JP4920634B2 - 系統安定化装置及び系統安定化方法 - Google Patents

系統安定化装置及び系統安定化方法 Download PDF

Info

Publication number
JP4920634B2
JP4920634B2 JP2008132397A JP2008132397A JP4920634B2 JP 4920634 B2 JP4920634 B2 JP 4920634B2 JP 2008132397 A JP2008132397 A JP 2008132397A JP 2008132397 A JP2008132397 A JP 2008132397A JP 4920634 B2 JP4920634 B2 JP 4920634B2
Authority
JP
Japan
Prior art keywords
separation
control
voltage
stabilization
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008132397A
Other languages
English (en)
Other versions
JP2009284611A (ja
Inventor
啓二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008132397A priority Critical patent/JP4920634B2/ja
Publication of JP2009284611A publication Critical patent/JP2009284611A/ja
Application granted granted Critical
Publication of JP4920634B2 publication Critical patent/JP4920634B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、発電設備と負荷設備とを備えて構成される需要設備の電源系統と、電力会社等の電力系統網とを連系させて負荷設備に電力供給する電源系統において、電力系統側の系統事故等により系統分離事故が発生した場合に分離系統内の発電設備による単独運転を実施し、安定的に負荷電力を供給するための、単独分離系統における系統安定化装置及び系統安定化方法に関するものである。
図7は、特許文献1〜5に開示されているような従来の単独分離系統における系統安定化装置の構成図である。図7において、1は主系統の変電所母線、2は主系統と分離系統とを連系する連系用の送電線、3は主系統の変電所の遮断器、1A〜1Cは分離系統内の母線、2B〜2Cは分離系統内の送電線、3A〜3Dは遮断器、4A〜4Dは送電線電流を取り込んで検知するためのセンサ(変流器)、5Aは母線電圧を取り込んで検知するためのセンサ(変成器)、6A〜6Dは電流・電圧を取り込むための入力ケーブル、7A〜7Dは各遮断器3A〜3Dの開閉情報の入力や、電源制限(電源遮断)及び負荷制限(負荷遮断)の指令信号の出力をするための入出力ケーブル、8は分離系統内の発電機、9a〜9cは分離系統内の負荷(負荷設備)である。
10は送電線2や母線1における系統分離故障によって分離系統が主系統から分離された場合に、発電機8または負荷9a〜9cを遮断することによって、分離系統内の周波数及び電圧を維持するための系統安定化装置である。11は母線1Aの電圧を調整するための調相設備、12B〜12Cは分離系統内の電圧を変換するための変圧器である。
系統安定化装置10は、分離系統内の母線電圧、負荷量、発電量、連系線潮流、投入されている調相量等の値を入力ケーブル6A〜6Dから得て、潮流計算を一定時間毎に実施する。送電線2が遮断され、分離系統に系統分離が発生すると、系統安定化装置10は、例えば入力ケーブル6Aを通じて得られる信号から、送電線2が遮断され系統分離が発生したことを認識する。そして系統安定化装置10は、系統分離が発生する前の各種情報を基にして、分離系統内の潮流計算を実施し、系統分離が発生した後の単独分離系統の周波数及び電圧を算出する。
系統分離が発生した後の単独分離系統の周波数及び電圧のそれぞれの値が運用許容値を逸脱している場合、系統安定化装置10は、運用許容値内で運用できるように安定化制御量を算出し、入出力ケーブル7B、7Cを通じて発電機8及び負荷9a〜9cに制御指令を出力する。
このような従来の系統安定化装置では、単独分離系統の周波数及び電圧の変動範囲と運用許容値とから制御の要否を判断し、制御の必要があれば発電機8および負荷9のいずれかの遮断、あるいは調相制御、もしくはその両方を行い、単独分離系統の周波数及び電圧を制御する。
特開平7−241035号公報 特開2001−359241号公報 特開2004−72882号公報 特開2004−72883号公報 特開2004−72884号公報
上記したような従来の系統安定化装置は、系統分離事故が発生する前の潮流、電圧ならびに遮断器の開閉の状態などの系統情報を基にして、系統分離前後の定常的な潮流計算を実施し、その結果得られた潮流のアンバランス量に見合った制御量(負荷制限量、電源制限量、調相制御量)を算定し、制御する方式である。
一方、誘導電動機などの定電力特性の負荷設備は、系統電圧が低下すると電流値が増加するため、系統内の線路リアクタンス(例えば、図7の変圧器12Cなど)における無効電力の消費量は増加する特性がある。また、電力用コンデンサなどの調相設備は、系統電圧が低下すると調相量(無効電力の供給量)が減少する特性がある。このため、これらの機器の複合体である実際の工場配電系統で、電圧低下をともなう系統分離事故が発生した場合は、系統分離直後の無効電力のアンバランス量が過渡的に増加する特性となる。
以上のことから、従来の系統安定化装置を上記のような特性の工場配電系統に適用した場合に、短絡事故や地絡事故に起因する"大幅な電圧低下をともなう系統分離事故"が発生すると、例えば、系統安定化装置が算定する調相制御量が、実際に必要とされる調相制御量に対して不足する問題があった。更に、この調相制御の不足量が大きい場合は、単独運転を行う発電機による系統電圧の回復制御が遅れるばかりか、発電機の過励磁運転状態が長時間継続することによって、発電機自身が保護動作により自動停止する。すなわち、発電機の単独運転が失敗に至る可能性があった。
以上のような従来技術の問題点に鑑みて、本発明は、定電力特性の誘導性負荷や容量性負荷が混在するような電源系統において、電圧低下をともなう系統分離事故が発生した場合においても、系統分離後の発電機の単独運転を確実なものにすることが可能な系統安定化装置及び系統安定化方法を提供することを目的とする
本発明の系統安定化装置は、電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、前記遮断器からの開閉状態を示す信号に基づき、前記分離系統内の系統構成を所定の周期で検出する系統構成検出手段と、前記第1のセンサからの電流信号、及び第2のセンサからの電圧信号に基づき、前記分離系統内の送電線、負荷設備、発電機、及び調相設備を含む各設備について、電圧、周波数、電流、有効電力、及び無効電力を含む潮流情報を検出する潮流情報検出手段と、前記第2のセンサからの電圧信号に基づき、前記分離系統内の母線の電圧を、前記所定の周期よりも高速で検出して、前記系統分離事故が発生したときにおける、前記分離系統内の母線の電圧の過渡的変動値を検出する系統電圧検出手段と、前記系統構成及び前記潮流情報を含むオンライン系統情報と、前記負荷設備の過渡特性データと、前記調相設備の電圧特性データと、前記発電機の過励磁保護動作特性を含む過渡特性データとを基に、過渡安定度の計算を実行し、実行した計算の結果に基づき、前記系統分離事故が発生した直後の無効電力過渡変動量の補正係数を算定する過渡安定度解析手段と、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記分離系統内の制御対象を安定化制御するための制御量を示す安定化制御プリセット値が格納された安定化制御プリセットテーブルを、前記オンライン系統情報に基づく潮流計算の結果と、前記無効電力過渡変動量の補正係数とを用いて生成する系統安定化制御プリセットテーブル生成手段と、前記連系線の遮断器の開閉状態から検出した系統分離を示す系統分離信号をトリガーに、前記分離系統内の母線の電圧の過渡的変動値に基づき、前記安定化制御プリセットテーブルから前記安定化制御プリセット値を選択して、安定化処理を瞬時に実行する安定化制御実行手段と、前記選択された安定化制御プリセット値に基づく安定化制御指令を制御対象の機器へ出力する安定化処理出力手段と、を備え、前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする。
また、本発明の他の態様例では、電力系統における系統分離事故の発生によって主系統と分離された分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、前記分離系統内の設備における潮流情報と、前記分離系統内の構成情報とを用いて潮流計算を実行する潮流計算実行手段と、前記系統分離事故によって前記分離系統内の母線の電圧が低下した際の前記分離系統内の無効電力を、過渡安定度の計算によって求め、求めた無効電力を用いて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための補正係数を算定する過渡安定度解析手段と、前記潮流計算の結果を用いて求められた安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記補正係数を用いて補正し、補正した基準安定化制御量を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成する安定化制御量テーブル生成手段と、前記分離系統内の制御対象を予め設定した優先順位に従って選定し、前記母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成する安定化制御プリセットテーブル生成手段と、前記系統分離事故が発生すると、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセット値を選択し、選択した安定化制御プリセット値に従って制御対象の制御を実行する安定化制御実行手段とを有することを特徴とする。
本発明の系統安定化方法は、電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化方法であって、定電力特性を有する前記負荷設備を含む負荷群の動特性と、該負荷群と発電機群との間の線路リアクタンスと、無効電力の制限制御動作を含む前記発電機群の動特性と、前記調相設備の動特性とを考慮した過渡安定度の計算を行い、計算した結果に基づいて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための、無効電力過渡変動量の補正係数を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして生成するステップと、前記分離系統内の系統構成及び前記分離系統内の設備についての潮流情報を含むオンライン系統情報を基にした潮流計算で求められた潮流のバランスに関するデータから算出された安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記無効電力過渡変動量の補正係数で補正し、補正した基準安定化制御量を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成するステップと、予め設定した優先順位に従って前記分離系統内の制御対象を選定し、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値が、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして格納された安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成するステップと、前記系統分離事故が発生した場合は、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセットテーブルから、前記安定化制御プリセット値を選択して瞬時に安定化制御を実行するステップと、を有し、前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする。
本発明によれば、電圧低下をともなう系統分離事故があっても、系統分離後の過渡的な無効電力のアンバランスを可及的に瞬時に補償することによって、無効電力の供給不足等による発電機の単独運転の失敗を可及的に回避し、系統分離後も安定的な電力供給が可能となる。
本発明の系統安定化装置を実施するための形態について図面を参照して詳細に説明する。なお、各図において、同じ機能を有する装置、部品等は同一の符号を付す。
<第1の実施の形態>
(系統安定化装置の構成)
図2は、本実施の形態の系統安定化装置及びそれを組み込む電力系統(系統構成)の概略図である。
図2において、1は主系統の変電所母線、2は主系統と分離系統とを連系する連系用の送電線(連系線)、3は主系統の変電所の遮断器、1A〜1Cは分離系統内の各母線、2B〜2Eは分離系統内の送電線、3A〜3Eは遮断器、4A〜4Fはそれぞれ分離系統内の各母線1A〜1C、各送電線2B〜2D、各遮断器3A〜3Dなどに流れる電流の値を測定するために取り込む第1のセンサ(変流器)、5A〜5Cは分離系統内の各母線1A〜1Cの母線電圧の値を測定するために取り込む第2のセンサ(変成器)である。
6A〜6Fは、第1のセンサ4A〜4Fそれぞれからの電流及び第2のセンサ5A〜5Cそれぞれからの母線電圧を、系統安定化装置10に入力するための入力ケーブルである。7A〜7Dはそれぞれ、各遮断器3A、3B、3E、3Dの開閉情報の入力、系統安定化装置10から遮断器3B等への電源制限(電源遮断)、負荷制限(負荷遮断)、および調相制御の少なくとも何れか1つの指令信号を出力するための入出力ケーブルである。8は分離系統内の発電機、9a〜9cは分離系統内の各負荷(負荷設備)を表す。
