JP4910977B2 - エンジンの過給装置 - Google Patents

エンジンの過給装置 Download PDF

Info

Publication number
JP4910977B2
JP4910977B2 JP2007268951A JP2007268951A JP4910977B2 JP 4910977 B2 JP4910977 B2 JP 4910977B2 JP 2007268951 A JP2007268951 A JP 2007268951A JP 2007268951 A JP2007268951 A JP 2007268951A JP 4910977 B2 JP4910977 B2 JP 4910977B2
Authority
JP
Japan
Prior art keywords
exhaust
valve
passage
egr
independent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007268951A
Other languages
English (en)
Other versions
JP2009097404A (ja
Inventor
知弘 吉末
直之 山形
真玄 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007268951A priority Critical patent/JP4910977B2/ja
Publication of JP2009097404A publication Critical patent/JP2009097404A/ja
Application granted granted Critical
Publication of JP4910977B2 publication Critical patent/JP4910977B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明はエンジンの過給装置に関し、特に低回転領域でのエンジントルクを増大させるものに関する。
エンジンの出力トルク増大を図る手段として、吸気圧力を増大させる過給装置が知られている。その代表的なものとして排気ターボ過給機(以下ターボ過給機と略称する)が良く知られている。ターボ過給機は、排気通路に設けられたタービンホイール(以下タービンと略称する)と吸気通路に設けられたコンプレッサホイール(以下コンプレッサと略称する)とをシャフトで連結したものであり、排気ガスでタービンを回転させることによりコンプレッサを駆動し、吸気圧を上昇させる。
ターボ過給機は、効率良く高い過給圧が得られる反面、必ずしも低回転領域から高回転領域に亘る広い回転域でエンジントルクを増大させることができないという特徴がある。一般的に、小型のターボ過給機は低回転領域でのトルクを増大させ、大型のターボ過給機は高回転領域でのトルクを増大させる。従って、ターボ過給機を設ける場合には、エンジンに要求されるトルク特性に相応しいタイプのターボ過給機を選択する必要がある。
しかし多くの場合、低回転から高回転に亘る広い回転域でエンジントルクを増大させることが望まれる。そこで、例えば低回転用と高回転用の2つのターボ過給機を備えるもの(いわゆる2ステージターボ)、低回転用の電動過給機と高回転用のターボ過給機とを備えるもの、或いは特許文献1に示すように、タービンノズルに可動式のフラップを設け、低回転領域ではそのフラップ開度を低減して過給効率を高めたもの(いわゆる可変ジオメトリターボ)等が提案されている。
特許文献1に示されるような可変ジオメトリターボの場合、ベースとなるターボ過給機として大型ターボを採用するのが望ましい。そのようにすると、高回転領域においてはフラップ開度を増大することにより大型ターボの本来特性としてのエンジントルク増大を図り、低回転領域においてはフラップ開度を低減することにより排気流速を上昇させ、タービン駆動力を増大させてエンジントルク増大を図ることができる。結局、低回転から高回転に亘る広い回転域でエンジントルクを増大させることができる。
一方、部分負荷領域において、排気を吸気側に還流させる排気再循環(EGR)が広く行われている。EGRを行うと、吸気に対する不活性ガス成分(還流された排気ガス、即ちEGRガス)の割合が増大するので、燃焼温度を下げることができ、窒素酸化物(NOx)の生成・排出を抑制することができる。また酸素量の増大を抑制しつつ吸気のガス量を増大することができるので、吸気負圧を低減し、ポンピングロスを低減することができる。
特開平9−112285号公報
しかしながら、特許文献1に示される可変ジオメトリターボを含め上記従来の各過給機は、何れも構造が複雑であったり大型化を招いたりするという問題点があり、その解決が求められている。またその解決策は、部分負荷領域でEGRを行う場合、EGRに悪影響を及ぼさないものであることも重要である。
本発明は上記事情に鑑みてなされたものであり、簡単な構造でありながら、低回転領域でのエンジントルクを増大させることができ、かつ部分負荷領域において適正なEGRを行うことができるエンジンの過給装置を提供することを課題とする。
上記課題を解決するための請求項1に係る発明は、各気筒の排気ポートに接続され、複数の独立排気通路を有する排気マニホールドと、上記排気マニホールドないしはその下流側において上記独立排気通路が集合した集合部と、上記集合部の下流側に接続された排気ターボ過給機と、上記集合部の上流側で、上記独立排気通路の各通路断面積を変更可能な可変排気バルブと、上記可変排気バルブを駆動制御する可変排気バルブ制御手段と、排気通路と吸気通路とを接続するEGR通路と、該EGR通路上に配設されたEGR弁と、所定の低負荷領域において、上記EGR弁を開弁制御するEGR制御手段とを備え、ある気筒の排気バルブ開弁直後のブローダウンの時期と、他の気筒の吸気バルブおよび排気バルブのオーバーラップ期間とが重なるように設定されており、上記可変排気バルブ制御手段は、過給領域の所定の低回転領域において、上記可変排気バルブによって上記独立排気通路の上記各通路断面積を最大面積時よりも縮小させる独立排気絞り制御を実行するとともに、上記EGR弁が開弁状態のときには上記独立排気絞り制御を抑制するものであり、上記EGR通路は、上記可変排気バルブより下流側の上記排気通路と上記吸気通路とを接続するものであることを特徴とするエンジンの過給装置である。
請求項2に係る発明は、請求項1記載のエンジンの過給装置において、上記EGR弁の開弁制御は自然吸気領域で行われることを特徴とする。
請求項1の発明によれば、以下説明するように、適正なEGRを確保しつつ、簡単な構造でありながら、低回転領域でのエンジントルクを増大させることができる。
本発明の構成によれば、排気マニホールドの独立排気通路と可変排気バルブとによって、排気のエゼクタ効果を得ることができる。エゼクタはジェットポンプとも呼ばれる従来知られた装置であって、高速の駆動流体による負圧で被吸出し流体を吸出す装置である。その吸出し作用を利用して例えば真空ポンプとして用いられる。本明細書では、このエゼクタと同じ原理によって得られる排気の吸出し作用をエゼクタ効果と称する。
エゼクタ効果を本発明の構成に即して説明すれば、排気マニホールド中のある独立排気通路を排気、特にブローダウンガス(排気バルブ開弁直後の勢いの強い排気)が流れ、それが可変排気バルブによって通路断面積の縮小された箇所を通ると、絞られて流速が増大し、圧力が低下する。この絞られた排気が駆動流体に相当する。
一方集合部では、この駆動流体相当の排気が流れる排気通路と他の排気通路とが連通している。従ってその集合部において、駆動流体としての排気は、他の排気通路内の排気(被吸出し流体)をエゼクタ効果によって吸出す。
なお、エゼクタ効果をより高めるには、駆動流体の排気と被吸出し流体の排気とを可及的に浅い角度(平行に近い角度)で合流させれば良い。
エゼクタ効果による利点は、主に次の3点が挙げられる。
第1に、ターボ過給機のタービン流量(ターボ過給機に供給される排気の量)の増量である。駆動流体の排気と被吸出し流体の排気とは集合部で合流し、その下流に設けられたターボ過給機のタービンに導入される。従ってタービン流量は、エゼクタ効果のない場合に比べ、吸出された排気の分だけ増大する。こうしてタービン駆動力を増大させ、過給圧を上昇させることができる。
第2に、排気の掃気促進である。エゼクタ効果によって被吸出し流体としての排気が吸出されるので、掃気が促進される。それにより排気抵抗が低減される。また、通常、排気行程から吸気行程に移行する際、吸気バルブと排気バルブとが両方開く期間(オーバーラップ期間)が設けられる。掃気の促進によってオーバーラップ期間での吸気も促進されるので、吸気量を増大させ、エンジントルクを増大させることができる。
この効果をより多く得るために、本発明では、通常の4サイクル4気筒エンジンのように、ある気筒がブローダウン時(排気バルブ開弁直後)にあるときと、他の気筒でのオーバーラップ期間とが重なるようになっている。但しその関係にある気筒同士の排気通路は可変排気バルブより上流側で互いに独立している必要がある。
第3に、動圧過給を行うものにおいて、その促進である。ここで、まず動圧過給について説明する。動圧過給は、排気の脈動を利用してターボ過給機の過給能力を高めるものである。詳細なメカニズムは後述するが、排気の脈動が大きいほど動圧過給が促進される。そして排気の脈動を大きくするには、排気通路容積を削減するのが最も簡単で効果的である。しかしレイアウト上、排気マニホールドの容積全体を削減して排気通路容積を削減するには限界がある。
エゼクタ効果がない通常の場合、排気は集合部において他の排気通路に回り込む(逆流する)。しかし本発明のようにエゼクタ効果があると、排気は駆動流体として他の排気通路から被駆動流体を吸出す。つまり他の排気通路に回り込むことがない。これは、動圧過給においては排気通路容積を削減したような作用をもたらす。
このように、全体の排気通路容積(排気マニホールド容積)が同じであれば、エゼクタ効果を有する本発明の構成は、エゼクタ効果のないものに比べ、より動圧過給を促進することができる。
ところで本発明の装置は、EGR通路とEGR弁とを備え、所定の低負荷領域においてEGR制御手段がEGR弁を開弁制御する、つまりEGRを実行するように構成されている。しかも、EGR通路は、可変排気バルブより下流側の排気通路と吸気通路とを接続している。このような構成において独立排気絞り制御とEGRとを併用すると、適正なEGRが行われなくなる場合がある。
すなわち、上記構造の場合、EGRの実行中に独立排気絞り制御を実行すると、独立排気絞り制御によるエゼクタ効果がEGR通路の上流端(排気側)にも及ぶ虞がある。上記構造において、EGR通路の上流端は可変排気バルブの下流側に開口する。一方、独立排気絞り制御のエゼクタ効果は可変排気バルブの下流側で発生する。従ってエゼクタ効果がEGR通路の上流端に及ぶ虞があるのである。エゼクタ効果がEGR通路の上流端に及ぶと、その吸出し作用によって、排気側から吸気側に向かうEGRガスの流れが阻害されたり逆流したりして、適正なEGRが行われなくなる。
そこで本発明によれば、EGRの実行中には独立排気絞り制御が抑制(禁止を含む)される。こうすることによって、独立排気絞り制御がEGRに及ぼす悪影響を排除し、適正なEGRを確保することができる。
請求項2の発明によれば、以下説明するように、独立排気絞り制御とEGRの両者の効果を可及的に多く享受することができる。
EGRが顕著な効果を奏する運転領域は要求吸気量(酸素量)の少ない低負荷領域である。本発明によればEGRの実行領域を自然吸気領域に限定することになるが、一般的に自然吸気領域は過給領域に対して低負荷領域であり、EGR効果の高い運転領域である。従って、このような限定を行ってもEGR効果の大部分を享受することができる。
一方、独立排気絞り制御が顕著な効果を奏する運転領域は低回転の過給領域である。本発明によればこの領域でEGRが実行されないので、独立排気絞り制御は抑制されることなく実行される。つまりその効果を充分享受することができる。そしてEGRが実行される自然吸気領域は元々独立排気絞り制御の効果の低い領域であり、その領域で独立排気絞り制御が抑制されても機会損失する効果は僅かである。
以下、添付図面を参照しながら本発明の好ましい実施の形態について説明する。
図1は、本発明の実施形態に係るエンジンの過給装置の概略構成図である。また図2は図1の部分側断面図である。
本実施形態のエンジンの過給装置は、1つのターボ過給機50を用いた簡単な構成でありながら、低回転領域から高回転領域に亘る広い範囲で高い過給性能を得、全域において高いトルクを発生することができ、さらに適正なEGRを行うことにより、NOxの低減やポンピングロスの低減が図られることを最大の特徴とする。
その達成手段として、主として次の3つの技術的特徴を有する。
(1)動圧過給による過給能力の向上
(2)独立排気通路と可変排気バルブ30を用いた独立排気絞り制御
(3)EGR実行中における独立排気絞り制御の抑制
これらについては後に詳述するが、まず本実施形態の構成、構造について説明する。
エンジン1は排気タービン過給機50(以下ターボ過給機と略称する)を備えた直列4気筒の4サイクルエンジンである。ターボ過給機50は周知の過給機であって、吸気通路10に設けられたコンプレッサ52と排気通路60に設けられたタービン54とをシャフト53で連結したものである。図1では図を見易くするためにコンプレッサ52とタービン54とを分離して図示しているが、実際には1本のシャフト53の一端側にコンプレッサ52が設けられ、他端側にタービン54が設けられている。ターボ過給機50の設置位置付近では、実際には吸気通路10と排気通路60とが近接しており、その間にターボ過給機50が介設されている。ターボ過給機50は、排気Weでタービン54を回転させることによりコンプレッサ52を駆動し、吸気Wiを圧縮して吸気圧を上昇させる。
ターボ過給機50のコンプレッサ52より上流側にはエアフローメータ11が設けられ、吸気量が検出される。
一方、コンプレッサ52の下流側には、コンプレッサ52によって圧縮され、温度上昇した吸気を冷却するインタークーラ13が設けられている。その下流側には運転状態に応じて吸気を絞るスロットルバルブ18が設けられている。スロットルバルブ18はモータ等からなるアクチュエータ19によってその開度が調節される。さらにその下流側にはサージタンク14が設けられている。サージタンク14は吸気を一時的に滞留させる空気溜りであって、エアフローメータ11の精度に悪影響を与える吸気脈動や吸気干渉を抑制したり、空気を滞留させることによって密度を増し、流速を上げることにより吸入効率を高めるたりする。さらにその下流側には吸気を各気筒に導く吸気マニホールド15が設けられている。
吸気マニホールド15の下流端はシリンダブロックとシリンダヘッドとを主要部材とするエンジン本体2に接続されている。エンジン本体2には第1〜第4気筒3a,3b,3c,3d(これらを総称するときは気筒3という)が一直線上に配設されている。各気筒3の構成は共通で、図2に示すように燃焼室4の上部には吸気マニホールド15に接続されて吸気Wiを吸入するための吸気ポート6と、排気Weを排出するための排気ポート8とが設けられている。そして吸気ポート6を開閉する吸気バルブ7と排気ポート8を開閉する排気バルブ9とが設けられている。さらに燃焼室4の頂部には火花を発生させる点火プラグ5が設けられている。その他、図略の燃料供給手段(燃料噴射弁など)が適宜位置に設けられている。
第1〜第4気筒3a,3b,3c,3dの排気ポート8には、第1〜第4排気通路16a,16b,16c,16dが個別に接続されている。図1に示すように、そのうちの第2排気通路16bと第3排気通路16cとは、その下流側で集合され、補助集合排気通路16bcとなっている。第1〜第4排気通路16a〜16d及び補助集合排気通路16bcは全体として排気マニホールド16を構成する。
つまり排気マニホールド16は、上流側において4つの独立排気通路(第1〜第4気筒3a,3b,3c,3d)、下流側において3つの独立排気通路(第1,第4排気通路16a,16d及び補助集合排気通路16bc)で構成されている。以下特に記す場合を除き、独立排気通路とは下流側の3つの独立排気通路を指すものとする。
排気マニホールド16の下流側にはハウジング31が接続されている。ハウジング31の内部上流側(排気マニホールド16との接続部付近)には可変排気バルブ30が設けられている。またハウジング31は、可変排気バルブ30より下流側において、上記3つの独立排気通路が集合する集合部31cを形成する。
可変排気バルブ30は、上記3つの独立排気通路16a,16bc,16dの各通路断面積を、その独立状態を維持しつつ変更するバルブであって、フラップ35やこれを駆動するアクチュエータ38等を備える。詳細構造は図5等を参照して後述する。
ハウジング31(集合部31c)の下流側には、上述のようにターボ過給機50のタービン54が設けられている。なお本実施形態のターボ過給機50は、主に高回転領域においてトルク増大作用の強い大型ターボである。一般的に、A/R(図2に示すタービン部のノズル面積Aと、タービン軸からノズル中心部までの距離Rとの比)が比較的大きく、またタービン径Dも比較的大きいものを大型ターボという。本実施形態のターボ過給機50は、一般的な大型ターボと比較して、タービン径Dが大きいことは同様であるがA/Rが比較的小さい設定となっている。このように設定すると、ターボ過給機50の効率が最大となるタービン流量が一般の大型ターボに比べて高流量側にずれる。またその効率の最大値も高くなる。このような設定はタービン流量の多い領域を積極的に用いる本実施形態の動圧過給(詳細は後述する)にとって好適な設定となっている。
また図1に示すように、排気通路60には、タービン54をバイパスするウエスト通路61と、ウエスト通路61を開閉するウエストゲートバルブ62とが設けられている。
さらに、EGRを実行するための構造として、排気通路60と吸気通路10とを連通するEGR通路22が設けられている。EGR通路22の上流端は可変排気バルブ30及び集合部31cより下流側に開口している。一方下流端は吸気通路10のスロットルバルブ18とサージタンク14との間に開口している。EGR通路22にはこれを開閉するEGR弁23と、還流される高温のEGRガスGeを冷却するEGRクーラ24とが設けられている。
またエンジン1には可変バルブタイミング機構12(バルブタイミング変更手段)が設けられている。本実施形態の可変バルブタイミング機構12は、吸気バルブ7及び排気バルブ9の開弁期間を維持したまま、バルブタイミング(バルブ開閉弁時期)を平行移動的に前後させる、いわゆるVVT(Variable Valve Timing)である。VVTの方式としては、バルブタイミングを連続的に変化させるものでも、2以上の段階的に変化させるものでも良い。本実施形態の可変バルブタイミング機構12は、吸気側の吸気VVT12i(吸気バルブタイミング変更手段)と排気側の排気VVT12e(排気バルブタイミング変更手段)とを備え、吸気バルブ7と排気バルブ9の双方においてバルブタイミングを変化させる。
また図1に示すように、エンジン1の動作を電気的に制御するECU(Engine Control Unit)20が設けられている。ECU20は、CPU、メモリ、カウンタタイマー群、インターフェース及びこれらのユニットを接続するバス等を有するマイクロプロセッサで構成された制御ユニットである。ECU20は、運転状態に応じてアクチュエータ19にスロットル開度情報を送信し、スロットルバルブ18の開度制御を行う。またエアフローメータ11からの吸気量検知情報を受けて適正な燃料供給量や点火時期を演算し、図略の燃料噴射弁や点火プラグ5に駆動信号を送信する。またECU20は可変バルブタイミング機構12の駆動制御やウエストゲートバルブ62の開閉制御を行う。
さらにECU20は、可変排気バルブ30を駆動制御する可変排気バルブ制御手段としても機能する。具体的にはECU20は、過給領域の所定の低回転領域(図9に示す低回転過給領域A3)において、可変排気バルブ30によって独立排気通路16a,16bc,16dの各通路断面積を最大面積時(可変排気バルブ30が開弁状態)よりも縮小させる独立排気絞り制御を実行する。
さらにECU20は、EGR弁23を開弁制御するEGR制御手段としても機能する。具体的にはECU20は、所定の低負荷領域(図9に示す自然吸気領域A1)においてEGR弁23を適宜開弁し、適宜量のEGRガスGeを吸気側に還流させる。
また本実施形態のエンジン1は、一般的な4気筒エンジンと同様、各気筒3が、クランク角90度(以下90°CAと表記する)ごとに順次点火時期を迎えるように互いに各行程をずらして運転されている。点火順序はいわゆる#1→#3→#4→#2(#xは第x気筒であることを示す)である。表1に、各気筒3の行程の推移を示す。
Figure 0004910977
表1において、各行は第1気筒3a〜第4気筒3d、各列は90°CA毎の行程の推移を示す。表1に示すように、例えば第1気筒3aが膨張行程にあるとき、第2気筒3bは排気行程、第3気筒3cは圧縮行程、第4気筒3dは吸気行程にある。
なお図2に示す状態において、第1気筒3aは膨張行程から排気行程への移行期(下死点付近)にある。このとき、排気バルブ9が開いて排気Weが燃焼室4から排気ポート8へ排出され始める(ブローダウン)。
また表1に示すように、そのとき第2気筒3bは排気行程から吸気行程への移行期(上死点付近)にある。この移行期において、図示のように吸気バルブ7と排気バルブ9とが共に開弁している期間、いわゆるオーバーラップ期間が設けられている。
図3は排気マニホールド16とハウジング31の外観斜視図である。また図4は排気マニホールド16の下流側部分斜視図である。また図5は可変排気バルブ30の要部斜視図である。また図6は排気マニホールド16及びハウジング31の縦断面図であって、可変排気バルブ30が開弁状態にある状態を示す図である。また図7は図6と同様の断面図であって、可変排気バルブ30が開弁状態にある状態を示す図である。また図8は図6のVI
II−VIII線断面図である。以下これらの図を参照して排気マニホールド16とハウジング31、特にハウジング31内の可変排気バルブ30について説明する。
図3に示すように、排気マニホールド16の上流端にはフランジ16eが設けられ、エンジン本体2のシリンダヘッドに固定されている。このフランジ16eに4本の排気通路、すなわち第1,第2,第3,第4排気通路16a,16b,16c,16dが接続されている。フランジ16e部において、各排気通路はφ36mmの円形断面を有する。
第1排気通路16aは、1列に並ぶ気筒3の一端側に配置された第1気筒3aの排気ポート8に接続される。第4排気通路16dは他端側に配置された第4気筒3dの排気ポート8に接続される。第2排気通路16b及び第3排気通路16cは、中央側の第2気筒3b及び第3気筒3cの排気ポート8にそれぞれ接続される。
図4に示すように、第1排気通路16a及び第4排気通路16dは、その全長に亘って独立状態を維持するが、第2排気通路16bと第3排気通路16cとは、その下流端直前で互いに集合され、補助集合排気通路16bcとなっている。従って排気マニホールド16の下流端付近では3本の独立排気通路(第1排気通路16a,補助集合排気通路16bc,第4排気通路16d)が形成されている。これらは補助集合排気通路16bcを第1排気通路16aと第4排気通路16dが両側から挟むように、浅い角度で(略平行が望ましい)並列配置されている。
排気マニホールド16の下流端であるマニホールド出口17において上記3本の独立排気通路が開口している。すなわち第1排気通路16aの第1開口部17a、補助集合排気通路16bcの補助集合開口部17bcおよび第4排気通路16dの第4開口部17dが、この順に一直線上に配置されている。各開口部17a,17bc,17dの開口面積は、約380〜616mm2の範囲内で互いに略等しくなるように構成されている。この面積はφ22〜φ28mmの円の面積に相当する。またこれは、各排気通路16a,16b,16c,16dのマニホールド入口部の面積(φ36mm相当)に対して面積比で37〜61%となっている。
第1排気通路16aと第4排気通路16d、及び第2排気通路16bと第3排気通路16cとはそれぞれ互いに対称形状となっている。従って、第1排気通路長さLaと第4排気通路長さLdとは略等しい。本実施形態において第1排気通路長さLaは200mm乃至はそれ以下となるように構成されている。
また第1通路容積Vaと第4通路容積Vdとは略等しく、これらと補助集合通路容積Vbc(第2排気通路16b単独の部分及び第3排気通路16c単独の部分を含む)とも略等しくなるように構成されている。
図6に示すように、排気マニホールド16のマニホールド出口17にハウジング31が接続されている。ハウジング31は、上流側においては可変排気バルブ30のフラップ35を支持し、収納するバルブハウジングとして機能し、それより下流側においては、各独立排気通路16a,16bc,16dからの排気Weが合流する集合部31cを形成する。
ここで図5を参照して可変排気バルブ30の要部(動作部)について説明する。可変排気バルブ30は、排気Weの流れに交差する方向に設けられ、ハウジング31に支持されたフラップ軸37と、フラップ軸37まわりに旋回可能とされたフラップ35と、ECU20からの制御信号(可変排気バルブ30の開度指令)に基づいてフラップ軸37を回転させるアクチュエータ38(モータ等)と、フラップ35を開弁方向に付勢するリターンスプリング39とを含む。
フラップ35は、フラップ軸37視でフラップ軸37を扇の要とする扇形断面の扇状面36を有する。扇状面36の内側は空洞とされ、軽量化が図られている。
図6に示すように、ハウジング31には上方に膨出する膨出部31bが形成されており、膨出部31bの内側にフラップ35が格納された状態(図6に示す状態)が可変排気バルブ30の開弁(全開)状態である。可変排気バルブ30が全開のとき、図6に示すように、マニホールド出口17からハウジング31内に導入された排気Weはフラップ35(可変排気バルブ30)で絞られることなく集合部31cに導かれる。
一方フラップ35がフラップ軸37を中心に回転駆動され、膨出部31bよりも内側に最も侵入した状態(図7に示す状態)が可変排気バルブ30の閉弁(全閉)状態である。フラップ35は、アクチュエータ38によって全閉状態と全開状態との間で適宜開度調節される。
可変排気バルブ30が全閉のとき、図7に示すように、フラップ35の扇状面36が流路の一部を遮るので排気通路断面積が縮小される。従ってマニホールド出口17からハウジング31内に導入された排気Weは可変排気バルブ30によって絞られた後、集合部31cに導かれる。
なお図6、図7に示すように、ハウジング31の上流側には仕切板32が設けられている。仕切板32は排気Weの流れに沿って(平行に)立設され、またフラップ軸37方向に離間して2枚設けられている。2枚の仕切板32のうち一方は、マニホールド出口17との合わせ部において第1開口部17aと補助集合開口部17bcとを仕切る壁面から連続するように立設されてハウジング31内を仕切り、他方は、補助集合開口部17bcと第4開口部17dとを仕切る壁面から連続するように立設されてハウジング31内を仕切る。各仕切板32の各後縁32aは、可変排気バルブ30が閉弁状態にあるときのフラップ35の扇状面36に沿うように一部円弧状に成形されている。
従って、仕切板32に沿って排気Weが流れる区間では、2枚の仕切板32によって各独立排気通路16a,16bc,16dの独立状態及び並列状態が維持され、排気Weは独立かつ平行流状態を維持した状態で絞られる。
そして仕切板32の後縁32aより下流側には、独立した各排気Weが互いに合流する集合部31cが形成されている。
ハウジング31の下流端側にはフランジ31aが設けられ、ターボ過給機50のハウジング51と接合されている。なおターボ過給機50のレイアウトの都合上、ハウジング31は途中で下方に曲げられている。ターボ過給機50の設置位置によってはこのような曲げは不要である。また異なる曲げ角であっても良い。
図6〜図8に示すように、ハウジング31内にはハウジング31の曲げ方向に沿った導流板33が設けられている。導流板33は、仕切板32を通過した排気Weを、ハウジング31の曲がりに沿って円滑に流れるように導く。特に、図7に示すように、導流板33は可変排気バルブ30が閉弁状態のとき、仕切板32を通過した排気Weをハウジング31と導流板33とが囲むように配置されている。
また図6〜図8に示すように、ハウジング31内の集合部31cには、ハウジング31の曲げ外側壁面から内側に立設するように整流ガイド34が設けられている。整流ガイド34は排気Weの流れに沿って(平行に)立設され、またフラップ軸37方向に離間して2枚設けられている。また各整流ガイド34は、各仕切板32とそれぞれ略同一平面上に設けられている。整流ガイド34の、ハウジング31の曲げ方向内側には導流板33との間に隙間が設けられている。後に詳述するが、整流ガイド34は、排気方向に交差する方向(図6や図7の紙面に平行でない方向)の旋回流を規制するために設けられている。
以上、本実施形態の概略構成について説明したが、次にエンジン1の運転領域について説明する。図9はエンジン1の運転領域を示す図である。横軸にエンジン回転数Ne(rpm)、縦軸にエンジントルクTe(N・m)を示す。特性Txは最大負荷トルクを示す。また符号A1は自然吸気領域(以下NA領域ともいう)、符号A2は過給領域を示し、特性BはNA領域A1と過給領域A2との境界を示す。低回転過給領域A3は過給領域A2のうちの低回転領域であって、本実施形態では2000rpmよりも低回転の領域である。上述のように、本実施形態ではEGRはNA領域A1で行われる。そして後述の独立排気絞り制御は低回転過給領域A3で行われる。
次に冒頭で紹介した本実施形態の主要な技術的特徴について説明する。
(1)動圧過給による過給能力の向上
まず動圧過給について説明する。動圧過給は、以下説明するように排気の脈動を利用してターボ過給機50の過給能力を高めるものである。
図10は、ターボ過給機50のタービン特性図である。横軸にタービン流量Qt(kg/s)、縦軸にタービン駆動力Ft(kW)を示す。通常、排気脈動によってタービン流量Qtにも脈動が生じるが、ここで示すタービン流量Qtやタービン駆動力Ftは、脈動によって時々刻々と変化する瞬間流量及び瞬間駆動力である。以下図10を参照して動圧過給の原理を説明する。
特性C11に示すように、タービン駆動力Ftはタービン流量Qtが多くなるほど大きくなる。その増加率は一定(線形)ではなく、タービン流量Qtが多いほど大きくなる。その結果、特性C11は図示のように下に凸な湾曲した特性となる。但し図10は、説明の都合上、その湾曲度合を実際よりも誇張して示している。
特性C101は、特性C11と比較対照するために示した仮想的な特性であって、タービン流量Qtとタービン駆動力Ftとの関係が比例関係(線形)にある特性である。
ここでタービン流量Qtの脈動が小さい場合(ピーク流量q1)と大きい場合(ピーク流量q2)とについて考える。この両者において、時間平均した(例えば180°CA当たりの)タービン流量は同じであるとする。その場合、タービン流量Qtの脈動が大きいものは脈動の小さいものに比べ、1排気行程当たりの有効な排気時間(以下ブローダウン期間という)が短くなる(図11参照)。
まず線形な特性C101について説明する。タービン流量Qtの脈動が小さく、そのピーク値が流量q1のとき、タービン駆動力Ftの脈動ピーク値は駆動力Ft1となる(ポイントP11)。一方、タービン流量Qtの脈動が大きく、そのピーク値が流量q2のとき、タービン駆動力Ftの脈動ピーク値は駆動力Ft2’となる(ポイントP12’)。このことから、タービン流量Qtの脈動が大きい方が小さい方に比べ、一見タービン駆動力Ftの平均値が増大したかのように見える。しかし実際には、それを相殺するようにブローダウン期間が短くなるので、時間平均したタービン駆動力は理論上同じとなる(脈動がなく、定常流の場合も同じ)。
これに対して実際の特性C11の場合、次のようになる。タービン流量Qtの脈動が小さい場合は特性C101と同様である(ポイントP11)。しかしタービン流量Qtの脈動が大きく、そのピーク値が流量q2のとき、タービン駆動力Ftの脈動ピーク値は駆動力Ft2となる(ポイントP12)。図10に示すように駆動力Ft2>駆動力Ft2’であるから、この場合、タービン流量Qtの脈動が大きい方が小さい方に比べ、ブローダウン期間の短縮による目減り分を差引いても、時間平均したタービン駆動力が増大する。
以上説明したように、ターボ過給機50が特性C11のような下に凸なタービン駆動力特性を有するので、タービン流量Qtの脈動が大きいほどタービン駆動力の時間平均値が増大し、過給圧の増大を図ることができる。これが動圧過給の原理である。
図11は排気脈動特性図(実測値)である。横軸に第1気筒3aのクランク角θ(deg:上死点を0°CAとする)、縦軸に排気流量Qe(kg/s)を示す。図示の特性は、可変排気バルブ30による絞り効果のない場合(可変排気バルブ30が全開の場合)の特性である。排気流量Qeは、全ての気筒3の合計である。従ってブローダウンは180°CA周期で(何れかの気筒3において)発生する。図示の例は、180°CAから360°CAの間に第1気筒3aにおいてブローダウンが発生している。なおウエストゲートバルブ62が閉じている場合、排気流量Qeはタービン流量Qt(図10)と等しくなる。
特性C12は本実施形態の特性であり、その脈動ピーク値が流量q2(図10の流量q2に相当)であるもの、すなわち排気脈動の大きい特性である。一方特性C102は、特性C12と比較対照するために示した特性であり、その脈動ピーク値が流量q1(図10の流量q1に相当)であるもの、すなわち排気脈動の小さい特性である。特性C12の方が特性C102に対して排気脈動が大きく、その分ブローダウン期間が短くなっている。つまり特性C12のものは特性C102のものに比べ、動圧過給効果が高い。具体的には特性C12のものは特性C102のものに対してタービン回転数(実測値)が43%増大した。
また強い動圧過給を行うことによって、ブローダウン期間が短縮されるので、ブローダウン後の排圧が低下し、排気抵抗が下がるとともに残留ガスが減って、吸気の充填量と耐ノック性が改善されるという効果もある。
特性C12のような大きな排気脈動を得るための最も効果的な手段は、排気マニホールド16の容積を小さくすることである。そのためには図4に示す第1通路容積Va(≒第4通路容積Vd≒補助集合通路容積Vbc)を小さくすれば良い。そして、通路断面積を小さくすると排気抵抗が増大して望ましくないことを鑑みれば、第1通路容積Vaを小さくするには、第1排気通路16aの長さを可及的に短くすれば良いということになる。具体的には第1排気通路16aの長さLa(図4に示す)を、第1排気通路16aの排気マニホールド入口における通路径D1(図6に示す)の6倍以下とすることが望ましい。本実施形態では上述のように径D1=φ36mm、長さLa≦200mmであるから、この条件を満たしている。従って効果的な動圧過給が期待できる。
また上述のように、排気マニホールド16の第1通路容積Va、第4通路容積Vd及び補助集合通路容積Vbcの各通路容積は、互いに略等しい。仮にこれらの独立排気通路の容積に互いに大きな差があると、エゼクタ効果による掃気促進効果も気筒間で大きくばらついてしまう。そうすると、掃気性に依存するノッキング性能にも差が生じ、結果的に最もノッキング性能の低い気筒3に合わせた設定が余儀なくされ、他の気筒3でノッキング性能を向上してもそれが無駄になる。また、エゼクタ効果による上記吸気量増大効果にも気筒間ばらつきが生じてしまう。
本実施形態の構成によれば、第1通路容積Va、第4通路容積Vd及び補助集合通路容積Vbcの容積が互いに略等しいので、これらの問題がなく、エゼクタ効果の利点をより効果的に得ることができる。
ところで、一般的な直列4気筒エンジンにおいて、第1排気通路16aの長さLaと第4排気通路16dの長さLdとが略等しくなるように自然にレイアウトすれば、集合部31cを中央寄りに配置した本実施形態のような略対称のレイアウトとなる。そうすると第2排気通路16bと第3排気通路16cは、これらが互いに独立していれば、その長さが上記長さLaや長さLdに比べて短くなるのが自然である。これを無理に長さLaに揃えるためには不自然に迂回させる等のレイアウトが必要となる。これは排気抵抗の増大を招いたり、そのレイアウトを成立させるために長さLaや長さLdの短縮が妨げられたりして望ましくない。
本実施形態によれば、その小容積となりがちな第2排気通路16bと第3排気通路16cとを集合して補助集合排気通路16bcとなしているので、この補助集合排気通路16bcの容積を容易に第1排気通路容積Vaや第4排気通路容積Vdと略等しくすることができるのである。
なお、第2排気通路16bと第3排気通路16cとは、これらを集合させても相互の独立性が保たれている。上記表1に示すように、第2気筒3bと第3気筒3cとは点火順序が隣り合っていないので、排気バルブ9が下死点前から開き始め、上死点後に閉じることを考慮に入れても第2気筒3bの排気バルブ9と第3気筒3cの排気バルブ9とが共に開いている期間はない。従って相互に排気干渉を起こすことがなく、第2気筒3bの排気行程においては擬似的に第3排気通路16cを第2排気通路16bの延長とみなすことができ、第3気筒3cの排気行程においては擬似的に第2排気通路16bを第3排気通路16cの延長とみなすことができるのである。
このように本実施形態では、4気筒エンジンでありながら、3つの独立排気通路で相互の独立関係を実現している。こうすることによりレイアウトのコンパクト化が図られ、ハウジング31やターボ過給機50との接続部を小型化することができる。
ところで、排気マニホールド容積を小さくすると上述のように動圧過給効果が高くなるが、その反面高回転領域において排気温度が高くなる傾向となる。従って、例えば排気マニホールド16の材質として耐熱性の高い鋳鋼を用いたり、排気マニホールド16を水冷化したりして耐熱性の向上を図ることが望ましい。
(2)各独立排気通路と可変排気バルブとを用いた独立排気絞り制御
次に、各独立排気通路16a,16bc,16dと可変排気バルブ30とを用いた独立排気絞り制御について説明する。
具体的に図2を参照して説明する。上述のように図2の状態は、第1気筒3aがブローダウン時、第2気筒3bがオーバーラップ期間となっている。独立排気絞り制御の実行時、第1排気通路16aに導かれた排気We(ブローダウンガス)は可変排気バルブ30で絞られる。絞られたブローダウンガスは流速が増大し、圧力が低下する。この絞られたブローダウンガスがエゼクタ効果をもたらす駆動流体に相当する。
一方集合部31cでは、このブローダウンガスが流れる第1排気通路16aと補助集合排気通路16bcとが連通している。従って補助集合排気通路16bc(及び第2排気通路16b)を流れる排気We(被吸出し流体)が、低圧となったブローダウンガス(駆動流体)に吸出され、集合部31cに導入される(エゼクタ効果)。
なお、第2気筒3bの排気バルブ9が閉じた後(オーバーラップ期間後)であっても、駆動流体のエゼクタ効果が存続している場合には、第2排気通路16b及び補助集合排気通路16bcに残存する排気Weを吸出すことができ、掃気を促進することができる。
図2では第1気筒3aがブローダウン状態にある場合を示しているが、他の場合も同様である。例えば第2気筒3bがブローダウン状態のときは、表1から明らかなように第4気筒3dがオーバーラップ状態となる。従って第2排気通路16b(補助集合排気通路16bc)を流れる排気Weが駆動流体、第4排気通路16dを流れる排気Weが被吸出し流体となる。また例えば第3気筒3cがブローダウン状態のときは、第1気筒3aがオーバーラップ状態となる。従って第3排気通路16c(補助集合排気通路16bc)を流れる排気Weが駆動流体、第1排気通路16aを流れる排気Weが被吸出し流体となる。また例えば第4気筒3dがブローダウン状態のときは、第3気筒3cがオーバーラップ状態となる。従って第4排気通路16dを流れる排気Weが駆動流体、第3排気通路16c(補助集合排気通路16bc)を流れる排気Weが被吸出し流体となる。
このように、点火順序の隣り合う気筒同士において、点火順序の後の気筒の排気Weが駆動流体、先の気筒の排気Weが被吸出し流体になるという関係がある。一方、エゼクタ効果を適正に得るには、可変排気バルブ30の上流において駆動流体の排気通路と被吸出し流体の排気通路とが独立している必要がある。換言すれば、点火順序の隣り合う気筒同士において、その排気通路が互いに独立している必要がある。本実施形態の場合、第1排気通路16a及び第4排気通路16dは他の何れの排気通路に対しても明らかに独立しているから上記条件を満たす。また第2排気通路16bと第3排気通路16cとは可変排気バルブ30より上流において集合され補助集合排気通路16bcとなっている。しかし上述のように第2気筒3bと第3気筒3cとは点火順序が隣り合う気筒ではないので、これらが独立していなくても上記条件の充足に問題はない。結局、本実施形態において、点火順序の隣り合う気筒同士において、その排気通路が互いに独立しているので、適正なエゼクタ効果を得ることができる。
なおエゼクタ効果をより高めるには、駆動流体相当の排気Weと被吸出し流体相当の排気Weとを可及的に浅い角度(平行に近い角度)で合流させれば良い。本実施形態では、3本の独立排気通路16a,16bc,16dがそのマニホールド出口17付近において略平行に並列配置され、ハウジング31に流入後も集合部31cに至るまでその並列配置が維持されるので、上記合流角度の条件を満たす。すなわち高いエゼクタ効果が得られる。
エゼクタ効果による利点は、主に次の3点が挙げられる。
第1に、ターボ過給機50のタービン流量(ターボ過給機50に供給される排気Weの量)の増量である。ブローダウン時のタービン流量は、通常のブローダウンガス量に、エゼクタ効果によって吸出された排気Weの量が付加される。つまりその分タービン流量が増量される。その結果、タービン駆動力が増大し、過給圧を向上させることができる。
第2に、排気Weの掃気促進である。エゼクタ効果によって被吸出し流体である排気Weが吸出され、掃気が促進されるので当該気筒3の排気抵抗が低減される。また掃気の促進によってオーバーラップ期間での吸気が促進されるので、吸気量を増大させ、エンジントルクを増大させることができる。
第3に、動圧過給の促進である。上述のように、排気マニホールド16の容積を小さくすることで動圧過給の効果が得られるが、エゼクタ効果によって以下説明するようにその効果をさらに促進することができる。
可変排気バルブ30がない、又は全開の場合であって、エゼクタ効果が期待できない場合、ブローダウンガスは集合部31cを介して他の排気通路に回り込む(逆流する)。これはその排気通路の容積が見かけ上増えたように作用する。これに対し可変排気バルブ30によるエゼクタ効果があると、ブローダウンガスは駆動流体として他の排気通路から被駆動流体である排気Weを吸出す。つまり他の排気通路に回り込むことがない。これは、動圧過給においては排気通路容積を削減したような作用をもたらす。
このように、全体の排気通路容積(排気マニホールド容積)が同じであれば、可変排気バルブ30によるエゼクタ効果を有する本実施形態は、エゼクタ効果のないものに比べ、より動圧過給を促進することができるのである。
以上、エゼクタ効果の利点について説明したが、このエゼクタ効果は、駆動流体に相当する排気Weを強く絞るほど顕著となる。その絞り度合は可変排気バルブ30の開度を調節することによって、すなわちフラップ35をフラップ軸37まわりに揺動させる(図2に矢印Z1で示す)ことによって変動可能である。
可変排気バルブ30及びその近傍の具体的形状における、可変排気バルブ30が全開の場合の排気Weの流れを図6に示す。図6には第1気筒3aからの排気Weが第1排気通路16aを通ってハウジング31に流入する様子を示しているが、他の気筒からの排気Weも同様である。
可変排気バルブ30が全開状態のとき、フラップ35がほぼ完全に膨出部31bに格納されるとともに、フラップ35の一部が排気マニホールド16から連続する排気通路の壁面を形成している。
従って第1排気通路16aからの排気Weはマニホールド出口17を経てハウジング31に円滑に流入する。ハウジング31の上流部には仕切板32が設けられているので、その後縁32aまでの間は独立排気状態が維持される。そして後縁32aにおいてフラップ35の扇状面36に当面することなく、つまり絞られることなく集合部31cに導かれる。排気Weはさらに集合部31cからターボ過給機50のハウジング51に導かれる。
本実施形態ではターボ過給機50のレイアウトの都合上、ハウジング31が下方に曲げられている。ハウジング31の曲がった流路に沿うよう設けられた導流板33によって排気Weが円滑にターボ過給機50に導かれる。
また2枚の整流ガイド34によって、排気Weの流れがより円滑となる。図4に示すようにマニホールド出口17において、補助集合排気通路16bcを中心として第1排気通路16aと第4排気通路16dとがその両側に並列配置されている。ハウジング31内でも集合部31cに至るまではその位置関係が維持されている。従って、第1排気通路16aや第4排気通路16dからの排気Weは集合部31cの軸線に対して平面視でオフセットして流入することとなり、仮に整流ガイド34がない場合、集合部31cに旋回流(渦流)を発生させる。しかもその旋回方向は、第1排気通路16aからの排気と第4排気通路16dからの排気とで逆向きとなるから、集合部31cにおいて排気Weの流れが大きく乱される。このような排気の乱れはエゼクタ効果を低減させる虞がある。
この問題に対し本実施形態の整流ガイド34は、仕切板32の延長面上に設けられているので、第1排気通路16aから補助集合排気通路16bc方向に向かう流れ、及び第4排気通路16dから補助集合排気通路16bc方向に向かう流れを規制する。それによって上記旋回が抑制され、集合部31cにおける排気Weの流れがより円滑となる。従ってよりエゼクタ効果を高めることができる。
一方、可変排気バルブ30が全閉の場合の排気Weの流れを図7に示す。可変排気バルブ30が全閉状態のとき、フラップ35が揺動してハウジング31の内部に入り込み、扇状面36が排気Weの流れを遮る。但し完全には遮蔽せず、導流板33の曲げ内側部分の流路は確保されている。
第1排気通路16aからの排気Weはマニホールド出口17を経てハウジング31に流入する。ハウジング31の上流部には仕切板32が設けられているので、その後縁32aまでの間は独立排気状態が維持される。そして後縁32aにおいてフラップ35の扇状面36によって遮られ、絞られた排気Weは仕切板32の後縁32a(導流板33の曲げ内側部分入口部)において集合部31cに流入する。その際、絞られて高速、低圧となった排気Weは駆動流体として作用し、エゼクタ効果によって他の排気通路(主として補助集合排気通路16bc)からの排気Weを吸出す。これらの排気Weは合流し、導流板33によって円滑にターボ過給機50のハウジング51に導かれる。
可変排気バルブ30は、全閉と全開との間の中間の開度をとり得る。その場合、全閉に近いほどブローダウン排気Weの絞り作用が強く、エゼクタ効果も高くなる。
次に独立排気絞り制御について説明する。上述のように、独立排気絞り制御はECU2(可変排気バルブ制御手段)が可変排気バルブ30によって独立排気通路16a,16bc,16dの各通路断面積を最大面積時よりも縮小させる制御である。具体的にはECU20が可変排気バルブ30のアクチュエータ38に開度信号を送り、アクチュエータ38がフラップ軸37を回転駆動してフラップ35の回転角度を調節する。本実施形態では、独立排気絞り制御は図9に示す低回転過給領域A3において行われる。低回転過給領域A3は、ウエストゲートバルブ62が開き始めるインターセプトポイントより低回転領域、本実施形態においては2000prm以下に設定される。インターセプトポイントより高回転域では、過給圧が高くなり過ぎることを抑制するためにウエストゲートバルブ62が開くのであるから、その高回転領域においてエゼクタ効果による過給圧増大は不要である。そこで排気抵抗を抑制するためにも可変排気バルブ30が全開とされるのである。
独立排気絞り制御では、低回転過給領域A3において、エンジン回転数Neが低いほど可変排気バルブ30が低開度とされる。
(3)EGR実行中における独立排気絞り制御の抑制
EGRを行うと、吸気に対する不活性ガス成分(EGRガス)の割合が増大するので、燃焼温度を下げることができ、NOxの生成・排出を抑制することができる。また酸素量の増大を抑制しつつ吸気のガス量を増大することができるので、吸気負圧を低減し、ポンピングロスを低減することができる。
EGRが顕著な効果を奏する運転領域は要求吸気量(酸素量)の少ない低負荷領域である。本実施形態ではEGRの実行領域をNA領域A1としているが、この領域はEGRが顕著な効果を奏する低負荷領域と合致している。一方、過給領域A2ではEGRが行われない。この領域でEGRを行うと、還流されたEGRガスが新気の導入を妨害し、過給効果を低減させるという弊害が起こる虞があるからである。
一方、独立排気絞り制御は低回転過給領域A3で実行される。上述のように独立排気絞り制御の顕著な効果が低回転過給領域A3において得られるからであるが、仮に独立排気絞り制御をNA領域A1で行ったとしても、それ自体に大きな弊害はなく、逆に幾つかの利点がある。しかしながら、NA領域A1でEGRを行う場合には、以下に説明するようにNA領域A1において独立排気絞り制御を抑制する(本実施形態では禁止する)方が得策である。
図1に示すように、EGR通路22の上流端は可変排気バルブ30下流側に開口している。一方、独立排気絞り制御のエゼクタ効果は可変排気バルブ30の下流側で発生する。従ってEGRの実行中に独立排気絞り制御を実行すると、独立排気絞り制御によるエゼクタ効果がEGR通路22の上流端にも及ぶ虞がある。エゼクタ効果がEGR通路22の上流端に及ぶと、その吸出し作用によって、排気側から吸気側に向かうEGRガスGeの流れが阻害されたり逆流したりして、適正なEGRが行われなくなる。
そこで本実施形態では、EGRが行われるNA領域A1において独立排気絞り制御を禁止している。そうすることにより、上記EGRとの干渉問題を的確に解消することができる。一方、独立排気絞り制御による利益の大部分は低回転過給領域A3で得られるため、NA領域A1で独立排気絞り制御を行わないこととしても、その機会損失は僅かである。
以上、本実施形態の主要な技術的特徴である動圧過給、独立排気絞り制御及びEGR実行中における独立排気絞り制御の抑制について説明したが、これらは密接に関連し、協働してエンジン性能を高めている。
図12は、低回転過給領域A3における充填効率ηcを示すグラフである。横軸はエンジン回転数Ne(rpm)、縦軸は充填効率ηc(%)を示す。特性C13は動圧過給と独立排気絞り制御とが併用された本実施形態の特性である。特性C103は比較対象のために示す特性であり、従来の一般的な排気マニホールド(可変排気バルブ30なし)を用いた場合の特性である。特性C13の充填効率ηcは特性C103に対して約20〜30ポイント増大している。これは動圧過給と可変排気バルブ30を用いた独立排気絞り制御とによる過給圧増大の効果である。
図13は、低回転過給領域A3におけるエンジンの平均有効圧BMEPを示すグラフである。横軸はエンジン回転数Ne(rpm)、縦軸は平均有効圧BMEP(kPa)を示す。特性C14は動圧過給と独立排気絞り制御とが併用された本実施形態の特性(図12の特性C13に対応する特性)である。特性C104は比較対象のために示す特性であり、図12の特性C103に対応する特性である。特性C14の平均有効圧BMEPは特性C104に対して約200〜400kPa増大している。これは動圧過給と可変排気バルブ30を用いた独立排気絞り制御とによって充填効率が増大(図12)した効果であって、すなわちエンジントルクが増大したことを示している。
次に、上記エゼクタ効果をより顕著に奏するために本実施形態で採用されている更なる技術について説明する。
図14は本実施形態における排気通路の絞り度合と体積効率ηvとの関係を示すグラフである。横軸の上段は絞り径D2(mm)を示す。この絞り径D2とは、図7に示す可変排気バルブ30全閉時の、仕切板32の後縁32aにおける流路断面積S2に相当する円の直径である。なお第1排気通路16aの排気マニホールド16の入口部はφD1(:元の径=36mm)の円形であり、当該箇所の通路断面積S1はφD1に相当する面積(約1018mm2)である。
横軸の下段は断面積絞り率Rd(%)を示す。この断面積絞り率Rdは、元の径D1に対する絞り径D2の面積比率である。すなわちRd=(D2/D1)2×100(%)、或いはRd=(S2/S1)×100(%)である。
図14に示す特性C15はエンジン回転数Ne=1500rpmにおける特性、C16は同2000rpmにおける特性を示す。これらの特性から明らかなように、絞り径D2=22〜28mmの範囲(断面積絞り率Rd=37〜61%の範囲)において体積効率ηvの特段に高い好適な範囲が存在する。これは、この好適範囲において特に顕著なエゼクタ効果が得られることを示している。従って、絞り径D2をこの好適範囲に設定することにより、より高い過給効果が得られ、エンジントルクの一層の増大を図ることができる。
次に、可変バルブタイミング機構12によるバルブタイミング変更制御について説明する。
図15は、上記バルブタイミング変更制御の説明図である。横軸にはクランク角θ(deg:°CA)を示し、第1気筒3aの上死点TDCを0°CAとする。縦軸には吸排気バルブ7,9の模式的な開弁量を示す。なお上段には、点火順序の隣り合う気筒のうち後に点火する方の気筒を示し、下段には、先に点火する方の気筒を示す。その一例として、上段に第1気筒3a、下段に第2気筒3bを示す。そして、第1気筒3aが膨張行程から排気行程への移行期(下死点付近)にあり、第2気筒3bが排気行程から吸気行程への移行期(上死点付近)にある状態を示している。これは図2に示す状態に相当する。
実線で示す排気バルブ開期間Pe1及び吸気バルブ開期間Pi1は独立排気絞り制御を行わず、可変排気バルブ30が全開状態である場合(例えばNA領域A1)の特性である。ここで、第2気筒3bの上死点付近において排気バルブ開期間Pe1と吸気バルブ開期間Pi1とが重複するオーバーラップL2が設定されている。
一般的にオーバーラップは、排気Weの掃気を充分に行い、且つ吸気Wiをより多く吸入するために設けられる。また吸気Wiで排気Weを押し出す狙いもある。一般的な可変バルブタイミング制御と同様に、このオーバーラップL2はエンジン回転数Neが高いほど広くなるように変更される。具体的には排気VVT12eによって排気バルブ9の閉弁時期を遅らせ、吸気VVT12iによって吸気バルブ7の開弁時期を進めることによってオーバーラップL2が拡大される(排気VVT12eか吸気VVT12iの何れか一方で行っても良い)。
一方、破線で示す排気バルブ開期間Pe2及び吸気バルブ開期間Pi2は独立排気絞り制御を実行中、すなわち低回転過給領域A3において可変排気バルブ30が排気Weを絞っている場合の特性である。この場合のオーバーラップL3は、同じ負荷、同じエンジン回転数Neであっても独立排気絞り制御を行わない場合のオーバーラップL2よりも図示のように拡大されている。具体的には排気バルブ9の閉弁時期が遅らされ、吸気バルブ7の開弁時期が進められる。
本来、独立排気絞り制御によれば、上述のようにエゼクタ効果によって掃気が促進され、オーバーラップ期間での吸気が促進されるので、吸気量を増大させ、エンジントルクを増大させる効果がある。そこで図15に示すように、可変バルブタイミング機構12によってオーバーラップL2をオーバーラップL3に拡大することにより、上記効果をより顕著に得ることができる。
なお通常は、不用意にオーバーラップL2を拡大すると吸気負圧によって排気Weが逆流する虞がある。しかし独立排気絞り制御では、エゼクタ効果によって排気Weが下流側に吸出されるので、そのような逆流が起こり難い。すなわち、排気Weの逆流という弊害を抑制しつつオーバーラップ量を増大させることができる。
ところで、図15上段(第1気筒3a)の排気バルブ開期間Pe1に示すように、独立排気絞り制御の非実行時の排気バルブ9は排気行程下死点より前の比較的早期、例えば下死点前40〜60°CAに開き始める。こうすることにより掃気が促進されるが、反面、ピストンの降下中に排気Weが開始するので、その分ブローダウンガスの勢いが弱められる。これはエゼクタ効果の駆動流体としてブローダウンガスを利用する本実施形態の独立排気絞り制御にとって不利である。
しかし本実施形態では、独立排気絞り制御の実行時には排気バルブ閉弁時期を遅らせてオーバーラップ量を増大している。これは同時に排気バルブ開弁時期を遅らせることでもある(開弁期間自体は平行移動的に変更され、不変であるから)。すなわち図15上段に示すように、排気バルブ開弁時期が期間L1だけ遅らされている。これにより、上記ブローダウンガスの勢い低下が抑制される。そして下死点後はピストンの上昇が排気Weを押し出す作用が加わるのでブローダウンガスを加勢することができる。こうしてより顕著にエゼクタ効果を得ることができる。
但し、排気バルブ9を排気下死点後に開くと排気抵抗が大きくなるという弊害が出る。従って排気バルブ開弁時期の遅延は、図示のように排気下死点直前までにとどめておくことが望ましい。
図16はエンジントルク特性を示すグラフである。横軸にエンジン回転数Ne(rpm)、縦軸にエンジントルクTe(N・m)を示す。実線で示す特性C24は本実施形態の特性(図9の特性Txに相当する)、破線で示す特性C124は従来型の排気系と一般的な大型ターボ過給機を採用した場合の特性、そして特性C125は従来型の排気系と一般的な小型ターボ過給機(タービン径D及びA/Rが相対的に小さいターボ過給機)を採用した場合の特性である。
図示のように、特性C124では大型ターボ過給機による高回転域でのトルク増大作用が強く、特性C125では小型ターボ過給機による低回転域でのトルク増大作用が強い。
それらに対して本実施形態の特性C24は、高回転領域では大型のターボ過給機50の採用によってトルク増大作用が強く、低回転領域では動圧過給、可変排気バルブ30を用いた独立排気絞り制御、バルブタイミング変更制御および小A/Rのターボ過給機50の採用等によってトルク増大作用が強い。その結果、1つのターボ過給機50を用いた簡潔な構成でありながら、低回転領域から高回転領域に亘る広い範囲で大きな過給効果を得てエンジントルクの増大が達成されている。
また図16には直接示されていないが、部分負荷領域であるNA領域A1において適正なEGRが行われ、NOx低減による排気浄化やポンピングロス低減による燃費向上が図られている。
図17は、ECUによる運転領域に応じた制御選択のフローチャートである。この制御において、まずエアフローメータ11や図略の回転数センサ等の各種センサからの信号がECU20で読込まれる(ステップS1)。次に現在の運転状態が図9に示す運転領域の何れにあるかの判定が行われる(ステップS2)。ステップS2において、NA領域A1、すなわちEGR領域であると判定された場合には、ECU20はEGRを実行する。すなわちEGR弁23を開弁し、運転状態に応じた開度制御を行う(ステップS4)。そしてその場合には独立排気絞り制御を行わないので、ECU20は可変排気バルブ30を全開とする(ステップS7)。
遡って、ステップS2においてNO、すなわち過給領域A2であってEGR領域ではないと判定された場合には、ECU20はEGRを行わない。すなわちEGR弁23を全閉とする(ステップS3)。続いて、現在の運転状態が低回転過給領域A3であるか否かの判定が行われ(ステップS5)、YESと判定されればECU20は独立排気絞り制御を実行する。すなわち可変排気バルブ30を運転状態に応じて絞る(ステップS6)。
遡って、ステップS5においてNOと判定された場合、すなわち過給領域A2ではあるが低回転過給領域A3ではない高回転領域であると判定された場合には、独立排気絞り制御を実行しない。すなわちステップS7に移行して可変排気バルブ30を全開とする。
次に本発明の参考形態について説明する。図18は、本発明の参考形態に係るエンジンの過給装置の概略構成図であって、上記実施形態の図1に対応する図である。なお、同図において図1と同一または同様の機能を有する構成要素には同一符号を付してその重複説明を省略する。
参考形態の構成は上記実施形態と殆ど同一であるが、EGR通路22aの接続位置が異なっている。すなわち上記実施形態のEGR通路22ではその上流端が可変排気バルブ30よりも下流側の排気通路60に開口しているのに対し、本参考形態のEGR通路22aではその上流端が特定気筒(第4気筒3d)の排気通路(第4排気通路16d)に接続されている。レイアウト上の関係で、上記実施形態のような構造を採り難い場合に、このような構造とすることによりEGR通路22aの取り回しが容易化されるという利点がある。
なお本参考形態によれば、EGR通路22aの上流端が可変排気バルブ30よりも上流側に開口しているので、ここに独立排気絞り制御によるエゼクタ効果が及ぶことはない。すなわちEGRの実行中に独立排気絞り制御を実行しても、上記実施形態のような弊害は起こり難い。しかしながら、本参考形態に特有の以下のような問題が発生する。
参考形態において、EGRガスGeは第4排気通路16dを経由してEGR通路22aに導かれる。しかし可変排気バルブ30が全開(或いはそれに近い開度)であれば、他の気筒(3a,3b,3c)からの排気もEGR通路22aに供給される。これらの気筒からの排気が集合部31cを介して第4排気通路16dに回り込むからである。
ところが、EGRの実行中に独立排気絞り制御を行うと、エゼクタ効果によってこのような排気の回り込みが抑制される。そうすると、殆ど第4気筒3dの排気のみがEGR通路22aに導かれることになり、EGR量にムラが生じる。その結果、EGR効果の気筒間ばらつきが増大してしまう。
このように、独立排気絞り制御による上記排気の回り込みの抑制は、上述のように低回転過給領域A3においては動圧過給の促進という利点を有する(上述のエゼクタ効果による第3の利点)ものの、NA領域A1(EGR領域)においては上記利点の対象外であるばかりではなく、逆にEGR効果の気筒間ばらつきの増大という弊害を招いてしまう。
従って本参考形態においても、上記実施形態と同様に、EGRを実行するNA領域A1において独立排気絞り制御を抑制する(本参考形態では禁止する)のが得策となる。そうすることにより、NA領域A1において、EGR効果の気筒間ばらつきが抑制された適正なEGRを行うことができる。
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、エンジン1は必ずしも直列4気筒でなくても良く、直列6気筒或いはV型6気筒等のエンジンであっても良い。そしてそれに応じた排気マニホールドの形状とすれば良い。
また排気マニホールドは、必ずしも補助集合排気通路を有するものでなくても良く、各排気通路が可変排気バルブに至るまで完全に独立したものであっても良い。
可変排気バルブは、独立した排気通路の各通路断面積を変更可能なバルブであれば良く、必ずしも上記可変排気バルブ30の構造に限定されない。例えば、独立した排気通路の各通路断面積をそれぞれ独立して変更可能なバルブであっても良い。またフラップ35は必ずしも扇形状でなくても良く、例えば板状のフラップ板であっても良い。
EGR実行中における独立排気絞り制御の抑制は、必ずしもこれを禁止するものでなくても良い。例えば、EGR領域において、上述の各問題が生じない程度、或いは許容できる程度に抑制しつつ(絞り度合を少なくして)独立排気絞り制御を実行しても良い。
また、本発明の参考形態において、EGR通路22aの上流端は必ずしも第4排気通路16dに接続するものでなくも良く、第1〜第3排気通路排気16a,16b,16c或いは補助集合排気通路16bcに接続するようにしても良い。また、必ずしも排気マニホールド16に接続する必要はなく、例えばシリンダヘッド内の排気ポート8に接続するようにしても良い。
本発明の実施形態に係るエンジンの過給装置の概略構成図である。 図1の部分側断面図である。 排気マニホールドと可変排気バルブのハウジングの外観斜視図である。 排気マニホールドの下流側部分斜視図である。 可変排気バルブの要部斜視図である。 排気マニホールド及び可変排気バルブのハウジングの縦断面図であって、可変排気バルブが開弁状態にある状態を示す図である。 図6と同様の断面図であって、可変排気バルブが開弁状態にある状態を示す図である。 図6のVIII−VIII線断面図である。 エンジンの運転領域を示す図である。 ターボ過給機のタービン特性図である。 排気脈動特性図である。 低回転過給領域における充填効率を示すグラフである。 低回転過給領域におけるエンジンの平均有効圧を示すグラフである。 排気通路の絞り度合と体積効率との関係を示すグラフである。 バルブタイミング変更制御の説明図である。 エンジントルク特性を示すグラフである。 可変排気バルブ制御手段による、運転領域に応じた制御選択のフローチャートである。 本発明の参考形態に係るエンジンの過給装置の概略構成図である。
1 エンジン
3 気筒
8 排気ポート
16 排気マニホールド
16a,16d 第1,第4排気通路(独立排気通路)
16bc 補助集合排気通路(独立排気通路)
20 ECU(可変排気バルブ制御手段,EGR制御手段)
22,22a EGR通路
23 EGR弁
30 可変排気バルブ
31c 集合部
50 排気ターボ過給機
A1 自然吸気領域(EGR領域)
A2 過給領域
A3 低回転過給領域(所定の低回転領域)

Claims (2)

  1. 各気筒の排気ポートに接続され、複数の独立排気通路を有する排気マニホールドと、
    上記排気マニホールドないしはその下流側において上記独立排気通路が集合した集合部と、
    上記集合部の下流側に接続された排気ターボ過給機と、
    上記集合部の上流側で、上記独立排気通路の各通路断面積を変更可能な可変排気バルブと、
    上記可変排気バルブを駆動制御する可変排気バルブ制御手段と、
    排気通路と吸気通路とを接続するEGR通路と、
    該EGR通路上に配設されたEGR弁と、
    所定の低負荷領域において、上記EGR弁を開弁制御するEGR制御手段とを備え、
    ある気筒の排気バルブ開弁直後のブローダウンの時期と、他の気筒の吸気バルブおよび排気バルブのオーバーラップ期間とが重なるように設定されており、
    上記可変排気バルブ制御手段は、過給領域の所定の低回転領域において、上記可変排気バルブによって上記独立排気通路の上記各通路断面積を最大面積時よりも縮小させる独立排気絞り制御を実行するとともに、上記EGR弁が開弁状態のときには上記独立排気絞り制御を抑制するものであり、
    上記EGR通路は、上記可変排気バルブより下流側の上記排気通路と上記吸気通路とを接続するものであることを特徴とするエンジンの過給装置。
  2. 上記EGR弁の開弁制御は自然吸気領域で行われることを特徴とする請求項1記載のエンジンの過給装置。
JP2007268951A 2007-10-16 2007-10-16 エンジンの過給装置 Expired - Fee Related JP4910977B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268951A JP4910977B2 (ja) 2007-10-16 2007-10-16 エンジンの過給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268951A JP4910977B2 (ja) 2007-10-16 2007-10-16 エンジンの過給装置

Publications (2)

Publication Number Publication Date
JP2009097404A JP2009097404A (ja) 2009-05-07
JP4910977B2 true JP4910977B2 (ja) 2012-04-04

Family

ID=40700648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268951A Expired - Fee Related JP4910977B2 (ja) 2007-10-16 2007-10-16 エンジンの過給装置

Country Status (1)

Country Link
JP (1) JP4910977B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515977B2 (ja) * 2010-03-31 2014-06-11 マツダ株式会社 多気筒エンジンの排気装置
US20140069086A1 (en) * 2012-09-13 2014-03-13 Leon A. LaPointe Exhaust system for spark-ignited gaseous fuel internal combustion engine
JP5974802B2 (ja) * 2012-10-15 2016-08-23 マツダ株式会社 多気筒エンジンのターボ過給装置
JP5849924B2 (ja) * 2012-10-22 2016-02-03 マツダ株式会社 排気弁装置およびターボ過給機付エンジン
US8839607B2 (en) 2012-12-13 2014-09-23 Ford Global Technologies, Llc Ejector in conjunction with post-catalyst exhaust throttle for vacuum generation
US9556771B2 (en) 2013-01-16 2017-01-31 Ford Global Technologies, Llc Method and system for catalyst temperature control
US9429110B2 (en) 2013-01-16 2016-08-30 Ford Global Technologies, Llc Method and system for vacuum control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2934041C2 (de) * 1979-08-23 1983-08-11 Günther Prof. Dr.-Ing. 5100 Aachen Dibelius Gesteuerte Abgasturboladerturbine
JPH0666149A (ja) * 1992-08-17 1994-03-08 Mazda Motor Corp 過給機付エンジンの制御方法および制御装置
SE510714C2 (sv) * 1997-10-09 1999-06-14 Volvo Ab Turboladdad förbränningsmotor
JP3541662B2 (ja) * 1998-01-12 2004-07-14 トヨタ自動車株式会社 内燃機関
JP3463642B2 (ja) * 2000-01-21 2003-11-05 トヨタ自動車株式会社 排気絞り弁の異常検出装置
JP2002276405A (ja) * 2001-03-19 2002-09-25 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
JP3666583B2 (ja) * 2001-04-06 2005-06-29 三菱ふそうトラック・バス株式会社 過給機付内燃機関
JP4184732B2 (ja) * 2002-08-09 2008-11-19 株式会社豊田自動織機 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2009097404A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4807343B2 (ja) エンジンの過給装置
JP2009114991A (ja) エンジンの過給装置
US8141357B2 (en) Supercharger for an engine
JP5050917B2 (ja) 過給機付エンジンシステム
JP4910977B2 (ja) エンジンの過給装置
JP4973541B2 (ja) 過給機付エンジンシステム
JP6597737B2 (ja) 車両用エンジンの吸排気装置
JP2009513875A (ja) 排気ガス再循環システム
JP5092962B2 (ja) 過給機付き内燃機関の制御装置
JP2009144642A (ja) 過給機付エンジンシステム
JPH1089106A (ja) ターボ過給機付エンジン及びターボ過給機付エンジン搭載車のパワーユニット
JP4807344B2 (ja) 直列4気筒エンジンの過給装置
JP2007231906A (ja) 多気筒エンジン
JP5958383B2 (ja) ターボ過給機付き火花点火式エンジン
JP6020250B2 (ja) ターボ過給機付き火花点火式エンジン
JP5262863B2 (ja) 多気筒エンジンの排気システムの制御方法およびその装置
US10584649B2 (en) Control device for internal combustion engine
JP2009103041A (ja) 過給機付エンジン
JP6477763B2 (ja) 多気筒エンジンの吸気通路構造
JP5262862B2 (ja) 多気筒エンジンの排気システムの制御方法およびその装置
JP4978525B2 (ja) 過給機付きエンジンの排気装置
JP5998900B2 (ja) ターボ過給機付きエンジン
JP6551472B2 (ja) エンジンの吸気通路構造
JP5974805B2 (ja) ターボ過給機付多気筒エンジン
JP6439731B2 (ja) ターボ過給機付エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees