この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。
[実施の形態1]
本実施の形態では、まず、本発明におけるファンが適用される遠心ファンの構造について説明し、続いて、その遠心ファンの製造時に使用される成型用金型の構造およびその遠心ファンが用いられる送風機および空気清浄機の構造について説明する。
(遠心ファンの構造の説明)
図1は、この発明の実施の形態1における遠心ファンを示す斜視図である。図2は、図1中のII−II線上に沿った遠心ファンの断面図である。
図1および図2を参照して、本実施の形態における遠心ファン10は、複数のファンブレード21を有する。遠心ファン10は、全体として略円筒形の外観を有し、複数のファンブレード21は、その略円筒形の周面に配置されている。遠心ファン10は、樹脂により一体に形成されている。遠心ファン10は、図1中に示す仮想上の中心軸101を中心に、矢印103に示す方向に回転する。
遠心ファン10は、回転する複数のファンブレード21によって、内周側から取り込んだ空気を外周側に送り出すファンである。遠心ファン10は、遠心力を利用して、ファンの回転中心側からその半径方向に空気を送り出すファンである。遠心ファン10は、シロッコファンである。遠心ファン10は、家庭用の電気機器などのファンに適用される低レイノズル数領域の回転数で使用される。
遠心ファン10は、支持部としての外周枠13をさらに有する。外周枠13は、中心軸101を中心に環状に延在して形成されている。外周枠13は、中心軸101の軸方向に距離を隔てた位置にそれぞれ配置されている。一方の外周枠13には、ディスク部14を介して、遠心ファン10を駆動モータに連結するためのボス部16が一体に形成されている。
複数のファンブレード21は、中心軸101を中心とする周方向に互いに間隔を隔てて配列されている。複数のファンブレード21は、中心軸101の軸方向における両端において、外周枠13によって支持されている。ファンブレード21は、一方の外周枠13上に立設され、他方の外周枠13に向けて中心軸101の軸方向に沿って延びるように形成されている。
ファンブレード21は、内縁部26および外縁部27を有する。内縁部26は、ファンブレード21の内周側の端部に配置されている。外縁部27は、ファンブレード21の外周側の端部に配置されている。ファンブレード21は、内縁部26から外縁部27に向けて中心軸101を中心とする周方向に傾斜して形成されている。ファンブレード21は、内縁部26から外縁部27に向けて遠心ファン10の回転方向に傾斜して形成されている。
ファンブレード21には、正圧面25および負圧面24からなる翼面23が形成されている。正圧面25は、遠心ファン10の回転方向の側に配置され、負圧面24は、正圧面25の裏側に配置されている。遠心ファン10の回転時、翼面23上で空気流れが発生するのに伴って、正圧面25で相対的に大きく、負圧面24で相対的に小さくなる圧力分布が生じる。ファンブレード21は、正圧面25側が凹となり、負圧面24側が凸となるように、内縁部26と外縁部27との間で全体的に湾曲した形状を有する。
図2中には、遠心ファン10の回転軸である中心軸101に直交する平面で切断した場合のファンブレード21の翼断面が示されている。
ファンブレード21は、中心軸101の軸方向におけるいずれの位置で切断されても同一の翼断面を有するように形成されている。ファンブレード21は、内縁部26と外縁部27との間で薄肉の翼断面を有するように形成されている。ファンブレード21は、内縁部26と外縁部27との間でほぼ一定の厚み(正圧面25と負圧面24との間の長さ)を有するように形成されている。
ファンブレード21は、翼面23の正圧面25に凹部57が形成され、翼面23の負圧面24に凹部56が形成される翼断面を有する。正圧面25および負圧面24の少なくともいずれか一方には、複数の凹部56,57が形成されている。
本実施の形態では、正圧面25に、複数の凹部57(凹部57p,57q)が形成されている。正圧面25には、凸部52(52p,52q,52r)がさらに形成されている。凸部52は、遠心ファン10の回転方向に向けて突出して形成されている。互いに隣り合って配置された凸部52間の谷部分によって、凹部57が形成されており、たとえば、凸部52pと凸部52qとの間の谷部分によって凹部57pが形成されている。凹部57と凸部52とは、内縁部26と外縁部27とを結ぶ方向において交互に並んで形成されている。凹部57は、略U字状の断面を有する。
負圧面24には、複数の凸部51(凸部51p,51q)がさらに形成されている。凸部51は、貫流ファン100の回転方向とは反対方向に向けて突出して形成されている。互いに隣り合って配置された凸部51間の谷部分によって、凹部56が形成されており、本実施の形態では、凸部51pと凸部51qとの間の谷部分によって凹部56が形成されている。凹部56と凸部51とは、内縁部26と外縁部27とを結ぶ方向において交互に並んで形成されている。凹部56は、略U字状の断面形状を有する。
