JP4918342B2 - Copper foil roughening treatment method - Google Patents

Copper foil roughening treatment method Download PDF

Info

Publication number
JP4918342B2
JP4918342B2 JP2006333349A JP2006333349A JP4918342B2 JP 4918342 B2 JP4918342 B2 JP 4918342B2 JP 2006333349 A JP2006333349 A JP 2006333349A JP 2006333349 A JP2006333349 A JP 2006333349A JP 4918342 B2 JP4918342 B2 JP 4918342B2
Authority
JP
Japan
Prior art keywords
copper foil
treatment
roughening
microetching
triazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006333349A
Other languages
Japanese (ja)
Other versions
JP2008144232A (en
Inventor
伸哲 森岡
尚志 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2006333349A priority Critical patent/JP4918342B2/en
Publication of JP2008144232A publication Critical patent/JP2008144232A/en
Application granted granted Critical
Publication of JP4918342B2 publication Critical patent/JP4918342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、特に高周波特性や高密度配線を目的としたプリント配線板に対して好適な銅箔を製造するための粗面化処理方法を提供する。   The present invention provides a roughening treatment method for producing a copper foil suitable for a printed wiring board particularly for high-frequency characteristics and high-density wiring.

銅箔は、プリント配線板用途として大量に使用され、製法によって、圧延銅箔と電解銅箔に大別される。
このうち、電解銅箔の一般的な製造方法は、硫酸酸性銅電解液から電着装置で目的の厚みの銅を電解析出させ、析出物を剥離し、巻き取って製造される。その際、電解液に適当な添加剤を加えることにより、用途に合った機械特性および表面形状を作り出すことが行われている。電解銅箔の場合、両面の表面特性が異なる場合が多く、電着ドラム側をS(Shiny)面、平滑面又は光沢面、反対側をM(Matt)面又は粗面と呼ぶ。S面は、電着ドラムの影響を受け、表面粗度はRzで2μm程度、結晶は、ランダム配向の微細結晶である。対して、M面は、電着条件や添加剤条件によって、その表面特性を大きく振ることが可能で、適当な光沢剤を添加した場合は、18μm厚みの銅箔の場合、その表面粗度はRzで1μm以下にすることが可能で、その際の結晶は極めて微細であり、膠などを添加した場合は、表面粗度Rzは、4μm〜12μm程度に振ることが可能で、その際の結晶は柱状晶となる。
Copper foil is used in large quantities for printed wiring board applications, and is roughly classified into rolled copper foil and electrolytic copper foil depending on the production method.
Among these, a general manufacturing method of the electrolytic copper foil is manufactured by electrolytically depositing copper having a target thickness from an acidic copper sulfate electrolytic solution with an electrodeposition apparatus, peeling the precipitate, and winding it. At that time, by adding an appropriate additive to the electrolytic solution, mechanical properties and a surface shape suitable for the application are created. In the case of electrolytic copper foil, the surface characteristics of both surfaces are often different, and the electrodeposition drum side is called the S (Shiny) surface, smooth surface or glossy surface, and the opposite side is called the M (Matt) surface or rough surface. The S plane is affected by the electrodeposition drum, the surface roughness is about 2 μm in Rz, and the crystal is a fine crystal of random orientation. On the other hand, the M surface can greatly vary its surface characteristics depending on the electrodeposition conditions and additive conditions. When an appropriate brightener is added, the surface roughness is 18 μm thick copper foil. Rz can be reduced to 1 μm or less, and the crystal at that time is extremely fine. When glue is added, the surface roughness Rz can be varied to about 4 μm to 12 μm. Becomes columnar crystals.

また、圧延銅箔の一般的な製造方法は、銅インゴットから圧延機で目的の厚みまで圧延し、巻き取って製造されている。
これら銅箔は当業者間において「未処理銅箔」と呼ばれており、プリント配線板用銅箔を得る場合には、通常はこの未処理銅箔のままで使用されることはなく、絶縁樹脂との接着性を向上させることを目的とした「粗面化処理」や化学的接着力、耐熱、耐薬品性及び防錆性を付与することを目的とした各種表面処理が施される。
これら複数の表面処理の各工程は、工業的な観点から、おおむね数秒から十数秒以内で完了する。
Moreover, the general manufacturing method of rolled copper foil is rolled and manufactured to a target thickness with a rolling mill from a copper ingot.
These copper foils are called “untreated copper foils” by those skilled in the art. When obtaining copper foils for printed wiring boards, these copper foils are usually not used as they are, but are insulated. Various surface treatments are applied for the purpose of imparting "roughening treatment" for the purpose of improving the adhesion to the resin and chemical adhesion, heat resistance, chemical resistance and rust prevention.
Each step of the plurality of surface treatments is completed within a few seconds to a few dozen seconds from an industrial viewpoint.

このうち、プリント配線板用銅箔の一般的な粗面化処理は次の形態で形成されている。
まず、粗面化処理に入る前に、未処理銅箔の表面を洗浄する目的で、表面洗浄処理が行われる。
未処理銅箔の表面を、酸性浴やアルカリ性浴に浸漬(散布)または電解処理することにより、表面の酸化物や有機物が除去される。
次に、粗面化処理として、硫酸酸性銅浴中で銅箔を陰極とし、処理面に対し不溶性陽極を対向させて配し、限界電流密度以上の電流で銅の樹枝状突起物を形成させ、さらに、硫酸酸性銅浴中で銅箔を陰極とし、限界電流密度以下の電流で、樹枝状突起物を被覆し、固着化することが行われる。
プリント配線板用として最適な表面になるよう、電解液の組成や添加剤、電流、温度等の条件は、高精度に制御されている。
Among these, the general roughening process of the copper foil for printed wiring boards is formed with the following form.
First, a surface cleaning process is performed for the purpose of cleaning the surface of the untreated copper foil before the roughening process.
By immersing (spreading) or electrolytically treating the surface of the untreated copper foil in an acidic bath or an alkaline bath, the surface oxides and organic substances are removed.
Next, as roughening treatment, a copper foil is used as a cathode in a sulfuric acid copper bath, and an insoluble anode is arranged opposite to the treated surface to form a copper dendrite with a current exceeding the limit current density. Furthermore, the dendritic protrusions are coated and fixed with a copper foil as a cathode in an acidic copper sulfate bath with a current equal to or lower than the limiting current density.
Conditions such as the composition of the electrolytic solution, additives, current, and temperature are controlled with high accuracy so as to obtain an optimum surface for a printed wiring board.

また、粗面化処理は、主にM面側に施されるが、近年では、S面に施されるケースや、多層プリント配線板製造工程の黒化処理の代替として、両面に施されるケースもある。
近年、モバイル電子機器の高機能化に伴い、高周波特性や配線の高密度化を満足させるため、表皮効果による信号伝達速度の遅延改善およびエッチングファクターを下げる意味合いで、銅箔表面を低粗度化する流れがある。低粗度化には、未処理銅箔の粗度を低下させることや、粗面化処理に於いて、粗化粒子を小粒化すること、粗化粒子を未処理銅箔の凹凸表面に分散させて形成することなどが検討されてきたが、「銅箔の低粗度化」と「樹脂基材との接着力」は、相反する関係にあり、両方を満足するに至っていないのが現状である。
In addition, the surface roughening treatment is mainly performed on the M surface side, but in recent years, it has been performed on both surfaces as an alternative to the case applied to the S surface and the blackening treatment in the multilayer printed wiring board manufacturing process. There is also a case.
In recent years, as mobile electronic devices have become more sophisticated, the surface of copper foil has been reduced to reduce the etching factor and improve the signal transmission speed delay due to the skin effect in order to satisfy high-frequency characteristics and higher wiring density. There is a flow to do. For lowering the roughness, the roughness of the untreated copper foil is reduced, the roughened particles are reduced in the surface roughening treatment, and the roughened particles are dispersed on the uneven surface of the untreated copper foil. However, there is a conflicting relationship between “reducing the roughness of the copper foil” and “adhesive strength with the resin base material”. It is.

以下にこれまで検討されてきた技術例を示す。
例えば下記の特許文献1には、粗面化処理工程の前に、あらかじめ陰極処理または陽極溶解処理により微細粗面化する方法が開示されている。その条件は、陰極処理の場合も、陽極溶解処理の場合も同様で、銅濃度5〜60g/Lの酸性硫酸銅浴を用いる事が示されている。
又、下記の特許文献2には、圧延銅箔を電解液中で交流・直流またはこれらの組み合わせによりエッチング粗化面を形成する方法が開示されている。
特開昭48−9938号公報 特開昭59−9050号公報
The following are examples of technologies that have been studied so far.
For example, Patent Document 1 below discloses a method for finely roughening a surface by a cathode treatment or an anodic dissolution treatment in advance before the surface roughening treatment step. The conditions are the same for the cathode treatment and the anodic dissolution treatment, and it is shown that an acidic copper sulfate bath having a copper concentration of 5 to 60 g / L is used.
Patent Document 2 below discloses a method of forming a roughened etching surface of a rolled copper foil in an electrolytic solution by AC / DC or a combination thereof.
JP 48-9938 A JP 59-9050 A

しかし、このような単純浴で単にメッキをすることや溶解をすることでは、高表面積は得られず、十分な効果が得られず、このことは、後述する比較例2に示された、単純浴での直流による陽極溶解処理実験結果からも明らかである。   However, simply plating or dissolving in such a simple bath does not provide a high surface area, and a sufficient effect cannot be obtained. This is a simple example shown in Comparative Example 2 described later. It is clear from the results of anodic dissolution treatment using direct current in the bath.

更に、下記の特許文献3には、銅箔の光沢面をエッチングすることが示されており、その手段として化学エッチングが最も便宜であるとし、過硫酸アンモン浴が好適とされる。
特開平7−74464号公報
Further, Patent Document 3 below shows that the glossy surface of the copper foil is etched, and chemical etching is most convenient as the means, and an ammonium persulfate bath is suitable.
Japanese Patent Laid-Open No. 7-74464

しかし、過酸化物を多量に含む化学エッチング液は、過酸化物自身の消耗(分解)速度が速く、また、過酸化物によって添加剤が分解されるため、エッチング量を安定的に高精度に制御することが困難だけでなく、液を循環させて再利用することも困難である。   However, chemical etchants containing a large amount of peroxide have a high consumption (decomposition) rate of the peroxide itself, and the additive is decomposed by the peroxide, so the etching amount can be stably and highly accurate. Not only is it difficult to control, it is also difficult to circulate and reuse the liquid.

また、化学エッチング液を用いた場合、銅箔の両面が同時にエッチングされ、片面のみに行う場合は、片面だけにのみエッチング液が触れるような特別の装置が必要であったり、片面にフィルム等を貼り合わせたりする必要があった。特に高周波特性や高密度配線を目的としたプリント配線板に多用される、18μm以下の薄箔に対し、通箔性に劣り、生産性が悪かった。さらに、未処理銅箔が電解銅箔の場合、S面とM面の表面粗度が異なる場合が多く、さらに、結晶の組織も異なる場合が多い。このような箔に対して、化学エッチング液を用いて、両面を別々に、エッチング量の制御を行うことが困難であることは容易に推察される。   Also, when chemical etching solution is used, both sides of the copper foil are etched at the same time, and when it is performed only on one side, a special device that touches the etching solution only on one side is required, or a film or the like is applied on one side. It was necessary to paste them together. In particular, thin foils of 18 μm or less, which are frequently used for printed wiring boards for the purpose of high-frequency characteristics and high-density wiring, are inferior in foil permeability and in productivity. Further, when the untreated copper foil is an electrolytic copper foil, the surface roughness of the S plane and the M plane are often different, and the crystal structure is also often different. For such a foil, it is easily guessed that it is difficult to control the etching amount separately on both sides using a chemical etching solution.

また、化学エッチング液の分野では、下記の特許文献4に開示されるように、古くから酸性過酸化物水溶液に対してアゾール類を添加することは試みられている。プリント配線板の分野では、アゾール類を添加した酸性過酸化物水溶液は、「マイクロエッチング処理液」と呼ばれ、黒化処理の代替技術において使用されることが広く知られている。
US3773577
Moreover, in the field of chemical etching solutions, as disclosed in the following Patent Document 4, attempts have been made to add azoles to acidic peroxide aqueous solutions for a long time. In the field of printed wiring boards, acidic peroxide aqueous solutions to which azoles are added are called “microetching treatment solutions” and are widely used in alternative techniques for blackening treatments.
US3773577

しかし、アゾール類であっても、その種類によって、ハロゲンイオンの存在有無による、エッチング形状およびエッチング速度の差は著しく、例えば下記の特許文献5に示されているように、アゾール類がベンゾトリアゾールの場合には、凹凸を形成するには塩素イオンを必須とするがエッチング速度が遅く、テトラゾール類を用いた場合には、塩素イオンの有無に関わらず、早い速度で凹凸のエッチングが出来る。
後述する本発明の電解法によるマイクロエッチングでは、比較例4に示されるように、テトラゾール類では明確な効果を示さず、トリアゾール類又はチアゾール類で効果が認められ、このことから、電解法と浸漬(散布)法(化学エッチング)では、マイクロエッチング可能な添加剤の種類が異なり、別の機構で反応が進行していることが伺える。
特開2000−64067号公報
However, even in the case of azoles, the difference in the etching shape and the etching rate due to the presence or absence of halogen ions is significant depending on the type of the azole. For example, as shown in Patent Document 5 below, the azole is composed of benzotriazole. In some cases, chlorine ions are essential to form irregularities, but the etching rate is slow, and when tetrazoles are used, irregularities can be etched at a high rate regardless of the presence or absence of chlorine ions.
In microetching by the electrolysis method of the present invention described later, as shown in Comparative Example 4, tetrazole does not show a clear effect, and triazoles or thiazoles show an effect. In the (spraying) method (chemical etching), the types of additives that can be microetched are different and the reaction proceeds by another mechanism.
JP 2000-64067 A

その他、粗面化処理の前工程として、例えば下記の特許文献6に代表されるように、機械的に表面を研磨する方法が多数報告されているが、工程が煩雑になるばかりでなく、研磨によるミストや研磨残渣を発生し、後の回路形成工程への影響が危惧され、近年の高密度プリント配線板用工程には向かないという欠点があった。
特開昭59−145800号公報
In addition, as a pre-process of the roughening treatment, for example, a number of methods for mechanically polishing the surface have been reported as typified by the following Patent Document 6, but not only the process becomes complicated, but also polishing. Mist and polishing residue are generated, and there is a concern that it may affect the subsequent circuit formation process, which is not suitable for the recent high-density printed wiring board process.
JP 59-145800 A

本発明は、前述の従来技術の問題点を解決し、高周波基板用途や高密度配線用途に適した低粗度高接着力の銅箔表面形状を簡便に得る方法を提供することを課題とする。   An object of the present invention is to solve the above-described problems of the prior art and to provide a method for easily obtaining a low-roughness and high-adhesion copper foil surface shape suitable for high-frequency substrate applications and high-density wiring applications. .

本発明の銅箔の粗面化処理方法は、銅箔の片面もしくは両面に、アゾール類を含む硫酸酸性溶液で、電解法によってマイクロエッチング処理を施すことを特徴とする。アゾール類は、トリアゾール類、チアゾール類であることが好ましく、その濃度は0.005〜2g/Lが好ましい。本発明の方法にて使用される銅箔は、電解銅箔と圧延銅箔のどちらであってもよい。
又、本発明は、前記のマイクロエッチング処理を施した後に、さらに硫酸酸性溶液を用いて電解法により樹枝状処理及び被覆めっき処理を施すことを特徴とする、銅箔の粗面化処理方法でもある。
The copper foil roughening treatment method of the present invention is characterized in that one or both surfaces of the copper foil are subjected to microetching treatment by an electrolytic method with a sulfuric acid solution containing azoles. The azoles are preferably triazoles and thiazoles, and the concentration is preferably 0.005 to 2 g / L. The copper foil used in the method of the present invention may be either an electrolytic copper foil or a rolled copper foil.
The present invention also provides a roughening treatment method for copper foil, characterized in that after the microetching treatment is performed, a dendritic treatment and a coating plating treatment are further performed by an electrolytic method using a sulfuric acid acidic solution. is there.

本発明の粗面化処理方法を用いることによって、銅箔の両面に対して別々に、簡便且つ均一に高精度に、高表面積な低粗度表面を得ることが出来る。また、従来の粗面化処理と併用した場合にも、特に低粗度が要求される基板材料に対して高い接着強度を示すプリント配線板用銅箔が得られる。   By using the roughening treatment method of the present invention, a low-roughness surface having a high surface area can be obtained separately, simply and uniformly with high accuracy on both sides of the copper foil. In addition, when used in combination with a conventional roughening treatment, a printed wiring board copper foil exhibiting high adhesive strength can be obtained particularly for substrate materials that require low roughness.

本発明において用いる電解法によるマイクロエッチング処理液は、硫酸酸性溶液を基本とし、トリアゾール類またはチアゾール類の添加剤を加えることにより効果を発揮する。
このマイクロエッチング処理液中の硫酸の濃度は10〜250g/Lが好ましく、50〜150g/Lがさらに好ましい。添加剤は、トリアゾール類、チアゾール類から選択される。
トリアゾール類としては、ベンゾトリアゾール、1-メチルベンゾトリアゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-4H-1,2,4-トリアゾール、5-ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾールが挙げられ、チアゾール類としては、2-アミノチアゾール、ベンゾチアゾール、2-メチルベンゾチアゾール、2-メルカプトベンゾチアゾールが挙げられるが、特にこれらに限定されるものではない。
添加剤の濃度は、0.005〜2g/Lで効果が認められ、さらには0.01〜1g/Lが好ましい。
The microetching solution by the electrolytic method used in the present invention is based on a sulfuric acid acidic solution, and exhibits an effect by adding an additive of triazoles or thiazoles.
The concentration of sulfuric acid in the microetching solution is preferably 10 to 250 g / L, more preferably 50 to 150 g / L. The additive is selected from triazoles and thiazoles.
Triazoles include benzotriazole, 1-methylbenzotriazole, 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-4H-1, Examples include 2,4-triazole, 5-nitrobenzotriazole, and hydroxybenzotriazole. Examples of thiazoles include 2-aminothiazole, benzothiazole, 2-methylbenzothiazole, and 2-mercaptobenzothiazole. It is not limited to.
The effect is recognized when the concentration of the additive is 0.005 to 2 g / L, and more preferably 0.01 to 1 g / L.