10は送電線2や母線1における分離故障によって分離系統が主系統から分離された場合に、発電機8または負荷9a〜9cを遮断したり、調相設備11における調相量を制御したりすることによって、分離系統内の周波数及び電圧を維持するための系統安定化装置である。11は分離系統内の母線1Aの電圧を運用電圧(例えば定格電圧)となるように調整するための調相設備、12B〜12Cは分離系統内の電圧を運用電圧(例えば定格電圧)となるように変換するための変圧器である。
本実施の形態の系統安定化装置10は、上記のように接続された分離系統内の第1のセンサ(変流器)4A〜4F、および第2のセンサ(変成器)5A〜5Cから、分離系統内の各送電線電流、各母線電圧の信号を、入力ケーブル6A〜6Fを通じて取り込み、これら各々の電流信号及び電圧信号から、負荷量、発電量、連系線潮流、投入されている調相量等の情報の信号にそれぞれ変換する。系統安定化装置10は、この情報を基に系統分離後の分離系統内の各潮流の計算を一定時間毎、例えば1秒毎あるいはそれ以下で実施する。そして、系統安定化制御に必要な制御量、すなわち、系統分離が発生した後の分離系統内の周波数と電圧とを運用許容値内にするための、電源遮断量、負荷遮断量、調相制御量を算出する。
図2において、例えば、連系用の送電線2で短絡事故等の系統事故が発生すると、変電所の保護装置として設けられた送電線保護装置等の保護装置(図示せず)が系統事故を検出し、この保護装置からの指令の信号に基づき遮断器3Aが遮断され、主系統の変電所母線1と分離系統の変電所母線1Aとが相互に分離し、系統分離事故に至る。この場合、系統安定化装置10は、遮断器3Aの遮断情報を、入力ケーブル6Aを通して取込むことで、系統分離が発生したことを認識し、系統安定化制御(負荷制御または負荷遮断、電源制限または電源遮断、調相制御)を実施する。
図1は、本実施の形態の系統安定化装置10の内部構成の概略図である。本実施の形態の系統安定化装置10は、例えば、各種の入出力インターフェースを備えたパーソナルコンピュータを用いることにより実現することができる。
図1において、10−1は、分離系統内の系統構成を把握するための各遮断器3A〜3E等の開閉状態を検出する系統構成検出手段である。系統構成検出手段10−1は、時々刻々変化する分離系統内の系統構成(母線1A〜1C、発電機8、負荷設備9a〜9c、および調相設備11のそれぞれの接続状態)を把握するために、分離系統内の各遮断器3A〜3Eから、遮断器3A〜3Eの開閉状態を示す補助接点信号を、所定(一定)の周期(例えば1秒毎あるいはそれ以下の周期)で入出力ケーブル7A〜7Dを通じて取り込む。取込んだ各遮断器3A〜3Eの開閉状態を示す補助接点信号はデジタル信号の形態でオンラインデータ入出力手段10−4に伝達される。
10−2は、連系線2、母線1A〜1C、負荷設備9a〜9c、発電機8、調相設備11等の潮流情報を検出する潮流情報検出手段である。潮流情報検出手段10−2は、時々刻々変化する分離系統内の各種潮流情報(連系線2、母線1A〜1C、発電機8、負荷設備9a〜9c、調相設備11等の電圧V、周波数F、電流I、有効電力P、無効電力Q等)を把握するために、分離系統内の第1のセンサ(変流器)4A〜4Fで検出した各送電線(母線1A〜1C、送電線2、2B〜2E等)を流れる電流の信号、第2のセンサ(変成器)5A〜5Cで検出した各母線1A〜1Cの電圧の信号を、入力ケーブル6A〜6Fを通じて取り込む。潮流情報検出手段10−2に取り込まれた信号は、例えばトランスデューサ等の各種電気量変換器を用いて、電圧V、周波数F、電流I、有効電力P、無効電力Q等の各種電気量に変換される。このようにして得られた連系線2、母線1A〜1C、発電機8、負荷設備9a〜9c、調相設備11等の潮流情報は、アナログ信号の形態でオンラインデータ入出力手段10−4に伝達される。
10−3は、分離系統内の主要な系統電圧を検出する系統電圧検出手段である。系統電圧検出手段10−3は、系統分離事故が発生した時の母線電圧の過渡的な変動値(過渡的変動値)を検出するためのもので、図2における分離系統内の主要母線1Aに設置された第2のセンサ(変成器)5Aで検出した電圧信号を、例えば、系統構成検出手段10−1が各遮断器3A〜3Eの開閉状態を示す補助接点信号を取り込む周期よりも高速に処理して、分離系統内の母線電圧の低下、すなわち母線1Aの残存電圧Vpを検出する。検出された残存電圧Vpは、応答が速い電圧変換器で変換した連続的なアナログ信号、又は、電圧継電器の組合せで離散的なバンド値に変換したデジタル信号としてオンラインデータ入出力手段10−4へ伝達される。離散的なバンド値に変換したデジタル信号とは、例えば、残存電圧Vpが0〜10%(0≦Vp≦10%以下)である場合にはデジタル信号Vp1をON、残存電圧Vpが10〜20%はデジタル信号Vp2をON、同様に10%ステップでデジタル信号VpNをON−OFFさせる方式で出力されたデジタル信号である。尚、例えば、残存電圧Vpが0〜10%(10%〜20%)であるとは、分離系統内の母線電圧の低下が起こらなかったときの母線電圧の0〜10%(10%〜20%)であることをいう。
10−4は、系統構成検出手段10−1、潮流情報検出手段10−2、及び系統電圧検出手段10−3、並びに後述する系統分離検出手段10−8からのオンライン系統情報の入力信号と、後述する安定化制御実行手段10−9からの安定化処理の出力信号とを入出力処理するオンラインデータ入出力手段である。オンラインデータ入出力手段10−4は、上述の各遮断器3A〜3Eの開閉状態、各潮流情報、各母線電圧、各母線周波数等の時々刻々と変化するオンライン系統情報の入力信号を、10−1〜10−3及び10−8の各検出手段から、周期的(例えば数100ミリ秒あるいはそれ以下)に入力し、入力したデータをサンプリングする。サインプリングされたデータ(オンライン系統情報)は後述する潮流計算実行手段10−5、過渡安定度解析手段10−6、安定化制御実行手段10−9に伝達され、安定化制御実行手段10−9からの安定化処理の出力信号は後述する安定化処理出力手段10−10に伝達される。
10−5は、入力したオンライン系統情報を基に、系統分離後の分離系統内の潮流計算と、系統安定化装置10による安定化制御を実施した後の潮流計算とを行う潮流計算実行手段である。すなわち潮流計算実行手段10−5は、予め設定された系統構成情報(電源系統図等)に、各遮断器3A〜3Eの開閉状態のオンライン系統情報を取り込むことで、時々刻々と変化する系統構成を把握する。潮流計算実行手段10−5は、この状態において、系統分離が発生した際の分離系統内の有効電力P及び無効電力Qの需給のアンバランス量をそれぞれ推定する。また、潮流計算実行手段10−5は、系統安定化装置10による安定化制御を実行した後の分離系統内の電圧および周波数を推定する。更に、潮流計算実行手段10−5は、推定した電圧および周波数が、予め入力して設定された運転許容値内であることを判定して安定化制御量を算定する。