凹部57と凸部51とは、正圧面25および負圧面24の表裏対応する位置に形成され、凸部52と凹部56とは、正圧面25および負圧面24の表裏対応する位置に形成されている。本実施の形態では、正圧面25に形成される凹部57が、負圧面24において凸部51を形成し、負圧面24に形成される凹部56が、正圧面25において凸部52を形成する。正圧面25および負圧面24において表裏対応して形成される凹部および凸部は、互いに同一の形状を有する。
凹部57,56は、中心軸101の軸方向に沿って延びる溝形状をなす。凹部57,56からなる溝部は、中心軸101の軸方向におけるファンブレード21の一方端と他方端との間で連続的に延びて形成されている。凹部57,56からなる溝部は、中心軸101の軸方向におけるファンブレード21の一方端と他方端との間で直線状に延びて形成されている。
本実施の形態では、正圧面25に形成される凹部57が負圧面24に形成される凹部56よりも多い数である。
図2中には、ファンブレード21の翼断面の厚み方向(正圧面25と負圧面24とを結ぶ方向)における中心線106が示されている。ファンブレード21は、ファンブレード21の翼断面の中心線106が内縁部26と外縁部27との間の複数箇所で屈曲する屈曲部41を有する。凹部56,57は、その屈曲部41により形成されている。
本実施の形態では、ファンブレード21が内縁部26と外縁部27との間の3箇所で屈曲部41を有する。ファンブレード21は、内縁部26および外縁部27の近傍にそれぞれ配置される屈曲部41Aと、内縁部26および外縁部27の間の翼中央部に配置される屈曲部41Bとを有する。屈曲部41Aは、正圧面25に凹部57を形成し、負圧面24に凸部51を形成している。屈曲部41Bは、正圧面25に凸部52を形成し、負圧面24に凹部56を形成している。
このような構成により、凹部57が内縁部26および外縁部27の近傍に形成され、さらに、凹部56が内縁部26および外縁部27の間の翼中央部に形成されている。ファンブレード21は、略W字状の翼断面形状を有する。
屈曲部41は、少なくとも1箇所で、凹部56,57の深さTがファンブレード21の厚みtよりも大きくなるように屈曲する。屈曲部41は、内縁部26と外縁部27とを結ぶ方向において、折れ方向が交互に反対方向となるように形成されている。屈曲部41は、丸みを帯びるように折れ曲がって形成されている。屈曲部41は、角部をなすように折れ曲がって形成されてもよい。
図3は、図1中の遠心ファンにおいて、ファンブレードの翼面上で生じる現象を模式的に表わした図である。図1から図3を参照して、遠心ファン10を回転させると、図1中の矢印102に示すように、内縁部26から流入し、翼面23上を通過して、外縁部27から流出する空気流れが、隣接するファンブレード21間に発生する。この際、翼面23に形成された凹部56,57に空気流れの渦32(2次流れ)が生成されることによって、翼面23上を通過する空気流れ31(主流)は、凹部56,57に生じた渦32の外側に沿って流れる。
これにより、ファンブレード21は、薄肉の翼断面を有するにもかかわらず、渦32が形成された凹部56,57の深さの分だけ翼断面が厚肉化された厚肉翼のような挙動を示す。この結果、凹部56,57が形成された内縁部26の近傍で生じる揚力を大幅に増大させることができる。
また、屈曲部41による屈曲構造によってファンブレード21の強度を向上させることができる。この結果、遠心ファン10が薄肉の翼断面を有する樹脂製ファンであるにもかかわらず、ファンの強度に対する信頼性を向上させることができる。また、強度を向上させた分だけファンブレード21を薄肉化することも可能となる。これにより、遠心ファン10を軽量化したり、低コスト化したりすることができる。
以上に説明した理由により、揚抗比が高く、かつ、薄くて軽く、強度が高い翼断面を有する遠心ファン10を実現することができる。
図4は、図1中の遠心ファンに用いられるファンブレードを示す断面図である。図中には、図2中に示すファンブレードの断面が示されている。図3を参照して、本実施の形態における遠心ファン10においては、複数のファンブレード21が、複数種類のファンブレード21A,21B,21C,21D,21Eから構成されている。ファンブレード21A〜21Eは、互いに異なる形状の翼断面を有する。ファンブレード21A〜21Eの各ファンブレードは、複数ずつ設けられている。
ファンブレード21A〜21Eの形状についてより具体的に説明する。ファンブレード21A〜21Eは、共通して、略W字状の翼断面を有するが、凹部56,57が形成される位置が互いに異なる。凹部56が形成される位置に注目すると、ファンブレード21Aでは、凹部56が内縁部26に近い位置に形成され、ファンブレード21B,21C,21Dとなるにつれて凹部56が内縁部26から離れ、外縁部27に近づく位置に形成されている。そして、ファンブレード21Eでは、凹部56が外縁部27に近い位置に形成されている。凹部57pおよび凹部57qも、ファンブレード21Aから、ファンブレード21B,21C,21D,21Eとなるにつれて内縁部26から離れ、外縁部27に近づくように形成されている。
代表的に図4中のファンブレード21Aに示すように、凹部56の上方において凸部52の頂部から凸部51の頂部に向けて滑らかに延在する負圧面24´を想定した場合に、好ましくは、ファンブレード21A〜21Eは、各ファンブレードの負圧面24´が図4中に示す断面において内縁部26と外縁部27との間で互いに異なる輪郭となるように形成されている。
図5は、図1中の遠心ファンにおいて、ファンブレードの配列を模式的に表わした図である。図5を参照して、ファンブレード21A,21B,21C,21D,21Eは、中心軸101を中心とする周方向において不規則(ランダム)な順番で並ぶように配列されている。すなわち、ファンブレード21A〜21Eが、規則性を持った順番(たとえば、ファンブレード21A→21B→21C→21D→21E→21A→21B→21C→21D→21E→21A→21B…といった順番)で繰り返し並ばないように配列されている。
図5中に示す例では、中心軸101を中心にその時計回り方向に、ファンブレード21C,21E,21A,21D,21B,21A,21B,21C,21D,21E,21B,21D,21A,21C,21Eが順に並んでいる。
なお、上記の例では、5種類のファンブレード21A〜21Eを1セットと考えて、ファンブレード21A〜21Eの並びが異なる複数のセットを順に配置する構成としたが、これに限られず、たとえば、ファンブレード21A〜21Eの各ファンブレードを複数ずつ準備し、その中から適当なファンブレードを選択して順に並べる構成としてもよい。また、全体として規則性を持たずにファンブレード21A〜21Eが配列されれば、特定種類のファンブレードが連続して並んでもよい。また、遠心ファン10に使用されるファンブレード21A〜21Eの各ファンブレードの数は、全てが同じでなくてもよい。また、遠心ファン10に使用されるファンブレード21の全てが、互いに異なる翼断面形状を有してもよい。使用されるファンブレード21の種類の数は、好ましくは3種類以上であり、より好ましくは4種類以上である。
本実施の形態における遠心ファン10においては、複数のファンブレード21が、隣接するファンブレード21間で中心軸101と各ファンブレード21の外縁部27とを結ぶ線がなす角度αが等しくなるように配列されている。さらに、複数のファンブレード21は、隣接するファンブレード21間で中心軸101と各ファンブレード21の内縁部26とを結ぶ線がなす角度が等しくなるように配列されてもよい。
図6は、図5中に示すファンブレードの配列の変形例を模式的に表わした図である。図6を参照して、互いに異なる形状の翼断面を有する複数種類のファンブレード21A,21B,21C,21D,21Eが、不規則な順番で並ぶ構造は、図5中に示す配列と同様である。本変形例では、複数のファンブレード21が、隣接するファンブレード21間で中心軸101と各ファンブレード21の翼断面の図心とを結ぶ線がなす角度βが等しくなるように配列されている。ファンブレード21の翼断面の図心は、翼断面の重心に当たり、翼断面の断面一次モーメントを翼断面全体の断面積で除した値により求められる。
なお、図5中に示す配列の形態と図6中に示す配列の形態との両方を満たすように、複数のファンブレード21が配列されてもよい。
図4から図6を参照して、上記に説明したように、遠心ファン10においては、凹部56,57が形成される位置が異なるファンブレード21A,21B,21C,21D,21Eが使用されるため、複数のファンブレード21間で翼断面が異なる。ファンブレード21の翼断面の形状は、遠心ファン10の回転時に正圧面25および負圧面24上の静圧分布に影響を与えるため、隣接するファンブレード21間における空気流れや、外縁部27および内縁部26を通じて隣接するファンブレード21間に流出入する空気流れが、各ファンブレード21間によって異なることになる。
一方、図5中に示す例では、隣接するファンブレード21間で中心軸101と各ファンブレード21の外縁部27とを結ぶ線がなす角度αが等しくなるように、複数のファンブレード21が配置されている。このような場合であっても、隣接するファンブレード21間に流出入する空気流れが各ファンブレード21間によって異なることにより、ファンブレード21の外縁部27とファンケーシングとの接近箇所における空気流れに擾乱を生じさせることができる。これにより、その接近箇所をファンブレード21の外縁部27が通過する際の圧力変動のタイミングを一定周期から外すことができ、結果、羽根通過音(nZ音)に起因する狭帯域騒音を許容程度にまで抑えることができる。
また、図6中に示す例では、隣接するファンブレード21間で中心軸101と各ファンブレード21の翼断面の図心とを結ぶ線がなす角度βが等しくなるように、複数のファンブレード21が配置されている。このような場合であっても、隣接するファンブレード21間における空気流れが各ファンブレード21によって異なることにより、ファンブレード21間の空気流れに起因する狭帯域騒音を許容程度に抑えることができる。
以上に説明したように狭帯域騒音の低減が実現されるため、図5および図6中に示すいずれの例においても、遠心ファン10に要求される送風能力に基づいて、隣接するファンブレード21間の間隔を最適値に設定することができる。これにより、隣接するファンブレード21間で空気流れの逆流が部分的に生じるなどの現象を防ぎ、各ファンブレード21間における空気流れを安定化させることができる。結果、低周波数の騒音(異音)の発生を防ぐとともに、送風能力を高めることができる。また、各ファンブレード21間における空気流れの通風抵抗が顕著に増大するといった現象を防ぐことでも、送風能力を高めることができる。
遠心ファン10は、後述する貫流ファンと比較して、ファンに負荷する空気流れの圧力損失が大きい機器に適用される。この場合、隣接するファンブレード21間で空気流れの逆流が生じ易くなるため、このような現象を防ぐことが可能な本発明の構造がより有効に遠心ファン10に適用される。
以上に説明した、この発明の実施の形態1における遠心ファン10の構造についてまとめて説明すると、本実施の形態における遠心ファン10は、周方向に互いに間隔を隔てて配列される複数の羽根部としてのファンブレード21を備える。ファンブレード21は、内周側に配置される内縁部26と、外周側に配置される外縁部27とを有する。ファンブレード21には、内縁部26と外縁部27との間で延在する翼面23が形成される。その翼面23は、ファンの回転方向の側に配置される正圧面25と、正圧面25の裏側に配置される負圧面24とからなる。ファンの回転に伴って、翼面23上には内縁部26と外縁部27との間を流れる流体流れとしての空気流れが発生する。ファンブレード21は、ファンの回転軸としての中心軸101に直交する平面により切断された場合に、正圧面25および負圧面24に凹部56,57が形成される翼断面を有する。複数のファンブレード21は、互いに異なる形状の翼断面を有するファンブレード21A〜21Eを含む。
(成型用金型、送風機および空気清浄機の構造の説明)
図7は、図1中の遠心ファンの製造時に用いられる成型用金型を示す断面図である。図7を参照して、成型用金型110は、固定側金型114および可動側金型112を有する。固定側金型114および可動側金型112により、遠心ファン10と略同一形状であって、流動性の樹脂が注入されるキャビティ116が規定されている。
成型用金型110には、キャビティ116に注入された樹脂の流動性を高めるための図示しないヒータが設けられてもよい。このようなヒータの設置は、たとえば、ガラス繊維入りのAS(アクリロニトリルおよびスチレンの共重合化合物)樹脂のような強度を増加させた合成樹脂を用いる場合に特に有効である。
なお、後述する実施の形態3における貫流ファン100も、図7中の成型用金型110と同様の構造を有する金型により製造される。
図8は、図1中の遠心ファンを用いた送風機を示す断面図である。図9は、図8中のIX−IX線上に沿った送風機を示す断面図である。図8および図9を参照して、送風機120は、外装ケーシング126内に、駆動モータ128と、遠心ファン10と、ケーシング129とを有する。
駆動モータ128の出力軸は、遠心ファン10と一体に成型されたボス部16に連結されている。ケーシング129は、誘導壁129aを有する。誘導壁129aは、遠心ファン10の外周上に配置される略3/4円弧によって形成されている。誘導壁129aは、ファンブレード21の回転により発生する気流をファンブレード21の回転方向に誘導しつつ、気流の速度を増大させる。
ケーシング129には、吸い込み部130および吹き出し部127が形成されている。吸い込み部130は、中心軸101の延長上に位置して形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に開放されて形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に突出する角筒形状をなしている。
駆動モータ128の駆動により、遠心ファン10が矢印103に示す方向に回転する。このとき、空気が吸い込み部130からケーシング129内に取り込まれ、遠心ファン10の内周側空間131から外周側空間132へと送り出される。外周側空間132に送り出された空気は、矢印104に示す方向に沿って周方向に流れ、吹き出し部127を通じて外部に送風される。
図10は、図1中の遠心ファンを用いた空気清浄機を示す断面図である。図10を参照して、空気清浄機140は、ハウジング144と、送風機150と、ダクト145と、(HEPA:High Efficiency Particulate Air Filter)フィルタ141とを有する。
ハウジング144は、後壁144aおよび天壁144bを有する。ハウジング144には、空気清浄機140が設置された室内の空気を吸い込むための吸い込み口142が形成されている。吸い込み口142は、後壁144aに形成されている。ハウジング144には、さらに、清浄空気を室内に向けて放出する吹き出し口143が形成されている。吹き出し口143は、天壁144bに形成されている。一般的に、空気清浄機140は、後壁144aを室内の壁に対向させるようにして壁際に設置される。
フィルタ141は、ハウジング144の内部において、吸い込み口142と向い合って配置されている。吸い込み口142を通じてハウジング144内部に導入された空気は、
フィルタ141を通過する。これにより、空気中の異物が除去される。
送風機150は、室内の空気をハウジング144内部に吸引するとともに、フィルタ141により清浄された空気を、吹き出し口143を通じて室内に送り出すために設けられている。送風機150は、遠心ファン10と、ケーシング152と、駆動モータ151とを有する。ケーシング152は、誘導壁152aを有する。ケーシング152には、吸い込み部153および吹き出し部154が形成されている。
ダクト145は、送風機150の上方に設けられ、清浄空気をケーシング152から吹き出し口143に導く導風路として設けられている。ダクト145は、その下端が吹き出し部154に連なり、その上端が開放された角筒形をなす形状を有する。ダクト145は、吹き出し部154から吹き出された清浄空気を、吹き出し口143に向けて層流に誘導するように形成されている。
このような構成を備える空気清浄機140においては、送風機150の駆動により、ファンブレード21が回転し、室内の空気が吸い込み口142からハウジング144内に吸い込まれる。このとき、吸い込み口142および吹き出し口143間に空気流れが発生し、吸い込まれた空気に含まれる塵埃等の異物は、フィルタ141により除去される。
フィルタ141を通過して得られた清浄空気は、ケーシング152内部に吸い込まれる。この際、ケーシング152内に吸い込まれた清浄空気は、ファンブレード21周りの誘導壁152aによって層流となる。層流とされた空気は、誘導壁152aに沿って吹き出し部154に誘導され、吹き出し部154からダクト145内に送風される。空気は、吹き出し口143から外部空間に向けて放出される。
なお、本実施の形態では、空気清浄機を例に挙げて説明したが、この他に、たとえば、空気調和機(エアーコンディショナ)や加湿機、冷却装置、換気装置などの流体を送り出す装置に、本発明における遠心ファンを適用することが可能である。
以上に説明した、この発明の実施の形態1における遠心ファン10によれば、ファンブレード21に凹部56,57を形成することによって、家庭用の電気機器などのファンに適用される低レイノズル数領域において、ファンブレード21の回転に伴って生じる揚力を大幅に増大させることができる。また、互いに異なる形状の翼断面を有するファンブレード21A〜21Eを用いることにより、ファンの回転に伴って発生する狭帯域騒音を低減させることができる。したがって、騒音の発生を抑制しつつ、遠心ファン10の送風能力を高めることができる。
また、本実施の形態における空気清浄機140によれば、送風能力に優れる遠心ファン10を用いることによって、駆動モータ151の消費電力を低減させ、省エネルギ化に貢献可能な空気清浄機140を実現することができる。また、騒音の低減が図られる遠心ファン10を用いることによって、静粛性能に優れた空気清浄機140を実現することができる。
[実施の形態2]
本実施の形態では、図4中に示す複数種類のファンブレードの各種変形例について説明する。
図11は、図4中の複数種類のファンブレードの第1変形例を示す断面図である。図11を参照して、本変形例では、複数のファンブレード21が、互いに異なる形状の翼断面を有する複数種類のファンブレード21A,21B,21C,21Dから構成されている。
ファンブレード21A〜21Dの形状についてより具体的に説明すると、ファンブレード21A〜21Dは、凹部56,57が形成される数が互いに異なる。ファンブレード21Aには、1つの凹部56と、2つの凹部57とが形成され、ファンブレード21Bには、2つの凹部56と、3つの凹部57とが形成され、ファンブレード21Cには、3つの凹部56と、4つの凹部57とが形成され、ファンブレード21Dには、4つの凹部56と、5つの凹部57とが形成されている。
図12は、図4中の複数種類のファンブレードの第2変形例を示す断面図である。図12を参照して、本変形例では、複数のファンブレード21が、互いに異なる形状の翼断面を有する複数種類のファンブレード21A,21B,21C,21Dから構成されている。ファンブレード21A〜21Dの各ファンブレードは、内縁部26と外縁部27との間の複数個所で角部をなすように折れ曲がって形成されている。なお、その角部は、樹脂成型用の金型からファンブレード21を抜き出す工程を考慮して、多少の丸みを有してもよい。
ファンブレード21A〜21Dの形状についてより具体的に説明すると、ファンブレード21A〜21Dは、凹部56,57が形成される位置や数、凹部56,57の形状が互いに異なる。ファンブレード21Aには、3つの凹部56と、4つの凹部57とが形成され、ファンブレード21B〜21Dの各ファンブレードには、2つの凹部56と、3つの凹部57とが形成されている。ファンブレード21A〜21Dに形成される凹部56,57は、基本的に、2辺によって凹形状が規定される三角形状を有するが、ファンブレード21Bに形成される1つの凹部56と、ファンブレード21Cに形成される1つの凹部57とは、3辺によって凹形状が規定される四角形状を有する。
図11および図12中に示すように、凹部56,57の位置、数、形状を変化させることによって、互いに異なる形状の複数種類のファンブレード21を容易に得ることができる。
このように構成された、この発明の実施の形態2における遠心ファンによれば、実施の形態1に記載の効果を同様に得ることができる。
[実施の形態3]
本実施の形態では、本発明におけるファンが適用される貫流ファンの構造について説明し、続いて、その貫流ファンが用いられる空気調和機(エアーコンディショナ)の構造について説明する。なお、本実施の形態における貫流ファンは、実施の形態1における遠心ファン10と比較して、部分的に同様の構造を備える。以下、重複する構造についてはその説明を繰り返さない。
(貫流ファンの構造の説明)
図13は、この発明の実施の形態3における貫流ファンを示す側面図である。図14は、図13中のXIV−XIV線上に沿った貫流ファンを示す断面斜視図である。
図13および図14を参照して、本実施の形態における貫流ファン(クロスフローファン)100は、複数のファンブレード21を有する。貫流ファン100は、全体として略円筒形の外観を有し、複数のファンブレード21は、その略円筒形の周面に配置されている。貫流ファン100は、樹脂により一体に形成されている。貫流ファン100は、図中に示す仮想上の中心軸101を中心に、矢印103に示す方向に回転する。
貫流ファン100は、回転する複数のファンブレード21によって、回転軸である中心軸101に直交する方向に送風するファンである。貫流ファン100は、中心軸101の軸方向から見た場合に、中心軸101に対して一方の側の外側空間からファンの内側空間に空気を取り込み、さらに取り込んだ空気を中心軸101に対して他方の側の外側空間に送り出すファンである。貫流ファン100は、中心軸101に直交する平面内において中心軸101に交差する方向に流れる空気流れを形成する。貫流ファン100は、中心軸101に平行な平面状の吹き出し流れを形成する。
貫流ファン100は、家庭用の電気機器などのファンに適用される低レイノズル数領域の回転数で使用される。
貫流ファン100は、中心軸101の軸方向に並べられた複数の羽根車12が組み合わさって構成されている。各羽根車12において、複数のファンブレード21は中心軸101を中心に周方向に互いに間隔を隔てて設けられている。
貫流ファン100は、支持部としての外周枠13をさらに有する。外周枠13は、中心軸101を中心に環状に延在するリング形状を有する。外周枠13は、端面13aおよび端面13bを有する。端面13aは、中心軸101の軸方向に沿った一方の方向に面して形成されている。端面13bは、端面13aの裏側に配置され、中心軸101の軸方向に沿った他方の方向に面して形成されている。
外周枠13は、中心軸101の軸方向において隣り合う羽根車12間に介在するように設けられている。
互いに隣り合って配置された図13中の羽根車12Aおよび羽根車12Bに注目すると、羽根車12Aに設けられる複数のファンブレード21は、端面13a上に立設され、中心軸101の軸方向に沿って板状に延在するように形成されている。羽根車12Bに設けられる複数のファンブレード21は、端面13b上に立設され、中心軸101の軸方向に沿って板状に延在するように形成されている。
複数のファンブレード21は、実施の形態1において説明したファンブレード21と同様の構造(凹部56,57が形成される構造、互いに異なる形状の翼断面を有する複数種類のファンブレード21A〜21Eにより構成される構造、ファンブレード21A〜21Eが不規則な順番で配列される構造)を有する。
但し、本実施の形態における貫流ファン100においては、複数のファンブレード21がランダムピッチで配列されている点が、実施の形態1における遠心ファン10と異なる。このランダムピッチは、たとえば、複数のファンブレード21を乱数正規分布に従って不等間隔に配置することにより実現される。複数の羽根車12は、ファンブレード21の配列が互いに同一となるように形成されている。すなわち、各羽根車12において、複数のファンブレード21を配列する間隔と、その間隔で配列されるファンブレード21の順番とは、複数の羽根車12間で同一である。
複数の羽根車12は、中心軸101の軸方向から見た場合に隣接する羽根車12間でずらし角度θが生じるように積層されている。たとえば、挙げる順に隣り合って配置された図13中の羽根車12A、羽根車12Bおよび羽根車12Cに注目すると、羽根車12Bは、羽根車12Aに対して、羽根車12Aおよび羽根車12Bの全てのファンブレード21が中心軸101の軸方向において重なる位置から、中心軸101を中心にずらし角度θだけずれるように積層されている。さらに、羽根車12Cは、羽根車12Bに対して、羽根車12Bおよび羽根車12Cの全てのファンブレード21が中心軸101の軸方向において重なる位置から、中心軸101を中心にずらし角度θ(羽根車12Aから見れば2θ)だけずれるように積層されている。
ずらし角度θを設ける理由は、中心軸101の軸方向においてファンブレード21の位置を複数の羽根車12間でより積極的にずらすことによって、各羽根車12で発生する羽根通過音を互いに打ち消し合わせて減衰させるためである。
(空気調和機の構造の説明)
図15は、図13中に示す貫流ファンが用いられる空気調和機を示す断面図である。図15を参照して、空気調和機210は、室内に設置され、室内側熱交換器229が設けられる室内機220と、室外に設置され、室外側熱交換器および圧縮機が設けられる図示しない室外機とから構成されている。室内機220および室外機は、室内側熱交換器229と室外側熱交換器との間で冷媒ガスを循環させるための配管により接続されている。
室内機220は、送風機215を有する。送風機215は、貫流ファン100と、貫流ファン100を回転させるための図示しない駆動モータと、貫流ファン100の回転に伴って、所定の気流を発生させるためのケーシング222とから構成されている。
ケーシング222は、キャビネット222Aおよびフロントパネル222Bを有する。キャビネット222Aは、室内の壁面に支持されており、フロントパネル222Bは、キャビネット222Aに着脱自在に取り付けられている。フロントパネル222Bの下端部とキャビネット222Aの下端部との間隙には、吹き出し口225が形成されている。吹き出し口225は、室内機220の幅方向に延びる略矩形に形成され、前方下方に臨んで設けられている。フロントパネル222Bの上面には、格子状の吸い込み口224が形成されている。
フロントパネル222Bに対向する位置には、吸い込み口224から吸い込まれた空気に含まれる塵埃を捕集・除去するためのエアフィルタ228が設けられている。フロントパネル222Bとエアフィルタ228との間に形成される空間には、図示しないエアフィルタ清掃装置が設けられている。エアフィルタ清掃装置によって、エアフィルタ228に蓄積した塵埃が自動的に除去される。
ケーシング222の内部には、吸い込み口224から吹き出し口225に向けて空気が流通する送風通路226が形成されている。吹き出し口225には、左右方向の吹き出し角度を変更可能な縦ルーバ232と、上下方向の吹き出し角度を、前方上方、水平方向、前方下方および真下方向に変更可能な複数の横ルーバ231とが設けられている。
送風通路226の経路上における、貫流ファン100とエアフィルタ228との間には、室内側熱交換器229が配置されている。室内側熱交換器229は、上下方向に複数段、かつ前後方向に複数列に並設される蛇行した図示しない冷媒管を有する。室内側熱交換器229は、屋外に設置される室外機の圧縮機に接続されており、圧縮機の駆動によって冷凍サイクルが運転される。冷凍サイクルの運転によって、冷房運転時には室内側熱交換器229が周囲温度よりも低温に冷却され、暖房運転時には室内側熱交換器229が周囲温度よりも高温に加熱される。
図16は、図15中の空気調和機の吹き出し口近傍を拡大して示す断面図である。図15および図16を参照して、ケーシング222は、前方壁部251および後方壁部252を有する。前方壁部251および後方壁部252は、互いに間隔を隔てて向い合って配置されている。
送風通路226の経路上には、前方壁部251と後方壁部252との間に位置するように貫流ファン100が配置されている。前方壁部251には、貫流ファン100の外周面に向けて突出し、貫流ファン100と前方壁部251との隙間を微小とする突出部253が形成されている。後方壁部252には、貫流ファン100の外周面に向けて突出し、貫流ファン100と後方壁部252との隙間を微小とする突出部254が形成されている。
ケーシング222は、上側ガイド部256および下側ガイド部257を有する。送風通路226は、貫流ファン100よりも空気流れの下流側において、上側ガイド部256および下側ガイド部257によって規定されている。
上側ガイド部256および下側ガイド部257は、それぞれ、前方壁部251および後方壁部252から連なり、吹き出し口225に向けて延在している。上側ガイド部256および下側ガイド部257は、貫流ファン100によって送り出された空気を、上側ガイド部256が内周側となり、下側ガイド部257が外周側となるように湾曲させ、前方下方へと案内するように形成されている。上側ガイド部256および下側ガイド部257は、貫流ファン100から吹き出し口225に向かうほど、送風通路226の断面積が拡大するように形成されている。
本実施の形態では、前方壁部251および上側ガイド部256がフロントパネル222Bに一体に形成されている。後方壁部252および下側ガイド部257がキャビネット222Aに一体に形成されている。
なお、実施の形態1において、ファンブレード21の外縁部27とファンケーシングとの接近箇所における空気流れに擾乱が生じさせる現象を説明したが、空気調和機210において、この接近箇所は、ケーシング222の前方壁部251とファンブレード21とが対峙する空間にあたる。
図17は、図15中の空気調和機の吹き出し口近傍に生じる空気流れを示す断面図である。図15から図17を参照して、送風通路226上の経路上には、貫流ファン100よりも空気流れの上流側に位置して上流側外側空間246が形成され、貫流ファン100の内側(周方向に配列された複数のファンブレード21の内周側)に位置して内側空間247が形成され、貫流ファン100よりも空気流れの下流側に位置して下流側外側空間248が形成されている。
貫流ファン100の回転時、突出部253,254を境にして送風通路226の上流側領域241には、上流側外側空間246からファンブレード21の翼面23上を通って内側空間247に向かう空気流れ261が形成され、突出部253,254を境にして送風通路226の下流側領域242には、内側空間247からファンブレード21の翼面23上を通って下流側外側空間248に向かう空気流れ261が形成される。このとき、前方壁部251に隣接する位置には、空気流れの渦262が形成される。
図18は、図16中に示す上流側領域において、ファンブレードの翼面上で生じる現象を表わした断面図である。
図18を参照して、図16中の上流側領域241において、上流側外側空間246から内側空間247に向かう空気流れが形成されるとき、ファンブレード21の翼面23上では、外縁部27から流入し、翼面23上を通過し、内縁部26から流出する空気流れが発生する。この際、正圧面25に形成された凹部57には、時計回りの空気流れの渦63(2次流れ)が形成され、負圧面24に形成された凹部56には、反時計周りの空気流れの渦62が生成される。これにより、翼面23上を通過する空気流れ61(主流)は、凹部57,56に生じた渦63,62の外側に沿って流れる。
図19は、図16中に示す下流側領域において、ファンブレードの翼面上で生じる現象を表わした断面図である。
図19を参照して、図16中の下流側領域242において、内側空間247から下流側外側空間248に向かう空気流れが形成されるとき、ファンブレード21の翼面23上では、内縁部26から流入し、翼面23上を通過し、外縁部27から流出する空気流れが発生する。この際、正圧面25に形成された凹部57には、反時計回りの空気流れの渦68(2次流れ)が形成され、負圧面24に形成された凹部56には、時計周りの空気流れの渦67が生成される。これにより、翼面23上を通過する空気流れ66(主流)は、凹部57,56に生じた渦68,67の外側に沿って流れる。
すなわち、貫流ファン100においては、ファンブレード21が上流側領域241から下流側領域242に移動すると、翼面23上における空気の流れ方向が反転し、これに伴って、凹部57,56に生じる渦の回転方向も反転する。
本実施の形態における貫流ファン100においては、凹部57,56に渦(2次流れ)が形成されることによって、ファンブレード21が、翼断面が厚肉化された厚肉翼のような挙動を示す。この結果、ファンブレード21で生じる揚力を大幅に増大させることができる。
また、貫流ファン100においては、凹部56,57が形成される位置が異なる図4中のファンブレード21A,21B,21C,21D,21Eが使用される。この構成によって、羽根通過音(nZ音)に起因する狭帯域騒音やファンブレード21間の空気流れに起因する狭帯域騒音を低減することができる。また、このように狭帯域騒音の低減が実現されるため、貫流ファン100に要求される送風能力に基づいて、隣接するファンブレード21間の間隔を最適値に設定することができる。すなわち、複数のファンブレード21をランダムピッチで配列する場合に、そのピッチのばらつきを極力小さく抑えることが可能となる。
図13中に示すように、貫流ファン100は、複数個の羽根車12が中心軸101の軸方向に並べられて構成される。このため、貫流ファン100では、既に説明した遠心ファンと比較して、各羽根車12のファンに負荷する空気流れの圧力損失は小さくなり、隣接するファンブレード21間で空気流れの逆流が生じ難い。このため、本実施の形態では、複数のファンブレード21をランダムピッチにより配列する構成をとりつつも、空気流れの逆流に起因する低周波数の騒音(異音)の発生を抑えることができる。
なお、貫流ファン100においても、図5および図6中に示すような複数のファンブレード21を等ピッチに配列する構成が適用されてもよい。また、本実施の形態では、空気調和機を例に挙げて説明したが、この他に、たとえば、空気清浄機や加湿機、冷却装置、換気装置などの流体を送り出す装置に、本発明における貫流ファンを適用することが可能である。
このように構成された、この発明の実施の形態3における貫流ファン100および空気調和機210によれば、実施の形態1に記載の効果を同様に得ることができる。
以上に説明した実施の形態1から3に記載のファンの構造を適宜組み合わせて新たなファンを構成してもよい。たとえば、実施の形態2において説明したファンブレードを用いて、実施の形態3における貫流ファン100を構成してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。