処理液の組成を比較すると、従来の浸漬系の液組成が、硫酸、過酸化水素40vol%前後、アゾール類100mg/L(+塩素)であるのに対して、本発明の電解用液組成は、硫酸、アゾール類10mg/L+塩素で、過酸化物が無いか少量であり、アゾール類の添加量が浸漬(散布)法の約1/10程度であるにもかかわらず、浸漬(散布)と同程度の効果をもたらす。
本発明では、添加剤の量が約1/10で浸漬(散布)と同程度の効果をもたらすという利点がある。また、過酸化水素が多いと、過酸化水素自身が分解しやすく、高精度なマイクロエッチングの制御が困難であるが、本発明の方法にて使用される処理液には過酸化物は存在しないか、あるいは、少量しか含まれていないので、処理液のライフが長い。又、処理液中の過酸化水素量が少ないので、アゾール添加剤の分解がほとんどなく、安定性に優れ、処理液を循環して使用することができる。
更に、従来の浸漬系の液では、銅箔の両面が同時にエッチングされてしまい、片側のみの場合は、箔にフィルムを張るか、電解槽を片側だけに処理できるようにする(機械的に煩雑)必要があるが、電解法の場合には、片側ずつのマイクロエッチング量を一つの液系で、電流条件を変えるだけで簡便に且つ高精度に制御できる。
When the composition of the treatment liquid is compared, the liquid composition of the conventional immersion system is sulfuric acid, hydrogen peroxide around 40 vol%, and the azoles are 100 mg / L (+ chlorine), whereas the liquid composition for electrolysis of the present invention is Sulfuric acid, azoles 10 mg / L + chlorine, no peroxide or a small amount, and even though the addition amount of azoles is about 1/10 of the immersion (spraying) method, Has the same effect.
In this invention, there exists an advantage that the amount of an additive brings about an effect comparable as immersion (spreading) at about 1/10. In addition, when there is a large amount of hydrogen peroxide, hydrogen peroxide itself is easily decomposed and it is difficult to control micro-etching with high accuracy, but there is no peroxide in the processing solution used in the method of the present invention. Alternatively, since only a small amount is contained, the life of the treatment liquid is long. Further, since the amount of hydrogen peroxide in the treatment liquid is small, there is almost no decomposition of the azole additive, the stability is excellent, and the treatment liquid can be circulated and used.
Furthermore, in the conventional immersion type liquid, both sides of the copper foil are etched at the same time, and in the case of only one side, a film can be stretched on the foil or the electrolytic cell can be processed only on one side (mechanically complicated). However, in the case of the electrolytic method, the amount of microetching on each side can be controlled easily and with high precision by changing the current conditions with a single liquid system.

また、銅イオンはマイクロエッチング処理によって溶解し、処理液中に必然的に混入するが、その上限の濃度は特に限定されるものではなく、硫酸銅の結晶を生じない範囲で管理すればよい。本発明における処理液中のトリアゾール類、チアゾール類添加剤は、マイクロエッチング溶液中では、銅と錯塩を形成していると考えられる。
また、ハロゲンイオン(好ましくは塩素イオン)は必須成分であり、その濃度は0.5mg/L〜120mg/L、好ましくは3mg/L〜70mg/Lである。0.5mg/Lより低い濃度では、凹凸が深く形成できない傾向があり、120mg/Lより多いと、銅箔外観にムラを生じる傾向がある。
Moreover, although copper ion melt | dissolves by a microetching process and inevitably mixes in a process liquid, the upper limit density | concentration is not specifically limited, What is necessary is just to manage in the range which does not produce a copper sulfate crystal | crystallization. The triazole and thiazole additives in the treatment liquid in the present invention are considered to form a complex salt with copper in the microetching solution.
Moreover, halogen ion (preferably chlorine ion) is an essential component, and its concentration is 0.5 mg / L to 120 mg / L, preferably 3 mg / L to 70 mg / L. When the concentration is lower than 0.5 mg / L, the unevenness tends not to be deeply formed. When the concentration is higher than 120 mg / L, the copper foil appearance tends to be uneven.

また、マイクロエッチング処理液中には過酸化物が存在しなくてもよいが、少量存在すると、電解法によるエッチングに要する時間的な効果が向上する。その上限は、過酸化水素を例とすると10g/Lが好ましく、これ以上多いと、添加剤(アゾール類)自身の分解への影響が出始めるだけでなく、化学的に研磨が進行しはじめ、高精度なマイクロエッチングの制御が困難となり、両面に対して個別制御する意味合いが薄れる。なお、比較例3に示すように、過酸化水素を10g/Lで浸漬処理のみを行った場合は、60秒かけても効果が発揮しない。   In addition, although the peroxide does not have to be present in the microetching treatment solution, the presence of a small amount improves the time effect required for etching by the electrolytic method. The upper limit is preferably 10 g / L when hydrogen peroxide is taken as an example, and if it is more than this, not only will the influence on the decomposition of the additive (azoles) itself begin to appear, but also polishing will begin to proceed chemically. It becomes difficult to control micro-etching with high accuracy, and the meaning of individually controlling both surfaces is reduced. In addition, as shown in Comparative Example 3, when only the immersion treatment is performed with hydrogen peroxide at 10 g / L, the effect is not exhibited even if it takes 60 seconds.

本発明の電解法によるマイクロエッチング処理に適応できる、電気の印加方法としては、最終的に銅箔が溶解する側であればよく、直流はもとより、チョッパーや高速PRパルス電源による正逆反転等、波形は任意に選択できる。
従来から行われてきた、電解法による粗面化処理が、金属を析出する側の処理であるのに対し、本発明のマイクロエッチング処理は、金属を溶解させる側の処理であると区別される。
電解の電流密度は、電気の印加方法によるが、直流の場合、1〜100ASDがこのましく、1ASD以下だと、処理に時間がかかり過ぎ、100ASD以上だと、かえって凹凸の形成効果が薄れる。さらに好ましくは、10ASD〜50ASDである。
処理にかかる時間は、工業的な観点から60秒未満、好ましくは1〜30秒で完了することが好ましく、短時間であるほど良い。
液の温度は、特に限定されるものではないが、室温(25℃)を基準として、高い側がエッチングの速度が増す傾向にあり、低い側は凹凸が深くなる傾向がある。
電解法によるマイクロエッチング処理は、未処理銅箔の表面を洗浄する効果もあることから、表面洗浄処理に代替することも可能である。
As a method of applying electricity, which can be applied to the microetching process by the electrolytic method of the present invention, it is sufficient that the copper foil is finally dissolved, not only DC, but also forward / reverse inversion by a chopper or a high-speed PR pulse power source, The waveform can be selected arbitrarily.
Conventionally, the roughening treatment by electrolysis is a treatment on the side of depositing metal, whereas the microetching treatment of the present invention is distinguished from a treatment on the side of dissolving metal. .
Although the current density of electrolysis depends on the method of applying electricity, in the case of direct current, 1 to 100 ASD is preferable, and if it is 1 ASD or less, it takes too much time to process, and if it is 100 ASD or more, the effect of forming irregularities is reduced. More preferably, it is 10 ASD-50 ASD.
The time required for the treatment is preferably less than 60 seconds, preferably 1 to 30 seconds from an industrial viewpoint, and the shorter the time, the better.
The temperature of the liquid is not particularly limited, but on the basis of room temperature (25 ° C.), the high side tends to increase the etching rate, and the low side tends to have deep irregularities.
The microetching process by the electrolytic method also has an effect of cleaning the surface of the untreated copper foil, and thus can be replaced with a surface cleaning process.

また、電解法によるマイクロエッチング処理の後、必要に応じて被覆めっき処理や粗面化処理を行っても良く、本発明では、好ましくは、硫酸酸性銅浴中で銅箔を陰極とし、処理面に対し不溶性陽極を対向させて配し、限界電流密度以上の電流で銅の樹枝状突起物を形成させ、さらに、硫酸酸性銅浴中で銅箔を陰極とし、限界電流密度以下の電流で、樹枝状突起物を銅で被覆し、固着化する。
さらに、公知となっている、防錆付与・耐熱性・耐薬品性・接着力向上・色調調整・溶解性・抵抗層等の機能付与、等のプリント配線板に適応できる各種表面処理を適応できる。
以下に、本発明の好ましい実施形態について、実施例および比較例に基づいて説明する。
Further, after the microetching treatment by the electrolytic method, a coating plating treatment or a roughening treatment may be performed as necessary. In the present invention, preferably, a copper foil is used as a cathode in a sulfuric acid copper bath, and the treatment surface is treated. An insoluble anode is placed facing the copper dendrite, and a copper dendrite is formed at a current equal to or higher than the limit current density, and the copper foil is used as a cathode in an acidic copper bath, and the current is equal to or lower than the limit current density. The dendrite is covered with copper and fixed.
Furthermore, various surface treatments that can be applied to printed wiring boards such as imparting rust prevention, heat resistance, chemical resistance, improved adhesion, color tone adjustment, solubility, resistance layer, etc. can be applied. .
Below, preferable embodiment of this invention is described based on an Example and a comparative example.

実施例および比較例の一覧を、以下の表1に示す。   A list of examples and comparative examples is shown in Table 1 below.

添加剤種類の略称
AT:アミノチアゾール
BTA:ベンゾトリアゾール
MBTA:1-メチルベンゾトリアゾール
BT:ベンゾチアゾール
TET:5-アミノ-1H-テトラゾール
Abbreviated name of additive type
AT: aminothiazole
BTA: Benzotriazole
MBTA: 1-methylbenzotriazole
BT: benzothiazole
TET: 5-amino-1H-tetrazole

実験に用いた未処理銅箔の種類を表2に示す。又、表3に工程順序および条件を示す。実施例1〜8および比較例2、比較例4では、i→ii→v→viの順で、又、比較例1では、i→v→viの順で、各工程に水洗浄を挟みながら行った。実施例9と比較例3では、i〜viの順で、各工程に水洗浄を挟みながら行った。また、最終は温風による乾燥を行った。
ここで、本実施例および比較例の電解法によるマイクロエッチング処理の詳細について記載する。硫酸銅五水和物および硫酸、塩素イオン、過酸化水素、アゾール類が、それぞれ、表3(ii)および表1に記載の条件となるように調整された液中で、電極および銅箔を対向させ、表1に記載の所定の処理条件にて、銅箔を陽極として、直流電流を印加した。
上記の比較例1は、添加剤(アゾール類)を添加せず、マイクロエッチング処理を実施しない場合であり、比較例2は、添加剤(アゾール類)及び過酸化水素を添加せずに、マイクロエッチング処理を実施した場合であり、比較例3は、添加剤(アゾール類)を添加せずに、過酸化水素を添加し、浸漬処理を実施した場合(電解処理なし)である。比較例4は、電解法によるマイクロエッチング処理で、添加剤をテトラゾールとした場合である。
Table 2 shows the types of untreated copper foil used in the experiment. Table 3 shows the process sequence and conditions. In Examples 1 to 8 and Comparative Examples 2 and 4, in order of i → ii → v → vi, and in Comparative Example 1, in order of i → v → vi went. In Example 9 and Comparative Example 3, the cleaning was performed in the order of i to vi while sandwiching water washing in each step. Finally, drying with warm air was performed.
Here, the details of the microetching process by the electrolytic method of this example and the comparative example will be described. Copper sulfate pentahydrate and sulfuric acid, chloride ions, hydrogen peroxide, and azoles were prepared in a solution adjusted to satisfy the conditions shown in Table 3 (ii) and Table 1, respectively. Direct current was applied using the copper foil as an anode under the predetermined processing conditions shown in Table 1.
Comparative Example 1 is a case where the additive (azoles) is not added and the micro-etching process is not performed. Comparative Example 2 is a case where the additive (azoles) and hydrogen peroxide are not added. This is a case where the etching treatment is performed, and Comparative Example 3 is a case where the hydrogen peroxide is added without adding the additive (azoles) and the immersion treatment is performed (no electrolytic treatment). Comparative Example 4 is a case where the additive is tetrazole in the microetching process by the electrolytic method.

実施例3と比較例1(マイクロエッチング処理有り無しの比較)、および実施例9と比較例3、比較例4(添加剤がテトラゾール)で得られた銅箔の表面電子顕微鏡写真(倍率:5000倍)を図1〜図5に示す。表面電子顕微鏡写真は、試料の斜め40度の方向から観察した。
図1と図2の比較より、本発明にかかるマイクロエッチング処理によって、表面に極めて微細な凹凸が形成されている様子が確認できる。
図3と図4の比較より、本発明にかかるマイクロエッチング処理が、粗面化処理の粗化粒子の均一分散に寄与している様子が確認できる。
図5より、アゾール類が、テトラゾールの場合、微細な凹凸が形成できていない様子が観察される。
Surface electron micrographs (magnification: 5000) of the copper foils obtained in Example 3 and Comparative Example 1 (Comparison with and without microetching treatment), Example 9 and Comparative Example 3, and Comparative Example 4 (additive is tetrazole) Times) is shown in FIGS. The surface electron micrograph was observed from an oblique direction of 40 degrees of the sample.
From the comparison between FIG. 1 and FIG. 2, it can be confirmed that extremely fine irregularities are formed on the surface by the microetching treatment according to the present invention.
From the comparison between FIG. 3 and FIG. 4, it can be confirmed that the microetching process according to the present invention contributes to the uniform dispersion of the roughened particles in the roughening process.
From FIG. 5, when the azole is tetrazole, it is observed that fine irregularities are not formed.

得られた銅箔に対し、粗度Rzを測定した。測定は、JIS B0601規格に準拠し、小坂研究所製サーフコーダーSE1700αを用いた。
また、得られた銅箔は、高周波回路用途に適した高耐熱多層基材にそれぞれ積層し、銅張り積層板を形成した。
さらに、IPC-TM-650規格2.4.8.5に準拠し、引き剥がし強度を測定した。
以上の結果を表4に示す。
Roughness Rz was measured with respect to the obtained copper foil. The measurement was based on JIS B0601 standard, and a surf coder SE1700α manufactured by Kosaka Laboratory was used.
Moreover, the obtained copper foil was laminated | stacked on the high heat resistant multilayer base material suitable for a high frequency circuit use, respectively, and the copper clad laminated board was formed.
Furthermore, the peel strength was measured according to IPC-TM-650 standard 2.4.8.5.
The results are shown in Table 4.

電解法によるマイクロエッチング処理によって、低粗度で高い接着力が得られることが確認できた。また、アゾール類を添加しないマイクロエッチング処理液では、接着力の向上への効果はほとんど期待できないことを確認した。
通常、「銅箔の低粗度化」と「樹脂基材との接着力」は相反する関係にあるが、本発明の粗面化処理では、低粗度でありながら、均一かつ高表面積の表面が得られるため、物理的な表面積が高いことに加えて、後の化学的接着処理(例えばシランカップリング処理)の単位面積あたりの付着量もあがることによる相乗効果によって基板との接着力が向上し、その結果、「低粗度」と「高接着力」の両方の性質を兼ね備えることができると考えられる。
It was confirmed that a high adhesive force was obtained with a low roughness by the microetching process by the electrolytic method. In addition, it was confirmed that the microetching treatment liquid to which no azoles were added could hardly be expected to have an effect on improving the adhesive force.
Normally, “reducing the roughness of the copper foil” and “adhesive strength with the resin base material” are in a contradictory relationship, but the roughening treatment of the present invention has a low roughness and a uniform and high surface area. Since the surface can be obtained, in addition to the high physical surface area, the adhesion amount per unit area of the subsequent chemical adhesion treatment (for example, silane coupling treatment) is also increased, resulting in an adhesive force with the substrate. As a result, it is considered that both the properties of “low roughness” and “high adhesive strength” can be combined.

さらに、電解法によるマイクロエッチング処理に加えて、樹枝状処理及び被覆めっき処理からなる粗面化処理をおこなうことで、より高い接着力が得られることを確認した。この効果は、電解法によるマイクロエッチング処理によって、粗面化処理の下地が、均一微細に形成され、樹枝状処理時の核発生点として有効に働いたためと考えられる。   Furthermore, in addition to the microetching process by the electrolytic method, it was confirmed that a higher adhesive force can be obtained by performing a roughening process comprising a dendritic process and a coating plating process. This effect is thought to be due to the fact that the surface of the roughening treatment was formed uniformly and finely by the microetching treatment by the electrolytic method, and worked effectively as a nucleus generation point during the dendritic treatment.

また、以下に示す比較例により、マイクロエッチング処理を浸漬(散布)処理ではなく、電解法で行うことは、液の安定性に寄与するだけでなく、添加剤の絶対量の低減にも寄与することが分かった。つまり、電解法によるアゾール類の最適濃度が0.005〜2g/Lに対し、浸漬(散布)法では、効果が認められる濃度が、少なくとも1g/L以上であり、好ましくは10〜15g/Lを必要とした。   Further, according to the comparative example shown below, performing the microetching process by the electrolytic method instead of the immersion (spreading) process not only contributes to the stability of the liquid but also contributes to the reduction of the absolute amount of the additive. I understood that. That is, while the optimum concentration of azoles by the electrolytic method is 0.005 to 2 g / L, the concentration at which the effect is recognized by the dipping (spreading) method is at least 1 g / L or more, preferably 10 to 15 g / L. Needed.

浸漬(散布)法での、添加剤濃度を変化させた際の、粗面の状態の評価結果を表5に示す。また、銅箔の表面電子顕微鏡写真を図6〜図11に示す。
粗面の状態の評価は、図6〜図11の電子顕微鏡写真からマイクロエッチングが十分にされている=○、ややされている=△、ほとんどされていない=×の三段階で、判断した。実質効果が認められるのは少なくとも△以上で、好ましくは○以上である。
処理条件は、35μm厚みの電解銅箔M面側に対して、マイクロエッチング処理液組成は、硫酸銅五水和物10g/L、硫酸100g/L、塩素イオン70ppm、過酸化水素100g/L、ベンゾトリアゾールを所定濃度とし、液温35℃、散布時間50秒とした。
Table 5 shows the evaluation results of the rough surface state when the additive concentration was changed by the immersion (spreading) method. Moreover, the surface electron micrograph of copper foil is shown in FIGS.
The evaluation of the rough surface state was judged in three stages from micrographs of FIGS. 6 to 11 where micro-etching was sufficiently carried out = ◯, slightly made = Δ, and hardly carried out = ×. A substantial effect is recognized at least Δ, preferably at least ○.
The treatment conditions are 35 μm thick electrolytic copper foil M surface side, and the microetching treatment liquid composition is copper sulfate pentahydrate 10 g / L, sulfuric acid 100 g / L, chloride ions 70 ppm, hydrogen peroxide 100 g / L, Benzotriazole was adjusted to a predetermined concentration, the liquid temperature was 35 ° C., and the spraying time was 50 seconds.

図6〜図11はそれぞれ、比較例5〜10における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。
以上の結果より、マイクロエッチング処理を浸漬(散布)処理ではなく、電解法で行うことにより、必要な添加剤(アゾール類)濃度も大幅に低減できる利点が確認できた。
6 to 11 are electron micrographs of a microetching process by a dipping (spreading) method in Comparative Examples 5 to 10, respectively.
From the above results, it was confirmed that the necessary additive (azoles) concentration can be greatly reduced by performing the microetching process not by dipping (spreading) but by electrolysis.

本発明により、銅箔の両面に対して別々に、簡便且つ高精度に、高表面積な低粗度表面を得ることが出来、従来の粗面化処理と併用した場合にも、特に低粗度が要求される基板材料に対して、高い接着強度を示す、プリント配線板用銅箔の粗面化処理方法を提供する。
また、銅箔の物理的な形状によって、基材(樹脂)との接着力が向上していることから、本発明により得られる銅箔は、公知の二次電池電極用途や、プラズマディスプレーや輸送媒体のウィンドウ等に使用される電磁波遮蔽用途にも適している。
電解法によるマイクロエッチング処理を用いることにより、簡便に、未処理銅箔の両面を別々にエッチング量の制御を行うことが可能となった。
また、マイクロエッチング処理を浸漬(散布)処理ではなく、電解法で行うことは、液の安定性に寄与するだけでなく、添加剤の絶対量の低減にも寄与することが分かった。
According to the present invention, a low roughness surface having a high surface area can be obtained separately and easily on both sides of the copper foil, and even when used in combination with a conventional roughening treatment, the roughness is particularly low. The present invention provides a method for roughening a copper foil for a printed wiring board, which exhibits high adhesive strength with respect to a substrate material that is required.
Moreover, since the adhesive force with the base material (resin) is improved by the physical shape of the copper foil, the copper foil obtained by the present invention is used for known secondary battery electrodes, plasma displays, and transportation. It is also suitable for electromagnetic shielding applications used for medium windows.
By using the micro-etching process by the electrolytic method, it becomes possible to easily control the etching amount separately on both sides of the untreated copper foil.
Further, it has been found that performing the microetching process by an electrolytic method instead of an immersion (spreading) process not only contributes to the stability of the liquid, but also contributes to a reduction in the absolute amount of the additive.

実施例3で得られた銅箔の表面電子顕微鏡写真である。4 is a surface electron micrograph of the copper foil obtained in Example 3. 比較例1で得られた銅箔の表面電子顕微鏡写真である。2 is a surface electron micrograph of the copper foil obtained in Comparative Example 1. 実施例9で得られた銅箔の表面電子顕微鏡写真である。4 is a surface electron micrograph of the copper foil obtained in Example 9. 比較例3で得られた銅箔の表面電子顕微鏡写真である。4 is a surface electron micrograph of the copper foil obtained in Comparative Example 3. 比較例4で得られた銅箔の表面電子顕微鏡写真である。4 is a surface electron micrograph of the copper foil obtained in Comparative Example 4. 比較例5における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。6 is an electron micrograph of microetching treatment by a dipping (dispersing) method in Comparative Example 5. 比較例6における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。14 is an electron micrograph of microetching treatment by a dipping (dispersing) method in Comparative Example 6. 比較例7における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。14 is an electron micrograph of microetching treatment by a dipping (dispersing) method in Comparative Example 7. 比較例8における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。10 is an electron micrograph of microetching treatment by a dipping (spreading) method in Comparative Example 8. 比較例9における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。10 is an electron micrograph of microetching treatment by a dipping (spreading) method in Comparative Example 9. 比較例10における浸漬(散布)法によるマイクロエッチング処理の電子顕微鏡写真である。14 is an electron micrograph of microetching treatment by a dipping (spreading) method in Comparative Example 10.

Claims (6)

銅箔の片面もしくは両面に、トリアゾール類又はチアゾール類の少なくとも1種を含む、ハロゲンイオン含有硫酸酸性溶液を用いて、電解法によりマイクロエッチング処理を施すことを特徴とする、銅箔の粗面化処理方法。 Roughening of copper foil characterized by subjecting one side or both sides of copper foil to microetching by electrolysis using a halogen ion-containing sulfuric acid acid solution containing at least one of triazoles or thiazoles Processing method. 前記のマイクロエッチング処理を施した後に、さらに硫酸酸性溶液を用いて電解法により樹枝状処理及び被覆めっき処理を施すことを特徴とする請求項1に記載の銅箔の粗面化処理方法。 The copper foil roughening method according to claim 1, wherein after the microetching treatment, a dendritic treatment and a coating plating treatment are further performed by an electrolytic method using a sulfuric acid acidic solution. 前記ハロゲンイオン含有硫酸酸性溶液における前記トリアゾール類又はチアゾール類の濃度が0.005〜2g/Lであることを特徴とする請求項1又は2に記載の銅箔の粗面化処理方法。 The method for roughening a copper foil according to claim 1 or 2, wherein the concentration of the triazoles or thiazoles in the halogen ion-containing sulfuric acid acidic solution is 0.005 to 2 g / L. 前記トリアゾール類又はチアゾール類が、ベンゾトリアゾール、1-メチルベンゾトリアゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-4H-1,2,4-トリアゾール、5-ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、2-アミノチアゾール、ベンゾチアゾール、2-メチルベンゾチアゾール及び2-メルカプトベンゾチアゾールから成るグループより選ばれたものであることを特徴とする請求項1〜3のいずれか1項に記載の銅箔の粗面化処理方法。 The triazole or thiazole is benzotriazole, 1-methylbenzotriazole, 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-4H -1,2,4-triazole, 5-nitrobenzotriazole, hydroxybenzotriazole, 2-aminothiazole, benzothiazole, 2-methylbenzothiazole and 2-mercaptobenzothiazole The roughening processing method of the copper foil of any one of Claims 1-3 characterized by the above-mentioned. 前記トリアゾール類又はチアゾール類を含む硫酸酸性溶液中のハロゲンイオンが塩素イオンであり、当該塩素イオン濃度が0.5〜120mg/Lであることを特徴とする請求項1〜4のいずれか1項に記載の銅箔の粗面化処理方法。 The halogen ion in the sulfuric acid acidic solution containing the triazoles or thiazoles is a chloride ion, and the chloride ion concentration is 0.5 to 120 mg / L. The roughening method of the copper foil as described in 2. プリント配線板用途、二次電池電極用途又は電磁波遮蔽用途の銅箔を製造するための請求項1〜5に記載の銅箔の粗面化処理方法。 The roughening processing method of the copper foil of Claims 1-5 for manufacturing the copper foil of a printed wiring board use, a secondary battery electrode use, or electromagnetic wave shielding use.
JP2006333349A 2006-12-11 2006-12-11 Copper foil roughening treatment method Active JP4918342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333349A JP4918342B2 (en) 2006-12-11 2006-12-11 Copper foil roughening treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333349A JP4918342B2 (en) 2006-12-11 2006-12-11 Copper foil roughening treatment method

Publications (2)

Publication Number Publication Date
JP2008144232A JP2008144232A (en) 2008-06-26
JP4918342B2 true JP4918342B2 (en) 2012-04-18

Family

ID=39604719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333349A Active JP4918342B2 (en) 2006-12-11 2006-12-11 Copper foil roughening treatment method

Country Status (1)

Country Link
JP (1) JP4918342B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028972B2 (en) * 2010-09-27 2015-05-12 Jx Nippon Mining & Metals Corporation Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board
CN106884201B (en) * 2017-03-20 2018-06-12 建滔(连州)铜箔有限公司 A kind of roughening treatment Processes and apparatus for Pb-free coating electrolytic copper foil
TW202336278A (en) * 2021-11-18 2023-09-16 日商三菱瓦斯化學股份有限公司 Roughening solution for rolled copper foil and method for producing roughened copper foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3623621B2 (en) * 1996-12-10 2005-02-23 福田金属箔粉工業株式会社 Copper foil surface treatment method
JP3070599B2 (en) * 1998-11-13 2000-07-31 松下電器産業株式会社 Surface-roughened copper foil and method for producing the same
JP4090951B2 (en) * 2003-06-26 2008-05-28 株式会社荏原電産 Mirror finish etchant for copper and copper alloys
JP4593331B2 (en) * 2005-03-24 2010-12-08 古河電気工業株式会社 Multilayer circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008144232A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
EP1668967B1 (en) Improved method for micro-roughening treatment of copper and mixed-metal circuitry
US7232528B2 (en) Surface treatment agent for copper and copper alloy
TWI707984B (en) Surface treatment agent for copper and copper alloy surfaces and method for treating copper or copper alloy surfaces
EP2540869B1 (en) Surface roughening agent for aluminum, and surface roughening method for aluminum surfaces using said surface roughening agent
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
JP2009041097A (en) Copper plating method
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP2004006612A (en) Copper foil with carrier foil and its producing method, and copper clad laminate using copper foil with carrier foil
JP4918342B2 (en) Copper foil roughening treatment method
JP2001348684A (en) Surface-roughening agent for aluminum of aluminum alloy and surface-roughening method using the agent
JP3623621B2 (en) Copper foil surface treatment method
JP5281788B2 (en) Acidic degreasing agent used for pretreatment of electrolytic copper plating on copper or copper alloy surface and method of electrocopper plating on copper or copper alloy surface pretreated with the acidic degreasing agent
JP4280171B2 (en) Copper and copper alloy surface roughening solution
JP2006253424A (en) Method of manufacturing printed wiring board
JP2010150613A (en) Surface treatment agent and surface treatment method for copper, and film for copper surface
JPS586800B2 (en) Insatsu Kairo Youdou Hakuo Hiyou Menshiyo Risuru Hohou
JP4431860B2 (en) Surface treatment agent for copper and copper alloys
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
JP2010013516A (en) Adhesive layer-forming liquid
JP2002194573A (en) Surface treatment agent for copper and copper alloy
JP2002060980A (en) Surface roughening treating solution for copper and copper alloy
JP2006089769A (en) Method for producing electrolytic copper foil and printed wiring board
JP2002060981A (en) Surface roughening treating solution for copper and copper alloy surface
JPH04217394A (en) Manufacture of inner layer circuit board
KR20170106666A (en) Surface treatment method of a copper foil, the copper foil surface-treated by the method and Laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4918342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250