10−6は過渡安定度解析手段であって、系統構成及び潮流情報を含むオンライン系統情報、並びに、予め入力して設定された"負荷設備9a〜9cの過渡特性データ、調相設備11の電圧特性データ、及び発電機8の過励磁保護動作特性を含む過渡特性データ"を基にして、一定周期毎に過渡安定度の計算を実行し、系統分離の発生直前又は直後の無効電力過渡変動量の補正係数Kvを算定する。なお、過渡安定度とは、同期機(発電機及び同期電動機)が電力系統内で運転中に、短絡故障などによって系統じょう乱(過渡変動)を受けた場合に、その状態が経過した後も、同期外れ(脱調)を起こさずに、安定運転を継続できる度合である。過渡安定度解析手段10−6の内部には、過渡安定度解析用の各種情報(系統構成、負荷設備9a〜9cの過渡特性データ、調相設備11の電圧特性データ、発電機8の過渡特性データ等)が予め設定された"過渡安定度計算を行うシミュレータ"が組み込まれている。このシミュレータとしては、公知の技術の手法を用いることができるので、ここでは詳細な説明を省略する。過渡安定度解析手段10−6は、このシミュレータの変数に各オンライン系統情報を代入して過渡安定度の計算を実行する。
そして、過渡安定度解析手段10−6は、過渡安定度計算で得られた"分離系統内の母線の電圧が低下したときの分離系統内全体の無効電力の計算値"から、無効電力過渡変動の補正係数Kvを算定する。この無効電力の計算値は、系統分離の発生の直前(又は直後)の残存電圧Vpに依存する。このため、過渡安定度解析手段10−6は、残存電圧Vpが100%の場合と、それ以外の少なくとも2ケース以上の残存電圧Vpとなる場合とで、無効電力過渡変動の補正係数Kvを演算し、残存電圧Vpを変数とする関数として、無効電力過渡変動の補正係数Kvを求める。この無効電力過渡変動の補正係数Kvは、系統構成や負荷設備9a〜9cの稼動状態が大幅に変化しない限り、実運用上支障となるような大幅な変化はない。このため、例えば、分単位もしくは時間単位の周期、あるいは、系統運用の変更時に運転員の手動操作で、無効電力過渡変動の補正係数Kvの計算を実行しても問題ない。求められた無効電力過渡変動の補正係数Kvは、系統安定化制御プリセットテーブル生成手段10−7に伝達される。
系統安定化制御プリセットテーブル生成手段10−7は、潮流計算実行手段10−5における潮流計算の結果と、過渡安定度解析手段10−6で求められた無効電力過渡変動の補正係数Kvとを用いて、系統分離の発生直前(又は直後)の残存電圧Vpをパラメータとする安定化制御プリセットテーブルを生成する。ここで安定化制御プリセットテーブルとは、系統安定化装置10が安定化制御するための各制御量と制御対象とを事前に算定し、系統分離が発生する直前(又は直後)の残存電圧Vpをパラメータとしてそれらをテーブル化したものである。例えば、系統分離後の有効電力Pのバランスが負荷過剰の状態の場合には、周波数の安定化のために、有効電力Pのアンバランス量に見合った負荷遮断が必要となる。この負荷遮断量(負荷制御量)に見合った量の遮断(制御)を行う対象の負荷設備9を選択するには、遮断可能な負荷設備9に予め優先順位を設定しておき、優先順位が高い負荷設備9から順番に、遮断(制御)を行う対象の負荷設備9を、1つ又は複数選択する。このように安定化制御の制御対象の選択状況が安定化制御プリセット値となる。また、上述のように、負荷制御量(負荷遮断量)は、残存電圧Vpの値に依存するため、残存電圧Vpの値に対応した安定化制御プリセット値(負荷制御量(負荷遮断量))が、無効電力過渡変動の補正係数Kvを用いて算定される。例えば、残存電圧Vpが0〜10%(0≦Vp≦10%)の時の安定化制御プリセット値、10〜20%(10%<Vp≦20%)の時の安定化制御プリセット値、というように10%ピッチで安定化制御プリセット値が算定され、安定化制御プリセットテーブルが生成される。生成された安定化制御プリセットテーブルは安定化制御実行手段10−9に伝達されて一次保存される。これらの安定化制御プリセット値は、潮流計算を実施したタイミングで更新され、系統分離事故が発生した際の最新値が実際に使用される。
系統分離検出手段10−8は、連系線2の遮断器3Aの開閉状態から系統分離を検出する手段である。系統分離検出手段10−8では、例えば、図2の連系線2の遮断器3Aが遮断して系統分離が発生した場合、遮断器3Aの開閉状態を示す補助接点信号(遮断器3Aの状態信号)を、入出力ケーブル7Aを通じて取り込む。仮に、連系線2が平行2回線で受電されている場合、系統分離検出手段10−8は、2回線分の信号を取り込み、連系線2の遮断器3Aが2回線ともに遮断されたことをロジック回路で判定し、系統分離が発生したことを検出し、そのことを示す系統分離信号をオンライン系統情報として出力する。系統分離信号はオンラインデータ入出力手段10−4を経由して、安定化制御実行手段10−9に伝達される。
安定化制御実行手段10−9は、系統分離検出手段10−8の系統分離信号をトリガーに、この時の残存電圧Vpに応じた安定化制御プリセット値を、安定化制御プリセットテーブルから選択し、安定化制御処理を実行する。系統分離検出手段10−8から安定化制御実行手段10−9に系統分離信号が伝達されると、安定化制御実行手段10−9は、その内部に一次保存されている安定化制御プリセットテーブルから、実際の残存電圧Vpに対応した安定化制御プリセット値を選択する。選択した安定化制御プリセット値には、制御対象と制御量とが含まれているので、安定化制御実行手段10−9は、選択した安定化制御プリセット値に基づいて、制御対象に対する制御量を指示する安定化制御指令信号を出力することができる。すなわち、負荷遮断制御であれば、選択された安定化制御プリセット値に含まれる(遮断対象の)負荷設備9に遮断信号を出力する。また、電源制御であれば、選択された安定化制御プリセット値に含まれる(制御対象の)発電機8に停止信号を出力する。また、調相制御であれば、選択された安定化制御プリセット値に含まれる(制御対象の)調相設備11に投入信号あるいは遮断信号を出力する。
安定化処理出力手段10−10は、安定化制御実行手段10−9で選定された安定化制御指令信号を各制御機器へ出力する。例えば、安定化制御指令信号が、負荷遮断制御を示すものであれば、安定化処理出力手段10−10は、その負荷遮断制御を示す安定化制御指令信号が、系統安定化装置10から、安定化制御指令信号に示される各遮断器3Eに入出力ケーブル7Cを通じて出力される。この際、各遮断器3Eの仕様にあわせた信号に変換してから、安定化制御指令信号を出力する必要がある。このため、安定化処理出力手段10−10は、安定化制御実行手段10−9で選定された安定化制御指令信号を、出力先となる遮断器3Eの仕様にあわせた信号に変換してから出力する。安定化処理出力手段10−10は、例えば補助リレーで構成すると良い。
(フローチャート)
図3は、本実施の形態における系統安定化装置10の上記の各手段で実行する系統安定化制御の処理動作のフローの一例を説明した図である。
系統安定化装置10(オンラインデータ入出力手段10−4)は、潮流計算に用いる"連系線2、分離系統内の発電機群(例えば発電機8)、および分離系統内の制御対象となる負荷群(例えば負荷設備9a〜9c)の潮流値、遮断器(例えば遮断器3A〜3E)の開閉状態、分離系統内の母線電圧"等のオンライン系統情報のデータをサンプリングする(ステップS1)。
