JP4922540B2 - Crystal structure layer deposition method and gas suction element - Google Patents

Crystal structure layer deposition method and gas suction element Download PDF

Info

Publication number
JP4922540B2
JP4922540B2 JP2002529574A JP2002529574A JP4922540B2 JP 4922540 B2 JP4922540 B2 JP 4922540B2 JP 2002529574 A JP2002529574 A JP 2002529574A JP 2002529574 A JP2002529574 A JP 2002529574A JP 4922540 B2 JP4922540 B2 JP 4922540B2
Authority
JP
Japan
Prior art keywords
gas
crystal structure
structure layer
supply line
guide surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002529574A
Other languages
Japanese (ja)
Other versions
JP2004510324A (en
Inventor
ストラウハ、ゲルド
カペラ、ヨハネス
ダーウェルスベルグ、マルティン
Original Assignee
アイクストロン、アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイクストロン、アーゲー filed Critical アイクストロン、アーゲー
Priority claimed from PCT/EP2001/008139 external-priority patent/WO2002024985A1/en
Publication of JP2004510324A publication Critical patent/JP2004510324A/en
Application granted granted Critical
Publication of JP4922540B2 publication Critical patent/JP4922540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Description

【0001】
【発明の属する技術分野】
本発明は、まず、特に、結晶構造基板上に結晶構造層を堆積(積層)するための方法に関し、少なくとも二つの処理ガスが、熱せられたセサプタ上のガス吸入素子を介して互いに分離されて、反応器の処理チャンバーに導入され、第1の処理ガスが中央出口開口を備える中央ラインを介して流れ、第2の処理ガスが、中央ラインに関して周辺にあり、そして、ガス浸透可能でガス放出リングによって形成された周辺出口開口を有するラインに沿って流れ、ガス放出リングが環状の副室を取り囲んでいる方法に関する。また、本発明は、特に、結晶構造基板上に結晶構造層の堆積を行うための装置のためのガス吸入素子に関し、二つの処理ガスが、熱せられたセサプタ上で互いに分離されて、反応器の処理チャンバーに導入され、第1の処理ガスに対する中央側端出口開口を備える中央ラインを有するとともに、中央ラインに関して周辺にあり、そして、第2のガスに対する周辺出口開口を有するラインを有し、このラインが環状の副室を取り囲むガス浸透可能でガス放出リングによって形成されており、その径方向幅が縦方向(長手方向)における中央軸に平行でない背壁のため、回転的に対称なガス放出素子の自由端に向かって減少しているガス吸入素子に関する。
【0002】
【従来の技術】
このタイプのガス放出素子が知られており、ガス放出素子は、処理チャンバーを取り囲むリングを介して再度放出するため、処理ガスが、径方向に流れる円筒状の対称なチャンバーに、特に、MOCVD処理のための反応ガスを導入するために用いられている。ガス吸入素子を介して導入された反応ガスの分解生成物でコートされた基板は、高周波によって熱せられたサセプタ上の遊星手法によって積層(堆積)させられる。ガス吸入素子の領域又は径方向外側においてすぐに隣接する領域において、処理チャンバーはガス状の開始材料が分解する吸入ゾーンを有している。径方向外側において、この吸入ゾーンは、単結晶構造層を形成するように凝縮するため、分解生成物が基板の方向に拡散する中において、堆積ゾーンと隣り合っている。
【0003】
周知の装置において、第2の処理ガスは周辺供給ラインを介して処理チャンバーの中央に軸方向に流れる。使用される第2のガスは、例えば、水素のようなキャリアガスを伴うTMG又はTMIである。ガスは、副室の実質的にベル形状(鐘形状)で延びる背壁によって形成された偏向壁に接触する。ガス放出リングは、初期的な分解を受ける処理チャンバーの吸入ゾーンに、副室からガスが流れる櫛状のスロットを有している。ホスフィン又はアルシンのような金属水素化物が中央供給ラインを介してキャリアガスとともに処理チャンバーに入る。中央開口は熱せられたサセプタの近傍に配置され、そこから出る処理ガスは加熱サセプタの表面とガス吸入素子の自由端の終面との間の隙間を通って流れる。加熱サセプタの熱放射のため、ガス吸入素子の終面は熱せられることになる。当然の結果として、処理チャンバーに突出するガス吸入素子の部分を形成する全ての水晶体が熱せられる。特に、ガス吸入素子の自由端及び/又はガス放出リングの隣接部分と協働する副室の部分が、プロセスにおいて、周辺ラインを介して供給されるガリウム又はインジウムの金属酸化物が分解する温度に到達する。その結果、ガリウムヒ化物又はインジウムリン化物の堆積が副室のこの領域又はガス放出リングで発生する。これら寄生堆積は不利である。
【0004】
【発明が解決しようとする課題】
ガリウムヒ化物又はインジウムリン化物が加熱表面に堆積する間、中央供給ラインを囲む終面の外側周辺部分が冷えすぎていると、リン又は砒素の凝縮がそこで発生する。これは、著しい欠点である。
【0005】
この発明は、周辺出口開口の領域で寄生堆積を抑制するとともに、ガス放出素子の終面の径方向外側周辺部分上で中央出口開口を介して出るV成分の凝集を抑制するための方法を目的とする。
【0006】
【課題を解決するための手段】
この目的は、請求項に記載されたこの発明によって達成される。請求項1は、副室の後壁によって形成されたガス案内面の切頭円錐又は回転双曲面形状のため、サセプタ及び/又は中央出口開口を囲むガス放出素子の終側の径方向外側部分に面するガス放出リングの終端部分が第2のガスによって冷却される。この場合、第2の供給ラインから処理チャンバーに供給されるべきガス流は、ガス案内面によって偏向されて、後壁において熱せられる。後壁は、サセプタの放射、処理チャンバーに突出するガス吸入素子の部分の放射によって熱せられる。プロセスにおいて放散する熱は、副室の部分又はサセプタの近傍にあるガス放出素子の部分を冷却する。ガス案内面の形状は、ガス吸入素子の終端部分における温度がV成分の堆積温度によって底に限定されず、III−V成分の堆積温度によって頂点に限定されない温度範囲内に維持されるような範囲にのみ冷却が発生するように選択される。多孔質ガス放出リングのため、副室における圧力は、好ましくは、処理チャンバー圧力よりも高いレベルに保持される。その上、多孔質ガス放出リングの使用は、寄生堆積を促進する乱流が櫛の歯の背後に発達しない櫛状のガス放出リングに比べて有利である。例えば、ガス放出素子が、水晶原料から成ると、処理ガスは、ガス吸入素子の自由端に向かって実質的にオフセットして位置する流れプロファイルの最大流れで、均質化した形態でガス放出リングから出る。縦方向(長手方向)に窪んだ案内面の曲率半径は流れパラメータに合致する。より高い容積流れに対して、曲率半径は、より低い容積流れよりも大きく選択される。ガス案内面の長手方向の輪郭は直線であるかもしれない。それによって、ガス案内面の全体が切頭円錐形状となる。ガス案内面の輪郭が温度及び全体の流れ容積のような種々の処理パラメータに合致するように、本発明によれば、処理チャンバーに突出するガス吸入素子の部分が交換可能な部分として形成される。これは、供給ラインにネジ込むことができ、ガス放出リングのキャリア(架体)である水晶部分であることが好ましい。ガス放出リングは、副室の後壁によって形成され、切頭円錐又は回転双曲面の形状に構成されて、どのような段階も要せず供給ラインにリンクするガス案内面を有している。ガス案内面に沿って層流手法で流れるガス流は、対流冷却の効果を有する。サセプタ近傍の領域において、ガス放出リングからの増加した出力流は、除去効果を有する。ガリウムヒ化物の堆積処理の場合、サセプタ近傍のガス吸入素子の部分における温度が約200℃〜約400℃の温度範囲に維持される。
【0007】
【発明の実施の形態】
以下、本発明の実施例について、図面を参照して説明する。
【0008】
図1〜図5で示す実施例は、MOCVD反応器からの抜粋を示している。処理チャンバーは参照番号1で示され、それは、ベース1’及びシーリング(天井)1’’を有している。ベース1’は高周波によって下から加熱され、グラファイトからなるサセプタ16の表面である。ガス吸入素子が円筒形の対称な処理チャンバー1の中央に位置づけられ、ガス吸入素子は、中央出口開口3において開口する中央供給ライン2を有している。この中央出口開口はガス吸入素子のチャンバー側端に位置し、この側端は水晶体14と協働する。後者は、軸方向において周辺供給ラインから流れるガスに対するガス案内面15を形成する切頭円錐状の壁を有している。周辺供給ライン4から流れるガスは、処理チャンバーシーリング1’’と処理チャンバーベース1’とガス案内面15によって形成された後壁との間に配置された環状の副室8に流れ込む。
【0009】
環状の副室8は、ガス放出リング6によって囲まれており、このガス放出リング6は水晶原料として生成される。周辺供給ライン4を介して流れ込む第2の処理ガスは、均質化流れプロファイルで、ガス放出リングから出ることができる。
【0010】
副室8の上流には、多数の通過開口9を備える環状のスロットル7があり、スロットル7の上流には、二つのガス供給ライン5、5'がそれぞれ参照番号13、13'で示される位置に開口する混合チャンバーがある。
【0011】
その増加した厚みのため、図5に示すスロットル7は、より大きな絞り動作を有する。
【0012】
図6〜図8に示された交換可能部14は、ネジ接合12によって、中央供給ライン2及び周辺供給ライン4を形成するガス吸入素子の上側部分にねじ込まれる。ナット11はシーリング1''を形成する板に保持され、上記の上側部分にねじ込まれている。ガス放出リング6の下側部分6'は、交換可能部14の縁部分10によって形成される薄壁の放射状環状突起上に載置されている。頂点において、ガス放出リング6は前述の板又はシーリング1''上に支持されている。
【0013】
図6〜図9に示す個々の交換可能部14は、それらの直径及びそれらの案内面の観点から実質的に互いに異なり、図6、図7及び図9に示す交換可能部の案内面15は、実質的に回転双曲面の形状である。図示の長手方向平面において、ガス案内面の輪郭線は、窪み形状であり、この面が突然の跳躍なしに、軸方向に延びる周辺ライン4の壁にリンクし、これによって、乱流が案内面15に沿って発達しない。ガス放出リング6の外側に示された矢印は、軸方向流れのプロファイルを示している。このプロファイルの最大は、シーリング1''近傍のガス放出リングの領域よりもサセプタ近傍のガス放出リングの端6'により近接して位置している。この結果、サセプタ近傍の領域及び縁部10が対流によってより強く冷却されることになる。全ての実施例において、環状チャンバー8の幅Wはシーリング1''からサセプタ16への軸方向に減少する。
【0014】
図8に示す実施例において、長手方向の案内面15の輪郭線は、直線状の形態であり、その結果、案内面15は切頭円錐形状である。この形状は、高容積流れに対して選択される。
【0015】
サセプタ16は、高周波加熱手段(図示せず)によって下から加熱される。サセプタ16は、熱を放散し、この熱によってガス放出素子の水晶体14が加熱される。第1の処理ガスは、アルシン又はホスフィン及び水素を有し、中央出口開口3を介して流れる。開口3を介して出たアリシン又はホスフィンは水晶体14とサセプタ16の表面との隙間で分解する。分解生成物は、径方向に輸送され、第2の処理ガスとしての水素とともにTMG又はTMIが初期的に周辺ライン4から副室8に流れ込む。軸方向ライン4から出たガスは、案内面15に沿って層流形態(手法)で流れ、処理において、90°進路を変える。処理において、ガスは縁部分10に亘って流れ、ライン4から流れるガスは、予め加熱されていないが、しかし、むしろ実質的に室温に近いので、水晶体14に関して冷却作用を有している。熱が案内面15を介して吸収され、ガス流は、特に、水晶部分14の材料厚が最も小さいところで、つまり、縁部分10の領域において、最大の冷却作用を有する。この領域、そして、特に、縁部分10に隣接するガス放出リング部分6'は、ガス流によって最も強く冷却される。シーリング1''は、加熱されない。従って、ガス放出リング6の領域6'は、加熱したいサセプタ16に最も近いので、冷却ガス流なしで、ガス放出リング6の領域6'は、最も加熱されることになる。しかしながら、ライン4から出る処理ガスの対流冷却のため、サセプタ近傍のガス放出リング6の領域6'は、ガス放出リング6の残りの部分の温度に実質的に対応する温度に維持される。この温度は、サセプタ16と水晶体14との隙間に形成されるヒ化物又はリン化物の凝縮温度よりも高い。しかしながら、この温度は、III−V成分の堆積温度よりも低い。
【0016】
流れパラメータは、可能な限り、ガス放出リングがその軸方向長さに亘って一定の温度を有するように設定されるべきである。
【0017】
ガス案内面15のプロファイルは、交換可能部を置換することによって、処理パラメータに合致する。
【0018】
【発明の効果】
このように、本発明では、周辺出口開口の領域における寄生堆積を抑制することができる。なお、開示した全ての形態は、(本質的に)本発明に該当する。補助的な/追加された優先書類(先行出願のコピー)の開示内容は、本出願の請求項におけるこれらの書類の具体化形態の観点で、本出願の開示においてその全体に組み込まれる。
[図面の簡単な説明]
図1は、ガス吸入素子の第1の例を示す図である。
図2は、II−II線の断面を示す図である。
図3は、III−III線の断面を示す図である。
図4は、IV−IV線の断面を示す図である。
図5は、図1に応じた第2の例を示す図である。
図6〜図9は、異なる構成で交換可能な部分を有する変換セットを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention first relates in particular to a method for depositing (stacking) a crystal structure layer on a crystal structure substrate, wherein at least two process gases are separated from one another via a gas inlet element on a heated septater. , Introduced into the reactor processing chamber, the first processing gas flows through a central line with a central outlet opening, the second processing gas is peripheral with respect to the central line, and is gas permeable and outgassing It relates to a method in which a gas discharge ring surrounds an annular subchamber, flowing along a line having a peripheral outlet opening formed by the ring. The invention also relates in particular to a gas inlet element for an apparatus for depositing a crystal structure layer on a crystal structure substrate, wherein two process gases are separated from each other on a heated septater, and the reactor Having a central line with a central end outlet opening for the first processing gas, and being peripheral with respect to the central line and having a peripheral outlet opening for the second gas, This line is formed by a gas permeable and gas discharge ring surrounding an annular sub-chamber and its radial width is a rotationally symmetrical gas due to the back wall not parallel to the central axis in the longitudinal direction (longitudinal direction). It relates to a gas suction element decreasing towards the free end of the emission element.
[0002]
[Prior art]
This type of gas release element is known, and since the gas release element re-emits through a ring surrounding the process chamber, the process gas flows into a cylindrically symmetric chamber that flows in a radial direction, particularly in an MOCVD process. It is used to introduce reaction gas for. The substrate coated with the decomposition product of the reaction gas introduced through the gas suction element is laminated (deposited) by a planetary method on a susceptor heated by high frequency. In the region of the gas inlet element or in the region immediately adjacent radially outside, the processing chamber has an inlet zone in which the gaseous starting material decomposes. On the radially outer side, this suction zone condenses to form a single crystal structure layer, so that the decomposition products diffuse in the direction of the substrate and are adjacent to the deposition zone.
[0003]
In known devices, the second process gas flows axially through the peripheral supply line into the center of the process chamber. The second gas used is, for example, TMG or TMI with a carrier gas such as hydrogen. The gas contacts a deflection wall formed by a back wall that extends in a substantially bell shape (bell shape) in the subchamber. The gas release ring has a comb-like slot through which gas flows from the secondary chamber in the suction zone of the processing chamber that undergoes initial decomposition. A metal hydride such as phosphine or arsine enters the processing chamber along with a carrier gas via a central supply line. The central opening is located in the vicinity of the heated susceptor, and the process gas exiting from it flows through a gap between the surface of the heated susceptor and the end face of the free end of the gas inlet element. Due to the heat radiation of the heating susceptor, the end face of the gas suction element is heated. As a natural consequence, all the lenses forming the part of the gas suction element protruding into the processing chamber are heated. In particular, the portion of the subchamber cooperating with the free end of the gas inlet element and / or the adjacent part of the gas discharge ring is at a temperature at which the gallium or indium metal oxide supplied via the peripheral line decomposes in the process. To reach. As a result, gallium arsenide or indium phosphide deposition occurs in this region of the subchamber or in the gas release ring. These parasitic depositions are disadvantageous.
[0004]
[Problems to be solved by the invention]
During the deposition of gallium arsenide or indium phosphide on the heated surface, if the outer peripheral portion of the end surface surrounding the central supply line is too cold, phosphorous or arsenic condensation occurs there. This is a significant drawback.
[0005]
An object of the present invention is to suppress parasitic deposition in the region of the peripheral outlet opening and to suppress aggregation of the V component that exits through the central outlet opening on the radially outer peripheral portion of the final surface of the gas discharge element. And
[0006]
[Means for Solving the Problems]
This object is achieved by the invention as described in the claims. Claim 1 is due to the frustoconical or rotational hyperboloid shape of the gas guide surface formed by the rear wall of the subchamber, on the radially outer portion of the gas discharge element surrounding the susceptor and / or central outlet opening. The facing end portion of the gas discharge ring is cooled by the second gas. In this case, the gas flow to be supplied from the second supply line to the processing chamber is deflected by the gas guide surface and heated at the rear wall. The rear wall is heated by the radiation of the susceptor, the part of the gas suction element protruding into the processing chamber. The heat dissipated in the process cools the part of the sub-chamber or the part of the gas release element in the vicinity of the susceptor. The shape of the gas guide surface is such that the temperature at the terminal portion of the gas suction element is not limited to the bottom by the deposition temperature of the V component but is maintained within the temperature range not limited to the apex by the deposition temperature of the III-V component. The cooling is selected to occur only in Due to the porous gas discharge ring, the pressure in the subchamber is preferably maintained at a level higher than the processing chamber pressure. In addition, the use of a porous gas discharge ring is advantageous over comb-like gas discharge rings where turbulence that promotes parasitic deposition does not develop behind the comb teeth. For example, if the gas release element is made of quartz raw material, the process gas will flow from the gas release ring in a homogenized form with the maximum flow of the flow profile located substantially offset towards the free end of the gas suction element. Get out. The radius of curvature of the guide surface recessed in the longitudinal direction (longitudinal direction) matches the flow parameter. For higher volume flows, the radius of curvature is selected to be greater than for lower volume flows. The longitudinal profile of the gas guide surface may be a straight line. Thereby, the whole gas guide surface becomes a truncated cone shape. According to the present invention, the portion of the gas inlet element protruding into the processing chamber is formed as a replaceable portion so that the contour of the gas guide surface matches various processing parameters such as temperature and overall flow volume. . This is preferably a quartz part that can be screwed into the supply line and is the carrier of the gas release ring. The gas discharge ring is formed by the rear wall of the sub-chamber and is configured in the shape of a truncated cone or rotating hyperboloid and has a gas guide surface linked to the supply line without any steps. A gas flow flowing in a laminar manner along the gas guide surface has the effect of convective cooling. In the region near the susceptor, the increased output flow from the gas discharge ring has a removal effect. In the case of gallium arsenide deposition processing, the temperature in the portion of the gas suction element near the susceptor is maintained in a temperature range of about 200 ° C to about 400 ° C.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0008]
The example shown in FIGS. 1-5 shows an excerpt from an MOCVD reactor. The processing chamber is indicated by reference numeral 1 and has a base 1 ′ and a ceiling (ceiling) 1 ″. The base 1 'is heated from below by high frequency and is the surface of the susceptor 16 made of graphite. A gas suction element is located in the middle of a cylindrical symmetric processing chamber 1, which has a central supply line 2 that opens at a central outlet opening 3. This central outlet opening is located at the chamber side end of the gas inlet element, which side end cooperates with the crystalline lens 14. The latter has a frustoconical wall that forms a gas guide surface 15 for the gas flowing from the peripheral supply line 4 in the axial direction. The gas flowing from the peripheral supply line 4 flows into the annular sub-chamber 8 arranged between the processing chamber sealing 1 ″, the processing chamber base 1 ′, and the rear wall formed by the gas guide surface 15.
[0009]
The annular sub chamber 8 is surrounded by a gas discharge ring 6, and the gas discharge ring 6 is produced as a quartz raw material. The second process gas flowing through the peripheral supply line 4 can exit the gas discharge ring with a homogenized flow profile.
[0010]
Upstream of the sub chamber 8 is an annular throttle 7 with a number of passage openings 9, upstream of the throttle 7 there are two gas supply lines 5, 5 ′ at positions indicated by reference numerals 13, 13 ′, respectively. There is a mixing chamber opening in the.
[0011]
Due to the increased thickness, the throttle 7 shown in FIG. 5 has a larger throttle operation.
[0012]
The replaceable part 14 shown in FIGS. 6 to 8 is screwed into the upper part of the gas suction element forming the central supply line 2 and the peripheral supply line 4 by means of a screw joint 12. The nut 11 is held by a plate forming the sealing 1 ″ and screwed into the upper part. The lower part 6 ′ of the gas discharge ring 6 rests on a thin-walled radial annular projection formed by the edge part 10 of the exchangeable part 14. At the apex, the gas discharge ring 6 is supported on the aforementioned plate or sealing 1 ″.
[0013]
The individual replaceable portions 14 shown in FIGS. 6-9 are substantially different from each other in terms of their diameter and their guide surfaces, and the guide surfaces 15 of the replaceable portions shown in FIGS. The shape is substantially a rotational hyperboloid. In the illustrated longitudinal plane, the contour of the gas guide surface is indented and this surface links to the wall of the peripheral line 4 extending in the axial direction without sudden jumps, so that turbulence is guided by the guide surface. It does not develop along 15. The arrows shown outside the gas discharge ring 6 indicate the axial flow profile. The maximum of this profile is located closer to the end 6 'of the gas discharge ring near the susceptor than to the region of the gas discharge ring near the ceiling 1''. As a result, the region near the susceptor and the edge 10 are cooled more strongly by convection. In all embodiments, the width W of the annular chamber 8 decreases in the axial direction from the sealing 1 ″ to the susceptor 16.
[0014]
In the embodiment shown in FIG. 8, the contour line of the guide surface 15 in the longitudinal direction has a linear shape, and as a result, the guide surface 15 has a truncated cone shape. This shape is selected for high volume flow.
[0015]
The susceptor 16 is heated from below by high frequency heating means (not shown). The susceptor 16 dissipates heat, and this heat heats the crystalline substance 14 of the gas emission element. The first process gas comprises arsine or phosphine and hydrogen and flows through the central outlet opening 3. Allicin or phosphine exiting through the opening 3 is decomposed in the gap between the lens 14 and the surface of the susceptor 16. The decomposition products are transported in the radial direction, and TMG or TMI initially flows from the peripheral line 4 into the sub chamber 8 together with hydrogen as the second processing gas. The gas exiting the axial line 4 flows in a laminar flow form (method) along the guide surface 15 and changes the course by 90 ° in the process. In the process, gas flows across the edge portion 10 and the gas flowing from line 4 is not preheated, but rather has a cooling effect on the lens 14 because it is substantially near room temperature. Heat is absorbed through the guide surface 15 and the gas flow has a maximum cooling effect, in particular where the material thickness of the quartz part 14 is the smallest, ie in the region of the edge part 10. This region, and in particular the gas discharge ring portion 6 ′ adjacent to the edge portion 10, is most strongly cooled by the gas flow. Sealing 1 '' is not heated. Accordingly, the region 6 'of the gas discharge ring 6 is closest to the susceptor 16 to be heated, so the region 6' of the gas discharge ring 6 is most heated without the cooling gas flow. However, due to convective cooling of the process gas exiting line 4, the region 6 ′ of the gas discharge ring 6 near the susceptor is maintained at a temperature substantially corresponding to the temperature of the remaining part of the gas discharge ring 6. This temperature is higher than the condensation temperature of arsenide or phosphide formed in the gap between the susceptor 16 and the lens 14. However, this temperature is lower than the deposition temperature of the III-V component.
[0016]
The flow parameters should be set so that the gas discharge ring has a constant temperature over its axial length whenever possible.
[0017]
The profile of the gas guide surface 15 matches the processing parameters by replacing the replaceable part.
[0018]
【The invention's effect】
Thus, in the present invention, parasitic deposition in the region of the peripheral outlet opening can be suppressed. It should be noted that all disclosed forms are (essentially) applicable to the present invention. The disclosure content of supplementary / added priority documents (copies of prior applications) is incorporated in its entirety in the disclosure of this application in terms of the implementation of these documents in the claims of this application.
[Brief description of drawings]
FIG. 1 is a diagram illustrating a first example of a gas suction element.
FIG. 2 is a view showing a cross section taken along line II-II.
FIG. 3 is a cross-sectional view taken along line III-III.
FIG. 4 is a view showing a cross section taken along line IV-IV.
FIG. 5 is a diagram showing a second example corresponding to FIG.
6 to 9 are diagrams showing conversion sets having parts that can be exchanged in different configurations.

Claims (10)

少なくとも二つの処理ガスが、加熱されたサセプタ(16)上のガス吸入素子に含まれる中央供給ライン(2)と周辺供給ライン(4)及び環状の副室(8)とを介して互いに分離して、反応器の処理チャンバー(1)に導入され、結晶構造基板上に結晶構造層を堆積する際、第1の処理ガスを、中央出口開口(3)を有する前記中央供給ライン(2)を介して流し、第2の処理ガスを、前記中央供給ライン(2)の周辺にある前記周辺供給ライン(4)及び前記副室(8)を介して流す結晶構造層堆積方法において、
前記副室(8)の壁によって形成された切頭円錐形状又は回転双曲面形状のガス案内面(15)によって、前記中央出口開口(3)を囲む前記ガス吸入素子の端側の径方向外側部分に面するガス放出リング(6)の端部(6’)が、前記第2の処理ガスによって冷却されることを特徴とする結晶構造層堆積方法。
At least two process gases are separated from one another via a central supply line (2), a peripheral supply line (4) and an annular subchamber (8) contained in the gas suction element on the heated susceptor (16). Te, is introduced into the reactor of the processing chamber (1), when depositing the crystal structure layer crystal structure on a substrate, a first process gas, the central feed line having a central outlet opening (3) (2 ) flushed through, the second process gas, in the center the peripheral supply line (4 Ru neighborhood near the supply line (2)) and the crystal structure layer deposition method to flow through the auxiliary chamber (8),
By the antechamber (8) wall thus formed switching head conical or gas guiding surface of the rotating hyperboloid shape after (15), the diameter end side of the gas suction device surrounding the central outlet opening (3) under end of facing outward portion outgassing ring (6) (6 ') is, the crystal structure layer deposition wherein the cooled Turkey by said second process gas.
前記副室(8)の圧力は、前記ガス放出リング(6)によって、前記処理チャンバー(1)の圧力よりも高いレベルに保持されることを特徴とする請求項1に記載結晶構造層堆積方法。 The pressure of the secondary chamber (8), by the gas discharge ring (6), the crystal structure layer according to claim 1, characterized in that it is held at a higher level than the pressure of the process chamber (1) Deposition Method. 長手方向に窪んだ前記ガス案内面(15)の曲率半径は、より高い容積のガス流に対して大きく選択されていることを特徴とする請求項1又は2に記載の結晶構造層堆積方法。 3. The crystal structure layer deposition method according to claim 1 , wherein a radius of curvature of the gas guide surface (15) recessed in the longitudinal direction is selected to be larger for a gas flow having a higher volume. 前記ガス放出リング(6)から出る最大ガス流は、長手方向平面において、前記ガス放出リング(6)の下端部(6’)に向かって偏心的にオフセットしていることを特徴とする請求項1ないし3のいずれか1項に記載の結晶構造層堆積方法。 Claim the maximum gas flow exiting from the gas discharge ring (6) is that in the longitudinal plane, characterized in that it is eccentrically offset toward the lower end (6 ') of the gas discharge ring (6) 4. The crystal structure layer deposition method according to any one of 1 to 3 . 流れパラメータ及び前記ガス案内面(15)の長手方向の輪郭線は、加熱した前記サセプタ(16)に隣接するガス吸入素子の部分の温度がホスフィン又はアルシンから熱分解によって形成されるヒ化物又はリン化物の凝縮温度よりも高く、ガリウムヒ化物又はインジウムリン化物の堆積温度よりも低いように、互いに合致させることを特徴とする請求項1ないし4のいずれか1項に記載の結晶構造層堆積方法。 Longitudinal contour of the flow parameter and the gas guide surface (15), arsenide or phosphorus temperature of a portion of the gas inlet element adjacent to heated the susceptor (16) is formed by thermal decomposition of phosphine or arsine The crystal structure layer deposition method according to any one of claims 1 to 4, wherein the crystal structure layer deposition method is adapted to match each other so as to be higher than a condensation temperature of the fluoride and lower than a deposition temperature of the gallium arsenide or indium phosphide. 二つの処理ガスを、加熱可能なサセプタ(16)上に互いに分離して、反応器の処理チャンバー(1)に導入して、結晶構造基板上に結晶構造層を堆積する装置のためのガス吸入素子であって
第1の処理ガスのための央出口開口(3)を有する中央供給ライン(2)と、当該中央供給ライン(2)の周辺にあり、第2の処理ガスが流れる周辺供給ライン(4)及び環状の副室(8)とを有し
前記副室(8)の後壁によって形成されており、回転対称なガス放出リング(6)下端部(6’)に向かって径方向幅が減少する切頭円錐形状又は回転双曲面形状のガス案内面(15)を備え
前記周辺供給ライン(4)から流れ込む前記第2の処理ガスが、前記ガス案内面(15)に沿って流れ、前記副室(8)を囲むガス放出リング(6)を通って前記処理チャンバー(1)に導入され、
前記第2の処理ガスによって、前記サセプタ(16)近傍のガス放出リング(6)の下端部(6’)の対流冷却を行う
ことを特徴とするガス吸入素子。
The two processing gases, separated from each other on the heatable susceptor (16), is introduced into the reactor of the process chamber (1), for that equipment to deposit a crystal structure layer crystal structure on a substrate Gas inhalation element ,
The first central feed line (2) having an Hisashide port opening (3) in the order of the process gas is in the neighborhood of the central feed line (2), the peripheral supply line the second process gas flows (4 ) And an annular subchamber (8) ,
The sub chamber wall is formed by after (8), rotation symmetric truncated conical or hyperboloid of revolution width lower section (6 ') on headed in the radial direction of the gas discharge ring (6) is reduced and a gas guide surface shape (15),
The second processing gas flowing from the peripheral supply line (4) flows along the gas guide surface (15), passes through the gas discharge ring (6) surrounding the sub chamber (8), and the processing chamber ( 1),
By the second processing gas, it performs convection cooling of the lower portion of the susceptor (16) near the gas discharge ring (6) (6 '),
A gas suction element characterized by that.
前記ガス放出リング(6)は、水晶原料からなることを特徴とする請求項6に記載のガス吸入素子。 The gas discharge ring (6), the gas inlet element according to claim 6, characterized in that it consists of water crystal material. 前記ガス案内面(15)は、前記処理チャンバー(1)に突出する前記ガス吸入素子の一部である交換可能な交換可能部(14)に形成されることを特徴とする請求項6又は7に記載のガス吸入素子。 The gas guide surface (15) is formed in a replaceable exchangeable part (14) that is part of the gas suction element protruding into the processing chamber (1). The gas suction element according to claim 1. 前記ガス案内面(15)は、前記周辺供給ライン(4)から出た第2の処理ガスが前記ガス案内面(15)に沿って層流の形態で流れるように、突然の跳躍なしに前記周辺供給ライン(4)に接続されることを特徴とする請求項6ないし8のいずれか1項に記載のガス吸入素子。 The gas guide surface (15) is free from sudden jumps so that the second process gas exiting the peripheral supply line (4) flows in a laminar flow form along the gas guide surface (15). gas suction device according to any one of claims 6 to 8, characterized in that it is connected to the peripheral supply line (4). 前記交換可能部(14)は、前記中央供給ライン(2)と前記周辺供給ライン(4)を形成する前記ガス吸入素子の上側部分にネジ込みできることを特徴とする請求項8又は9に記載のガス吸入素子。 The exchangeable portion (14), according to claim 8, characterized in the Turkey can screwed into the upper portion of the gas suction device for forming the central feed line (2) and the peripheral supply line (4) or 9 The gas suction element according to claim 1.
JP2002529574A 2000-09-22 2001-07-14 Crystal structure layer deposition method and gas suction element Expired - Fee Related JP4922540B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10061671.2 2000-09-22
DE10061671 2000-09-22
DE10064941A DE10064941A1 (en) 2000-09-22 2000-12-23 Gas inlet element
DE10064941.6 2000-12-23
PCT/EP2001/008139 WO2002024985A1 (en) 2000-09-22 2001-07-14 Gas inlet mechanism for cvd-method and device

Publications (2)

Publication Number Publication Date
JP2004510324A JP2004510324A (en) 2004-04-02
JP4922540B2 true JP4922540B2 (en) 2012-04-25

Family

ID=7666705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002529574A Expired - Fee Related JP4922540B2 (en) 2000-09-22 2001-07-14 Crystal structure layer deposition method and gas suction element

Country Status (3)

Country Link
JP (1) JP4922540B2 (en)
KR (1) KR100797227B1 (en)
DE (2) DE10064941A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009130A1 (en) 2004-02-25 2005-09-15 Aixtron Ag Inlet system for a MOCVD reactor
DE102005056320A1 (en) * 2005-11-25 2007-06-06 Aixtron Ag CVD reactor with a gas inlet member
KR100795487B1 (en) * 2006-09-27 2008-01-16 주식회사 실트론 Laminar flow control device and chemical vapor deposition reactor having the same
DE102008055582A1 (en) 2008-12-23 2010-06-24 Aixtron Ag MOCVD reactor with cylindrical gas inlet member
FR3010092B1 (en) * 2013-09-02 2017-05-26 Commissariat Energie Atomique METHOD AND DEVICE FOR TREATING THE FREE SURFACE OF A MATERIAL
DE102015107297A1 (en) * 2015-05-11 2016-11-17 Von Ardenne Gmbh processing arrangement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1056430A (en) 1962-11-13 1967-01-25 Texas Instruments Inc Epitaxial process and apparatus for semiconductors
JPS5524424A (en) * 1978-08-09 1980-02-21 Kokusai Electric Co Ltd Forming device of pressure-reduced epitaxial layer
FR2628984B1 (en) * 1988-03-22 1990-12-28 Labo Electronique Physique PLANETARY EPITAXY REACTOR
FR2628985B1 (en) * 1988-03-22 1990-12-28 Labo Electronique Physique EPITAXY REACTOR WITH WALL PROTECTION
JPH03126877A (en) * 1989-10-11 1991-05-30 Babcock Hitachi Kk Optical exciting cvd device
JP3052574B2 (en) * 1992-06-01 2000-06-12 富士通株式会社 Semiconductor thin film manufacturing equipment
JP3414475B2 (en) * 1994-02-25 2003-06-09 スタンレー電気株式会社 Crystal growth equipment
JPH08335557A (en) * 1995-06-05 1996-12-17 Japan Energy Corp Vapor-phase epitaxial growth apparatus
JPH09246192A (en) * 1996-03-05 1997-09-19 Nissin Electric Co Ltd Thin film gas phase growing device
JP3376809B2 (en) * 1996-03-27 2003-02-10 松下電器産業株式会社 Metal organic chemical vapor deposition equipment
JPH104065A (en) * 1996-06-17 1998-01-06 Toshiba Mach Co Ltd Single wafer processing low pressure cvd apparatus
US5954881A (en) 1997-01-28 1999-09-21 Northrop Grumman Corporation Ceiling arrangement for an epitaxial growth reactor
WO1998045501A1 (en) * 1997-04-10 1998-10-15 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device and a device for applying such a method

Also Published As

Publication number Publication date
JP2004510324A (en) 2004-04-02
DE50115299D1 (en) 2010-02-25
DE10064941A1 (en) 2002-04-11
KR20030033062A (en) 2003-04-26
KR100797227B1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US7294207B2 (en) Gas-admission element for CVD processes, and device
TWI551720B (en) Liner assembly for chemical vapor deposition chamber
JP4897184B2 (en) Deposition method and deposition apparatus for depositing a crystal structure layer
US8841221B2 (en) MOCVD reactor having cylindrical gas inlet element
US5392730A (en) Method for depositing compound semiconductor crystal
KR100272752B1 (en) Vapor phase growth apparatus and vapor phase growth method
US20050000441A1 (en) Process and device for depositing in particular crystalline layers on in particular crystalline substrates
JP2010510670A (en) Independent radiant gas and gas reaction kinetics preheated for precursor dissociation control in low temperature CVD systems
JPH07193015A (en) Gas inlet for wafer processing chamber
HU217006B (en) Method and apparatus for the production of carbon having determined physical properties
JP4922540B2 (en) Crystal structure layer deposition method and gas suction element
JP2016143888A (en) Method and apparatus for deposition of iii-v semiconductor layer
US20190226082A1 (en) Cvd reactor and method for cleaning a cvd reactor
US20190062909A1 (en) Inject assembly for epitaxial deposition processes
US20010021593A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JP2000044385A (en) Gas rectifier
JPH0766139A (en) Chemical vapor deposition system
JPH0480366A (en) Vapor growth device
JP4910105B2 (en) Vapor thin film growth apparatus and vapor thin film growth method
JP3880096B2 (en) Vapor growth method
WO2022138405A1 (en) Member forming method, laminate manufacturing method, and member forming apparatus
JP2023179294A (en) Epitaxial growth device of silicon carbide semiconductor
JPS60253212A (en) Vapor growth device
KR200169679Y1 (en) Cooling wall chemical reaction apparatus
JP3743945B2 (en) Vapor growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees