about 1 to 3 hours And is completely dried.
상기 코팅된 슬러리의 건조가 완료된 다공극성 금속 구조체는 450 ~ 500 ℃에서 약 2 내지 4시간 소성하는 열처리 공정을 거치는 것을 특징으로 한다. 이때 지지체 및 활성물질 성분들은 열처리 공정을 통해 지지체는 아나타제 결정을 가지고 활성물질은 금속 산화물 형태를 가지게 된다.And the porous metal structure having been dried with the coated slurry is subjected to a heat treatment process at 450 to 500 ° C for about 2 to 4 hours. At this time, the support and the active material components are subjected to a heat treatment process so that the support has the anatase crystal and the active material has the metal oxide form.
상기 열처리 과정에 의해서, 지지체 분말은 아나타제 결정상을 가짐으로써 열적 안정성 및 활성금속 분산도를 향상시킬 뿐만 아니라 배기가스 내부에 포함된 황 피독(Sulphur Deactivation)을 저감하는 역할을 하게 된다. 또한 활성물질을 금속 산화물 형태로 전환함으로써 배기가스 내 오염물질과 반응을 하게 된다.By the heat treatment process, the support powder has an anatase crystal phase to improve not only the thermal stability and the active metal dispersion but also to reduce the sulfur poisoning (sulfur deactivation) contained in the exhaust gas. It also reacts with contaminants in the exhaust gas by converting the active material into a metal oxide form.
이때, 열처리 시 공기분위기 하에서 산화물 층 형성이 용이하게 조성하는 것이 중요하기 때문에, 상기 열처리 시간은 2 내지 4 시간인 것이 바람직하다. At this time, since it is important to easily form an oxide layer in the air atmosphere in the heat treatment, the heat treatment time is preferably 2 to 4 hours.
상기 건조 및 소성 단계를 통해 코팅 슬러리 용액에 포함된 수분 및 불순물을 제거할 수 있고, 무정형의 지지체 및 활성금속을 활성을 가지는 결정형의 산화물로 전환할 수 있다.The drying and calcination steps can remove water and impurities contained in the coating slurry solution, and convert the amorphous support and the active metal into a crystalline oxide having activity.
본 발명의 일 실시형태에 따른 코팅 슬러리를 이용한 선택적 촉매 환원(SCR)용 금속 구조체 기반 탈질 촉매는A metal structure-based denitration catalyst for selective catalytic reduction (SCR) using a coating slurry according to an embodiment of the present invention comprises
금속 지지체 간의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 관통하도록 하는 다공극성 금속 구조체; 및 A porous metal structure having a plurality of voids formed between metal supports to allow the exhaust gas to penetrate through the voids in multiple directions; And
상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함한다.And a catalyst layer containing an active material formed by coating, drying and heat-treating the coating slurry on the surface of the porous metal structure.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are for illustrative purpose only and that the scope of the present invention is not limited to these embodiments.
실시예 1: 다공극성 금속 구조체 상에 슬러리가 코팅된 금속 구조체 기반 탈질 촉매 제조Example 1: Manufacture of a metal structure-based denitration catalyst with a slurry coated on a porous metal structure
활성물질 전구체로서 바나듐 전구체 1.2 g 및 텅스텐 전구체 3.9 g, 개질제 및 pH 조정제로서 옥살산 3.5 g을 증류수 80 ml에 투입하고 혼합하여 용액을 제조하였다. 그런 다음, 상기 용액에 담체로서 티타니아(TiO2) 분말 40 g, 무기결합제로서 Ti-sol 6.9 ml, 유기결합제로서 아크릴 변성 에폭시를 1.5 ml 투입하고 혼합하여 코팅 슬러리를 제조하였다.1.2 g of vanadium precursor and 3.9 g of tungsten precursor as active material precursors, 3.5 g of oxalic acid as a modifier and a pH adjusting agent were added to 80 ml of distilled water and mixed to prepare a solution. Subsequently, 40 g of titania (TiO 2 ) powder as a carrier, 6.9 ml of Ti-sol as an inorganic binder, and 1.5 ml of an acrylic-modified epoxy as an organic binder were added to the solution and mixed to prepare a coating slurry.
그리고, 메쉬, 포일 또는 와이어 형태의 티타늄 금속 구조체를 제조된 상기 코팅 슬러리에 함침하여 금속 구조체 표면에 코팅하였다. 그런 다음, 60 ℃에서 1 시간, 100 ℃에서 1 시간 동안 건조시킨 후, 500 ℃에서 4 시간 동안 열처리 소성과정을 거쳐 다공성 금속 구조체의 내부 및 외부 표면 상에 슬러리를 코팅하여 최종적으로 금속 구조체 기반 탈질 촉매를 제조하였다.Then, a titanium metal structure in the form of a mesh, foil or wire was impregnated into the prepared coating slurry and coated on the surface of the metal structure. Then, after drying at 60 ° C for 1 hour and at 100 ° C for 1 hour, the slurry was coated on the inner and outer surfaces of the porous metal structure through heat treatment and firing at 500 ° C for 4 hours, Catalyst.
이때, 활성물질인 바나듐 산화물이 금속 구조체 표면 상에 고분산 코팅됨을 주사전자현미경(Scanning Electron Microscope)과 에너지 분산 X선(Energy Dispersive X-ray Spectrometer) 분석을 통해 확인할 수 있었고, X선 회절분석 분석 결과에서 바나듐 전구체가 바나듐 산화물 형태의 결정구조로 전이되었다.At this time, it was confirmed by Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer analysis that vanadium oxide, which is an active material, was highly dispersed on the surface of the metal structure, and X-ray diffraction analysis In the result, the vanadium precursor was transferred to the crystal structure of the vanadium oxide type.
또한, 금속 구조체 표면상에 산화물 촉매가 균일하게 분포되어 있으며, 100℃ 건조에서 수분이 증발하고, 소성 공정을 통해 400℃ 이하에서 유기물 등이 증발하여 빈 공간이 형성되어 다공질 표면을 나타내었다(도 3 참조). In addition, the oxide catalyst is uniformly distributed on the surface of the metal structure, and moisture is evaporated at 100 캜 drying, and the organic material is evaporated at a temperature of 400 캜 or lower through the sintering process, 3).
비교예 1: 탈질 촉매 제조Comparative Example 1: Preparation of denitration catalyst
종래 사용되던 금속 구조체는 금속 구조체 상에 코팅 물질의 부착력을 높이기 위하여 물리적 또는 화학적 처리를 통해 표면 조도(Surface Roughness)를 형성하기 위한 전처리 공정을 먼저 수행하고, 프라이머(Primer) 산화물 층을 코팅하고 약 950 내지 1050 ℃에서 5 내지 30시간 동안 열처리를 하고, 상기 프라이머 산화물 층 상에 활성금속이 포함된 촉매층을 코팅한 후 약 400 내지 550 ℃에서 2 내지 5 시간 동안 열처리를 수행하여 탈질 촉매를 제조하였다.Conventionally used metal structures include a pretreatment process for forming surface roughness through physical or chemical treatment in order to increase the adhesion of a coating material on a metal structure, coating a primer oxide layer, A catalyst layer containing an active metal is coated on the primer oxide layer for 5 to 30 hours at 950 to 1050 ° C, and then heat treatment is performed at about 400 to 550 ° C for 2 to 5 hours to prepare a denitration catalyst .
실험예 1: 탈질 촉매에 대한 촉매 성능 평가EXPERIMENTAL EXAMPLE 1 Evaluation of Catalyst Performance on Denitration Catalyst
실시예 1 및 비교예 1에서 제조된 탈질 촉매를 아래 표 1과 같은 조건에서 촉매 성능을 측정하여, 그 결과를 아래 표 2에 기재하였다.The NO x removal catalysts prepared in Example 1 and Comparative Example 1 were measured for catalyst performance under the conditions shown in Table 1 below, and the results are shown in Table 2 below.
반응온도Reaction temperature 250 ~ 500 ℃250 to 500 ° C
공간속도Space velocity 5,000/hr5,000 / hr
암모니아/질소산화물 몰비Ammonia / nitrogen oxide mole ratio 1.01.0
질소산화물Nitrogen oxide 300 ppm300 ppm
산소Oxygen 4%4%
탈질 활성 (%)Denitrification activity (%) 250℃250 ℃ 300℃300 ° C 350℃350 ℃ 400℃400 ° C 450℃450 ℃ 500℃500 ℃
실시예 1의 탈질 촉매The denitration catalyst of Example 1 82.582.5 89.789.7 98.598.5 97.597.5 95.995.9 89.589.5
비교예 1의 탈질 촉매The denitration catalyst of Comparative Example 1 79.479.4 86.886.8 94.294.2 92.392.3 90.490.4 87.987.9
표 2를 참조로, 상기 표 1과 같은 조건으로 250 ~ 500 ℃ 사이에서 50 ℃ 간격으로 승온하면서 탈질 촉매의 성능을 분석한 결과, 실시예 1에 따른 탈질 촉매는 250 ~ 500 ℃에서 80% 이상의 촉매 활성을 나타내었으며, 최고활성은 350 ℃에서 98.5%로 나타났다.With reference to Table 2, the performance of the denitration catalyst was examined at 250 ° C. to 500 ° C. under the same conditions as those shown in Table 1. As a result, it was found that the denitration catalyst according to Example 1 had an 80% Catalytic activity, and the highest activity was found to be 98.5% at 350 ℃.
반면, 비교예 1에 따른 탈질 촉매는 250 ~ 500 ℃에서 약 80% 이상의 촉매 활성을 나타내었으며, 최고활성은 350 ℃에서 94.2%로 나타났다.On the other hand, the NO x removal catalyst according to Comparative Example 1 showed a catalytic activity of about 80% or more at 250 to 500 ° C, and the maximum activity was 94.2% at 350 ° C.
따라서, 본 발명에 따른 다공극성 금속 구조체 기반 탈질 촉매는 코팅 슬러리를 단 1회 도포하여도, 코팅 슬러리 내에 포함된 개질제, 분산제, 결합제 등으로 인해 금속 표면 조도를 위한 전처리 공정 없이도 우수한 탈질 효과를 나타낼 수 있다.Therefore, even when the coating slurry is coated once, the porous metal structure-based denitration catalyst according to the present invention exhibits excellent denitrification effect even without a pretreatment process for metal surface roughness due to the modifier, dispersant, binder, etc. contained in the coating slurry .
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Do. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the actual scope of the invention is defined by the appended claims and their equivalents.
본 발명에 따른 다공극성 금속 구조체 기반 탈질 촉매는 생산성 및 경제성이 우수하고, 선박용 뿐만 아니라 발전소, 소각로, 제지산업, 시멘트산업, 유리산업, 대형디젤차, 디젤농기구, 철도용 엔진, 산업용 및 중소형 발전엔진 등 다양한 분야에 탈질촉매로 적용할 수 있다.The porous metal structure-based denitration catalyst according to the present invention is excellent in productivity and economy and can be used not only for ships but also for power plants, incinerators, paper industry, cement industry, glass industry, large diesel vehicles, diesel farm equipment, railway engines, And the like as a denitration catalyst.
특히, 선박 내 한정된 공간에서 최소화 및 최적화하여 설치가 용이하고 유지보수 및 관리가 편리하므로 선박용 탈질 촉매에 적용될 수 있다.In particular, it can be applied to marine NOx removal catalysts because it is easy to install, minimizes and optimizes in a limited space within the vessel, and is easy to maintain and manage.

Claims (9)

  1. i) 배기가스를 다방향으로 관통하도록 하는 다공극성 금속 구조체를 제조하는 단계;i) fabricating a porous metal structure that allows the exhaust gas to pass through in multiple directions;
    ii) 활성물질 전구체, 세라믹 분말, 개질제 및 결합제를 포함하는 코팅 슬러리를 제조하는 단계; 및 ii) preparing a coating slurry comprising an active material precursor, a ceramic powder, a modifier and a binder; And
    iii) 상기 다공극성 금속 구조체 표면 상에 상기 코팅 슬러리를 직접 코팅하고, 450 내지 500 ℃에서 2 내지 4시간 동안 열처리하여 촉매를 제조하는 단계;를 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.iii) directly coating the coating slurry on the surface of the porous metal structure, and heat treating the coated slurry at 450 to 500 ° C for 2 to 4 hours to prepare a catalyst; A method for producing a denitration catalyst.
  2. 제1항에 있어서, 상기 코팅 및 열처리 단계는 2회 미만으로 수행되어 금속 표면 조도 형성을 위한 전처리 공정을 수행하지 않은 상기 i) 단계의 금속 구조체 상에 상기 코팅 슬러리가 고부착 코팅되는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method according to claim 1, wherein the coating and heat treatment step is performed less than two times to coat the coating slurry on the metal structure of step i) without performing a pretreatment step for metal surface roughness formation A method for preparing a denitration catalyst based on a metal structure for selective catalytic reduction using a coating slurry.
  3. 제1항에 있어서, 상기 다공극성 금속 구조체는 스테인레스 스틸, 알루미늄 또는 티타늄의 금속 또는 합금 재질의 메쉬(mesh), 포일(foil) 또는 와이어(wire) 형태인 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method of claim 1, wherein the porous metal structure is in the form of a mesh, foil, or wire of stainless steel, aluminum, or titanium metal or alloy. METHOD FOR PREPARING NOx removal catalyst based on reducing metal structure.
  4. 제1항에 있어서, 상기 코팅 슬러리는 점도제 또는 pH조정제를 추가로 포함하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method of claim 1, wherein the coating slurry further comprises a viscosity agent or a pH adjuster.
  5. 제1항에 있어서, 상기 활금물질 전구체로는 주 활성금속 전구체로 바나듐산화물(V2O5)의 전구체를 사용하고, 보조 활성금속 전구체로 텅스텐산화물(WO3), 몰리브덴산화물(MoO3), 코발트산화물(Co2O3), 철산화물(Fe2O3), 크롬산화물(Cr2O3) 구리산화물(CuO), 망간산화물(MnO), 니켈산화물(NiO), 세슘산화물(CsO) 및 니오븀산화물(Nb2O5) 로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The method of claim 1, wherein the precursor of the activator precursor is a precursor of vanadium oxide (V 2 O 5 ) as a main active metal precursor, and a precursor of tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ) Cobalt oxide (Co 2 O 3 ), iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ) copper oxide (CuO), manganese oxide (MnO), nickel oxide (NiO), cesium oxide And niobium oxide (Nb 2 O 5 ) is used as a catalyst for the selective catalytic reduction.
  6. 제1항에 있어서, 상기 세라믹 분말은 실리카(SiO2)계, 알루미나(Al2O3)계, 지르코니아(ZrO2)계 또는 티타니아(TiO2)계 분말을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The coating slurry according to claim 1, wherein the ceramic powder is selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and titania (TiO 2 ) A method for preparing a denitration catalyst based on a metal structure for selective catalytic reduction.
  7. 제1항에 있어서, 상기 개질제로는 포름산, 아세틸아세톤, 아세트산, 카르복시산, 옥살산 및 시트르산로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The metal catalyst-based denitration catalyst for selective catalytic reduction using the coating slurry according to claim 1, wherein at least one selected from the group consisting of formic acid, acetylacetone, acetic acid, carboxylic acid, oxalic acid and citric acid is used as the modifier ≪ / RTI >
  8. 제1항에 있어서, 상기 결합제는 유기 또는 무기 결합제가 사용되며, 상기 유기 결합제는 아크릴레이트계, 폴리비닐알코올계, 폴리비닐아세테이트계, 폴리비닐부트랄계, 폴리비닐피롤리돈계, 에틸셀룰로오스계, 메틸셀룰로오스계, 나이트로셀룰로오스계, 카르복시 메틸셀룰로오스계, 하이드록시 프로필메틸셀룰로오스계, 메틸하이드록시 에틸셀룰로오스계 및 에폭시계로 구성된 군으로부터 선택된 1종이고, 상기 무기 결합제는 실리카이트계 졸, 알루미나계 졸, 티타니아계 졸, 지르코니아계 졸, 세라믹울 및 벤토나이트로 구성된 군으로부터 선택된 1종 이상을 사용하는 것을 특징으로 하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매의 제조방법.The organic binder according to claim 1, wherein the binder is an organic or inorganic binder, and the organic binder is selected from the group consisting of acrylate, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polyvinyl pyrrolidone, ethyl cellulose, And one kind selected from the group consisting of methyl cellulose, nitrocellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, methylhydroxyethylcellulose and epoxy. The inorganic binder is selected from the group consisting of silicate sol, alumina sol , Titania-based sol, zirconia-based sol, ceramic wool, and bentonite is used as a catalyst for the selective catalytic reduction.
  9. 금속 지지체 간의 다수 공극이 형성되어 상기 공극을 통해 배기가스가 다방향으로 관통하도록 하는 다공극성 금속 구조체; 및 A porous metal structure having a plurality of voids formed between metal supports to allow the exhaust gas to penetrate through the voids in multiple directions; And
    상기 다공극성 금속 구조체 표면 상에 제1항에 따른 코팅 슬러리가 코팅, 건조 및 열처리되어 형성된 활성물질이 포함된 촉매층;을 포함하는 코팅 슬러리를 이용한 선택적 촉매 환원용 금속 구조체 기반 탈질 촉매.And a catalyst layer comprising an active material formed by coating, drying and heat-treating the coating slurry according to claim 1 on the surface of the porous metal structure.
PCT/KR2017/014867 2017-12-14 2017-12-15 Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same WO2019117382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0172249 2017-12-14
KR1020170172249A KR102090726B1 (en) 2017-12-14 2017-12-14 Metal Structure based NOx Removal Catalyst for Selective Catalyst Reduction using Coating Slurry and Method for Manufacturing Same

Publications (1)

Publication Number Publication Date
WO2019117382A1 true WO2019117382A1 (en) 2019-06-20

Family

ID=66819633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014867 WO2019117382A1 (en) 2017-12-14 2017-12-15 Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same

Country Status (2)

Country Link
KR (1) KR102090726B1 (en)
WO (1) WO2019117382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212244A1 (en) * 2020-09-08 2023-07-19 The Chugoku Electric Power Co., Inc. Nox reduction catalyst coating liquid
EP4212233A1 (en) * 2020-09-08 2023-07-19 The Chugoku Electric Power Co., Inc. Denitration catalyst molded body and method for manufacturing denitration catalyst molded body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498427B1 (en) * 2021-02-01 2023-02-13 주식회사 비에이치피 Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process Using Metal Foam and Preparation Methods Thereof
KR102498425B1 (en) * 2021-02-01 2023-02-13 주식회사 비에이치피 Catalyst for Treating Hazardous Gas Generated in Semiconductor Manufacturing Process and Preparation Methods Thereof
KR102476863B1 (en) * 2021-11-09 2022-12-14 대영씨엔이(주) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009279A (en) * 1999-06-29 2001-01-16 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, its production and method for purifying exhaust gas
KR20060087084A (en) * 2005-01-28 2006-08-02 주식회사 나노 Manufacturing method of titania for extrusion forming of de-nox catalyst
KR20100093823A (en) * 2009-02-17 2010-08-26 고려대학교 산학협력단 Method for catalysts coating on microchannels
KR101733171B1 (en) * 2016-06-21 2017-05-08 한국생산기술연구원 NOx Removal Catalyst using Ceramic Nanotube on Metal Structure with Gaps for Ship and Method for Manufacturing Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584961B1 (en) 1999-11-10 2006-05-29 에스케이 주식회사 A coating method of catalyst for selective catalytic reduction of nitrogen oxides, and a supporting body using the same
JP2001347164A (en) 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for producing vanadia scr catalyst supported on titania
KR100781726B1 (en) * 2006-09-15 2007-12-03 한국중부발전(주) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate
KR101891233B1 (en) * 2015-08-20 2018-08-28 주식회사 에코프로 Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009279A (en) * 1999-06-29 2001-01-16 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, its production and method for purifying exhaust gas
KR20060087084A (en) * 2005-01-28 2006-08-02 주식회사 나노 Manufacturing method of titania for extrusion forming of de-nox catalyst
KR20100093823A (en) * 2009-02-17 2010-08-26 고려대학교 산학협력단 Method for catalysts coating on microchannels
KR101733171B1 (en) * 2016-06-21 2017-05-08 한국생산기술연구원 NOx Removal Catalyst using Ceramic Nanotube on Metal Structure with Gaps for Ship and Method for Manufacturing Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, BO: "Washcoating of cordierite honeycomb with vanadia-tungsta-tita nia mixed oxides for selective catalytic reduction of NO with NH3", CATALYSI S SCIENCE & TECHNOLOGY, vol. 5, no. 2, 2015, pages 1241 - 1250, XP055569474 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212244A1 (en) * 2020-09-08 2023-07-19 The Chugoku Electric Power Co., Inc. Nox reduction catalyst coating liquid
EP4212233A1 (en) * 2020-09-08 2023-07-19 The Chugoku Electric Power Co., Inc. Denitration catalyst molded body and method for manufacturing denitration catalyst molded body

Also Published As

Publication number Publication date
KR102090726B1 (en) 2020-04-28
KR20190071305A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2019117382A1 (en) Metal structure-based denitrification catalyst, for selective catalytic reduction, using coating slurry and method for preparing same
WO2017222306A1 (en) Denitrification catalyst for ship, using ceramic nanotubes grown on porous metal structure, and manufacturing method therefor
KR101520009B1 (en) Method and catalyst for removal of nitrogen oxides in a flue gas
EP1403231B1 (en) Method of producing a porous ceramic sintered body
EP2349950B1 (en) Honeycomb structural body for exhaust gas purification
WO2014158009A1 (en) Nanocatalyst filter and production method for same
WO2017010775A1 (en) Scr catalyst for removing nitrogen oxides and method for producing same
EP0695580A2 (en) Process for producing exhaust-gas-purifying catalyst
JPWO2006082684A1 (en) Honeycomb structure
KR20010081994A (en) Diesel exhaust gas filter
EP0756891A1 (en) Iron zeolite for conversion of NOx
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
KR20060038467A (en) Silicon carbide based catalyst material and method for preparation thereof
WO2017111350A1 (en) Catalyst-coated filter in which activity of catalyst is increased by adding lithium cocatalyst
WO2018106021A1 (en) Marine denitrification catalyst using porous ceramic three-dimensional network structure and method for producing same
CN114011400A (en) Preparation method of acid system waste incineration SCR denitration catalyst and prepared denitration catalyst
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
KR100784483B1 (en) A ceramic filter and Preparation method thereof
KR20120000980A (en) Method for manufacturing de-nox scr catalyst using calcium sulfate hemihydrate
JP2007117805A (en) Filter carrier for removing particulate matter contained in exhaust gas, and filter catalyst body
JP4633449B2 (en) Silicon carbide based porous material and method for producing the same
KR20160139473A (en) zeolite catalyst-complex and method for manufacturing thereof
WO2018056517A1 (en) Exhaust gas purification apparatus and exhaust gas purification method using same
WO2010079854A1 (en) Catalyst for removing nitrogen oxides from exhaust gas, preparation method thereof, and method for removing nitrogen oxides from exhaust gas using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934637

Country of ref document: EP

Kind code of ref document: A1