次に、潮流計算実行手段10−5は、このサンプリングデータを基にして、系統分離が発生した後の潮流計算(例えば、分離系統全体の有効電力および無効電力、ならびに分離系統内の制御対象(例えば負荷設備9a〜9c)の個々の有効電力および無効電力)を実施する(ステップS2)。このとき、系統分離とともに予め遮断することが決められている発電機群および負荷群がある場合、潮流計算実行手段10−5は、それぞれ遮断された状態にて潮流計算を実施する。この潮流計算の結果から、潮流計算実行手段10−5は、系統分離後の分離系統内の周波数および電圧が運用許容値内であるか否かを判定する(ステップS3)。
この判定の結果、系統分離後の分離系統内の周波数および電圧が運用許容値内にあると判定された場合には、系統安定化装置(潮流計算実行手段10−5)は、無制御を選択し(ステップS21)、後述するステップS11に進む。
一方、系統分離後の分離系統内の周波数および電圧が運用許容値内でないと判定された場合には、潮流計算実行手段10−5は、分離系統内の有効電力Pのアンバランス量から、負荷制御量(負荷遮断量)および電源制御量(発電遮断量または発電出力抑制量)の少なくとも何れか一方を算出する(ステップS4)。
次に、潮流計算実行手段10−5は、周波数の安定化を目的として、分離系統内の有効電力Pを制御した後の潮流計算を実施する(ステップS5)。そして、潮流計算実行手段10−5は、この潮流計算の結果から、系統分離後の分離系統内の電圧および周波数が運用許容値内であるか否かを判定する(ステップS6)。
この判定の結果、系統分離後の分離系統内の電圧が運用許容値内にあると判定された場合には、系統安定化装置10(潮流計算実行手段10−5)は、周波数安定化制御を選択し(ステップS22)、後述するステップS11に進む。
一方、系統分離後の分離系統内の電圧が運用許容値でないと判定された場合は、潮流計算実行手段10−5は、分離系統内の無効電力Qのアンバランス量から調相制御量の要求値を算出する(ステップS7)。
次に、潮流計算実行手段10−5は、算出された調相制御量の要求値(調相制御の制御要求値)が調相設備11の制御範囲内にあるかを判定する(ステップS8)。この判定の結果、調相制御量の要求値が調相設備11の制御範囲内であると判定された場合は、系統安定化装置10(潮流計算実行手段10−5)は、周波数および電圧安定化制御を選択し(ステップS23)、後述するステップS11へ進む。
一方、調相制御量の要求値が調相設備11の制御範囲内でないと判定された場合は、潮流計算実行手段10−5は、調相制御の不足量に見合った無効電力Qのバランス量に制御すべく負荷制御量(負荷遮断量)を追加補正する(ステップS9)。すなわち、潮流計算実行手段10−5は、調相制御の不足量に相当する制御量を、負荷制御量(負荷遮断量)に加算する。
次に、潮流計算実行手段10−5は、電圧安定化を目的として、調相制御と、その調相制御の不足量を補った負荷制御との両方を実施した場合の潮流計算を実施し(ステップS10)、ステップS11へ進む。
ステップS11に進むと、潮流計算実行手段10−5は、上述の処理で最終的に選択された制御モードの基準安定化制御量(負荷制御量、電源制御量、調相制御量)を設定する。この基準安定化制御量とは、電圧低下をともなわない系統分離事故時に必要な安定化制御量を意味する。
この基準安定化制御量の設定に際し、潮流計算実行手段10−5は、オンライン系統情報を基にした潮流計算の結果から、潮流(例えば、分離系統内全体の有効電力・無効電力および分離系統内の制御対象の個々の有効電力・無効電力)のバランスを示すデータを導出し、このデータを用いて、基準安定化制御量を設定する。
ここで、ステップS21で無制御が選択された場合には、基準安定化制御量は0(ゼロ)になる。また、ステップS23で周波数および電圧安定化制御が選択された場合には、ステップS7で算出された調相制御量を更に用いて、基準安定化制御量を設定する。さらに、ステップS9で負荷制御量(負荷遮断量)が追加補正された場合には、ステップS7で算出された調相制御量と、追加補正された負荷制御量(負荷遮断量)とを更に用いて基準安定化制御量を設定する。以上のようにすることによって、基準安定化制御量が可及的に適正な値になる。
また、上述したステップS1でオンライン系統情報のデータがサンプリングされてから、後述するステップS12が開始するまでの任意のタイミングで、過渡安定度解析手段10−6は、オンライン系統情報、並びに、予め入力して設定された過渡特性データ等を基にして、一定周期毎に過渡安定度の計算を実行し、計算した結果に基づいて、系統分離が発生した直前又は直後の無効電力過渡変動量の補正係数Kvを算定する(ステップS31)。上述したように、無効電力過渡変動量の補正係数Kvは、残存電圧Vpをパラメータとする関数である。
次に、系統安定化制御プリセットテーブル生成手段10−7は、電圧低下をともなう系統分離事故時の過渡的な無効電力の変動量を加味するために、系統分離の発生の直前の残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvを用いて、基準安定化制御量を補正し、補正した基準安定化制御量を、残存電圧Vpをパラメータとして格納した安定化制御量テーブルを生成する(ステップS12)。
次に、系統安定化制御プリセットテーブル生成手段10−7は、分離系統内の母線電圧の低下を伴う系統分離事故時に必要な制御(負荷制御、電源制御および調相制御)の内容を記憶した安定化制御プリセットテーブルを生成する。すなわち、系統安定化制御プリセットテーブル生成手段10−7は、予め設定した優先順位に従って制御対象を選定し、安定化制御量テーブル(残存電圧Vp毎に算出された"電圧低下をともなわない系統分離事故時の安定化制御に必要な制御量データ")から、選定した制御対象に対する制御量を残存電圧Vp毎に求める。そして、それら制御対象と制御量とを含む安定化制御プリセット値を、残存電圧Vpをパラメータとして格納した"負荷制御、電源制御および調相制御のための安定化制御プリセットテーブル"を生成する(ステップS13)。
次に、系統分離検出手段10−8は、連系線2の遮断器3Aの開閉状態から、系統分離事故の有無を判定する(ステップS14)。この判定の結果、系統分離事故が発生していない場合には、ステップS1にもどり、上記の制御ループを繰り返して最新の系統状態における安定化制御プリセットテーブルに更新する。
一方、系統分離事故が発生した場合には、安定化制御実行手段10−9は、系統分離事故が発生する直前又は直後の母線1aの残存電圧Vpに対応した安定化制御プリセット値を選択して、選択した安定化制御プリセット値に基づく安定化制御指令信号を、安定化処理出力手段10−10を通して、各制御機器に送信し、安定化制御処理を実施する(ステップS15)。
(具体的な信号処理)
次に、電圧低下を伴う系統分離事故時の過渡的な無効電力の変動量を加味するための、系統分離の発生直前(又は直後)の残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvについて説明する。
