JP4898146B2 - 燃料電池システムの運転方法及び燃料電池システム - Google Patents

燃料電池システムの運転方法及び燃料電池システム Download PDF

Info

Publication number
JP4898146B2
JP4898146B2 JP2005161198A JP2005161198A JP4898146B2 JP 4898146 B2 JP4898146 B2 JP 4898146B2 JP 2005161198 A JP2005161198 A JP 2005161198A JP 2005161198 A JP2005161198 A JP 2005161198A JP 4898146 B2 JP4898146 B2 JP 4898146B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
cell system
commercial power
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005161198A
Other languages
English (en)
Other versions
JP2006338994A (ja
Inventor
崇之 渡邉
尚秀 芳我
康樹 田所
祐平 竹内
和巳 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005161198A priority Critical patent/JP4898146B2/ja
Publication of JP2006338994A publication Critical patent/JP2006338994A/ja
Application granted granted Critical
Publication of JP4898146B2 publication Critical patent/JP4898146B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料電池システムの運転方法及び燃料電池システムに関し、特に燃料電池システムの利用率を高めつつ燃料電池システムに異常が発生した場合においてもすみやかに対応し得る燃料電池システムの運転方法及び燃料電池システムに関するものである。
近年の地球環境保全意識の高まりを背景に、環境汚染低減に資する燃料電池で発電する燃料電池システムが注目を集めている。燃料電池システムは、一般に、水素と酸素との電気化学的反応により発電する燃料電池と、燃料電池に供給する水素を含むガスを都市ガスや灯油等から生成する改質装置とを含んで構成されている。さらに、燃料電池での電気化学的反応が発熱反応であることから、この熱を有効利用すべく貯湯ユニットを付加してシステムを構成する場合が多い。
ところで、燃料電池は、その発電原理に起因した負荷変動に対する応答が速くないことを理由の一つとして、商用電源に連系させる場合がある。商用電源と燃料電池とが連系された電力供給システムは、燃料電池システムの運転を基礎として、不足分の電力を商用電源から供給される電力で賄うような運転をするのが一般的である。このとき、電力負荷よりも燃料電池で発電された電力の方が多いときは余剰電力が商用電源に逆潮流することとなるが、さまざまな理由から逆潮流を許容しない電気事業者(電力会社)もある。それゆえに、商用電源に連系された燃料電池によって発電された電力が逆潮流することを防止するため、商用電源から供給される電力を計測する計測器を設け、電力負荷に対して燃料電池の発電量が常に一定の値だけ低くなるように(常に一定の値以上の商用電源からの電力の供給を受けるように)制御して燃料電池システムを運転することが考えられる。
しかし、電力負荷に対して燃料電池の発電量が常に一定の値だけ低くなるように制御して燃料電池システムを運転すると、燃料電池の発電量に余裕があるにもかかわらず発電電力を抑制することが多くなる。さらなる省エネルギーの実施が叫ばれている昨今においては、燃料電池システムの運転効率及び利用率の向上が望まれている。他方、燃料電池の発電量を電力負荷に近づけて実質的に平衡とすると、商用の電力を計測する計測器の性質上、長時間にわたって電力負荷が安定しているため燃料電池システムが安定的に運転している場合又は電力負荷がないため燃料電池システムが停止している場合と、計測器に故障が発生した場合との違いの判断ができなくなる。
本発明は上述の課題に鑑み、燃料電池システムの利用率を高めつつ燃料電池システムに異常が発生した場合においてもすみやかに対応し得る燃料電池システムの運転方法及び燃料電池システムを提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明に係る燃料電池システムの運転方法は、例えば図1及び図2に示すように、商用電源Pwと連系し、燃料電池12と電気機器24(21a、22、23、25)とを有する燃料電池システム10を運転する方法であって;商用電源Pwから電力負荷Ld及び電気機器24(21a、22、23、25)に供給される商用電力Cfを商用電力検知手段99で計測する工程(St0)と;計測した商用電力Cfの値が第1の所定範囲内に収束するように燃料電池10の発電電力を調整する工程(St1)と;計測した商用電力Cfの値が継続して第2の所定範囲内にある時間を計測する工程(St3〜St5)と;計測した時間が所定時間になった時に、電気機器24(21a、22、23、25)が受電する電力を変動させる工程(St6、St8)と;電気機器24(21a、22、23、25)が受電する電力を変動させたときに商用電力検知手段99で計測された値が第2の所定範囲以下を維持しているかを検知する工程(St7、St9)とを備える。
このように構成すると、計測した商用電力の値が第1の所定範囲内に収束するように燃料電池の発電電力を調整するので、燃料電池システムの運転効率及び利用率を向上させることができる。また、計測した商用電力の値が継続して第2の所定範囲内にある時間を計測しその時間が所定時間になった時に電気機器が受電する電力を変動させるので、商用電力の変動の有無を検知することにより、商用電力を計測する手段の異常や配線の断線の有無等を把握することができる。
上記目的を達成するために、請求項2に記載の発明に係る燃料電池システムは、例えば図1に示すように、水素に富む改質ガスgと酸素を含有する酸化剤ガスtとを導入して発電し、該発電した電力Cbを商用電源Pwから供給される商用電力Cfと連系して電力負荷Ldに供給する燃料電池12と;燃料電池12が発電した電力Cb及び商用電力Cfを受電して作動する電気機器24(21a、22、23、25)と;電力負荷Ld及び電気機器24(21a、22、23、25)に供給される商用電力Cfを計測する商用電力検知手段99で検知される電力値が第1の所定範囲内に収束するように燃料電池12の発電電力Cbを制御する制御装置16とを備え;制御装置16が、商用電力検知手段99で検知された電力値が所定時間継続して第2の所定範囲内にあるときに、電気機器24(21a、22、23、25)が受電する電力を変動させて商用電力検知手段99で検知された電力値が第2の所定範囲以下を維持しているかを検知するように構成されている。
このように構成すると、商用電力検知手段で検知される電力値が第1の所定範囲内に収束するように燃料電池の発電電力を制御するので、燃料電池システムの運転効率及び利用率を向上させることができる。また、商用電力検知手段で検知された電力値が所定時間継続して第2の所定範囲内にあるときに、電気機器が受電する電力を変動させるので、商用電力検知手段が商用電力の変動の有無を検知することにより、商用電力検知手段や配線等の異常の有無を把握することができる。
また、請求項3に記載の発明に係る燃料電池システムは、例えば図1に示すように、請求項2に記載の燃料電池システム10において、電気機器が、熱を発生する加熱装置24(21a、26)である。
このように構成すると、商用電力検知手段や配線等の異常の有無を把握するために電気機器が受電する電力を変動させても、燃料電池システムの運転バランスを崩す等の悪影響を燃料電池システムに及ぼすおそれがない。
本発明によれば、計測した商用電力の値が第1の所定範囲内に収束するように燃料電池の発電電力を調整するので、燃料電池システムの運転効率及び利用率を向上させることができる。また、計測した商用電力の値が継続して第2の所定範囲内にある時間を計測し、その時間が所定時間になった時に前記電気機器に供給される商用電力を変動させるので、商用電力の変動の有無を検知することにより、商用電力を計測する手段の異常や配線の断線の有無等を把握することができる。
以下、図面を参照して、本発明の実施の形態について説明する。なお、図1中、破線は制御信号を表す。
図1は、本発明の実施の形態に係る燃料電池システムを説明するブロック図である。燃料電池システム10は、改質装置11と、燃料電池12と、熱交換器13と、給湯ユニット14と、制御装置16と、電気機器としての冷却水ポンプ22、循環ポンプ23、加熱装置24、酸化剤ガスブロワ25とを備えている。
改質装置11は、都市ガス、LPG、消化ガス、メタノール、GTL(Gas to Liquid)や灯油等の原料燃料rとプロセス水sとを導入し、原料燃料rを改質して水素に富む改質ガスgを生成する装置である。水素に富む改質ガスgは、水素を40体積%以上、典型的には70〜80体積%程度含んだ、燃料電池12に供給するガスである。改質ガスg中の水素濃度は80体積%以上でもよく、すなわち燃料電池12に供給したときに酸化剤ガスt中の酸素との電気化学的反応により発電可能な濃度であればよい。改質装置11は改質触媒充填層を有しており、改質反応が促進されるように構成されている。原料燃料rを改質する水蒸気改質反応は吸熱反応であるため、改質装置11は改質に必要な改質熱を得るための改質熱発生器21を有している。改質装置11は、生成した改質ガスgを導出する導出口を有し、導出口は燃料電池12の燃料極と改質ガス流路31を介して接続されている。
燃料電池12は、典型的には固体高分子型燃料電池である。燃料電池12は、水素に富む改質ガスgと酸素を含有する酸化剤ガスtとを導入し、改質ガスg中の水素と酸化剤ガスt中の酸素との電気化学的反応により発電して熱を発生するように構成されている。また、燃料電池12は、一般的には、発電量を一定の時定数を持って増減することができるが急峻な増減をすることができない特性を有している。燃料電池12は改質ガスgを導入する燃料極と酸化剤ガスtを導入する空気極とを備えている。燃料極には改質ガスgを流す改質ガス流路31が接続され、空気極には酸化剤ガスtを流す酸化剤ガス流路35が接続されている。燃料電池12は、燃料極に導入された改質ガスgのうち電気化学的反応に使われなかったガスはアノードオフガス(不図示)として燃料極から排出され、空気極に導入された酸化剤ガスtのうち電気化学的反応に使われなかったガスはカソードオフガス(不図示)として空気極から排出されるように構成されている。さらに燃料電池12は、発電に伴って発生した熱を除去する冷却水cを導入する冷却部を備えている。冷却部には冷却水を流す冷却水流路32が接続されている。
燃料電池12における電気化学的反応で発電される電力Cbは直流電力である。他方、商用電源Pwから供給される電力Cfは交流電力である。燃料電池システム10は、直流電力を交流電力に変換するインバータ15を備えている。インバータ15は、典型的には、燃料電池12で発電された電力Cbを制御して電気機器としての加熱装置24等や電力負荷Ldへ送電するパワーコンディショナーに含まれている。インバータ15は、燃料電池12と電気ケーブルE12で接続されている。
熱交換器13は、燃料電池12で発生した熱を奪った冷却水cと給湯ユニット14から循環される温水hとの間で熱交換を行う機器であり、典型的にはプレート型熱交換器が用いられる。熱交換器13は、燃料電池12から受熱して温度が上昇した冷却水cと冷却水cよりも温度が低い温水hとがカウンターフローにより熱交換し、燃料電池12の排熱を冷却水cから温水hに伝達するように構成されている。熱交換器13は、燃料電池12から受熱して温度が高い冷却水cを導入する冷却水導入口と温水hとの熱交換により温度が下がった冷却水cを導出する冷却水導出口と、温度が低い温水hを導入する温水導入口と冷却水cとの熱交換により温度が上昇した温水hを導出する温水導出口とを有している。熱交換器13の冷却水導入口及び冷却水導出口には冷却水cを流す冷却水流路32が接続されており、温水導入口及び温水導出口には温水hを流す循環流路33が接続されている。なお、燃料電池12で発生した熱を直接給湯ユニット14に蓄えるようにして、熱交換器13を省略することも可能である。しかしながら、熱交換器13を設けた方が、冷却水cと温水hとを混合させずに熱の授受を行うことができ、水質管理が容易になるので好ましい。
給湯ユニット14は、上部に温度が高い温水hを導入する温水導入口が、下部に温度が低い温水hを導出する温水導出口が設けられている。給湯ユニット14の温水導入口及び温水導出口には循環流路33が接続されている。熱交換器13で燃料電池12の排熱を受熱した温水hは循環流路33を通って給湯ユニット14に流入し、給湯ユニット14に燃料電池12の排熱が蓄熱されるように構成されている。流入して給湯ユニット14に貯留された温水hは、上部の温度が高く下部の温度が低い温度成層を形成している。給湯ユニット14の上部には、給湯や暖房等の熱需要(熱負荷)に向けて温水を導出する給湯管(不図示)が接続されている。また、本実施の形態では、熱需要に向けて導出する温水の温度が低いときに温水を加熱する、電気機器としての加熱装置24が給湯ユニット14の内部に設けられている。また、給湯ユニット14の下部には熱需要で利用されて減少した水量を補うための補給水管(不図示)が接続されている。なお、給湯ユニット14に貯留される温水hは、典型的には主として燃料電池12の排熱を利用して加熱されるものであり、加熱装置24による加熱は補助的なものである。
改質装置11に設けられた改質熱発生器21は、燃料としての原料燃料rの一部と燃焼空気とを導入し、原料燃料rを燃焼させて、改質熱を生成するように構成されている。改質装置11における水蒸気改質反応の際は、改質が行われる改質部の温度を約550〜800℃にする必要があるため、改質熱発生器21は改質部を約550〜800℃に加熱することができるように構成されている。改質熱発生器21は、原料燃料rを燃焼するためのバーナーを有している。改質熱発生器21は、燃料電池12から排出されるアノードオフガス(不図示)を導入して燃焼させることができるようにも構成されている。アノードオフガスは、燃料電池12における電気化学的反応に使用されなかった水素を含んでいる。また、改質熱発生器21は、燃料電池システム10の起動時の補助加熱用に用いられる加熱装置としての電気ヒータ21aを有している。電気ヒータ21aは、電気機器の一つである。燃料電池システム10の起動時に電気ヒータを用いることにより、原料燃料rの燃焼を待たずに改質熱発生器21を昇温させることができ、燃料電池システム10を早期に定常運転状態にすることができる。改質熱発生器21は、起動時には電気ヒータ21aで予熱しつつ原料燃料rを導入しこれを燃焼させて改質熱を発生させ、燃料電池12が運転されて燃料電池12からアノードオフガスが排出されるようになるとアノードオフガスを導入し、これを燃焼させて改質熱を発生させるように構成されている。電気ヒータ21aは、専ら燃料電池システム10の起動時の補助加熱に用いられ、燃料電池システム10が定常運転状態のときはおおよそOFFの状態になっている。電気ヒータ21aは、銅やチタン、鉄等を使って製作されたシースヒータを用いるのが好ましい。電気ヒータ21aは、インバータ15の二次側と電気ケーブルE21で接続されている。また、電気ヒータ21aは、制御装置16と信号ケーブルで接続されており、制御装置16の信号を受けて消費電力を定格出力の範囲内で増減することができるように構成されている。
冷却水ポンプ22及び循環ポンプ23は、それぞれ燃料電池システム10の構成要素である電気機器の一つである。冷却水ポンプ22は冷却水流路32に設けられており、冷却水cを循環させて燃料電池12で発生した熱を熱交換器13にて温水hに渡すことができるように構成されている。循環ポンプ23は循環流路33に設けられており、温水hを循環させて熱交換器13にて冷却水cから受け取った熱を給湯ユニット14に運ぶことができるように構成されている。冷却水ポンプ22は電気ケーブルE22で、循環ポンプ23は電気ケーブルE23で、それぞれインバータ15の二次側に接続されている。また、冷却水ポンプ22及び循環ポンプ23は、それぞれ制御装置16と信号ケーブルで接続されており、制御装置16の信号を受けて回転数を設計値の範囲内で増減することができるように構成されている。
加熱装置24は、給湯ユニット14に貯留された温水hの温度が、給湯や床暖房等の熱負荷で必要とする温度に満たないときに、温水hを加熱するための装置である。加熱装置24は、温水hを熱負荷が要求する温度にすることができればよいが、典型的には電気ヒータである。電気ヒータである加熱装置24は、燃料電池システム10の構成要素である電気機器の一つである。電気機器としての加熱装置24は、インバータ15の二次側と電気ケーブルE24で接続されている。また、加熱装置24は、制御装置16と信号ケーブルで接続されており、制御装置16の信号を受けて消費電力を定格出力の範囲内で増減することができるように構成されている。なお、燃料電池システム10の構成要素として加熱装置24の他に電気機器がある場合は、加熱装置24は必ずしも電気機器でなくてもよい。この場合は、加熱装置24として、例えばガス湯沸器等を用いて温水hを加熱してもよい。
酸化剤ガスブロワ25は、燃料電池システム10の構成要素である電気機器の一つである。酸化剤ガスブロワ25は、酸化剤ガス流路35に設けられており、酸化剤ガスtを燃料電池12の空気極に圧送することができるように構成されている。酸化剤ガスブロワ25は、インバータ15の二次側と電気ケーブルE25で接続されている。また、酸化剤ガスブロワ25は、制御装置16と信号ケーブルで接続されており、制御装置16の信号を受けて回転数を設計値の範囲内で増減することができるように構成されている。
上述の電気機器21a、22、23、24、25は、燃料電池12が発電した電力Cb及び商用電力Cfを受電して作動する。これは、いうまでもなく、電気機器21a、22、…、25が常に燃料電池の発電電力Cbと商用電力Cfの両方を受電することを意味するものではない。どちらの電力を受電するかは、燃料電池システム10の運転状況によって異なる。典型的には、燃料電池システム10の起動当初は燃料電池12での発電量が十分ではないため専ら商用電力Cfを受電して作動する。燃料電池12での発電量が増えてくると、電気機器21a、22、…、25の受電量のうち燃料電池での発電電力Cbの占める割合が増加して行き、燃料電池12での発電量が電気機器21a、22、…、25の消費電力を賄えるようになると、電気機器21a、22、…、25は専ら燃料電池での発電電力Cbを受電して作動する。電力負荷Ldが増加して燃料電池12の最大出力を超えた場合は、電気機器21a、22、…、25は燃料電池での発電電力Cbに加えて商用電力Cfを受電して作動する。このように、燃料電池システム10の運転状況(燃料電池12の出力状況)によって、電気機器21a、22、…、25が受電する電力の割合は変化する。
制御装置16は、燃料電池システム10の運転状態を制御する機器である。制御装置16は、電力負荷Ldが要求する電力や燃料電池12の最小出力・最大出力をもとに、燃料電池システム10が最適な効率及び利用率で運転することができるように、燃料電池システム10を構成する各機器を制御するように構成されている。制御装置16は、電力計99からの電力信号を受信し、受信した信号から電力負荷Ldが要求している電力を把握して、商用電源Pwから供給される電力である商用電力Cfをできるだけ燃料電池12からの電力Cbに置き換えるように、冷却水ポンプ22、循環ポンプ23、酸化剤ガスブロワ25に信号を送信して、各ポンプ22、23やブロワ25の発停や回転数を制御することができるように構成されている。すなわち、制御装置16は、電力計99で検知した商用電力Cfの値が第1の所定範囲に収束するよう、燃料電池12で電力Cbを発電して商用電力Cfを減らすように、各ポンプ22、23やブロワ25を制御するように構成されている。第1の所定範囲は0前後のできるだけ狭い範囲とするのが望ましいが、燃料電池12の動特性や商用電源Pwが逆潮流を許容しているか否かを考慮して適宜設定される。本実施の形態では、第1の所定範囲を、電力計99で検知した電力の値の絶対値が電力計99の誤差の範囲内となるように設定することとする。ここで、電力計99で検知した電力の値がマイナスを示すときは、燃料電池12から商用電源Pwへ逆潮流電力Crが流れていることになる。
燃料電池システム10は、電力計99で検知された商用電力Cfの値が継続して第2の所定範囲内にある時間を計測するタイマーを備えている。タイマーは、典型的には制御装置16に内蔵されている。制御装置16は、商用電力Cfの値が継続して第2の所定範囲内にある時間が所定時間になった時に、加熱装置24等の電気機器に信号を送信して、電気機器が受電する電力を変動させることができるように構成されている。この、所定時間になった「時」は、所定時間になった瞬間のみならず、所定時間になってから多少の時間が経過した後に信号を送信する等の幅があってもよい。なお、第2の所定範囲は、実際には商用電力Cfが存在しないにもかかわらず電力計99が示す範囲の値、すなわち誤差の範囲である。この第2の所定範囲に前述の第1の所定範囲を合わせて、第1の所定範囲と第2の所定範囲とを同じ値に設定してもよい。所定時間は、燃料電池システム10の異常を早く覚知する観点からは短くするのが好ましく、異常がない場合の燃料電池システム10の運転を安定させる観点からは長くするのが好ましい。これらの両観点のバランスを考慮して、所定時間を決定するとよい。また、所定時間は、燃料電池システム10の運転時と停止時とで違う値を選択するようにしてもよい。制御装置16はまた、燃料電池システム10に異常が生じたときに、燃料電池システム10が設置されている場所から離れた場所に設置される、ユーザーが燃料電池システム10の状態を把握することができる遠隔監視装置(不図示)と信号ケーブルで接続されており、異常時に警報信号を送信することができるように構成されている。なお、商用電力Cfの値が継続して第2の所定範囲内にある時間が所定時間になった時に受電する電力を変動させる電気機器は、典型的には加熱装置24等の燃料電池12の発電電力Cbの制御に直接関係しない機器であり、受電する電力を変動させることは、典型的には電源を入れること又は切ることである。
燃料電池システム10は、商用電力Cfの系統と電気ケーブルE10で接続されている。すなわち、燃料電池システム10は、系統連系されている。
商用電力系統は、商用電源Pwと電力負荷Ldとが電気ケーブルEpで接続されており、電気ケーブルEpには電力検知手段としての電力計99が配設されている。燃料電池システム10は、電力計99の二次側で系統連系されている。
電力計99は、商用電源Pwから電力負荷Ldあるいは燃料電池10が備える各電気機器21a、22、23、24、25に送電される商用電力Cfを計測することができるように構成されている。また、電力計99は、燃料電池システム10から商用電源Pwに向けて送電される逆潮流電力Crを計測することができるように構成されている。電力計99は、一般的には計測誤差を有している。計測誤差は典型的には0.1%程度であり、例えばフルスケールが10kwの電力計であれば10w程度の誤差を有している。電力計99は、制御装置16と信号ケーブルで接続されており、計測した電力値を信号として制御装置16に送信することができるように構成されている。
商用電源Pwは発電所や送電線等の電力供給源である。商用電源Pwから供給される商用電力Cfは、トランスで電圧が下げられた後に電力計99を通過する。また、電力負荷Ldは電力の需要であり、例えば家庭においては冷蔵庫等の電気器具等、工場においては各種の装置等がこれに相当する。なお、商用電源Pwや電力負荷Ld及び電力計99並びに電気ケーブルEpは、燃料電池システム10を構成するものではない。
次に図1及び図2を参照して本実施の形態に係る燃料電池システム10の作用を説明する。
燃料電池システム10の制御装置16は、電力計99からの信号を常時受けて、商用電力Cf又は逆潮流の電力Crの値(W)を取得する(St0)。すなわち、制御装置16は、電気ケーブルEpを流れる電力の値(W)を取得する。ここで、制御装置16は、燃料電池システム10の利用率を高めるために、電力の値(W)が第1の所定範囲内に収束するように、典型的には0に近づくように燃料電池システム10の運転を制御する(St1)。燃料電池システム10の運転の制御には、電力負荷Ldが存在しないために燃料電池システム10を停止にすることも含む。次に制御装置16は、取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下であるかを判断する(St2)。絶対値(|W|)が所定の電力値(Ws)以下でなければ特にアクションを起こすことなく電力の値(W)の取得を継続し、所定の電力値(Ws)以下であれば次の工程に進む。なお、電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下であるかの判断は、電力の値(W)が第2の所定範囲内にあるか否かを判断することを意味している。
電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下になると、制御装置16のタイマーが時間(T)の計測を開始する(St3)。制御装置16は、時間(T)を計測している間も電力計99から電力の値(W)を取得している。そして制御装置16は、取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下であるかを判断する(St4)。絶対値(|W|)が所定の電力値(Ws)以下でなくなったときは、時間(T)の計測をリセットし(St11)、燃料電池システム10の運転を制御する工程(St1)に戻る。絶対値(|W|)が所定の電力値(Ws)以下を継続しているときは、計測している時間(T)が所定時間(Ts)になったか否かを判断する(St5)。所定時間(Ts)に達していないときは絶対値(|W|)が所定の電力値(Ws)以下であるかを判断する(St4)工程に戻る。
計測している時間(T)が所定時間(Ts)になるということは、燃料電池システム10が次のいずれかの状態になっていることが考えられる。すなわち、所定時間にわたって電力負荷Ldに変動がなく安定した運転状態を維持しているか、電力負荷がなく停止状態にあるか、又は電力計99の故障又は電力計99に接続されたケーブルの断線等の計測系統に異常が発生して電力計99からの正しい電力の値(W)を取得できない状態かである。電力計99から取得した電力の値(W)のみからは、どの状態になっているかを把握することはできない。仮に計測系統に異常が発生した場合は、次のような燃料電池システム10の状態となる。燃料電池システム10の停止中は、実際には電力負荷Ldから電力要求があり商用電力Cfが供給されているにもかかわらず「電力負荷Ldからの電力要求がない」と判断して燃料電池システム10への発電開始指令が発令されず、燃料電池システム10の利用率が低下することとなる。他方、燃料電池システム10の運転中は、実際には燃料電池の発電電力Cbと電力負荷Ldの要求電力とが平衡していないにもかかわらず「燃料電池の発電電力Cbと電力負荷Ldの要求電力とが平衡している」と判断して燃料電池12の発電電力Cbをそのまま維持することとなる。このとき、電力負荷Ldの要求電力が燃料電池の発電電力Cbを下回る場合は、余剰電力が発生して逆潮流を長時間にわたって引き起こしかねない。逆に電力負荷Ldの要求電力が燃料電池の発電電力Cbを上回る場合は、燃料電池12に出力の余裕があるにもかかわらず発電電力を増加させないため、燃料電池システム10の運転効率及び利用率の向上を図ることができない。
そこで、計測している時間(T)が所定時間(Ts)になったら、計測系統に異常が発生したか否かを確認するため、制御装置16は電気機器の一つである加熱装置24が受電する電力を変動させる。受電電力の変動として、まずは加熱装置24が受電する電力を増加させる(St6)。ここで増加させる電力は、電気ケーブルEpに商用電力Cfが流れていることを確実に電力計99が検知できる量及び時間とする。すなわち、電力計99の誤差の範囲以上の商用電力Cfが電力計99で検知されるように加熱装置24が受電する電力を増加させる。
ここで電力を増加させる電気機器を加熱装置24としたのは、加熱装置24が燃料電池12の発電電力Cbの制御に直接関係しない機器だからである。なお、電力を増加させる電気機器は加熱装置24以外のものであってもよい。例えば燃料電池システム10が換気ファン等の燃料電池12の発電電力Cbの制御に直接関係しない機器を備え、これらの機器の消費電力が電力計99の誤差の範囲以上のときは、これらの機器の電力を増加させてもよい。また、燃料電池12の発電電力Cbの制御に直接関係する機器の電力を増加させることが許容される場合は、これらの典型例である、改質熱発生器21の電気ヒータ21a、酸化剤ガスブロワ25や冷却水ポンプ22、循環ポンプ23のいずれか一つの電力を増加させてもよい。あるいはこれらの電気機器21a、22、…、25の複数に対して、合計して電力計99の誤差の範囲以上の電力を増加させるようにしてもよい。しかしながら加熱装置24とすれば、他の電気機器に比べて応答(入力した電力に対する水温の上昇)が遅いという性質から、燃料電池システム10の動作にほとんど影響を与えないので好ましい。また、電力を増加させる時間を5秒程度とすると、燃料電池システム10の動作にほとんど影響を与えないので好ましい。加熱装置24以外の電気機器(例えば酸化剤ガスブロワ25)の電力を増加させる場合は、制御装置16が他の電気機器(例えば改質熱発生器21、冷却水ポンプ22、循環ポンプ23)に対して追随するように信号を送信するが、この制御装置16からの信号の送信を一定の短い時間(例えば5秒程度)が経過した後に行うこととすれば、電気機器(加熱装置24以外)の電力の増加に伴って他の電気機器の出力を追随させないようにすることもできる。仮に直ちに追随させたとしても、燃料電池12の発電電力Cbの変化は比較的緩やかであるから、一定の短い時間の電気機器の受電電力の増加に追随しようとしても短時間のうちに燃料電池12の発電電力Cbが増加することはなく、ほどなく電気機器の受電電力を再度低下させるので、電気機器の受電電力の増加が燃料電池12の発電電力Cbにほとんど影響を与えることがない。
加熱装置24が受電する電力を増加させたら(St6)、電力計99から取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下か否かを判断する(St7)。所定の電力値(Ws)を超えていれば時間(T)の計測をリセットし(St11)、燃料電池システム10の運転を制御する工程(St1)に戻る。電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下を維持している場合は、加熱装置24が受電する電力を一定の短い時間減少させる(St8)。ここで加熱装置24が受電する電力を一定の短い時間減少させるのは、電力の増加を許容された加熱装置24(他の電気機器が電力の増加を許容されているときは当該電気機器を含む)が入力可能な電力の上限に達していてもはや電力を増加させることができず、かつ電力負荷Ldや電気機器の消費電力が燃料電池12の発電電力Cbで賄われて電力計99で検知される電力が第2の所定範囲内にある場合を考慮したものである。つまり、加熱装置24が受電する電力を増加させて電力計99が示す値を変動させようとしても加熱装置24が受電する電力を増加させることができないから、逆に加熱装置24が受電する電力を減少させて電力計99が示す値を変動させようとするものである。
加熱装置24が受電する電力を減少させたら(St8)、電力計99から取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下か否かを判断する(St9)。所定の電力値(Ws)を超えていれば時間(T)の計測をリセットし(St11)、燃料電池システム10の運転を制御する工程(St1)に戻る。電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下を維持している場合は、電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生している確率が非常に高いため、遠隔監視装置に警報を発報すると共に燃料電池システム10の運転を停止させる(St10)。
なお、加熱装置24が受電する電力を減少させたときの電力計99から取得した電力の値(W)は、マイナスとなる。これは、電力計99が逆潮流電力Crを検知していることを意味している。
商用電源Pwが逆潮流を認めていない場合は、燃料電池システム10に逆潮流を防止するための逆潮流防止ヒータ26を設けることが好ましい。逆潮流防止ヒータ26は、電力を入力して発熱する、電気機器の一つであり、加熱装置として用いることもできる。逆潮流防止ヒータ26は、電力計99が検知することのできる電力以上の電力を消費することができるものを用いるとよい。逆潮流防止ヒータは、インバータ15の二次側と電気ケーブルE26で接続される。逆潮流防止ヒータ26は、電力計99が検知する商用電力Cfの値が第1の所定範囲に収束するように燃料電池12の発電電力Cbを増加させた状態で、急に電力負荷Ldが減少した場合に逆潮流を防ぐことができると共に、電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生しているか否かの検定用に用いることができる。逆潮流防止ヒータ26を設けた場合は、電力計99の故障等が発生していなければ、逆潮流防止ヒータ26が受電する電力を増加させれば(St6)確実に電力計99から取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)を超えることとなる。したがって、図2中、電力計99から取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下か否かを判断する工程(St7)において、所定の電力値(Ws)以下を維持していれば、逆潮流防止ヒータ26が受電する電力を一定の短い時間減少させる工程(St8)と、電力計99から取得した電力の値(W)の絶対値(|W|)が所定の電力値(Ws)以下か否かを判断する工程(St9)をスキップして、遠隔監視装置に警報を発報すると共に燃料電池システム10の運転を停止させる工程(St10)に進むようにする。
次に図3を参照して、実施例を説明する。なお、図3の他、適宜図1及び図2を参照することとする。
以下の実施例では第1の所定範囲を±5(w)、所定時間を60(min)に設定し、第2の所定範囲が±10(w)の電力計99を用いた燃料電池システム10とした。また、電力計99が検知した電力値が60(min)継続して±10(w)の範囲内にあるときに電力を変動させる電気機器を加熱装置24とした。また、商用電源Pwへの逆潮流が許容されている。
(実施例1)
図3(a)は、第1の実施例における、電力計が検知する電力値の時間経過に対するグラフである。第1の実施例では、図3(a)中、7分後(図中T1)に電力計99が検知する電力値が10(w)以下になって所定時間の計測を開始した(St3)。そして、所定時間の計測を開始して41分後(図中T2)に電力値が10(w)を超えたため(St4)、タイマーをリセットして(St11)再び燃料電池システム10の運転の制御を開始した(St1)。この結果、第1の実施例では電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生していないことが分かった。
(実施例2)
図3(b)は、第2の実施例における、電力計が検知する電力値の時間経過に対するグラフである。第2の実施例では、図3(b)中、7分後(図中T1)に電力計99が検知する電力値が10(w)以下になって所定時間の計測を開始した(St3)。そして、所定時間の計測を開始して60分を経過しても(図中T3)電力値が±10(w)の範囲にあるため、加熱装置24が受電する電力を約5秒間増加させた(St6)。すると、電力計99の値は約5秒間80(w)を示したので、タイマーをリセットして(St11)再び燃料電池システム10の運転の制御を開始した(St1)。この結果、第2の実施例では電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生していないことが分かった。その後再び電力計99が検知する電力値が10(w)以下になったので、所定時間の計測を開始した(St3)。
(実施例3)
図3(c)は、第3の実施例における、電力計が検知する電力値の時間経過に対するグラフである。第3の実施例では、図3(c)中、7分後(図中T1)に電力計99が検知する電力値が10(w)以下になって所定時間の計測を開始した(St3)。そして、所定時間の計測を開始して60分を経過しても(図中T3)電力値が±10(w)の範囲にあるため、加熱装置24が受電する電力を約5秒間増加させた(St6)。ところが、電力計99が検知する電力値に変動がないため、加熱装置24が受電する電力を約5秒間減少させた(St8)。すると、電力計99の値は約5秒間−60(w)を示したので、タイマーをリセットして(St11)再び燃料電池システム10の運転の制御を開始した(St1)。この結果、第3の実施例では電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生していないことが分かった。その後再び電力計99が検知する電力値が10(w)以下になったので、所定時間の計測を開始した(St3)。なお、第3の実施例では電力計99の値が約5秒間−60(w)を示したので、この間燃料電池12の発電電力Cbが商用電源Pwに逆潮流したこととなる。
(実施例4)
図3(d)は、第4の実施例における、電力計が検知する電力値の時間経過に対するグラフである。第4の実施例では、図3(d)中、7分後(図中T1)に電力計99が検知する電力値が10(w)以下になって所定時間の計測を開始した(St3)。そして、所定時間の計測を開始して60分を経過しても(図中T3)電力値が±10(w)の範囲にあるため、加熱装置24が受電する電力を約5秒間増加させた(St6)。ところが、電力計99が検知する電力値に変動がないため、加熱装置24が受電する電力を約5秒間減少させた(St8)。しかし、ここでも電力計99が検知する電力値に変動がないため、制御装置16は電力計99の故障又は電力計99に接続されたケーブル等の計測系統の断線等が発生したと判断して、加熱装置24が受電する電力を約5秒間減少させ終えた時点(図中T4)で遠隔監視装置に警報を発報すると共に燃料電池システム10の運転を停止した(St10)。第4の実施例では、早期に計測系統の異常を発見することができ、燃料電池システム10の故障等被害が拡大することを防ぐことができた。
本発明の実施の形態に係る燃料電池システムを説明するブロック図である。 本発明の実施の形態に係る燃料電池システムの運転方法を説明するフローチャートである。 電力検知手段が検知する電力値の時間経過に対するグラフである。(a)は第1の実施例、(b)は第2の実施例、(c)は第3の実施例、(d)は第4の実施例におけるグラフを示している。
符号の説明
10 燃料電池システム
12 燃料電池
21 改質熱発生装置
22 冷却水ポンプ
23 循環ポンプ
24 加熱装置
25 酸化剤ガスブロワ
99 電力計(電力計測手段)
Ld 電力負荷
Cb 燃料電池で発電した電力
Cf 商用電力
Pw 商用電源
g 改質ガス
t 酸化剤ガス

Claims (3)

  1. 商用電源と連系し、燃料電池と電気機器とを有する燃料電池システムを運転する方法であって;
    前記商用電源から電力負荷及び前記電気機器に供給される商用電力を商用電力検知手段で計測する工程と;
    計測した前記商用電力の値が第1の所定範囲内に収束するように前記燃料電池の発電電力を調整する工程と;
    計測した前記商用電力の値が継続して第2の所定範囲内にある時間を計測する工程と;
    計測した前記時間が所定時間になった時に、前記電気機器が受電する電力を変動させる工程と
    前記電気機器が受電する電力を変動させたときに前記商用電力検知手段で計測された値が前記第2の所定範囲以下を維持しているかを検知する工程とを備える;
    燃料電池システムの運転方法。
  2. 水素に富む改質ガスと酸素を含有する酸化剤ガスとを導入して発電し、該発電した電力を商用電源から供給される商用電力と連系して電力負荷に供給する燃料電池と;
    前記燃料電池が発電した電力及び前記商用電力を受電して作動する電気機器と;
    前記電力負荷及び前記電気機器に供給される前記商用電力を計測する商用電力検知手段で検知される電力値が第1の所定範囲内に収束するように前記燃料電池の発電電力を制御する制御装置とを備え;
    前記制御装置が、前記商用電力検知手段で検知された電力値が所定時間継続して第2の所定範囲内にあるときに、前記電気機器が受電する電力を変動させて前記商用電力検知手段で検知された電力値が前記第2の所定範囲以下を維持しているかを検知するように構成された;
    燃料電池システム。
  3. 前記電気機器が、熱を発生する加熱装置である;
    請求項2に記載の燃料電池システム。
JP2005161198A 2005-06-01 2005-06-01 燃料電池システムの運転方法及び燃料電池システム Active JP4898146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161198A JP4898146B2 (ja) 2005-06-01 2005-06-01 燃料電池システムの運転方法及び燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161198A JP4898146B2 (ja) 2005-06-01 2005-06-01 燃料電池システムの運転方法及び燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006338994A JP2006338994A (ja) 2006-12-14
JP4898146B2 true JP4898146B2 (ja) 2012-03-14

Family

ID=37559379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161198A Active JP4898146B2 (ja) 2005-06-01 2005-06-01 燃料電池システムの運転方法及び燃料電池システム

Country Status (1)

Country Link
JP (1) JP4898146B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475420A (ja) * 1990-07-13 1992-03-10 Nippon Telegr & Teleph Corp <Ntt> 燃料電池直流並列運転システム
JPH04222420A (ja) * 1990-12-21 1992-08-12 Nippon Telegr & Teleph Corp <Ntt> 燃料電池電力供給システム
JP2001068133A (ja) * 1999-08-24 2001-03-16 Toshiba Corp 燃料電池装置及び分散電源システム
JP2003077507A (ja) * 2001-08-30 2003-03-14 Sanyo Electric Co Ltd 燃料電池発電システム
JP4157341B2 (ja) * 2002-08-30 2008-10-01 株式会社長府製作所 コージェネレーションシステムの制御装置
JP4638132B2 (ja) * 2003-05-09 2011-02-23 積水化学工業株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2006338994A (ja) 2006-12-14

Similar Documents

Publication Publication Date Title
US8470484B2 (en) Fuel cell system
JP5194425B2 (ja) 燃料電池システム
JP4473269B2 (ja) コージェネレーションシステム
JP2009272158A (ja) 燃料電池システム
JP4511878B2 (ja) 燃料電池システム
JP6111762B2 (ja) 燃料電池システム
JP2014011057A (ja) 固体高分子形燃料電池システム
JP6174578B2 (ja) 固体酸化物形燃料電池システム
JP2006012563A (ja) 燃料電池システム
JP4399553B2 (ja) 燃料電池システム
JP2014191949A (ja) コージェネレーション装置
JP2008176943A (ja) 燃料電池システム
WO2014002799A1 (ja) 固体酸化物形燃料電池システム
JP2022160677A (ja) 電力管理サーバ、電力管理システム及び電力管理方法
JP6111855B2 (ja) 燃料電池システム
JP2020005376A (ja) 燃料電池システム、電力管理サーバ、電力管理システム及び電力管理方法
JP5525359B2 (ja) 排熱回収装置
JP4898146B2 (ja) 燃料電池システムの運転方法及び燃料電池システム
JP5473823B2 (ja) 燃料電池システム
JP3992423B2 (ja) 燃料電池システムの運転起動方法およびその装置
KR100700548B1 (ko) 연료전지의 난방/온수 제어 장치 및 그 방법
JP6709691B2 (ja) 熱機器
JP5266782B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2019122162A (ja) コジェネレーション装置
WO2014002800A1 (ja) 固体高分子形燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250