JP4344102B2 - Catalyst slurry for exhaust gas denitration and method for producing the same - Google Patents

Catalyst slurry for exhaust gas denitration and method for producing the same Download PDF

Info

Publication number
JP4344102B2
JP4344102B2 JP2001171583A JP2001171583A JP4344102B2 JP 4344102 B2 JP4344102 B2 JP 4344102B2 JP 2001171583 A JP2001171583 A JP 2001171583A JP 2001171583 A JP2001171583 A JP 2001171583A JP 4344102 B2 JP4344102 B2 JP 4344102B2
Authority
JP
Japan
Prior art keywords
catalyst
slurry
catalyst slurry
exhaust gas
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001171583A
Other languages
Japanese (ja)
Other versions
JP2002361092A (en
Inventor
泰良 加藤
尚美 今田
英治 宮本
哲郎 引野
公一 横山
晃広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001171583A priority Critical patent/JP4344102B2/en
Publication of JP2002361092A publication Critical patent/JP2002361092A/en
Application granted granted Critical
Publication of JP4344102B2 publication Critical patent/JP4344102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排ガス脱硝用触媒スラリおよびその製法に係り、特にアンモニア接触還元用排ガス脱硝触媒スラリを板厚の薄い基材にコーティングして高活性な脱硝用触媒を簡単な工程で得るための方法に関する
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中の窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3 )等を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)またはタングステン(W)を活性成分にした酸化チタン(TiO2 )系触媒が使用されており、特に活性成分の1つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから、現在の脱硝触媒の主流になっている(特開昭50−128681号公報等)。触媒は通常ハニカム状、板状に成形されて用いられている。
【0003】
上記触媒の調製法としては、酸化チタンとV、Mo、Wなどの触媒活性成分の塩類とを水とともに混練後、成形、焼成する方法(混練法)と、酸化チタンの成形−焼成体に触媒活性成分塩類の混合溶液を含浸する方法(含浸法)、あらかじめ調製した触媒成分粉末をスラリ化したものを金属やセラミック基材にコーティングする方法(特開昭50−128681号、特公昭53−34195号、特開昭63−234224)が知られている。
【0004】
【発明が解決しようとする課題】
これら従来技術の中、金属基板に触媒スラリをコーティングする方法は、製造工程数が少なく、高活性な触媒が得易い方法であるが、基材と触媒成分との接触強度が低く、触媒が剥離し易いという難点があった。このため触媒成分を予備焼成したり、微粉砕して粒径を調整して密度が高い触媒コーティング層を形成する試みがなされているが、充分な強度が得られているとはいいがたい。特に性能を向上する目的で、触媒担持量を増大すると触媒コーティング層にクラックが発生し、それが起点になって振動や熱衝撃で剥離し易くなる。このため比較的低い触媒成分の担持量で用いざるを得ず、高い性能の触媒体を得ることができなかった。また、コーティング層の強度が低く、ダストを含む排ガス中では摩耗して強度が低下するという問題もあった。
【0005】
本発明の課題は、高活性でかつ強度が高い排ガス脱硝触媒が得られるコーティング用脱硝触媒スラリおよびその製造法を提供し、これにより高性能な触媒体を得るとともに製造コストを低減することにある。
【0006】
【課題を解決するための手段】
上記課題を達成するために、本願で特許請求される発明は以下のとおりである。
(1)金属製基材表面にコーティングするための、アンモニア接触還元用脱硝触媒スラリであって、バナジウムとモリブデンの原子比V/Moが3/2である、示性式(NH4 3 Mo2 3 15 で表わされる化合物の水性溶液に、酸化チタン並びにコロイダルシリカおよび無機繊維を分散させたことを特徴とするコーティング用排ガス脱硝触媒スラリ。
【0007】
(2)金属製基材表面にコーティングするための、アンモニア接触還元用脱硝触媒スラリであって、酸化モリブデン(MoO3 )とメタバナジン酸アンモン(NH4 VO3 )とを、バナジウムとモリブデンの原子比V/Moが3/2になるように水性溶媒の共存下で反応させ、示性式(NH4 3 Mo2 3 15で表わされる化合物の水性溶液を得る工程と、該水性溶液に酸化チタン並びにコロイダルシリカおよび無機繊維を分散させる工程とを含むことを特徴とするコーティング用排ガス脱硝触媒スラリの製法。
【0008】
(3)(1)記載の触媒スラリ中に金属製板状基材を浸漬して触媒スラリをコーティングした後、乾燥および焼成することを特徴とする排ガス脱硝触媒の製造方法。
【0009】
(4)金属製板状基材表面に波形、凹凸形または階段状の突起が形成されたものをあらかじめ積層して一体化した後、(1)記載の触媒スラリ中に浸漬して触媒スラリをコーティングし、乾燥および焼成することを特徴とする排ガス脱硝触媒の製造方法。
【0010】
以下、本発明を図面により詳細に説明する。
図1(a)、(b)、(c)、(d)は、それぞれ本発明において触媒基材として用いる種々の網状物の断面図、図2は上記網状物を積層して触媒構造体とした場合の斜視図である。
【0011】
本発明の触媒スラリに用いる可溶性Mo−V化合物は、本発明者らが上記従来技術の解決のため鋭意研究した結果見出したものであり、メタバナジン酸アンモニウム(NH4 VO3 )と三酸化モリブデン(MoO3 )とをV/Mo原子比で3/2(実用的には3/1.7〜3/2.3)で水に添加後、撹拌して得られる赤褐色の物質であり、溶解度は常温で170g/リットルと大きいことを特徴とする化合物である。この化合物の溶液に酸化チタン、必要に応じて結合剤であるコロイダルシリカおよび無機繊維を添加してスラリ状にし、これを前記基材に吹きつけるか、該スラリ中に基材を浸漬することにより、基材に触媒成分層が形成される。
【0012】
本発明のスラリに用いるMo−V化合物と酸化チタンの重量比率は0を超えて50/100以下、好ましくは5/100〜25/100である。また、必要に応じて添加されるコロイダルシリカの添加量は、酸化チタンに対するSiO2 量として0を超えて50wt%以下、好ましくは5〜30wt%である。また、無機繊維としては、アルミノシリケート繊維などのセラミック繊維、石英硝子、E硝子など、アルカリ分が少ない材質の繊維を数十μm以下に切断したものを用いることができる。無機繊維の添加量は酸化チタンに対し0〜70wt%、好ましくは10〜50wt%の範囲である。
【0013】
上記触媒成分の担持に用いる網状物としては、ステンレス、軟鋼、アルミニウム製メタルラス、金網、無機繊維製網状織布を無機バインダで固めたもの、板状のセラミック多孔体などが用いられる。これらの基材はあらかじめ図1に示すように、波状、凹凸状などの突起を形成され、図2に示した種々の積層法で積層されてガス流路が形成されるようになっている。
【0014】
本発明の触媒は、特定の可溶性Mo−V化合物の溶液と酸化チタン粉末とを混合してなるスラリを触媒基材に担持していればよく、例えば上記コロイダルシリカを他の無機ゾルに変更したり、上記以外の無機繊維を用いるようにしてもよい。また、スラリのコーティングされ易さをコントロールするため、有機または無機の添加剤を添加することも可能である。
【0015】
触媒基材に対する触媒の担持量は、基材の厚さと必要性能により自由に選定できるが、厚さ0.5mmの基材の場合、100〜400g/m2 担持すると高性能な触媒を得易い。
【0016】
次に、図3(a)は、本発明の触媒スラリを、メタルラス基材の網目状の貫通孔を埋めるようにコーティング法によりメタルラス基材に塗布し、乾燥、焼成して得られた触媒体の外観を示す図である。比較として図3(b)に酸化チタン、メタバナジン酸アンモンおよびモリブデン酸アンモンを含む従来の触媒スラリを用いて同様にコーティングした触媒の外観を示した。図3(b)の従来のコーティング触媒では網状担体の網目に保持されたスラリ中の水分の蒸発と焼成時のシンタリングにより触媒層が収縮し、大きな亀裂を生じていることがわかる。そして、この亀裂が起点になって基材から触媒が脱落し易く、強度の高い触媒が得られず、また水分蒸発やシンタリングにより触媒層が収縮して細孔容積を低下させるため、高い脱硝性能が得られない。
【0017】
これに対し、図3(a)の本発明の触媒は、可溶性Mo−V化合物と酸化チタンとを主成分とする特定のスラリを用いたことにより、クラックを全く生じないコーティング層を形成することができる。この可溶性Mo−V化合物は示性式が(NH4 3 Mo2 3 15で示されるヘテロポリ酸であると推定される。一般にヘテロポリ酸は無機ポリマーと称され、無機バインダとして用いる試みがなされているものであり、このポリマー構造が酸化チタン粒子間の結合を高めるとともに、収縮を阻害してクラックの発生に寄与するものと推定される。また、従来の方法の場合、コロイダルシリカなどのゾル状物をバインダに用いて強度を高めようとすると、触媒成分中からMoやVのオキソ酸イオンが溶け出て無機ゾルをゲル化させ、バインダ効果を得にくい。ところが、本発明の方法では活性成分であるMoとVのポリ酸と推定される特定化合物は、シリカゾルなどの無機ゾルをゲル化させることがなく、長期間安定な混合状態を維持し、バインダ効果を損ねないため、強度の高い触媒を得ることができる。
【0018】
さらに、本発明ではスラリの担持後の乾燥過程における収縮が少なく、水分の飛散した部分が細孔を形成し、触媒内へのガス拡散を促進する。これにより従来のコーティング方法に較べ飛躍的に活性を増大することが可能となる。
本発明の触媒は、以上のような作用により高強度かつ高活性が実現されるだけでなく、触媒製造上も次のような大きな効果がある。
【0019】
従来のスラリコーティング用スラリでは、スラリ状態が無機金属イオンの影響を受ける。このため金属性基材を積層したユニットの浸漬などを連続して製造しようとすると、溶け出た金属イオンによりスラリの粘度が徐々に増大して担持することが難しくなる。これに対し、本発明のスラリに金属基板を浸漬してもスラリの粘度が上昇することがないため、連続して触媒スラリコーティングすることが可能となり、量産に適した製造法が可能である。
【0020】
【発明の実施の形態】
以下、本発明の具体的実施例を述べる。
実施例1
水900gに90gの三酸化モリブデン(MoO3 )と100gのメタバナジン酸アンモン(NH4 VO3 )を添加したスラリを常温で20時間緩やかに撹拌し、両者を反応させて完全溶解させ、示性式(NH4 3 Mo2 3 15で示される化合物を含む褐色の透明溶液を得た。得られた反応液の固形分は17.5wt%である。得られたMo−V化合物溶液にコロイダルシリカ(日産化学社製、商品名OSゾル、SiO2 分20%)を重量比で7:3に混合添加し、混合溶液を調製した。この混合溶液を106g分取し、これにE硝子製繊維(セントラル硝子社製、商品名ミルドファイバEFH−100、長さ100μm)を10g(酸化チタンの20%)、酸化チタン粉末(ミレニアム社製、G5)を50gを添加後、撹拌して本発明のコーティング用スラリを得た。
【0021】
これとは別に幅500mm−板厚0.2mmのSUS430製帯鋼をメタルラス加工して目開きが約2mmの網状基材を作成し、これから100mm角の試験片を切り出した。本試験片を先に調製したコーティングスラリに浸漬後、引き上げてメタルラスの網目を埋めるように触媒スラリを担持し、風乾後500℃で2時間焼成して触媒担持量350g/m2 の本発明の触媒を得た。
比較例1
比表面積約230m2 /gの酸化チタン1.5kgとメタバナジン酸アンモン86.7g、モリブデン酸アンモン88.3gおよび蓚酸75gとをニーダに投入後、水を粘土状になるまで加えながら混練し、酸化チタンにモリブデンおよびバナジウム化合物が均一担持されるようにした。得られた粘土状物を押出し造粒機を用いて3mmφ円筒状に押出した後、流動層乾燥、500℃で2時間焼成、しかる後に粉機を用いて1μm以下が50%以上の触媒微粉を得た。
【0022】
上記触媒粉40g、前記ミルドファイバ8gおよび水60gを混合してスラリを調製し、これを実施例1と同様の方法でSUS430メタルラスに担持して担持量380g/m2 の触媒を得た。
比較例2
比較例1におけるスラリ調製時の水に代えて、実施例1に用いたコロイダルシリカと水との3/7重量比の溶液を用いてスラリを調製した。しかしながら、本スラリの場合にはコロイダルシリカのゲル化に起因すると考えられる粘度の急激な増大が見られ、良好なコーティング触媒が得られなかった。
実施例2〜5
実施例1におけるMo−V化合物とシリカゾルの混合比7/3を100/0、85/15、50/50および30/70にそれぞれ変更し、他は同様にして本発明の触媒を得た。
実施例6〜10
実施例1の酸化チタンに対するミルドファイバの添加量(20%)を0、10、30、50および70wt%にそれぞれ変更し、他は同様にして本発明の触媒を調製した。
【0023】
実施例1〜10および比較例1で得られた触媒から10mm×100mmの短冊状のテストピースを切り出し、表1に示す条件で脱硝性能を測定した。また、実施例1〜9および比較例で得られた触媒の耐剥離性を評価するため、作成した100mm×100mm角の触媒板を高さ1mから鋼板上に10回落としたときの触媒の剥離量を測定した。これら試験により得られた結果を触媒組成とともに表2に示した。
【0024】
【表1】

Figure 0004344102
【0025】
【表2】
Figure 0004344102
【0026】
実施例になる触媒は、いずれも比較例1の触媒に較べ脱硝性能が高く、剥離試験による触媒剥離量が少ない。このことから本発明の方法が性能ならびに強度の高い触媒を得るに好適な方法であることは明白である。
【0027】
また、実施例1〜5の性能と剥離量を比較すると、シリカゾルの添加量の増大により剥離量は低減できるが、脱硝性能は低下する傾向が見られ、TiO2 に対するSiO2 の添加量を実施例で示した範囲である30wt%以下にすると活性とともに、強度も高く維持することができる。
【0028】
また、実施例1および6〜10の触媒の性能を比較すると、無機繊維である前記ミルドファイバの添加量の増大は、活性の向上と剥離量の低減に効果があることがわかる。しかし、添加量の増大に伴ってスラリの粘性が増大して、薄いコーティング層の形成が困難になる傾向が見られた。したがって、無機繊維は酸化チタンに対し70wt%以下、好ましくは50wt%以下に抑えると、良好なコーティング層を得易いことがわかった。
実施例11
実施例1において、メタルラスを触媒スラリ中に浸漬後、引き上げ、さらに圧縮空気を吹きつけてメタルラスの目を埋めていたスラリを除去した。得られた触媒体を実施例1と同様にして乾燥および焼成してメタルラス表面を触媒が薄く覆った本発明の網状触媒体を得た。
【0029】
比較例3
比較例1の触媒スラリを用い、実施例11と同様の方法で網状触媒体を得た。
実施例12
実施例1に用いたミルドファイバに代えて、アルミノシリケート繊維(東芝モノフラックス社製、ファイバフラックス)を長さ約0.1mmに粉砕したものを用い、他は同様にして本発明の触媒を得た。
比較例4
比較例1に用いたミルドファイバに代えて、アルミノシリケート繊維(東芝モノフラックス社製、ファイバフラックス)を長さ約0.1mmに粉砕したものを用い、他は同様にして触媒を得た。
【0030】
実施例13
繊維径9μmのEガラス性繊維1400本の捻糸を10本/インチの粗さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニールアルコール1%のスラリを含浸し、150℃で乾燥して剛性を持たせ触媒基材を得た。本基材を100mm×100mm角に切り出し、実施例1のメタルラス担体に代えて用い、他は同様にして本発明の触媒を調製した。
比較例5
実施例13に用いたセラミックス製触媒基材をメタルラスに代えて用い、他は比較例1と同様にして触媒を調製した。
実施例11〜13および比較例3〜5の触媒の脱硝性能と剥離試験による剥離量とを測定し、結果を表3に示した。
【0031】
【表3】
Figure 0004344102
【0032】
実施例11および比較例3の結果の比較から、網状素材の編目の開いた、触媒担持量の少ない場合でも、本発明の触媒は高活性と低剥離量を維持できることがわかる。また、実施例12と比較例4、実施例13と比較例5の結果の比較から、無機繊維が他のものであっても、または網状担体がメタルラス以外のセラミック担体であっても同様に優れた触媒が得られることがわかる。
【0033】
このように特定組成の可溶性Mo−V化合物を利用することにより、きわめて少ない工程で高い脱硝性能と剥離強度を有する触媒を得ることができる。
実施例14
金属製網状基板を多数積層して形成した触媒ユニットに本発明の触媒スラリを含浸して触媒をコーティングした。すなわち、実施例1で用いたと同様のSUS430製のメタルラス基材に高さ2mmの波形を線条に形成し、図4のような触媒基材を複数枚作成した。これを軟鋼製の触媒枠に46枚積層して150mm角、長さ250mmの触媒担体ユニットを作成した。
【0034】
これとは別に実施例1と同組成のスラリを20kg調製し、上記ユニットを浸漬し、ユニットを揺り動かしながら10分間経過後、スラリから引き上げて液切りした。ファンで室温の空気を当てながら風乾後、500℃で2時間焼成して本発明のユニット状触媒を調製した。
比較例6
実施例14と同じ金属製の触媒ユニットと比較例1で用いた触媒スラリとを用いて同様のコーティング触媒を得た。
【0035】
実施例14と比較例6の試験後のスラリを比較すると、前者は含浸試験前後で性状の差異は見られなかったが、後者のスラリは黒色に変色して粘度が著しく上昇する現象が見られた。これは金属基材および金属枠からFeイオンが溶出して触媒を変質させるとともに、粘度を上昇させたものと考えられる。このように従来のコーティング法では、金属基材を用いた場合にはスラリの変質による粘度の変化が均一な触媒製造を阻んでいたが、本発明によるコーティング方法では可溶性Mo−V化合物がきわめて安定なため、金属イオン等による変質がなく安定にコーティング操作を続けることが可能である。したがって、本発明は触媒製造の点からも有用であることがわかる。
【0036】
実施例14と比較例6で得られた触媒ユニットをそのまま充填できる排ガス脱硝装置を用い、表4の条件で脱硝性能を測定した。本発明の触媒を用いた場合には脱硝率が99%と高かったが、比較例6の触媒では94%と低かった。ユニット状でスラリをコーティングして触媒ユニットを構成した場合も高い性能が得られる。
【0037】
【表4】
Figure 0004344102
【0038】
【発明の効果】
本発明によれば、活性が高く剥離の少ない排ガス脱硝用触媒が得られ、脱硝装置の高性能化が図ることができる。また、本発明の排ガス脱硝触媒スラリは、予備焼成や粉砕などの複雑な製造工程を必要としない上、得られるコーティング用スラリの性状が安定であり、金属基板製担体のように無機イオンの溶出し易い担体であっても性状が変化することがないので、均一な触媒を安価に大量に製造することが可能になる。
【図面の簡単な説明】
【図1】本発明に用いる平板状の触媒基材に形成される線条の例を示す触媒基材の断面図。
【図2】本発明の平板状触媒が積層されて使用される場合の触媒構造体の斜視図。
【図3】本発明の触媒の外観を示す図。
【図4】実施例14に用いた触媒基材の概略の寸法を示す図。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an exhaust gas denitration catalyst slurry and a method for producing the same, and more particularly to a method for obtaining a highly active denitration catalyst by a simple process by coating an ammonia contact reduction exhaust gas denitration catalyst slurry on a thin substrate. .
[0002]
[Prior art]
Nitrogen oxides (NOx) in flue gas emitted from power plants, various factories, automobiles, etc. are causative substances of photochemical smog and acid rain. As an effective removal method, ammonia (NH 3 ) is used. A flue gas denitration method using selective catalytic reduction as a reducing agent is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. Particularly, one containing vanadium as an active component is active. In addition to being high, the deterioration due to impurities contained in the exhaust gas is small, and since it can be used at a lower temperature, it has become the mainstream of current denitration catalysts (Japanese Patent Laid-Open No. 50-128681 etc.). The catalyst is usually used in the form of a honeycomb or a plate.
[0003]
As a method for preparing the catalyst, titanium oxide and salts of catalytically active components such as V, Mo and W are kneaded together with water, and then molded and fired (kneading method). A method of impregnating a mixed solution of active ingredient salts (impregnation method), a method of coating a slurry of previously prepared catalyst component powder on a metal or ceramic substrate (Japanese Patent Laid-Open No. 50-128681, Japanese Patent Publication No. 53-34195) No. 63/234224).
[0004]
[Problems to be solved by the invention]
Among these conventional techniques, the method of coating a catalyst slurry on a metal substrate is a method in which the number of manufacturing steps is small and it is easy to obtain a highly active catalyst, but the contact strength between the substrate and the catalyst component is low, and the catalyst is peeled off. There was a difficulty that it was easy to do. For this reason, attempts have been made to pre-fire the catalyst component or finely pulverize it to adjust the particle size to form a catalyst coating layer having a high density, but it is difficult to say that sufficient strength is obtained. In particular, for the purpose of improving the performance, when the amount of the catalyst supported is increased, a crack is generated in the catalyst coating layer, which becomes a starting point and is easily peeled off by vibration or thermal shock. For this reason, it was necessary to use a relatively low amount of the catalyst component, and a high-performance catalyst body could not be obtained. In addition, the strength of the coating layer is low, and there is also a problem that the strength is lowered due to wear in exhaust gas containing dust.
[0005]
An object of the present invention is to provide a denitration catalyst slurry for coating from which an exhaust gas denitration catalyst having high activity and high strength can be obtained, and a method for producing the slurry, thereby obtaining a high-performance catalyst body and reducing production costs. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) A denitration catalyst slurry for ammonia catalytic reduction for coating on the surface of a metallic substrate, wherein the atomic ratio V / Mo of vanadium and molybdenum is 3/2, and the formula (NH 4 ) 3 Mo the aqueous solution of the compound represented by the 2 V 3 O 15, titanium oxide and colloidal silica and coating the exhaust gas denitration catalyst slurry, characterized in that the non-machine fibers were dispersed.
[0007]
(2) A denitration catalyst slurry for catalytic catalytic reduction for coating on the surface of a metal substrate, comprising molybdenum oxide (MoO 3 ) and ammonium metavanadate (NH 4 VO 3 ) in an atomic ratio of vanadium and molybdenum. Reacting in the presence of an aqueous solvent so that V / Mo is 3/2 to obtain an aqueous solution of the compound represented by the formula (NH 4 ) 3 Mo 2 V 3 O 15; preparation of the coating exhaust gas denitration catalyst slurry, which comprises a step of dispersing titanium oxide and colloidal silica and non-machine fibers.
[0008]
(3) A method for producing an exhaust gas denitration catalyst, comprising: dipping a metal plate-like substrate in the catalyst slurry according to (1) to coat the catalyst slurry, followed by drying and firing.
[0009]
(4) Waveform to a metal plate base material surface, after integrating previously laminated to those irregularities shaped or step-like projections are formed, the catalyst slurry was dipped in a catalyst slurry described (1) A method for producing an exhaust gas denitration catalyst , which is coated, dried and calcined.
[0010]
Hereinafter, the present invention will be described in detail with reference to the drawings.
1 (a), (b), (c), and (d) are cross-sectional views of various reticulates used as a catalyst substrate in the present invention, respectively, and FIG. FIG.
[0011]
The soluble Mo-V compound used in the catalyst slurry of the present invention has been found by the present inventors as a result of intensive studies for solving the above-described prior art. Ammonium metavanadate (NH 4 VO 3 ) and molybdenum trioxide ( MoO 3 ) is a reddish-brown substance obtained by adding water to water at a V / Mo atomic ratio of 3/2 (practically 3 / 1.7 to 3 / 2.3) and stirring. It is a compound characterized by being as large as 170 g / liter at room temperature. By adding titanium oxide, colloidal silica, which is a binder, and inorganic fibers as necessary to the solution of this compound to form a slurry and spraying this onto the substrate, or by immersing the substrate in the slurry A catalyst component layer is formed on the substrate.
[0012]
The weight ratio of the Mo-V compound and titanium oxide used in the slurry of the present invention is more than 0 and not more than 50/100, preferably 5/100 to 25/100. The amount of colloidal silica to be added if necessary, 50 wt% greater than 0 as the amount of SiO 2 with respect to titanium oxide or less, preferably 5-30 wt%. Further, as the inorganic fiber, it is possible to use a fiber made of a material having a low alkali content, such as a ceramic fiber such as an aluminosilicate fiber, quartz glass, E glass, etc., and cut into tens of μm or less. The amount of inorganic fiber added is in the range of 0 to 70 wt%, preferably 10 to 50 wt%, with respect to titanium oxide.
[0013]
Examples of the mesh used for supporting the catalyst component include stainless steel, mild steel, aluminum metal lath, metal mesh, inorganic fiber mesh woven fabric solidified with an inorganic binder, and a plate-like ceramic porous body. As shown in FIG. 1, these base materials are previously formed with projections such as undulations and irregularities, and are laminated by various lamination methods shown in FIG. 2 to form gas flow paths.
[0014]
The catalyst of the present invention is only required to support a slurry obtained by mixing a solution of a specific soluble Mo-V compound and titanium oxide powder on a catalyst base. For example, the colloidal silica is changed to another inorganic sol. Alternatively, inorganic fibers other than those described above may be used. It is also possible to add an organic or inorganic additive to control the ease with which the slurry is coated.
[0015]
The amount of the catalyst supported on the catalyst substrate can be freely selected depending on the thickness of the substrate and the required performance. However, in the case of a substrate having a thickness of 0.5 mm, it is easy to obtain a high-performance catalyst by supporting 100 to 400 g / m 2. .
[0016]
Next, FIG. 3 (a) shows a catalyst body obtained by applying the catalyst slurry of the present invention to a metal lath substrate by a coating method so as to fill the mesh-like through holes of the metal lath substrate, and drying and firing. It is a figure which shows the external appearance. For comparison, FIG. 3 (b) shows the appearance of a catalyst similarly coated using a conventional catalyst slurry containing titanium oxide, ammonium metavanadate and ammonium molybdate. It can be seen that in the conventional coating catalyst of FIG. 3B, the catalyst layer contracts due to evaporation of water in the slurry held in the mesh of the mesh carrier and sintering during firing, resulting in large cracks. Since the cracks are the starting point, the catalyst is easily removed from the base material, and a high-strength catalyst cannot be obtained. Also, the catalyst layer contracts due to moisture evaporation and sintering, thereby reducing the pore volume. Performance cannot be obtained.
[0017]
On the other hand, the catalyst of the present invention shown in FIG. 3A forms a coating layer that does not cause any cracks by using a specific slurry mainly composed of a soluble Mo—V compound and titanium oxide. Can do. This soluble Mo-V compound is presumed to be a heteropolyacid having a characteristic formula of (NH 4 ) 3 Mo 2 V 3 O 15 . In general, heteropolyacids are called inorganic polymers, and attempts have been made to use them as inorganic binders. This polymer structure enhances the bond between titanium oxide particles and inhibits shrinkage and contributes to the generation of cracks. Presumed. Also, in the case of the conventional method, if an attempt is made to increase the strength by using a sol-like material such as colloidal silica as a binder, Mo or V oxo acid ions are dissolved from the catalyst component to gel the inorganic sol, It is difficult to obtain an effect. However, in the method of the present invention, the specific compound presumed to be an active ingredient Mo and V polyacid does not gel an inorganic sol such as silica sol, and maintains a stable mixed state for a long period of time. Therefore, a highly strong catalyst can be obtained.
[0018]
Furthermore, in the present invention, there is little shrinkage in the drying process after the slurry is loaded, and the portion where the water is scattered forms pores, which promote gas diffusion into the catalyst. This makes it possible to dramatically increase the activity as compared with the conventional coating method.
The catalyst of the present invention not only achieves high strength and high activity by the action as described above, but also has the following great effects in catalyst production.
[0019]
In a conventional slurry for slurry coating, the slurry state is affected by inorganic metal ions. For this reason, when it is going to manufacture continuously the immersion etc. of the unit which laminated | stacked the metallic base material, the viscosity of slurry increases gradually by the metal ion which melt | dissolved, and it becomes difficult to carry | support. In contrast, since the viscosity of the slurry does not increase even if the metal substrate is immersed in the slurry of the present invention, it is possible to continuously perform catalytic slurry coating, and a manufacturing method suitable for mass production is possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described.
Example 1
A slurry in which 90 g of molybdenum trioxide (MoO 3 ) and 100 g of ammonium metavanadate (NH 4 VO 3 ) were added to 900 g of water was gently stirred at room temperature for 20 hours, and both were reacted and completely dissolved. A brown transparent solution containing a compound represented by (NH 4 ) 3 Mo 2 V 3 O 15 was obtained. The solid content of the obtained reaction liquid is 17.5 wt%. Colloidal silica (manufactured by Nissan Chemical Industries, trade name OS sol, SiO 2 min 20%) was mixed and added to the obtained Mo-V compound solution at a weight ratio of 7: 3 to prepare a mixed solution. 106 g of this mixed solution was taken, and 10 g (20% of titanium oxide) of E glass fiber (manufactured by Central Glass Co., Ltd., trade name Milled Fiber EFH-100, length 100 μm) and titanium oxide powder (Millennium) , G5) was added and stirred to obtain a coating slurry of the present invention.
[0021]
Separately, a SUS430 strip steel having a width of 500 mm and a thickness of 0.2 mm was subjected to metal lath processing to prepare a reticulated substrate having an opening of about 2 mm, and a 100 mm square test piece was cut out therefrom. After immersing this test piece in the previously prepared coating slurry, the catalyst slurry is supported so as to be pulled up to fill the mesh of the metal lath, air-dried and then calcined at 500 ° C. for 2 hours, and the amount of the catalyst supported is 350 g / m 2 . A catalyst was obtained.
Comparative Example 1
After adding 1.5 kg of titanium oxide having a specific surface area of about 230 m 2 / g, 86.7 g of ammonium metavanadate, 88.3 g of ammonium molybdate, and 75 g of oxalic acid to the kneader, the mixture is kneaded while adding water until it becomes a clay. Molybdenum and vanadium compounds were uniformly supported on titanium. The resulting clay-like material was extruded into a 3 mmφ cylinder using an extrusion granulator, then fluidized bed dried, calcined at 500 ° C. for 2 hours, and then a fine powder of 1 μm or less was 50% or more using a powder machine. Obtained.
[0022]
A slurry was prepared by mixing 40 g of the catalyst powder, 8 g of the milled fiber and 60 g of water, and this was supported on a SUS430 metal lath in the same manner as in Example 1 to obtain a catalyst having a loading amount of 380 g / m 2 .
Comparative Example 2
A slurry was prepared using a 3/7 weight ratio solution of colloidal silica and water used in Example 1 in place of the water at the time of slurry preparation in Comparative Example 1. However, in the case of this slurry, a sharp increase in viscosity, which is considered to be caused by the gelation of colloidal silica, was observed, and a good coating catalyst could not be obtained.
Examples 2-5
The catalyst of the present invention was obtained in the same manner except that the mixing ratio 7/3 of the Mo-V compound and silica sol in Example 1 was changed to 100/0, 85/15, 50/50 and 30/70, respectively.
Examples 6-10
The catalyst of the present invention was prepared in the same manner except that the amount of milled fiber added to titanium oxide in Example 1 (20%) was changed to 0, 10, 30, 50 and 70 wt%, respectively.
[0023]
A 10 mm × 100 mm strip-shaped test piece was cut out from the catalysts obtained in Examples 1 to 10 and Comparative Example 1, and the denitration performance was measured under the conditions shown in Table 1. Moreover, in order to evaluate the peeling resistance of the catalysts obtained in Examples 1 to 9 and Comparative Example, the peeling of the catalyst when the prepared 100 mm × 100 mm square catalyst plate was dropped 10 times from a height of 1 m onto the steel plate. The amount was measured. The results obtained by these tests are shown in Table 2 together with the catalyst composition.
[0024]
[Table 1]
Figure 0004344102
[0025]
[Table 2]
Figure 0004344102
[0026]
The catalysts in the examples all have higher denitration performance than the catalyst in Comparative Example 1, and the amount of catalyst stripped by the stripping test is small. From this, it is clear that the method of the present invention is a suitable method for obtaining a catalyst having high performance and strength.
[0027]
In addition, comparing the performance of Examples 1 to 5 with the amount of exfoliation, the amount of exfoliation can be reduced by increasing the amount of silica sol added, but the denitration performance tends to decrease, and the amount of SiO 2 added to TiO 2 was increased. When it is 30 wt% or less, which is the range shown in the example, the strength can be maintained high with the activity.
[0028]
Further, comparing the performances of the catalysts of Examples 1 and 6 to 10, it can be seen that an increase in the added amount of the milled fiber, which is an inorganic fiber, is effective in improving the activity and reducing the peel amount. However, as the addition amount increased, the viscosity of the slurry increased, and it was found that it was difficult to form a thin coating layer. Therefore, it was found that when the inorganic fiber is suppressed to 70 wt% or less, preferably 50 wt% or less with respect to titanium oxide, a good coating layer can be easily obtained.
Example 11
In Example 1, the metal lath was immersed in the catalyst slurry, then pulled up, and further compressed air was blown to remove the slurry that had filled the eyes of the metal lath. The obtained catalyst body was dried and calcined in the same manner as in Example 1 to obtain a network catalyst body of the present invention in which the metal lath surface was thinly covered with the catalyst.
[0029]
Comparative Example 3
A reticulated catalyst body was obtained in the same manner as in Example 11 using the catalyst slurry of Comparative Example 1.
Example 12
Instead of the milled fiber used in Example 1, an aluminosilicate fiber (manufactured by Toshiba Monoflux Co., Ltd., fiber flux) pulverized to a length of about 0.1 mm was used. It was.
Comparative Example 4
Instead of the milled fiber used in Comparative Example 1, an aluminosilicate fiber (manufactured by Toshiba Monoflux Co., Ltd., fiber flux) pulverized to a length of about 0.1 mm was used, and a catalyst was obtained in the same manner.
[0030]
Example 13
A mesh of 1400 E-glass fibers with a fiber diameter of 9μm and plain weave with a roughness of 10 / inch is impregnated with a slurry of 40% titania, 20% silica sol and 1% polyvinyl alcohol, and dried at 150 ° C. Thus, a catalyst base material was obtained with rigidity. The catalyst of the present invention was prepared in the same manner except that the substrate was cut into a 100 mm × 100 mm square and used instead of the metal lath support of Example 1.
Comparative Example 5
A catalyst was prepared in the same manner as in Comparative Example 1 except that the ceramic catalyst substrate used in Example 13 was used instead of the metal lath.
The denitration performance of the catalysts of Examples 11 to 13 and Comparative Examples 3 to 5 and the amount of peeling by the peeling test were measured, and the results are shown in Table 3.
[0031]
[Table 3]
Figure 0004344102
[0032]
From the comparison of the results of Example 11 and Comparative Example 3, it can be seen that the catalyst of the present invention can maintain a high activity and a low amount of peeling even when the mesh of the mesh material is open and the amount of catalyst supported is small. Further, from the comparison of the results of Example 12 and Comparative Example 4, and Example 13 and Comparative Example 5, even if the inorganic fiber is other, or the net carrier is a ceramic carrier other than the metal lath, it is equally excellent. It can be seen that a catalyst is obtained.
[0033]
Thus, by using the soluble Mo-V compound having a specific composition, a catalyst having high denitration performance and peel strength can be obtained with very few steps.
Example 14
A catalyst unit formed by laminating a large number of metal mesh substrates was impregnated with the catalyst slurry of the present invention and coated with the catalyst. That is, a SUS430 metal lath base material similar to that used in Example 1 was formed into a 2 mm high corrugated line, and a plurality of catalyst base materials as shown in FIG. 4 were prepared. 46 sheets of these were laminated on a mild steel catalyst frame to prepare a catalyst carrier unit having a 150 mm square and a length of 250 mm.
[0034]
Separately, 20 kg of a slurry having the same composition as in Example 1 was prepared, the unit was immersed, and after 10 minutes while the unit was rocked, the slurry was pulled up from the slurry and drained. The unit catalyst of the present invention was prepared by air drying while applying air at room temperature with a fan, followed by calcination at 500 ° C. for 2 hours.
Comparative Example 6
A similar coating catalyst was obtained using the same metal catalyst unit as in Example 14 and the catalyst slurry used in Comparative Example 1.
[0035]
When the slurry after the test of Example 14 and Comparative Example 6 was compared, the former showed no difference in properties before and after the impregnation test, but the latter slurry was discolored to black and a phenomenon in which the viscosity was significantly increased was observed. It was. This is presumably because Fe ions eluted from the metal substrate and metal frame to alter the catalyst and increase the viscosity. As described above, in the conventional coating method, when a metal substrate is used, the change in viscosity due to the alteration of the slurry hinders uniform catalyst production. However, in the coating method according to the present invention, the soluble Mo-V compound is extremely stable. Therefore, it is possible to continue the coating operation stably without deterioration due to metal ions or the like. Therefore, it turns out that this invention is useful also from the point of catalyst manufacture.
[0036]
The denitration performance was measured under the conditions shown in Table 4 using an exhaust gas denitration apparatus that can be directly filled with the catalyst units obtained in Example 14 and Comparative Example 6. When the catalyst of the present invention was used, the denitration rate was as high as 99%, but the catalyst of Comparative Example 6 was as low as 94%. High performance can also be obtained when a catalyst unit is formed by coating slurry in unit form.
[0037]
[Table 4]
Figure 0004344102
[0038]
【The invention's effect】
According to the present invention, an exhaust gas denitration catalyst having high activity and low peeling can be obtained, and the performance of the denitration apparatus can be improved. In addition, the exhaust gas denitration catalyst slurry of the present invention does not require complicated manufacturing processes such as pre-firing and pulverization, and the properties of the resulting coating slurry are stable, and the elution of inorganic ions like a metal substrate carrier Even if it is a carrier that is easy to do, the properties do not change, so that a uniform catalyst can be produced in large quantities at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a catalyst substrate showing examples of filaments formed on a flat catalyst substrate used in the present invention.
FIG. 2 is a perspective view of a catalyst structure when the flat catalyst of the present invention is used in a stacked manner.
FIG. 3 is a view showing the appearance of the catalyst of the present invention.
4 is a schematic diagram showing dimensions of a catalyst base used in Example 14. FIG.

Claims (4)

金属製基材表面にコーティングするための、アンモニア接触還元用脱硝触媒スラリであって、バナジウムとモリブデンの原子比V/Moが3/2である、示性式(NH4 3 Mo2 3 15 で表わされる化合物の水性溶液に、酸化チタン並びにコロイダルシリカおよび無機繊維を分散させたことを特徴とするコーティング用排ガス脱硝触媒スラリ。A denitration catalyst slurry for catalytic catalytic reduction for coating on the surface of a metal substrate, wherein the atomic ratio V / Mo of vanadium and molybdenum is 3/2, and the formula (NH 4 ) 3 Mo 2 V 3 the aqueous solutions of the compounds represented by O 15, titanium oxide and colloidal silica and coating the exhaust gas denitration catalyst slurry, characterized in that the non-machine fibers were dispersed. 金属製基材表面にコーティングするための、アンモニア接触還元用脱硝触媒スラリであって、酸化モリブデン(MoO3 )とメタバナジン酸アンモン(NH4 VO3 )とを、バナジウムとモリブデンの原子比V/Moが3/2になるように水性溶媒の共存下で反応させ、示性式(NH4 3 Mo2 3 15で表わされる化合物の水性溶液を得る工程と、該水性溶液に酸化チタン並びにコロイダルシリカおよび無機繊維を分散させる工程とを含むことを特徴とするコーティング用排ガス脱硝触媒スラリの製法。A denitration catalyst slurry for catalytic catalytic reduction for coating on the surface of a metal substrate, comprising molybdenum oxide (MoO 3 ) and ammonium metavanadate (NH 4 VO 3 ), atomic ratio V / Mo of vanadium and molybdenum To give an aqueous solution of the compound represented by the formula (NH 4 ) 3 Mo 2 V 3 O 15 , titanium oxide and the aqueous solution preparation of the coating exhaust gas denitration catalyst slurry, which comprises a step of dispersing the colloidal silica and non-machine fibers. 請求項1記載の触媒スラリ中に金属製板状基材を浸漬して触媒スラリをコーティングした後、乾燥および焼成することを特徴とする排ガス脱硝触媒の製造方法。 A method for producing an exhaust gas denitration catalyst, comprising: dipping a metal plate-like base material in the catalyst slurry according to claim 1 to coat the catalyst slurry, followed by drying and firing. 金属製板状基材表面に波形、凹凸形または階段状の突起が形成されたものをあらかじめ積層して一体化した後、請求項1記載の触媒スラリ中に浸漬して触媒スラリをコーティングし、乾燥および焼成することを特徴とする排ガス脱硝触媒の製造方法。After integrated waveform to a metal plate base material surface, those irregularities shaped or step-like projections are formed beforehand laminated to, coated catalyst slurry was dipped in a catalyst slurry of claim 1 wherein, A method for producing an exhaust gas denitration catalyst comprising drying and calcining.
JP2001171583A 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same Expired - Lifetime JP4344102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171583A JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171583A JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002361092A JP2002361092A (en) 2002-12-17
JP4344102B2 true JP4344102B2 (en) 2009-10-14

Family

ID=19013333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171583A Expired - Lifetime JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Country Status (1)

Country Link
JP (1) JP4344102B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005788A1 (en) * 2006-02-07 2007-08-09 Umicore Ag & Co. Kg Catalyst with improved light-off behavior
JP2008253955A (en) * 2007-04-09 2008-10-23 Babcock Hitachi Kk Coating agent for denitrification catalyst, production method thereof, and denitrification catalyst
DK2100664T3 (en) * 2007-09-07 2020-01-20 Mitsubishi Hitachi Power Sys Exhaust gas purification catalyst
CN102015104A (en) * 2008-03-25 2011-04-13 巴布考克日立株式会社 Exhaust gas purification catalyst on which influence of iron compound has been suppressed
EP3730210A1 (en) * 2019-04-26 2020-10-28 Umicore Ag & Co. Kg Catalyst ceramic candle filter for combined particulate removal and the selective catalytic reduction (scr) of nitrogen-oxides
KR20210046786A (en) * 2018-08-28 2021-04-28 우미코레 아게 운트 코 카게 Catalysts for use in selective catalytic reduction (SCR) of nitrogen oxides
JP2021016812A (en) * 2019-07-18 2021-02-15 三菱パワー株式会社 Catalyst structure, and flow type reactor or exhaust heat recovery boiler using the same
JP7244444B2 (en) 2020-01-28 2023-03-22 三菱重工業株式会社 Denitration catalyst structure

Also Published As

Publication number Publication date
JP2002361092A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
US4916107A (en) Catalyst for the selective reduction of nitrogen oxides with ammonia
JP3818682B2 (en) Method for producing activated carbon supported catalyst
EP2237883B1 (en) Fabrication method of zeolite honeycomb type catalyst for reducing nitrogen oxide
EP1938899B1 (en) Base for catalyst, catalyst and methods for producing those
JP2018030105A (en) Porous ceramic structure
WO2015072567A1 (en) Denitration catalyst and method for producing same
JP2012101215A (en) Honeycomb catalyst body and method of manufacturing the same
JP4344102B2 (en) Catalyst slurry for exhaust gas denitration and method for producing the same
KR100739409B1 (en) Silicon carbide-based catalytic body and process for producing the same
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
CN111298802B (en) Preparation method of flue gas denitration catalyst
JPH07509182A (en) Catalyst carrier and its manufacturing method
JP2005342711A (en) Denitration method of diesel engine exhaust gas
KR20220065013A (en) Selective catalytic reduction catalyst composition, catalyst article comprising same, and method of making catalyst article
US20030171217A1 (en) Support, its production method and catalyst body
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
KR101964215B1 (en) A method for preparing catalyst suitable for hexagonal catalyst support and a catalyst thereby
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP4511920B2 (en) Method for producing denitration catalyst
US20210299636A1 (en) Catalyst for mercury oxidation
JP3632739B2 (en) Titanium oxide-titanium phosphate powder, exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP2007130544A (en) Honeycomb formed body and its manufacturing method
JP5795223B2 (en) Method for manufacturing a honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term