図4は、主系統で電圧低下をともなう系統分離事故が発生し、系統分離した場合の分離系統内の主要母線1aの母線電圧Vの時間変化の様相を示した一例である。この例では、主系統で短絡事故が発生したために、分離系統内の主要母線1aで急激な電圧低下が発生し、事故点の除去とともに発電機8の電圧制御等により、規定電圧に母線電圧Vが復帰する過程を示している。母線電圧Vは、事故点が除去あるいは系統分離が発生する直前(又は直後)が最低電圧となり、この時の残存電圧Vpの大きさによって、系統の無効電力Qのバランスが過渡的に変動する。
図5は、定電力負荷特性を有する負荷群の、残存電圧Vpと諸特性(有効電力P、無効電力Q、力率Pf、電流I)との関係を示した一例である。末端の負荷設備9a〜9cの有効電力Pは電圧低下の影響を比較的受けずにほぼ一定となる。しかし、母線電圧Vの低下(残存電圧Vpの低下)に伴い電流値が増加するために、線路リアクタンスにおける無効電力Qの消費が増加する。このため、電源側から見た無効電力Qは、残存電圧Vpの低下に伴い急増する一例を示している。
こうした定電力特性を有する負荷群の動特性、負荷群と発電機群の間の線路リアクタンス(発電所の昇圧変圧器や変電所の配電用変圧器)、無効電力Qの制限制御動作を含む発電機群の動特性、ならびに、調相設備の動特性を考慮した過渡安定度の計算を一定周期毎に実施して算定した、残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvの一例を図6に示す。Kvは残存電圧Vpの関数であり、以下の式(1)となる。
Kv=f(Vp) ・・・(1)
無効電力過渡変動の補正係数Kvは、系統を構成する個々の機器の特性で異なるが、例えば、下記のような近似式(2)で近似することができる。
Kv=1+(1−Vp)α ・・・(2)
ここで、αは近似式の変数、Vpの単位はパーユンニット値[pu]である。なお、αの値は、例えば1.5〜2の範囲で近似できる。
系統安定化制御プリセットテーブル生成手段10−7は、この無効電力過渡変動の補正係数Kvを用いて、基準安定化制御量を補正する。例えば、系統安定化制御プリセットテーブル生成手段10−7は、系統分離後の電源から見た負荷群の無効電力Qの消費量を補正し、補正後の無効電力Qのアンバランス量から負荷制御量を補正する。そして、この負荷制御量の補正にともない有効電力Pのバランスにもアンバランスが生じるため、系統安定化制御プリセットテーブル生成手段10−7は、有効電力Pのアンバランス量から電源制御量も同時に補正して、最終的な安定化制御量テーブルを生成する。
なお、図3の系統安定化制御のフローでは、この無効電力過渡変動の補正係数Kvを算定するための過渡安定度の計算を制御周期毎に実施しているが、負荷設備9の稼動状態及び負荷特性の変化が少ない場合は、必ずしも制御周期毎に実施する必要はなく、例えば、分単位または時間単位で実施しても精度上の問題はない。また、この無効電力過渡変動の補正係数Kvを算出する処理は必ずしも系統安定化装置10で実施する必要はなく、オフライン解析により求めて、その結果を系統安定化装置10が通信を行って取得することで実現しても構わない。さらに、この無効電力過渡変動の補正係数Kvは、残存電圧Vpの範囲毎に設定した離散値を使用しても構わない。
<第2の実施の形態>
図1に示した系統安定化装置10において、本発明の系統安定化装置を実現するための具体的なシステム構成の一例を説明する。
本実施形態では、系統構成検出手段10−1は補助リレー、潮流情報検出手段10−2はトランスデューサ、系統電圧検出手段10−3は高応答トランスデューサ又は電圧継電器、系統分離検出手段10−8は補助リレー及びリレー回路、安定化処理出力手段10−10は補助リレー回路で構成される。それぞれの設置場所が同一の場所であれば、それぞれは、同一のインターフェース盤に収納される。一方、それぞれの設置場所が異なる場合には、それぞれを独立したインターフェース盤に収納し、インターフェースケーブルまたはリモートI/O盤を用いた通信ケーブルにて、オンラインデータ入出力手段10−4と信号の授受を行うようにする。オンラインデータ入出力手段10−4、潮流計算実行手段10−5、系統安定化制御プリセットテーブル生成手段10−7、安定化制御実行手段10−9は、系統安定化装置10の主幹制御装置にあたり、同一のデジタル制御装置(一般にDCS装置という)またはプログラミングコントローラ(一般にPLCという)にて構成される。それぞれの機能は主幹制御装置内に組み込んだソフトウエアで構築される。過渡安定度解析手段10−6は上記の主幹制御装置内に組み込むことも可能であるが、主幹制御装置内の演算処理速度の低下を防止するために、独立した工業用パソコン内に組み込み、主幹制御装置と通信でデータを伝送する構成とすることが望ましい。
上記の系統安定化装置10の構成は一例であって、構成に用いる素子、装置等は当業者に周知の代替部品及び装置で構成しても良いことは明らかである。又、各手段で実施する信号処理及びデータ処理に際して、アナログ信号又はデジタル信号を用いるかは、実装する設備環境に応じて適宜使い分ければ良い。
以上のように系統安定化装置10を構成すれば、電圧低下をともなう系統分離事故においても、系統分離後の過渡的な無効電力Qのアンバランスを瞬時に補償することによって、無効電力Qの供給不足等による、分離系統内の発電設備(発電機8)の単独運転の失敗を回避し、系統分離後も安定的な電力供給が可能となる。
以上説明した本発明の各実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体、又はかかるプログラムを伝送する伝送媒体も本発明の実施の形態として適用することができる。また、上記プログラムを記録したコンピュータ読み取り可能な記録媒体などのプログラムプロダクトも本発明の実施の形態として適用することができる。上記のプログラム、コンピュータ読み取り可能な記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。
尚、前述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明の実施の形態を示し、系統安定化装置の構成図である。 本発明の実施の形態を示し、系統安定化装置及びそれを組み込む電力系統(系統構成)の概略図である。 本発明の実施の形態を示し、系統安定化制御の処理動作を説明するフローチャートである。 本発明の実施の形態を示し、電圧低下をともなう系統分離事故が発生した時の残存電圧の様相を説明した図である。 本発明の実施の形態を示し、定電力特性を有する負荷群の残存電圧に対する諸特性の一例を示した図である。 本発明の実施の形態を示し、無効電力過渡変動の補正係数の一例を示した図である。 従来の系統安定化装置の構成図である。
符号の説明
1 主系統の変電所母線
1A 分離系統の変電所母線
1B 発電所の母線
1C 負荷設備の母線
2 主系統との連系用の送電線
2B〜2E 分離系統内の送電線
3A〜3D 遮断器
4A〜4F センサ(変流器)
5A〜5C センサ(変成器)
6A〜6F 入力ケーブル
7A〜7D 入出力ケーブル
8 発電機
9a〜9c 負荷
10 系統安定化装置
11 調相設備
12B、12C 変圧器
10−1 系統構成検出手段
10−2 潮流情報検出手段
10−3 系統電圧検出手段
10−4 オンラインデータ入出力手段
10−5 潮流計算実行手段
10−6 過渡安定度解析手段
10−7 系統安定化制御プリセットテーブル生成手段
10−8 系統分離検出手段
10−9 安定化制御実行手段
10−10 安定化処理出力手段

Claims (4)

  1. 電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、
    前記遮断器からの開閉状態を示す信号に基づき、前記分離系統内の系統構成を所定の周期で検出する系統構成検出手段と、
    前記第1のセンサからの電流信号、及び第2のセンサからの電圧信号に基づき、前記分離系統内の送電線、負荷設備、発電機、及び調相設備を含む各設備について、電圧、周波数、電流、有効電力、及び無効電力を含む潮流情報を検出する潮流情報検出手段と、
    前記第2のセンサからの電圧信号に基づき、前記分離系統内の母線の電圧を、前記所定の周期よりも高速で検出して、前記系統分離事故が発生したときにおける、前記分離系統内の母線の電圧の過渡的変動値を検出する系統電圧検出手段と、
    前記系統構成及び前記潮流情報を含むオンライン系統情報と、前記負荷設備の過渡特性データと、前記調相設備の電圧特性データと、前記発電機の過励磁保護動作特性を含む過渡特性データとを基に、過渡安定度の計算を実行し、実行した計算の結果に基づき、前記系統分離事故が発生した直後の無効電力過渡変動量の補正係数を算定する過渡安定度解析手段と、
    前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記分離系統内の制御対象を安定化制御するための制御量を示す安定化制御プリセット値が格納された安定化制御プリセットテーブルを、前記オンライン系統情報に基づく潮流計算の結果と、前記無効電力過渡変動量の補正係数とを用いて生成する系統安定化制御プリセットテーブル生成手段と、
    前記連系線の遮断器の開閉状態から検出した系統分離を示す系統分離信号をトリガーに、前記分離系統内の母線の電圧の過渡的変動値に基づき、前記安定化制御プリセットテーブルから前記安定化制御プリセット値を選択して、安定化処理を瞬時に実行する安定化制御実行手段と、
    前記選択された安定化制御プリセット値に基づく安定化制御指令を制御対象の機器へ出力する安定化処理出力手段と、を備え、
    前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする系統安定化装置。
  2. 電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化方法であって、
    定電力特性を有する前記負荷設備を含む負荷群の動特性と、該負荷群と発電機群との間の線路リアクタンスと、無効電力の制限制御動作を含む前記発電機群の動特性と、前記調相設備の動特性とを考慮した過渡安定度の計算を行い、計算した結果に基づいて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための、無効電力過渡変動量の補正係数を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして生成するステップと、
    前記分離系統内の系統構成及び前記分離系統内の設備についての潮流情報を含むオンライン系統情報を基にした潮流計算で求められた潮流のバランスに関するデータから算出された安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記無効電力過渡変動量の補正係数で補正し、補正した基準安定化制御量を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成するステップと、
    予め設定した優先順位に従って前記分離系統内の制御対象を選定し、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値が、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして格納された安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成するステップと、
    前記系統分離事故が発生した場合は、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセットテーブルから、前記安定化制御プリセット値を選択して瞬時に安定化制御を実行するステップと、を有し、
    前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする系統安定化方法。
  3. 前記調相設備における調相制御の制御要求値が、前記調相設備の制御範囲内にあるか否かを判定するステップと、
    前記調相制御の制御要求値が、前記調相設備の制御範囲内でないと判定された場合に、前記調相制御の不足量に見合った無効電力のバランス量に制御すべく、負荷制御量を追加補正して基準安定化制御量を適正な値にするステップとを有することを特徴とする請求項2に記載の系統安定化方法。
  4. 電力系統における系統分離事故の発生によって主系統と分離された分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、
    前記分離系統内の設備における潮流情報と、前記分離系統内の構成情報とを用いて潮流計算を実行する潮流計算実行手段と、
    前記系統分離事故によって前記分離系統内の母線の電圧が低下した際の前記分離系統内の無効電力を、過渡安定度の計算によって求め、求めた無効電力を用いて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための補正係数を算定する過渡安定度解析手段と、
    前記潮流計算の結果を用いて求められた安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記補正係数を用いて補正し、補正した基準安定化制御量を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成する安定化制御量テーブル生成手段と、
    前記分離系統内の制御対象を予め設定した優先順位に従って選定し、前記母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成する安定化制御プリセットテーブル生成手段と、
    前記系統分離事故が発生すると、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセット値を選択し、選択した安定化制御プリセット値に従って制御対象の制御を実行する安定化制御実行手段とを有することを特徴とする系統安定化装置。
JP2008132397A 2008-05-20 2008-05-20 系統安定化装置及び系統安定化方法 Expired - Fee Related JP4920634B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132397A JP4920634B2 (ja) 2008-05-20 2008-05-20 系統安定化装置及び系統安定化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132397A JP4920634B2 (ja) 2008-05-20 2008-05-20 系統安定化装置及び系統安定化方法

Publications (2)

Publication Number Publication Date
JP2009284611A JP2009284611A (ja) 2009-12-03
JP4920634B2 true JP4920634B2 (ja) 2012-04-18

Family

ID=41454465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132397A Expired - Fee Related JP4920634B2 (ja) 2008-05-20 2008-05-20 系統安定化装置及び系統安定化方法

Country Status (1)

Country Link
JP (1) JP4920634B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841154A (zh) * 2010-04-07 2010-09-22 云南电力试验研究院(集团)有限公司 输电网严重故障后的电压稳定裕度实时评估与最优控制方法
JP5986827B2 (ja) * 2012-07-03 2016-09-06 一般財団法人電力中央研究所 電力系統安定化解析装置、電力系統安定化解析方法及び電力系統安定化解析プログラム
JP6903990B2 (ja) * 2017-03-24 2021-07-14 日本製鉄株式会社 電圧異常判定装置および復旧制御装置
CN111682553B (zh) * 2020-07-02 2023-11-03 华北电力大学 基于svg抑制直流系统暂态过电压控制系统及控制方法
CN116260154B (zh) * 2023-05-11 2023-08-18 华北电力科学研究院有限责任公司 调相机组控制方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382337A (ja) * 1989-08-23 1991-04-08 Chubu Electric Power Co Inc 系統安定化装置
JPH07241035A (ja) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp 単独分離系統安定化方法
JP3771116B2 (ja) * 2000-06-12 2006-04-26 三菱電機株式会社 電力系統安定化制御方法及び電力系統安定化制御装置

Also Published As

Publication number Publication date
JP2009284611A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
DK2102495T3 (en) WIND ENERGY INSTALLATION WITH INVERSE SYSTEM REGULATION AND OPERATING PROCEDURE
US10333301B2 (en) Transient simulation modeling for dynamic remedial action schemes using real-time protection setting updates
JP5308511B2 (ja) 風力発電設備の出力制御方法及び出力制御装置
JP4680102B2 (ja) 電力変換装置
JP4920634B2 (ja) 系統安定化装置及び系統安定化方法
DK2580836T3 (en) Wind energy plant and method for operating a wind power plant
EP2681822B1 (en) A control device for controlling a circuit breaker, and methods
Mosaad et al. Integrating adaptive control of renewable distributed switched reluctance generation and feeder protection coordination
SE517714C2 (sv) Nätvärnssystem för skydd av ett totalt elkraftsystems integritet mot svagt dämpade effektsvängningar, elkraftsystem innefattande ett nätvärn, systemskyddssystemförfarande, systemskyddsterminal, datorprogramprodukt samt datorläsbart medium
JP2009225599A (ja) 電力変換装置
AU2015200864A1 (en) Method and device for monitoring the state of a network
US9391537B2 (en) Photovoltaic system and power supply system
WO2014209688A2 (en) Distributed control in electric power delivery systems
CA2763497C (en) Improved control of a power transmission system
US7345379B2 (en) Power converter with voltage and current fault setting
JP2012130169A (ja) 電力変換装置、電力変換装置の制御装置及び電力変換装置の制御方法
JP2009118685A (ja) 交流電圧制御方法
JP5730652B2 (ja) 電圧調整装置及び電圧調整方法
EP2858201A1 (en) Detection of islanding condition in electricity network
JP5191245B2 (ja) 配電線補償リアクトル自動制御システム
JP3590276B2 (ja) 無効電力補償装置
JP7139585B2 (ja) 電力変換器の制御装置、制御方法、制御プログラム
JP7106348B2 (ja) 系統安定化装置
JP2007202372A (ja) 分散型電源装置
JP2020137299A (ja) 電力系統安定化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R151 Written notification of patent or utility model registration

Ref document number: 4920634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees