JP4896814B2 - 分布型光ファイバセンサ - Google Patents

分布型光ファイバセンサ Download PDF

Info

Publication number
JP4896814B2
JP4896814B2 JP2007133074A JP2007133074A JP4896814B2 JP 4896814 B2 JP4896814 B2 JP 4896814B2 JP 2007133074 A JP2007133074 A JP 2007133074A JP 2007133074 A JP2007133074 A JP 2007133074A JP 4896814 B2 JP4896814 B2 JP 4896814B2
Authority
JP
Japan
Prior art keywords
light
pulse
optical fiber
brillouin
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007133074A
Other languages
English (en)
Other versions
JP2008286697A (ja
Inventor
欣増 岸田
哲賢 李
憲一 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neubrex Co Ltd
Original Assignee
Neubrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neubrex Co Ltd filed Critical Neubrex Co Ltd
Priority to JP2007133074A priority Critical patent/JP4896814B2/ja
Publication of JP2008286697A publication Critical patent/JP2008286697A/ja
Application granted granted Critical
Publication of JP4896814B2 publication Critical patent/JP4896814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

本発明は、光ファイバをセンサとして用い、その長尺方向について歪み及び/又は温度を高精度で測定し得る分布型光ファイバセンサに関する。
従来、歪みや温度を測定する技術として、光ファイバ中で起こるブリルアン散乱現象に基づく方法がある。この方法において光ファイバは、当該光ファイバの置かれる環境における歪み及び/又は温度を検出する媒体として利用される。
ブリルアン散乱現象とは、光ファイバ中で周波数の異なる2個の光がすれ違うとき、高い周波数の光から低い周波数の光へ、光ファイバ中の音響フォノンを介してパワーが移動する現象である。このブリルアン散乱現象の際に見られるブリルアン周波数シフトは、光ファイバ中の音速に比例し、そして、この音速が光ファイバの歪み及び温度に依存する。このため、ブリルアン周波数シフトを測定することによって歪み及び/又は温度が測定される。
図12は、背景技術に係る分布型光ファイバセンサを示す図である。図12(A)は、この分布型光ファイバセンサの構成を示すブロック図であり、図12(B)、(C)は、この分布型光ファイバセンサに用いられる光パルスの例を示す図である。図13は、ブリルアン・ゲイン・スペクトルを示す図である。図13の横軸は、周波数であり、その縦軸は、音響フォノンの振幅である。
図12(A)において、背景技術に係る分布型光ファイバセンサ500は、第1及び第2光源501、504と、検出用光ファイバ502と、光カプラ503と、時間領域検出計505とを備えて構成される。
第1光源501は、図12(B)に示すように、光強度が矩形状である光パルスを生成し、この生成した光パルスを射出する。第1光源501から射出された光パルスは、検出用光ファイバ502の一方端から入射される。検出用光ファイバ502は、置かれた環境における歪み及び/又は温度を検出するための光ファイバであり、センサとして用いられている。第2光源504は、前記光パルスの周波数よりも低い周波数の連続した光を生成し、この生成した連続光(CW光)を射出する。第2光源504から射出された連続光は、光カプラ503を介して検出用光ファイバ502の他方端から入射される。検出用光ファイバ502では、光パルスと連続光とがブリルアン散乱現象を起し、このブリルアン散乱現象に係る光は、光カプラ503を介して時間領域検出計505に入射される。時間領域検出計505は、ブリルアン散乱現象に係る光の光強度を時間領域で測定する。分布型光ファイバセンサ500は、光パルス又は連続光の周波数を順次に変化させながら周波数ごとにブリルアン散乱現象に係る光の光強度を時間領域で測定し、検出用光ファイバ502の長尺方向に沿った各部分のブリルアン・ゲイン・スペクトルをそれぞれ求め、検出用光ファイバ502に沿った歪み分布及び/又は温度分布を求める。
なお、連続光の周波数を光パルスの周波数よりも高くすることにより、ブリルアン・ゲイン・スペクトルの代わりにブリルアン・ロス・スペクトルを用いても同様に歪み及び/又は温度を求めることができる。以下、ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを「ブリルアン・ロス/ゲイン・スペクトル」と略記する。
この分布型光ファイバセンサ500の空間分解能は、測定に用いられる光パルスのパルス幅で制限される。例えば、空間分解能が3mの場合では、光パルスのパルス幅は、30nsとされ、空間分解能が2mの場合では、光パルスのパルス幅は、20nsとされる。光ファイバの材質によって光ファイバ中の光の速度が若干異なるが通常使用される一般的な光ファイバでは、音響フォノンの完全な立ち上がりに約28nsが必要である。このため、ブリルアン・ゲイン・スペクトルは、図13に示すように、光パルスのパルス幅が約28ns以上までは、ローレンツ曲線(Lorentzain curve)(図13に示す曲線a1、a2)であり、それよりも光パルス幅を短くすると広帯域な曲線(図13に示す曲線b1、b2、b3)となって中心周波数近傍で急峻さを失ったなだらかな形状となる。このため、中心周波数を求めることが難しくなって、その空間分解能は、通常、約2〜3mとされている。各曲線a1、a2、b1、b2、b3は、光パルスのパルス幅がそれぞれ100ns、28ns、10ns、5ns、1nsである場合の各ブリルアン・ゲイン・スペクトルである。
そこで、本願発明者は、図12(B)に示す光パルスの代わりに、図12(C)に示すように、内側に向かうほど光強度が大きくなるように光強度が階段状になった階段状光パルスを用いることによって、高精度(例えば200με以下)、高空間分解能(例えば1m以下)で歪み及び/又は温度の分布を測定する手法を特許文献1で提案した。なお、100με=0.01%である。
国際公開第2006/001071号パンフレット
ところで、上記分布型光ファイバセンサでは、さらに高精度化が要望されており、上記特許文献1で提案した手法には、高精度化の点で改善の余地がある。
本発明は、上述の事情に鑑みて為された発明であり、その目的は、歪み及び/又は温度をより高精度で測定可能な分布型光ファイバセンサを提供することである。
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。即ち、本発明に係る一態様では、ブリルアン散乱現象を利用して歪み及び/又は温度を測定する分布型光ファイバセンサにおいて、メイン光パルスと、前記メイン光パルスに先立ち、最大光強度が前記メイン光パルスの光強度よりも小さく、エネルギーが立ち上がりから前記メイン光パルスの立ち上がりまで前記最大光強度で一定の光パルスにおけるエネルギーよりも小さいサブ光パルスとを生成する光パルス光源と、連続光を生成する連続光光源と、前記サブ光パルス及び前記メイン光パルスと前記連続光とが入射され、前記サブ光パルス及び前記メイン光パルスと前記連続光との間でブリルアン散乱現象が生じる検出用光ファイバと、前記検出用光ファイバから射出されるブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定するブリルアン時間領域検出計とを備えることを特徴とする。なお、A及び/又はBは、A及びBのうち少なくとも一方を意味する。
図1は、ブリルアン散乱現象の理論解析を説明するための図である。図1(A)は、ブリルアン散乱現象の理論解析における測定系を示し、図1(B)は、プローブ光を示し、そして、図1(C)は、ポンプ光を示す。
図1において、本理論解析では、光強度ALの連続光(CW)がプローブ光として検出用光ファイバSOFの一方端から入射され、パルス幅Dで光強度(As+Cs)の光パルスOPと、この光パルスOPに先立って、この光パルスOPの光強度ALよりも小さい光強度Csでその立ち上がりから光パルスOPの立ち上がりまで一定の光パルス前方光OPfとがポンプ光として検出用光ファイバSOFの他方端から入射される。光強度Asは、光パルス前方光OPfの光強度Csを基準とした光強度である。光パルス前方光OPfのパルス幅は、Tfである。本理論解析では、このような測定系におけるブリルアン・ロス・スペクトルが導出される。
本理論解析において、検出用光ファイバSOFの長さをLとし、検出用光ファイバSOFの長尺方向における位置座標をz(0≦z≦L、原点は、検出用光ファイバSOFの一方端とする)とし、そして、時間座標をtとすると、検出用光ファイバSOFに歪みがある場合のブリルアン散乱の方程式は、式1乃至式3によって表される。
Figure 0004896814
Figure 0004896814
Figure 0004896814
ここで、vgは、検出用光ファイバSOF中における光の群速度(vg=c/n、cは光速であり、nは検出用光ファイバSOFの屈折率である)であり、Eは、ポンプ光の電界強度であり、Eは、ストークス光の電界強度であり、Eは、Γ×ρ/Λである。*は、共役であることを示す。Γは、Γ/2であり、ρは、検出用光ファイバSOFの密度であり、Λは(γ×q×q)/(16×π×Ω)である。Γは、音響フォノンの寿命をτとするとΓ=1/τであり、γは、電歪結合定数(Electrostrietive Coupling Constant)と呼ばれ誘電率をεとするとγ=ρ(δε/δρ)であり、qは、ポンプ光の波数をkとしストークス光の波数をkとするとq=k+kであり、Ωは、歪みが発生しない場合のブリルアン角周波数シフトであり、ポンプ光の角周波数をωとしストークス光の角周波数をωとするとΩ=ω−ωであり、Ωは、或る歪みが生じている場合のブリルアン角周波数シフトであり、ポンプ光の角周波数をωBLとしストークス光の角周波数をωBSとするとΩ=ωBL−ωBSである。iは、複素単位であり、i×i=−1である。βは、κ×Λ/Γであり、κは、(γ×ω)/(4×ρ×n×c)≒(γ×ω)/(4×ρ×n×c)である。ρは、検出用光ファイバSOFの密度の平均値である。また、βは、誘導ブリルアン散乱(SBS)の利得係数をgSBSとすると、gSBS=16×π×β/(n×c)であり、gSBS=2.5×10−11m/Wであることが例えば、「A.L.Gaeta and R.W.Boyd,"Stochastic dynamoics of stimulated Brillouin scattering in an optical fiber",Physical Review A,Vol.44,no.5,1991,pp3205-3209」に示されている。
式1は、ポンプ光に関する式であり、式2は、プローブ光に関する式であり、式3は、音響フォノンの寿命に関する式である。これら式1乃至式3を解いて、近似解として、ブリルアン・ロスV(t、Ω)を求めると、式4乃至式11となる。
Figure 0004896814
Figure 0004896814
Figure 0004896814
Figure 0004896814
Figure 0004896814
ここで、ζは、検出用光ファイバSOFの長尺方向における位置であり、sは、時間である。c.cは、定数であり、h(z,s)は、検出用光ファイバSOFの全長をLLとすると、位置zで時間sにおけるΓ×e−(Γ+i(ΩB(z)−Ω))であり、h(ζ,s)=h(z,s)=h((LL−ζ)、s)である。
式5のHは、光パルスOPと連続光とにより励起される音響フォノンに基づくブリルアン・ロス・スペクトルを示す。式6のHは、光パルス前方光OPfと連続光とにより励起されさらに光パルスOPと連続光とにより励起される音響フォノンに基づくブリルアン・ロス・スペクトルを示す。式7のHは、光パルスOPと連続光とにより励起されさらに光パルス前方光OPfと連続光とにより励起される音響フォノンに基づくブリルアン・ロス・スペクトルを示す。式8のHは、光パルス前方光OPfと連続光とにより励起される音響フォノンに基づくブリルアン・ロス・スペクトルを示す。これらH乃至Hを比較すると、Hを検出することができるように光パルスOPの光強度(As+Cs)、光パルス前方光OPfのパルス幅Tf及び光パルス前方光OPfの光強度Csを設定することによって、短いパルス幅Dの光パルスOPを用いて高精度で高空間分解能で歪み及び/又は温度が検出可能であることが分かる。光パルスOPのパルス幅Dは、所望の空間分解能に応じて適宜に設定され、光ファイバの材質にもよるが、例えば、50cmの空間分解能を得るためには、パルス幅が5nsに設定され、また例えば、10cmの空間分解能を得るためには、パルス幅が1nsに設定される。
そして、本発明では、メイン光パルスに時間的に先立つサブ光パルスは、当該サブ光パルスの最大光強度がメイン光パルスの光強度よりも小さく、そして、その立ち上がりからメイン光パルスの立ち上がりまで前記最大光強度で一定の光パルスを考えた場合に、当該サブ光パルスのエネルギーがこの考えた光パルスにおけるエネルギーよりも小さく設定される。
図1(C)を用いて説明すると、上記メイン光パルスは、光パルスOPに相当し、最大光強度がメイン光パルスの光強度よりも小さく、そして、その立ち上がりからメイン光パルスの立ち上がりまで前記最大光強度で一定の光パルスは、光パルス前方光OPfに相当する。従って、上記サブ光パルスは、そのエネルギーがこの光パルス前方光OPfのエネルギーよりも小さく設定される。
このようなサブ光パルスは、好ましくは、そのパルス幅が立ち上がりから前記メイン光パルスの立ち上がりまでの時間よりも短い時間幅である。また好ましくは、サブ光パルスは、その光強度が時間経過に従って減少する。また好ましくは、サブ光パルスは、その光強度が時間経過に従って増加する。また好ましくは、サブ光パルスは、その光強度が時間経過に従って増加した後に減少する。
このようなサブ光パルスを用いることによって、ノイズ成分となるHの成分が小さくなり、Hへの影響が抑制される。同時にまた、ブリルアン・ロス/ゲイン・スペクトルのピーク幅が狭められ、中心周波数の測定誤差が小さくなり、より高精度にブリルアン周波数シフトが測定可能となる。その結果、より高精度に、歪み及び/又は温度が測定可能となる。
そして、上述の分布型光ファイバセンサにおいて、前記サブ光パルス及び前記メイン光パルスは、前記検出用光ファイバの一方端から入射し、前記連続光は、前記検出用光ファイバの他方端から入射し、前記ブリルアン時間領域検出計は、前記検出用光ファイバの一方端から射出したブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定することを特徴とする。
この構成によれば、ブリルアン・ゲイン・スペクトラム時間領域分析又はブリルアン・ロス・スペクトラム時間領域分析を行ってブリルアン周波数シフトに基づいて歪み及び/又は温度を検出する分布型光ファイバセンサが提供される。
また、上述の分布型光ファイバセンサにおいて、前記サブ光パルス及び前記メイン光パルスは、前記検出用光ファイバの一方端から入射し、前記連続光は、前記検出用光ファイバの一方端から入射し、前記検出用光ファイバは、伝播する前記連続光をその他方端で反射し、前記ブリルアン時間領域検出計は、前記検出用光ファイバの一方端から射出したブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定することを特徴とする。
この構成によれば、ブリルアン・ゲイン・スペクトラム時間領域反射分析又はブリルアン・ロス・スペクトラム時間領域反射分析を行ってブリルアン周波数シフトに基づいて歪み及び/又は温度を検出する分布型光ファイバセンサが提供される。
さらに、これら上述の光ファイバセンサにおいて、前記光パルス光源及び前記連続光光源は、線幅の狭い所定の周波数であって略一定の光強度である光を連続的に発光する第1及び第2発光素子と、前記第1及び第2発光素子の各温度を実質的に一定にそれぞれ保持する第1及び第2温度制御部と、前記第1及び第2発光素子が発光する前記各光の各周波数を実質的に一定にそれぞれ保持する第1及び第2周波数制御部と、前記第1及び第2発光素子が発光する前記各光の一部がそれぞれ入射され、ブリルアン散乱現象を起こす第1及び第2光における周波数差と前記ブリルアン散乱現象に係る光の光強度との関係が既知の基準用光ファイバと、前記基準用光ファイバから射出したブリルアン散乱現象に係る光の光強度と既知の前記関係とに基づいて前記第1及び第2発光素子が発光する前記各光の周波数差が所定の周波数差となるように、前記第1周波数制御部及び/又は前記第2周波数制御部を制御する周波数設定部とを備えることを特徴とする。
この構成によれば、第1及び第2発光素子がそれぞれ発光する各光の各周波数差が所定の周波数差に制御されるので、より高精度にブリルアン周波数シフトが測定可能となる。その結果、より高精度に、歪み及び/又は温度が測定可能となる。そして、この構成によれば、別途、外部に、周波数校正用の基準用光ファイバが分布型光ファイバセンサに必要とされず、分布型光ファイバの装置内で周波数の校正が可能となる。
また、これら分布型光ファイバセンサにおいて、前記光パルス光源は、線幅の狭い所定の周波数であって略一定の第1光強度である光を連続的に発光する発光素子と、前記発光素子が発光する光を互いに光強度が異なるように2個に分岐する光分岐部と、前記光分岐部で分岐され光強度が相対的に大きい方の光の光強度を変調する第1光強度変調器と、前記光分岐部で分岐され光強度が相対的に小さい方の光の光強度を変調する第2光強度変調器と、前記第1及び第2光強度変調器でそれぞれ変調された各光を合波する光合波部とを備え、前記第1光強度変調器は、前記メイン光パルスを生成し、前記第2光強度変調器は、前記サブ光パルスを生成することを特徴とする。
この構成によれば、メイン光パルスとサブ光パルスとが第1光強度変調器と第2光強度変調器とによって個別に生成されるので、メイン光パルスのパルス幅が精度よく設定可能となり、また、光強度が様々な形のサブ光パルスが生成可能となる。その結果、より高精度に、歪み及び/又は温度が測定可能となる。
そして、これら上述の分布型光ファイバセンサにおいて、前記検出用光ファイバは、歪み及び/又は温度を測定すべき計測対象物に固定されることを特徴とする。
この構成によれば、計測対象物の歪み及び/又は温度が測定可能となる。
本発明に係る分布型光ファイバセンサでは、歪み及び/又は温度がより高精度で測定可能となる。
以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
本発明に係る実施形態の分布型光ファイバセンサは、後述するように、光スイッチを切り換えることによって、歪み及び/又は温度を検出するための検出用光ファイバの一方端からサブ光パルス及びメイン光パルス光をポンプ光として入射すると共にこの検出用光ファイバの他方端から連続光をプローブ光として入射して、検出用光ファイバで生じたブリルアン散乱現象に係る光を受光し、ブリルアン・ゲイン・スペクトラム時間領域分析(BGain−OTDA、Brillouin Gain Optical Time Domain Analysis)又はブリルアン・ロス・スペクトラム時間領域分析(BLoss−OTDA、Brillouin Loss Optical Time Domain Analysis)を行うことにより、ブリルアン周波数シフトに基づいて歪み及び/又は温度の分布を検出するものである。以下、ブリルアン・ゲイン・スペクトラム時間領域分析又はブリルアン・ロス・スペクトラム時間領域分析をブリルアン・ゲイン/ロス・スペクトラム時間領域分析と略記する。このブリルアン・ゲイン/ロス・スペクトラム時間領域分析では、ブリルアン散乱現象に係る光は、ブリルアン増幅/減衰を受けた光である。
そして、この分布型光ファイバセンサは、後述するように、光スイッチを切り換えることによって、歪み及び/又は温度を検出するための検出用光ファイバの一方端からポンプ光としてのサブ光パルス及びメイン光パルスとプローブ光としての連続光とを入射して、検出用光ファイバでブリルアン散乱現象の作用を受けたポンプ光を受光し、ブリルアン・ゲイン・スペクトラム時間領域反射分析(BGain−OTDR、Brillouin Gain Optical Time Domain Reflectometer)又はブリルアン・ロス・スペクトラム時間領域反射分析(BLoss−OTDR、Brillouin Loss Optical Time Domain Reflectometer)を行うことにより、ブリルアン周波数シフトに基づいて歪み及び/又は温度を検出するものである。以下、ブリルアン・ゲイン・スペクトラム時間領域反射分析又はブリルアン・ロス・スペクトラム時間領域反射分析をブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析と略記する。このブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析では、ブリルアン散乱現象に係る光は、ブリルアン散乱光である。
図2は、実施形態における分布型光ファイバセンサの構成を示すブロック図である。図3は、分布型光ファイバセンサにおける光パルス生成部の構成を示すブロック図である。
図2において、分布型光ファイバセンサSは、第1光源1と、光カプラ2、5、8、21、23と、光パルス生成部3と、光スイッチ4、22と、光強度・偏光調整部6と、光サーキュレータ7、12と、光コネクタ9、26、27、28と、第1自動温度制御部(以下、「第1ATC」と略記する。)10と、第1自動周波数制御部(以下、「第1AFC」と略記する。)11と、制御処理部13と、ブリルアン時間領域検出計14と、検出用光ファイバ15と、温度検出部16と、基準用光ファイバ17と、第2自動温度制御部(以下、「第2ATC」と略記する。)18と、第2自動周波数制御部(以下、「第2AFC」と略記する。)19と、第2光源20と、光強度調整部24と、1×2光スイッチ25とを備えて構成される。
第1及び第2光源1、20は、それぞれ、第1及び第2ATC10、18によって予め設定される所定温度で略一定に保持されると共に第1及び第2AFC11、19によって予め設定される所定周波数で略一定に保持されることにより、所定周波数の連続光を生成し射出する光源装置である。第1光源1の出力端子(射出端子)は、光カプラ2の入力端子(入射端子)に光学的に接続される。第2光源20の出力端子(射出端子)は、光カプラ21の入力端子(入射端子)に光学的に接続される。
このような第1及び第2光源1、20は、それぞれ、例えば、発光素子と、発光素子の近傍に配置されこの発光素子の温度を検出する例えばサーミスタ等の温度検出素子と、発光素子の後方から射出されるバック光を受光して2つに分岐する例えばハーフミラー等の光カプラと、光カプラで分岐された一方の光を、周期的フィルタであるファブリペローエタロンフィルタ(Fabry-perotetalon Filter)を介して受光する第1受光素子と、光カプラで分岐した他方の光を受光する第2受光素子と、温度調整素子と、これら発光素子、温度検出素子、光カプラ、第1及び第2受光素子、ファブリペローエタロンフィルタ及び温度調整素子が配設される基板とを備えて構成される。
発光素子は、線幅の狭い所定周波数の光を発光すると共に素子温度や駆動電流を変更することによって発振波長(発振周波数)を変えることができる素子であり、例えば、多量子井戸構造DFBレーザや可変波長分布ブラッグ反射型レーザ等の波長可変半導体レーザ(周波数可変半導体レーザ)である。第1及び第2光源1、20における各温度検出素子は、検出した各検出温度を第1及び第2ATC10、18へそれぞれ出力する。第1及び第2光源1、20における第1及び第2受光素子は、例えばホトダイオード等の光電変換素子を備え、各受光光強度に応じた各受光出力を第1及び第2AFC11、19へそれぞれ出力する。温度調整素子は、発熱及び吸熱を行うことにより基板の温度を調整する部品であり、例えば、ペルチェ素子やゼーベック素子等の熱電変換素子を備えて構成される。
第1及び第2ATC10、18は、それぞれ、制御処理部13の制御に従って、第1及び第2光源1、20における各温度検出素子の各検出温度に基づいて各温度調整素子を制御することによって、各基板の温度を所定温度に自動的に略一定に保持する回路である。これによって第1及び第2光源1、20における各発光素子の温度が所定温度に自動的に略一定に保持される。このため、発光素子が発光する光の周波数が温度依存性を有する場合に、その温度依存性が抑制される。
第1及び第2AFC11、19は、それぞれ、制御処理部13の制御に従って、第1及び第2光源1、20における第1及び第2受光素子の各受光出力に基づいて各発光素子を制御することによって、各発光素子が発光する光の周波数を所定周波数に自動的に略一定に保持する回路である。
これら第1及び第2光源1、20における光カプラ、ファブリペローエタロンフィルタ第1及び第2受光素子と第1及び第2AFC11、19とは、第1及び第2光源1、20における発光素子が発光する光の波長(周波数)を略固定する所謂波長ロッカーをそれぞれ構成している。
光カプラ2、5、21、23は、1個の入力端子から入射された入射光を2つの光に分配して2個の出力端子へそれぞれ射出する光部品である。光カプラ8は、2個の入力端子のうちの一方の入力端子から入射された入射光を1個の出力端子から射出すると共に他方の入力端子から入射された入射光を前記出力端子から射出する光部品である。光カプラ2、5、21、23、8は、例えば、ハーフミラー等の微少光学素子形光分岐結合器や溶融ファイバの光ファイバ形光分岐結合器や光導波路形光分岐結合器等を利用することができる。
光カプラ2の一方の出力端子は、光パルス生成部3の入力端子に光学的に接続され、他方の出力端子は、光サーキュレータ12の第1端子に光学的に接続される。光カプラ5の一方の出力端子は、光強度・偏光調整部6の入力端子に光学的に接続され、他方の出力端子は、ブリルアン時間領域検出計14の第2入力端子に光学的に接続される。光カプラ21の一方の出力端子は、光スイッチ22の入力端子に光学的に接続され、他方の出力端子は、光コネクタ28を介して基準用光ファイバ17の他方端に光学的に接続される。光カプラ23の一方の出力端子は、光強度調整部24の入力端子に光学的に接続され、他方の出力端子は、ブリルアン時間領域検出計14の第4入力端子に光学的に接続される。光カプラ8の一方の入力端子は、光サーキュレータ7の第2端子に光学的に接続され、他方の入力端子は、1×2光スイッチ25の他方の出力端子に光学的に接続され、出力端子は、光コネクタ9を介して検出用光ファイバ15の一方端に光学的に接続される。
光パルス生成部3は、第1光源1が射出した連続光が入射され、この連続光から、メイン光パルスと、このメイン光パルスに先立つサブ光パルスとを生成する装置である。このサブ光パルスの最大光強度は、メイン光パルスの光強度よりも小さい。そして、このサブ光パルスの立ち上がりからメイン光パルスの立ち上がりまで光強度が前記最大光強度で一定である光パルスを想定した場合に、このサブ光パルスのエネルギーは、この想定された光パルスのエネルギーよりも小さい。
このような光パルス生成部3は、例えば、図3に示すように、偏光保持光カプラ31、36と、第1及び第2光強度変調器32、34と、第1及び第2ドライバ回路33、35とを備えて構成される。
偏光保持光カプラ31、36は、例えば、偏光保持ビームスプリッタ等の光部品である。偏光保持光カプラ31は、光カプラ2を介して第1光源1が射出した連続光が入射され、この入射された連続光を偏光方向を保持した状態で2個に分岐するものである。偏光保持光カプラ31の一方の出力端子は、第1光強度変調器32の入力端子に光学的に接続され、他方の出力端子は、第2光強度変調器34の入力端子に光学的に接続される。
第1及び第2光強度変調器32、34は、入射光の光強度を変調する光部品であり、例えば、マッハツェンダ型光変調器(以下、「MZ光変調器」と略記する。)や半導体電界吸収型光変調器等である。第1光強度変調器32の出力端子は、偏光保持光カプラ36の一方の入力端子に光学的に接続され、第2光強度変調器34の出力端子は、偏光保持光カプラ36の他方の入力端子に光学的に接続される。
MZ光変調器は、例えばニオブ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム・タンタル酸リチウム固有体等の電気光学効果を有する基板に、光導波路と信号電極と接地電極とが形成される。光導波路は、2個のY分岐導波路でその中間部分が2本に分かれて第1及び第2導波路アームを形成して、マッハツェンダ干渉計(Mach-Zehnder interferometer)を構成する。信号電極は、この2本の導波路アーム上にそれぞれ形成され、接地電極は、所定間隔で信号電極と平行するように基板上に形成される。MZ光変調器に入射された光は、光導波路を伝播し、第1Y分岐導波路で2つに分岐し、それぞれ各導波路アームを伝播し、第2Y分岐導波路で再び合波され、光導波路から射出される。ここで、各信号電極に電気信号を印加することによって入射光の光強度が変調され、射出される。
電気光学効果を利用したものの他、磁気光学効果を利用した磁気光学変調器、音響光学効果を利用した音響光学変調器およびフランツ・ケルディッシュ効果(Franz-Keldysh effect)や量子閉込めシュタルク効果(quantum-confined Stark effect )を利用した電界吸収型光変調器などもある。
第1及び第2ドライバ回路33、35は、制御処理部13によって制御され、それぞれ、第1及び第2光強度変調器32、34を駆動する回路である。第1及び第2ドライバ回路33、35は、それぞれ、例えば、第1及び第2光強度変調器32、34を通常状態においてオフするための直流電圧信号を生成し、この生成した直流電圧信号を直流出力(DC出力)として出力する直流電源回路と、所定波形の光パルスを生成すべく、通常オフされている第1及び第2光強度変調器32、34をオンするためであって所定の電圧波形を持つ電圧パルスを生成し、この生成した電圧パルスを交流出力(AC出力)として出力するパルス発生回路と、この電圧パルスの生成タイミングを制御するタイミング発生回路とを備えて構成される。
第1光強度変調器32は、第1ドライバ回路33の制御によって、例えば、メイン光パルスを生成し、第2光強度変調器34は、第2ドライバ回路35の制御によって、例えば、サブ光パルスを生成する。第1ドライバ回路33は、メイン光パルスの生成タイミングで、メイン光パルスの波形に応じた波形の電圧パルスをAC出力として出力する。第2ドライバ回路33は、サブ光パルスの生成タイミングで、サブ光パルスの波形に応じた波形の電圧パルスをAC出力として出力する。サブ光パルスの最大光強度は、上述したように、メイン光パルスの光強度よりも小さい。このため、偏光保持光カプラ31は、光強度が互いに異なるように入射光を2個に分岐するものである。偏光保持光カプラ31は、例えば、光強度の比が5:5となるように入射光を2個に分岐する。また例えば、偏光保持光カプラ31は、光強度の比が8:2となるように入射光を2個に分岐する。また例えば、偏光保持光カプラ31は、光強度の比が9:1となるように入射光を2個に分岐する。偏光保持光カプラ31で分岐され光強度が相対的に大きい方の光は、第1光強度変調器32に入射され、偏光保持光カプラ31で分岐され光強度が相対的に小さい方の光は、第2光強度変調器34に入射される。
偏光保持光カプラ36は、第1及び第2光強度変調器32、34がそれぞれ射出した光が入射され、第1光強度変調器32から射出された光と第2光強度変調器34から射出された光とを各偏光方向を保持した状態で合波するものである。偏光保持光カプラ36の出力端子は、光パルス生成部3の出力端子であり、後段の光スイッチ4の入力端子に光学的に接続される。
なお、偏光保持光カプラ36の出力端子には、図3に破線で示すように、光パルス生成部3から射出される光パルスの光強度を所定の光強度とすべく、サブ光パルス及びメイン光パルスを増幅する光増幅器37が必要に応じて光学的に接続されても良い。
図2に戻って、光スイッチ4、22は、制御処理部13の制御に従って、入力端子と出力端子との間で光をオンオフする光部品である。オンでは、光が透過され、オフでは、光が遮断される。光スイッチ4、22は、本実施形態では、例えばMZ光変調器や半導体電界吸収型光変調器等の、入射光の光強度を変調する光強度変調器が用いられる。光スイッチ4、22には、制御処理部13によって制御され、この光強度変調器を駆動するドライバ回路が含まれる。このドライバ回路は、例えば、光強度変調器を通常状態においてオフするための直流電圧信号を生成する直流電源回路と、通常オフされている光強度変調器をオンするための電圧パルスを生成するパルス発生回路と、この電圧パルスの生成タイミングを制御するタイミング発生回路とを備えて構成される。光スイッチ4の出力端子は、光カプラ5の入力端子に光学的に接続される。光スイッチ22の出力端子は、光カプラ23の入力端子に光学的に接続される。
光強度・偏光調整部6は、制御処理部13によって制御され、入射光の光強度を調整すると共に入射光の偏光面をランダムに変更して射出する部品である。光強度・偏光調整部6の出力端子は、光サーキュレータ7の第1端子に光学的に接続される。光強度・偏光調整部6は、例えば、入射光の光強度を減衰して射出するとともにその減衰量を変更することができる光可変減衰器と、入射光の偏光面をランダムに変えて射出することができる偏光制御器とを備えて構成される。
光サーキュレータ7、12は、第1乃至第3の3端子の光サーキュレータであり、入射光と射出光とがその端子番号に循環関係を有する非可逆性の光部品である。即ち、第1端子に入射した光は、第2端子から射出されると共に第3端子からは射出されず、第2端子に入射した光は、第3端子から射出されると共に第1端子からは射出されず、第3端子に入射した光は、第1端子から射出されると共に第2端子からは射出されない。光サーキュレータ7の第1端子は、光強度・偏光調整部6の出力端子に光学的に接続され、第2端子は、上述したように、光カプラ8の一方の入力端子に光学的に接続され、第3端子は、ブリルアン時間領域検出計14の第3入力端子に光学的に接続される。光サーキュレータ12の第1端子は、上述したように、光カプラ2の他方の出力端子に光学的に接続され、第2端子は、光コネクタ27を介して基準用光ファイバ17の一方端に光学的に接続され、第3端子は、ブリルアン時間領域検出計14の第1入力端子に光学的に接続される。
光コネクタ9、26、27、28は、光ファイバ同士や光部品と光ファイバとを光学的に接続する光部品である。
光強度調整部24は、制御処理部13によって制御され、入射光の光強度を調整して射出する部品である。光強度調整部24の出力端子は、光スイッチ25の入力端子に光学的に接続される。光強度調整部24は、例えば、入射光の光強度を減衰して射出する光可変減衰器と、入力端子から出力端子へ一方向のみ光を透過する光アイソレータとを備えて構成される。光強度調整部24に入射した入射光は、光可変減衰器で光強度が所定光強度に調整されて光アイソレータを介して射出される。この光アイソレータは、分布型光ファイバセンサS内における各光部品の接続部等で生じる反射光の伝播やサブ光パルス及びメイン光パルスの第2光源20への伝播を防止する役割を果たす。
1×2光スイッチ25は、光路を切り換えることによって、入力端子から入射された光を2個の出力端子のうちの何れか一方から射出する1入力2出力の光スイッチであり、例えば、機械式光スイッチや光導波路スイッチなどが利用される。1×2光スイッチ25の一方の出力端子は、上述したように、光カプラ8の他方の入力端子に光学的に接続され、他方の出力端子は、光コネクタ26を介して検出用光ファイバ15の他方端に光学的に接続される。手動又は制御処理部13の制御に従って、ブリルアン・ゲイン/ロス・スペクトラム時間領域分析が実行される場合には、入力端子から入射された光が光コネクタ26を介して検出用光ファイバ15の他方端へ入射されるように1×2光スイッチ25が切り換えられ、ブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析が実行される場合には、入力端子から入射された光が光カプラ8及び光コネクタ9を介して検出用光ファイバ15の一方端へ入射されるように1×2光スイッチ25が切り換えられる。
検出用光ファイバ15は、歪み及び/又は温度を検出するセンサ用の光ファイバであり、サブ光パルス及びメイン光パルスと連続光とが入射され、ブリルアン散乱現象の作用を受けた光が射出される。ここで、配管、橋、トンネル、ダム、建物等の構造物や地盤等の計測対象物に生じた歪み及び/又は温度を測定する場合には、検出用光ファイバ15が接着剤や固定部材等によって計測対象物に固定される。
基準用光ファイバ17は、第1及び第2光源1、20がそれぞれ射出する各光の周波数を調整するために使用される光ファイバであって、ブリルアン散乱現象を起こす第1及び第2光における周波数差とブリルアン散乱現象に係る光の光強度との関係が予め既知の光ファイバである。
温度検出部16は、基準用光ファイバ17の温度を検出する回路であり、検出温度を制御処理部13へ出力する。
ブリルアン時間領域検出計14は、制御処理部13と信号を入出力することによって、分布型光ファイバセンサSの各部を制御し、光コネクタ27及び光サーキュレータ12を介して第1入力端子に入射された、基準用光ファイバ17から射出したブリルアン散乱現象に係る光の光強度を求め、この求めた光強度を制御処理部13へ出力する。そして、ブリルアン時間領域検出計14は、制御処理部13と信号を入出力することによって、分布型光ファイバセンサSの各部を制御し、所定のサンプリング間隔で受光したブリルアン散乱現象に係る光を検出することによって検出用光ファイバ15の長尺方向における検出用光ファイバ15の各領域部分のブリルアン・ゲイン/ロス・スペクトルをそれぞれ求め、求めた各領域部分のブリルアン・ゲイン/ロス・スペクトルに基づいて各領域部分のブリルアン周波数シフトをそれぞれ求め、求めた各領域部分のブリルアン周波数シフトに基づいて検出用光ファイバ15の歪み分布及び/又は温度分布を検出する。第1乃至第4入力端子から入射された入射光は、光電変換を行う受光素子によって受光光量に応じた電気信号に変換され、アナログ/ディジタル変換器によってこの電気信号がディジタルの電気信号に変換され、ブリルアン・ゲイン/ロス・スペクトルを求めるために用いられる。また、必要に応じて、ディジタル変換される前に増幅回路によって電気信号が増幅される。ブリルアン時間領域検出計14は、光スイッチ、スペクトルアナライザ及びコンピュータ等を備えて構成される。
制御処理部13は、ブリルアン時間領域検出計14と信号を入出力することによって、検出用光ファイバ15の長尺方向における検出用光ファイバ15の歪み及び/又は温度の分布を高空間分解能で測定するように、第1及び第2光源1、20、第1及び第2ATC10、18、第1及び第2AFC11、19、光パルス生成部3、光スイッチ4、22、光強度・偏光調整部6及び光強度調整部24を制御する電子回路である。制御処理部13は、例えば、マイクロプロセッサ、ワーキングメモリ、及び、検出用光ファイバ15の歪み及び/又は温度の分布を高空間分解能で測定するために必要な各データを記憶するメモリ等を備えて構成される。そして、制御処理部13は、基準用光ファイバ17における、ブリルアン散乱現象を起こす第1及び第2光における周波数差とブリルアン散乱現象に係る光の光強度との関係が予め記憶される記憶部と、ブリルアン時間領域検出計14が求めたブリルアン散乱現象に係る光の光強度と基準用光ファイバ17における既知の前記関係とに基づいて第1及び第2光源1、20における第1及び第2発光素子が発光する各光の周波数差が予め設定される所定周波数差となるように、第1AFC11及び/又は第2AFC19を制御する周波数設定部とを機能的に備えている。
なお、これら第1及び第2光源1、20、第1及び第2ATC10、18、第1及び第2AFC11、19、光強度・偏光調整部6、光強度調整部24及び光強度変調器は、前記特許文献1を参考にすることができる。
次に、実施形態に係る分布型光ファイバセンサの動作について説明する。
最初に、第1光源1から射出される連続光の周波数、及び、第2光源20から射出される連続光の周波数の調整(キャリブレーション)について説明する。
まず、制御処理部13は、第1ATC10及び第1AFC11を制御することによって第1光源1で所定周波数の連続光を発光させ、この連続光を第1光源1から射出させ、第2ATC18及び第2AFC19を制御することによって第2光源20で所定周波数の連続光を発光させ、この連続光を第2光源20から射出させる。
第1光源1から射出された連続光は、光カプラ2、光サーキュレータ12及び光コネクタ27を介して基準用光ファイバ17の一方端に入射され、第2光源20から射出された連続光は、光カプラ21及び光コネクタ28を介して基準用光ファイバ17の他方端に入射される。基準用光ファイバ17の一方端に入射した第1光源1からの連続光と、基準用光ファイバ17の他方端に入射した第2光源20からの連続光とは、基準用光ファイバ17でブリルアン散乱現象を生じる。これによって生じたブリルアン散乱現象に係る光は、基準用光ファイバ17の一方端から射出され、光サーキュレータ12を介してブリルアン時間領域検出計14に入射される。
ブリルアン時間領域検出計14は、受光したブリルアン散乱現象に係る光の光強度を検出し、この検出した光強度を制御処理部13へ通知する。
制御処理部13は、この通知を受けると、その周波数設定部によって、その記憶部に予め記憶されている基準用光ファイバ17における、ブリルアン散乱現象を起こす第1及び第2光における周波数差とブリルアン散乱現象に係る光の光強度との関係と、ブリルアン時間領域検出計14が求めたブリルアン散乱現象に係る光の光強度とに基づいて第1及び第2光源1、20における第1及び第2発光素子が発光する各光の周波数差が予め設定される所定周波数差となるように、第1AFC11及び/又は第2AFC19を制御する。
図4は、第1及び第2光源が発光する各光の周波数の調整を説明するための図である。図4の横軸は、相対周波数差であり、その縦軸は、光強度である。
基準用光ファイバ17における、ブリルアン散乱現象を起こす第1及び第2光における周波数差とブリルアン散乱現象に係る光の光強度との関係は、図4に示すように、略ローレンツ曲線の上に凸の曲線Cである。
制御処理部13は、まず、第1及び第2光源1、20における第1及び第2発光素子が発光する各光の設定すべき所定周波数差faに対応する基準光強度Paを前記関係から求める。そして、制御処理部13は、ブリルアン時間領域検出計14が検出した測定光強度Pdがこの基準光強度Paと一致するように、第1AFC11及び/又は第2AFC19を制御する。
あるいは、制御処理部13は、ブリルアン時間領域検出計14が検出した測定光強度Pdに対応する周波数差fdを前記関係から求める。そして、制御処理部13は、この求めた周波数差fdが設定すべき所定周波数差faと一致するように、第1AFC11及び/又は第2AFC19を制御する。
これによって第1及び第2光源1、20における第1及び第2発光素子が発光する各光の周波数差は、設定すべき所定周波数差faに調整される。なお、本実施形態では、光強度Pdは、受光素子で光電変換された電圧値で与えられ、基準光強度Paは、この基準光強度Paに対応する電圧値となる。
そして、基準用光ファイバ17における、ブリルアン散乱現象を起こす第1及び第2光における周波数差とブリルアン散乱現象に係る光の光強度との関係は、温度依存性を有している。本実施形態では、第1及び第2光源1、20における第1及び第2発光素子が発光する各光の周波数差を所定周波数差faに調整する際に、制御処理部13は、温度検出部16によって基準用光ファイバ17の温度を検出し、この検出温度に応じて基準用光ファイバ17における前記関係を補正する。このため、より高精度で、第1及び第2光源1、20における第1及び第2発光素子が発光する各光の周波数差が所定周波数差faに調整される。
このように動作することによって第1光源1から射出される連続光の周波数、及び、第2光源20から射出される連続光の周波数が調整される。
分布型光ファイバセンサは、通常、検出用光ファイバと、分布型光ファイバセンサ本体とから構成される。従来では、第1光源1から射出される連続光の周波数及び第2光源20から射出される連続光の周波数の調整は、分布型光ファイバセンサ本体と検出用光ファイバとの間に(分布型光ファイバセンサ本体の外部に)基準用光ファイバが光学的に接続され、この基準用光ファイバを用いて行われていたが、本実施形態の分布型光ファイバセンサSでは、分布型光ファイバセンサ本体の内部に配設される基準用光ファイバ17を用いて行われる。このため、従来のように、別途、分布型光ファイバセンサ本体の外部に基準用光ファイバを光学的に接続する必要がなく、煩雑さが解消される。そして、分布型光ファイバセンサ本体の内部に基準用光ファイバ17が配設されるので、基準用光ファイバ17の温度を容易に検出することができ、より高精度に、第1光源1から射出される連続光の周波数及び第2光源20から射出される連続光の周波数が調整可能となる。
後述するように、ブリルアン・ゲイン/ロス・スペクトルを得るために、例えば第2光源20から射出される連続光の周波数が制御処理部13の制御によって所定の周波数間隔で所定の周波数範囲で掃引される。このため、このような第1光源1から射出される連続光の周波数及び第2光源20から射出される連続光の周波数の調整は、測定精度を向上させる観点から、掃引のために周波数が変更されるごとに実行されても良い。
また、第1光源1から射出される連続光の周波数及び第2光源20から射出される連続光の周波数の調整は、当該調整が或る周波数差で1度実行されれば、掃引のために周波数が変更されてもその変更後の周波数は、高精度に所定の周波数に変更されるから、測定時間を短縮させる観点から、測定ごとや所定期間の経過ごとに実行されても良い。あるいは、分布型光ファイバセンサSの起動の際に実行されても良い。
次に、歪み及び/又は温度の測定動作について説明する。
まず、制御処理部13は、第1ATC10及び第1AFC11を制御することによって第1光源1で所定周波数の連続光を発光させ、この連続光を第1光源1から射出させ、第2ATC18及び第2AFC19を制御することによって第2光源20で所定周波数の連続光を発光させ、この連続光を第2光源20から射出させる。第1光源1から射出された連続光は、光カプラ2を介して光パルス生成部3に入射され、第2光源20から射出された連続光は、光カプラ21を介して光スイッチ22に入射される。
次に、制御処理部13は、光パルス生成部3を制御することによって光パルス生成部3で所定波形のサブ光パルス及びメイン光パルスを生成させ、このサブ光パルス及びメイン光パルスを光パルス生成部3から射出させる。この光パルス生成部3から射出されたサブ光パルス及びメイン光パルスは、光スイッチ4に入射される。
制御処理部13は、光パルス生成部3におけるサブ光パルス及びメイン光パルスの生成タイミングに応じて光スイッチ4及び光スイッチ22をオンする。制御処理部13は、サブ光パルス及びメイン光パルスの生成タイミングをブリルアン時間領域検出計14に通知する。
光スイッチ4がオンされると、サブ光パルス及びメイン光パルスは、光カプラ5に入射され、2つに分岐される。分岐された一方のサブ光パルス及びメイン光パルスは、光強度・偏光調整部6に入射され、光強度・偏光調整部6でその光強度が調整され、その偏光方向がランダム(無作為)に調整され、光サーキュレータ7、光カプラ8及び光コネクタ9を介して検出用光ファイバ15の一方端に入射される。一方、光カプラ5で分岐された他方のサブ光パルス及びメイン光パルスは、ブリルアン時間領域検出計14に入射される。
ブリルアン時間領域検出計14は、サブ光パルス及びメイン光パルスのスペクトルを計測し、サブ光パルス及びメイン光パルスの周波数及び光強度を制御処理部13へ通知する。制御処理部13は、この通知を受けると、最適な測定結果が得られるように必要に応じて、第1ATC10、第1AFC11及び光強度・偏光調整部6を制御する。
光スイッチ22がオンされると、連続光は、光カプラ23に入射され、2つに分岐される。分岐された一方の連続光は、光強度調整部24に入射され、光強度調整部24でその光強度が調整され、1×2光スイッチ25に入射される。1×2光スイッチ25は、ブリルアン・ゲイン/ロス・スペクトラム時間領域分析が実行される場合には、入力端子から入射された光が光コネクタ26を介して検出用光ファイバ15の他方端へ入射されるように切り換えられており、連続光は、光コネクタ26を介して検出用光ファイバ15の他方端へ入射される。一方、1×2光スイッチ25は、ブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析が実行される場合には、入力端子から入射された光が光カプラ8及び光コネクタ9を介して検出用光ファイバ15の一方端へ入射されるように切り換えられており、連続光は、光カプラ8及び光コネクタ9を介して検出用光ファイバ15の一方端へ入射される。一方、光カプラ23で分岐された他方の連続光は、ブリルアン時間領域検出計14に入射される。
ブリルアン時間領域検出計14は、連続光のスペクトルを計測し、連続光の周波数及び光強度を制御処理部13へ通知する。制御処理部13は、この通知を受けると、最適な測定結果が得られるように必要に応じて、第2ATC18、第2AFC19及び光強度調整部24を制御する。
ブリルアン・ゲイン/ロス・スペクトラム時間領域分析では、検出用光ファイバ15の一方端に入射したサブ光パルス及びメイン光パルスは、検出用光ファイバ15の他方端から入射され検出用光ファイバ15を伝播する連続光とブリルアン散乱現象を生じさせながら検出用光ファイバ15の一方端から他方端へ伝播する。ブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析では、検出用光ファイバ15の一方端に入射したサブ光パルス及びメイン光パルスは、検出用光ファイバ15の一方端から入射され検出用光ファイバ15の他方端で反射して検出用光ファイバ15を伝播する連続光とブリルアン散乱現象を生じさせながら検出用光ファイバ15の一方端から他方端へ伝播する。ブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析では、検出用光ファイバ15の一方端に入射した連続光が他方端で反射したタイミングでサブ光パルス及びメイン光パルスが検出用光ファイバ15の一方端に入射するように光スイッチ4をオンするタイミングが調整され、そして、検出用光ファイバ15の一方端に入射して他方端で反射した連続光が検出用光ファイバ15でサブ光パルス及びメイン光パルスとブリルアン散乱現象を生じさせるように光スイッチ22をオフするタイミングが調整される。
ブリルアン散乱現象に係る光は、検出用光ファイバ15の一方端から射出され、光コネクタ9、光カプラ8及び光サーキュレータ7を介してブリルアン時間領域検出計14に入射される。ブリルアン時間領域検出計14は、制御処理部13から通知された前記生成タイミングに基づいて、この受光したブリルアン散乱現象に係る光を時間領域分析し、検出用光ファイバ15の長尺方向におけるブリルアン散乱現象に係る光の光強度の分布を測定する。
ここで、ブリルアン散乱現象に係るサブ光パルス及びメイン光パルスと連続光との間における相互作用の程度は、これら各光の偏光面の相対関係に依存するが、本実施形態に係る分布型光ファイバセンサSでは、測定ごとに光強度・偏光調整部6でサブ光パルス及びメイン光パルスの偏光面がランダムに変わるので、測定を複数回実行してその平均値を採用することによって、この依存性を実質的に解消することができる。そのため、精度よくブリルアン散乱現象に係る光の光強度の分布を得ることができる。
このような検出用光ファイバ15の長尺方向におけるブリルアン散乱現象に係る光の光強度の分布が、例えば第2光源20から射出される連続光の周波数を制御処理部13の制御によって所定の周波数間隔で所定の周波数範囲で掃引することによって、各周波数において高精度かつ高空間分解能で測定される。その結果、検出用光ファイバ15の長尺方向の各領域部分におけるブリルアン・ゲイン/ロス・スペクトルが高精度かつ高空間分解能で得られる。
そして、ブリルアン時間領域検出計14は、検出用光ファイバ15に歪みを生じていない部分におけるブリルアン・ゲイン/ロス・スペクトルのピークに対応する周波数を基準に、検出用光ファイバ15の長尺方向の各領域部分におけるブリルアン・ゲイン/ロス・スペクトルのピークに対応する周波数の差を求めることによって、検出用光ファイバ15の長尺方向の各部分におけるブリルアン周波数シフトを高精度かつ高空間分解能で求める。
そして、ブリルアン時間領域検出計14は、この各領域部分のブリルアン周波数シフトから検出用光ファイバ15の長尺方向の各領域部分における歪み及び/又は温度を高精度かつ高空間分解能で求める。この求めた検出用光ファイバ15の長尺方向の各領域部分における歪み及び/又は温度の分布は、CRT表示装置やXYプロッタやプリンタ等の不図示の出力部に提示される。
次に、本実施形態の分布型光ファイバセンサに用いられるサブ光パルス及びメイン光パルスの態様例について説明する。
図5は、第1態様に係るサブ光パルス及びメイン光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。図6は、第1及び第2光強度変調器に入力される第1及び第2ドライバ回路のAC出力を示す図である。図7は、第2態様に係るサブ光パルス及びメイン光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。図8は、第3乃至第5態様に係るサブ光パルス及びメイン光パルスの波形を示す図である。図9及び図10は、第1及び第2比較例に係る光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。図5(A)及び図7(A)は、第1及び第2態様に係るサブ光パルス及びメイン光パルスの波形を示す。図9(A)及び図10(A)は、第1及び第2比較例に係る光パルスの波形を示す。図5(A)、図7(A)、図8(A)乃至(C)、図9(A)及び図10(A)の横軸は、ns単位で表す時間(time)であり、それらの縦軸は、光強度である。図5(B)及び図7(B)は、第1及び第2態様に係るブリルアン・ゲイン・スペクトルを示す。図9(B)及び図10(B)は、第1及び第2比較例に係るブリルアン・ゲイン・スペクトルを示す。図5(B)、図7(B)、図9(B)及び図10(B)の横軸は、MHz単位で表す周波数(Frequency)であり、それらの縦軸は、a.u.(arbitrary unit)で表すブリルアン・ゲイン(Brillouin gain)である。なお、これら図5(B)、図7(B)、図9(B)及び図10(B)は、シミュレーション結果である。また、図6(A)は、第1態様の場合を示し、図6(B)は、第2態様の場合を示す。
第1態様では、図5(A)に示すように、メイン光パルスOPmは、第1所定パルス幅D1で第1所定光強度P1の矩形形状(光強度Pが第1所定パルス幅D1間において第1所定光強度P1で一定)であり、サブ光パルスOPsは、第2所定パルス幅D2で第2所定光強度P2の矩形形状(光強度Pが第2所定パルス幅D2間において第2所定光強度P2で一定)である。そして、サブ光パルスOPsとメイン光パルスOPmとの間には、所定時間が空けられている。よって、サブ光パルスOPsの第2所定パルス幅D2は、サブ光パルスOPs立ち上がりからメイン光パルスOPmの立ち上がりまでの時間よりも短い時間幅である。サブ光パルスOPsがこのような波形であるため、サブ光パルスOPsの第2所定光強度P2が図1(C)に示す光パルス前方光OPfの光強度Csと同一であっても、そのエネルギーは、光パルス前方光OPfのエネルギーよりも小さい。
例えば、メイン光パルスOPmは、パルス幅D1が1nsであって光強度P1が0.062であり、サブ光パルスOPsは、パルス幅D2が5nsであって光強度P2が0.005であり、サブ光パルスOPsとメイン光パルスOPmとの間(サブ光パルスOPsの立ち下がりからメイン光パルスOPmの立ち上がりまで)には、7nsの時間が空けられている。
このような第1態様に係るサブ光パルスOPs及びメイン光パルスOPmを生成するために、光パルス生成部3は、次のように動作する。図6(A)に示すように、まず、第2ドライバ回路35は、第2光強度変調器34の射出光における光強度Pが上記第2所定光強度P2(図5(A)の場合では0.005)となる電圧値の矩形電圧パルスを時刻t1(図5(A)の場合では0ns)でAC出力として第2光強度変調器34へ出力し、時刻t1から上記第2所定パルス幅D2(図5(A)の場合では5ns)に対応する時間が経過した時刻t2(図5(A)の場合では5ns)でこの出力を停止する。次に、時刻t2から上記所定時間(図5(A)の場合では7ns)に対応する時間が経過した時刻t3(図5(A)の場合では12ns)で、第1ドライバ回路33は、第1光強度変調器32の射出光における光強度Pが上記第1所定光強度P1(図5(A)の場合では0.062)となる電圧値の矩形電圧パルスをAC出力として第1光強度変調器32へ出力し、時刻t3から上記第1所定パルス幅D1(図5(A)の場合では1ns)に対応する時間が経過した時刻t4(図5(A)の場合では13ns)でこの出力を停止する。このように光パルス生成部3が動作することによって、例えば、図5(A)に示す波形のサブ光パルスOPs及びメイン光パルスOPmが生成される。なお、第1及び第2ドライバ回路33、35間の同期を取るために、例えば、第2ドライバ回路35が矩形電圧パルスの立ち上がりタイミング(時刻t1)を第1ドライバ回路33に通知する。以下の第2乃至第5態様でも同様である。
ここで、サブ光パルスOPsは、メイン光パルスOPmが検出用光ファイバ15に音響フォノンを生じさせる前に、検出用光ファイバ15に予備的に音響フォノンを生じさせるための光であるから、サブ光パルスOPsの立ち上がり時刻からメイン光パルスOPmの立ち上がり時刻までの時間は、検出用光ファイバ15における音響フォノンの継続時間以内の時間で適宜に設定され、例えば、5nsや10nsや15nsや20ns等に設定される。またメイン光パルスOPmのパルス幅D1は、所望の空間分解能に応じて適宜に設定されるが、1m以下の高空間分解能を得るために10ns以下に設定される。サブ光パルスOPsの光強度P2とメイン光パルスOPmの光強度P1は、比R=10×log(P1/P2)を定義すると、前記Hのシミュレーションを行って比Rに対するH/(H+H+H)を求め、H/(H+H+H)の値が0.5以上となる比Rの値となるように設定される。最も高精度で高空間分解能に歪み及び/又は温度を検出することができることから、比Rは、H/(H+H+H)のピークを与える値に設定され、これに応じてサブ光パルスOPsの光強度P2とメイン光パルスOPmの光強度P1が設定される。以下の第2乃至第5態様でも同様である。
第2態様では、図7(A)に示すように、メイン光パルスOPmは、第1所定パルス幅D1で第1所定光強度P1の矩形形状であり、サブ光パルスOPsは、第2所定パルス幅D2で第2所定光強度(最大光強度)P2で立ち上がって光強度Pが時間経過に従って徐々に減少する直角三角形状であり、そして、メイン光パルスOPmがサブ光パルスOPsの終了後に略直ちに立ち上がっている。サブ光パルスOPsがこのような波形であるため、サブ光パルスOPsの第2所定光強度P2が図1(C)に示す光パルス前方光OPfの光強度Csと同一であっても、そのエネルギーは、光パルス前方光OPfのエネルギーよりも小さい。
例えば、メイン光パルスOPmは、パルス幅D1が1nsであって光強度P1が0.062であり、サブ光パルスOPsは、パルス幅D2が13nsであって立ち上がりの光強度P2が0.005である。
このような第2態様に係るサブ光パルスOPs及びメイン光パルスOPmを生成するために、光パルス生成部3は、次のように動作する。図6(B)に示すように、まず、第2ドライバ回路35は、第2光強度変調器34の射出光における光強度Pが上記直角三角形状となる直角三角形の電圧パルスを時刻t1(図7(A)の場合では0ns)でAC出力として第2光強度変調器34へ出力し、時刻t1から上記第2所定パルス幅D2(図7(A)の場合では13ns)に対応する時間が経過した時刻t2(図7(A)の場合では13ns)でこの出力を停止する。次に、直ちに(時刻t3(図7(A)の場合では13ns)で、第1ドライバ回路33は、第1光強度変調器32の射出光における光強度Pが上記第1所定光強度P1(図7(A)の場合では0.062)となる電圧値の矩形電圧パルスをAC出力として第1光強度変調器32へ出力し、時刻t3から上記第1所定パルス幅D1(図7(A)の場合では1ns)に対応する時間が経過した時刻t4(図7(A)の場合では14ns)でこの出力を停止する。このように光パルス生成部3が動作することによって、例えば、図7(A)に示す波形のサブ光パルスOPs及びメイン光パルスOPmが生成される。
第3態様では、図8(A)に示すように、メイン光パルスOPmは、第1所定パルス幅D1で第1所定光強度P1の矩形形状であり、サブ光パルスOPsは、第2所定パルス幅D2で光強度Pが第2所定光強度(最大光強度)P2まで時間経過に従って徐々に増加する直角三角形状であり、そして、第1光パルスOPmが第2光パルスOPsの終了後に略直ちに立ち上がっている。サブ光パルスOPsがこのような波形であるため、サブ光パルスOPsの第2所定光強度P2が図1(C)に示す光パルス前方光OPfの光強度Csと同一であっても、そのエネルギーは、光パルス前方光OPfのエネルギーよりも小さい。
例えば、メイン光パルスOPmは、パルス幅D1が1nsであって光強度P1が0.062であり、サブ光パルスOPsは、パルス幅D2が13nsであって立ち下がりの光強度P2が最大光強度であって0.005である。
このような第3態様に係るサブ光パルスOPs及びメイン光パルスOPmを生成するために、光パルス生成部3は、次のように動作する。まず、第2ドライバ回路35は、第2光強度変調器34の射出光における光強度Pが上記直角三角形状となる直角三角形の電圧パルスを時刻t1(図8(A)の場合では0ns)でAC出力として第2光強度変調器34へ出力し、時刻t1から上記第2所定パルス幅D2(図8(A)の場合では13ns)に対応する時間が経過した時刻t2(図8(A)の場合では13ns)でこの出力を停止する。次に、直ちに(時刻t3(図8(A)の場合では13ns)で、第1ドライバ回路33は、第1光強度変調器32の射出光における光強度Pが上記第1所定光強度P1(図8(A)の場合では0.062)となる電圧値の矩形電圧パルスをAC出力として第1光強度変調器32へ出力し、時刻t3から上記第1所定パルス幅D1(図8(A)の場合では1ns)に対応する時間が経過した時刻t4(図8(A)の場合では14ns)でこの出力を停止する。このように光パルス生成部3が動作することによって、例えば、図8(A)に示す波形のサブ光パルスOPs及びメイン光パルスOPmが生成される。
第4態様では、図8(B)に示すように、メイン光パルスOPmは、第1所定パルス幅D1で第1所定光強度P1の矩形形状であり、サブ光パルスOPsは、第2所定パルス幅D2で光強度Pが時間経過に従って第2所定光強度(最大光強度)P2まで徐々に増加してその後時間経過に従って徐々に減少する二等辺三角形状であり、そして、メイン光パルスOPmがサブ光パルスOPsの終了後に略直ちに立ち上がっている。サブ光パルスOPsがこのような波形であるため、サブ光パルスOPsの第2所定光強度P2が図1(C)に示す光パルス前方光OPfの光強度Csと同一であっても、そのエネルギーは、光パルス前方光OPfのエネルギーよりも小さい。
例えば、メイン光パルスOPmは、パルス幅D1が1nsであって光強度P1が0.062であり、サブ光パルスOPsは、パルス幅D2が13nsであってパルスの中央における最大光強度P2が0.005である。
このような第4態様に係るサブ光パルスOPs及びメイン光パルスOPmを生成するために、光パルス生成部3は、次のように動作する。まず、第2ドライバ回路35は、第2光強度変調器34の射出光における光強度Pが上記二等辺三角形状となる二等辺三角形の電圧パルスを時刻t1(図8(B)の場合では0ns)でAC出力として第2光強度変調器34へ出力し、時刻t1から上記第2所定パルス幅D2(図8(B)の場合では14ns)に対応する時間が経過した時刻t2(図8(B)の場合では14ns)でこの出力を停止する。次に、直ちに(時刻t3(図8(B)の場合では14ns)で、第1ドライバ回路33は、第1光強度変調器32の射出光における光強度Pが上記第1所定光強度P1(図8(B)の場合では0.062)となる電圧値の矩形電圧パルスをAC出力として第1光強度変調器32へ出力し、時刻t3から上記第1所定パルス幅D1(図8(B)の場合では1ns)に対応する時間が経過した時刻t4(図8(B)の場合では15ns)でこの出力を停止する。このように光パルス生成部3が動作することによって、例えば、図8(B)に示す波形のサブ光パルスOPs及びメイン光パルスOPmが生成される。
第5態様では、図8(C)に示すように、メイン光パルスOPmは、第1所定パルス幅D1で第1所定光強度P1の矩形形状であり、サブ光パルスOPsは、第2所定パルス幅D2で光強度Pが時間経過に従って第2所定光強度(最大光強度)P2まで徐々に増加してその後時間経過に従って徐々に減少するガウス曲線形状である。そして、サブ光パルスOPsとメイン光パルスOPmとの間には、所定時間が空けられている。よって、サブ光パルスOPsの第2所定パルス幅D2は、サブ光パルスOPs立ち上がりからメイン光パルスOPmの立ち上がりまでの時間よりも短い時間幅である。サブ光パルスOPsがこのような波形であるため、サブ光パルスOPsの第2所定光強度P2が図1(C)に示す光パルス前方光OPfの光強度Csと同一であっても、そのエネルギーは、光パルス前方光OPfのエネルギーよりも小さい。
例えば、メイン光パルスOPmは、パルス幅D1が1nsであって光強度P1が0.062であり、サブ光パルスOPsは、パルス幅D2が5nsであって最大光強度P2が0.005であり、サブ光パルスOPsとメイン光パルスOPmとの間(サブ光パルスOPsの立ち下がりからメイン光パルスOPmの立ち上がりまで)には、4.5nsの時間が空けられている。
このような第5態様に係るサブ光パルスOPs及びメイン光パルスOPmを生成するために、光パルス生成部3は、次のように動作する。まず、第2ドライバ回路35は、第2光強度変調器34の射出光における光強度Pが上記ガウス曲線形状となるガウス曲線形状の電圧パルスを時刻t1(図8(C)の場合では0ns)でAC出力として第2光強度変調器34へ出力し、時刻t1から上記第2所定パルス幅D2(図8(C)の場合では5ns)に対応する時間が経過した時刻t2(図8(C)の場合では5ns)でこの出力を停止する。次に、時刻t2から上記所定時間(図8(C)の場合では4.5ns)に対応する時間が経過した時刻t3(図8(C)の場合では9.5ns)で、第1ドライバ回路33は、第1光強度変調器32の射出光における光強度Pが上記第1所定光強度P1(図8(C)の場合では0.062)となる電圧値の矩形電圧パルスをAC出力として第1光強度変調器32へ出力し、時刻t3から上記第1所定パルス幅D1(図8(C)の場合では1ns)に対応する時間が経過した時刻t4(図8(C)の場合では10.5ns)でこの出力を停止する。このように光パルス生成部3が動作することによって、例えば、図8(C)に示す波形のサブ光パルスOPs及びメイン光パルスOPmが生成される。
第1乃至第5態様に係るサブ光パルスOPs及びメイン光パルスOPmでは、メイン光パルスOPmに時間的に先立つサブ光パルスOPsは、当該サブ光パルスOPsの最大光強度P2がメイン光パルスOPmの光強度P1よりも小さく、そして、その立ち上がりからメイン光パルスOPmの立ち上がりまで前記最大光強度P2で一定の光パルスOPfを考えた場合に、当該サブ光パルスOPsのエネルギーがこの考えた光パルスOPfにおけるエネルギーよりも小さく設定される。このため、ノイズ成分となるHの成分が小さくなり、Hへの影響が抑制される。このため、ブリルアン・ゲイン/ロス・スペクトルのピーク幅が狭められ、中心周波数の測定誤差が小さくなり、より高精度にブリルアン周波数シフトが測定可能となる。その結果、より高精度に、歪み及び/又は温度が測定可能となる。
ここで、第1比較例として、図9(A)に示すように、パルス幅及び光強度が同一の第1及び第2光パルスOPw1、OPw2を備え、第1光パルスOPw1と第2光パルスOPw2との間には、所定時間が空けられている場合(図9(A)の場合では、第1及び第2光パルスOPw1、OPw2は、パルス幅が1nsであって、光強度が0.062であって、所定時間が5nsである。)では、この第1及び第2光パルスOPw1、OPw2と連続光とによるブリルアン・ゲイン・スペクトルは、図9(B)に示すように、比較的強度が大きな複数のピークを持ち、ブリルアン周波数シフトを求めるためのピーク(図9(B)において矢印で示すピーク)の光強度がこのピークの両側のピークにおける強度と殆ど差がないプロファイルである。このため、分布型光ファイバセンサSがブリルアン周波数シフトを求めるためのピークを抽出することが難しい。
一方、本第1乃至第5態様に係るサブ光パルスOPs及びメイン光パルスOPmと連続光とによるブリルアン・ゲイン・スペクトルは、複数のピークを持つが、ブリルアン周波数シフトを求めるためのピークの強度がこのピークの両側のピークにおける強度よりも明らかに大きいプロファイルである。例えば、第1態様の場合におけるブリルアン・ゲイン・スペクトルが図5(B)に示されており、第2態様の場合におけるブリルアン・ゲイン・スペクトルが図7(B)に示されている。なお、これら各図において、ブリルアン周波数シフトを求めるためのピークが矢印で示されている。このため、分布型光ファイバセンサSがブリルアン周波数シフトを求めるためのピークを抽出することがより容易となる。
また、第2比較例として、図10(A)に示すように、前記特許文献1に開示の階段状光パルスの場合(図10(A)の場合では、パルス幅が13nsであって光強度が0.005である光パルス前方光OPfの後にパルス幅が1nsであって光強度が0.062である光パルスOPを備える階段状光パルス)では、この階段状光パルスと連続光とによるブリルアン・ゲイン・スペクトルは、図10(B)に示すプロファイルとなり、矢印で示すブリルアン周波数シフトを求めるためのピークの半値幅が本第1乃至第5態様に係るサブ光パルスOPs及びメイン光パルスOPmと連続光とによるブリルアン・ゲイン・スペクトルにおけるブリルアン周波数シフトを求めるためのピークの半値幅よりも大きい(広い)。このため、本第1乃至第5態様に係るサブ光パルスOPs及びメイン光パルスOPmと連続光とによるブリルアン・ゲイン・スペクトルの方がより高精度に歪み及び/又は温度が計測可能である。
なお、上述の実施形態における分布型光ファイバセンサSは、サブ光パルス及びメイン光パルスの周波数を固定し、連続光の周波数を所定周波数範囲で掃引することによってブリルアン・ゲイン/ロス・スペクトルを測定するものである。このため、第1光源1の発光素子は、必ずしも周波数可変半導体レーザである必要はなく、周波数固定の半導体レーザであってもよい。
また、上述の実施形態における分布型光ファイバセンサSでは、サブ光パルス及びメイン光パルスの周波数が固定され、連続光の周波数が所定の周波数範囲で掃引されてブリルアン・ゲイン/ロス・スペクトルが測定されたが、連続光の周波数が固定され、サブ光パルス及びメイン光パルスの周波数が所定の周波数範囲で掃引されてブリルアン・ゲイン/ロス・スペクトルが測定されてもよい。
そして、上述の実施形態における光パルス生成部3は、入射光を2個に分岐し、一方の入射光から第2光強度変調器34でサブ光パルスを生成し、他方の入射光から第1光強度変調器32でメイン光パルスを生成し、これらサブ光パルス及びメイン光パルスを合波するように構成されたが、サブ光パルスに対応する形状のサブ電圧パルスと、メイン光パルスに対応する波形のメイン電圧パルスとを電気的に合成し、この電気的に合成されたサブ電圧パルスとメイン電圧パルスとをAC出力として光強度変調器に入力することで、サブ光パルス及びメイン光パルスを生成するように構成されてもよい。
また、上述の実施形態では、ブリルアン・ゲイン/ロス・スペクトラム時間領域分析とブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析とが一体で実行可能なように分布型光ファイバセンサSが構成されたが、ブリルアン・ゲイン/ロス・スペクトラム時間領域分析が実行可能な分布型光ファイバセンサとブリルアン・ゲイン/ロス・スペクトラム時間領域反射分析が実行可能な分布型光ファイバセンサとで別体で構成されても良い。
そして、上述の実施形態において、ブリルアン時間領域検出計では、第3入力端子から入射された入射光は、光電変換を行う受光素子を備える受光回路によって受光されるが、その受光回路の回路構成から検出用光ファイバ15に入射される連続光は、その光強度が図11に示すように変調されても良い。
図11は、検出用光ファイバに入射される連続光の光強度変調を説明するための図である。図11(A)は、検出用光ファイバに入射される連続光の波形を示し、その横軸は、時間であり、その縦軸は、光強度である。図11(B)は、受光回路の一構成例を示す回路図である。図11(C)は、受光回路の周波数特性を示す図であり、その横軸は、周波数であり、その縦軸は、受光回路の出力である。
図11(B)に示すように、受光回路40は、例えば、光電変換素子のホトダイオード41と、抵抗素子42と、コンデンサ43、45と、増幅器44と、ハイパスフィルタ(HPF)46とを備えて構成される。ホトダイオード41は、直列に接続される電流電圧変換用の抵抗素子42を介して接地され、直列接続のホトダイオード41及び抵抗素子42には、バイアス電圧Vccが印加される。ホトダイオード41と抵抗素子42との接続点には、直流成分カット用のコンデンサ43を介して増幅器44が接続される。増幅器44には、直流成分カット用のコンデンサ43を介してハイパスフィルタ46が接続される。このような受光回路40では、ホトダイオード41がブリルアン散乱現象に係る光を受光すると、受光光量に応じた光電流が抵抗素子42に流れ、抵抗素子42で電流電圧変換される。その電流電圧変換された電圧出力は、コンデンサ43を介して増幅器44に入力され、増幅器44で増幅される。増幅器44の出力は、コンデンサ45を介してハイパスフィルタ46に入力され、予め設定された所定の低周波数範囲がカットされる。
ここで、検出用光ファイバ15に入射される連続光が光強度変調されることなく、ホトダイオード41、抵抗素子42、コンデンサ43及び増幅器44で構成される受光回路で受光されると、当該受光回路の出力が図11(C)に示すように低周波数領域で抵抗素子42の抵抗値Rとコンデンサ43の容量Cとで決まる時定数で徐々に立ち上がるため、低周波数領域での測定が良好とはならない場合がある。
そこで、検出用光ファイバに入射される連続光は、図11(A)に示すように、抵抗素子42の抵抗値Rとコンデンサ43の容量Cとで決まる時定数に応じた周波数で所定の振幅で光強度変調される。そして、この周波数以下の低周波数成分がハイパスフィルタ46でカットされるように、上述のように受光回路が構成される。
このように構成されると、受光回路では、図11(C)に示すように、抵抗素子42の抵抗値Rとコンデンサ43の容量Cとで決まる時定数で徐々に立ち上がる領域の出力がカットされ、見かけ上、ダイレクトに出力値が得られる。
本実施形態では、光スイッチ22が光強度変調器を備えて構成されているので、光スイッチ22によって第2光源20から射出された連続光が所定の光強度を中心に所定の振幅で光強度変調され、検出用光ファイバ15に入射される。例えば、光スイッチ22では、連続光が100kHzで光強度変調され、ハイパスフィルタ46の遮断周波数が100kHzに設定される。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。従って、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
ブリルアン散乱現象の理論解析を説明するための図である。 実施形態における分布型光ファイバセンサの構成を示すブロック図である。 分布型光ファイバセンサにおける光パルス生成部の構成を示すブロック図である。 第1及び第2光源が発光する各光の周波数の調整を説明するための図である。 第1態様に係るサブ光パルス及びメイン光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。 第1及び第2光強度変調器に入力される第1及び第2ドライバ回路のAC出力を示す図である。 第2態様に係るサブ光パルス及びメイン光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。 第3乃至第5態様に係るサブ光パルス及びメイン光パルスの波形を示す図である。 第1比較例に係る光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。 第2比較例に係る光パルスの波形、及び、ブリルアン・ゲイン・スペクトルを示す図である。 検出用光ファイバに入射される連続光の光強度変調を説明するための図である。 背景技術に係る分布型光ファイバセンサを示す図である。 ブリルアン・ゲイン・スペクトルを示す図である。
符号の説明
S 分布型光ファイバセンサ
3 光パルス生成部
13 制御処理部
14 ブリルアン時間領域検出計
16 温度検出部
17 基準用光ファイバセンサ
31、36 偏光保持光カプラ
32、34 第1及び第2光強度変調器
33、35 第1及び第2ドライバ回路

Claims (10)

  1. ブリルアン散乱現象を利用して歪み及び/又は温度を測定する分布型光ファイバセンサにおいて、
    メイン光パルスと、前記メイン光パルスに先立ち、最大光強度が前記メイン光パルスの光強度よりも小さく、エネルギーが立ち上がりから前記メイン光パルスの立ち上がりまで前記最大光強度で一定の光パルスにおけるエネルギーよりも小さいサブ光パルスとを生成する光パルス光源と、
    連続光を生成する連続光光源と、
    前記サブ光パルス及び前記メイン光パルスと前記連続光とが入射され、前記サブ光パルス及び前記メイン光パルスと前記連続光との間でブリルアン散乱現象が生じる検出用光ファイバと、
    前記検出用光ファイバから射出されるブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定するブリルアン時間領域検出計とを備えること
    を特徴とする分布型光ファイバセンサ。
  2. 前記サブ光パルス及び前記メイン光パルスは、前記検出用光ファイバの一方端から入射し、
    前記連続光は、前記検出用光ファイバの他方端から入射し、
    前記ブリルアン時間領域検出計は、前記検出用光ファイバの一方端から射出したブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定すること
    を特徴とする請求項1に記載の分布型光ファイバセンサ。
  3. 前記サブ光パルス及び前記メイン光パルスは、前記検出用光ファイバの一方端から入射し、
    前記連続光は、前記検出用光ファイバの一方端から入射し、
    前記検出用光ファイバは、伝播する前記連続光をその他方端で反射し、
    前記ブリルアン時間領域検出計は、前記検出用光ファイバの一方端から射出したブリルアン散乱現象に係る光に基づいてブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルを求め、求めた前記ブリルアン・ゲイン・スペクトル又はブリルアン・ロス・スペクトルに基づいて前記検出用光ファイバに生じた歪み及び/又は温度を測定すること
    を特徴とする請求項1に記載の分布型光ファイバセンサ。
  4. 前記サブ光パルスのパルス幅は、立ち上がりから前記メイン光パルスの立ち上がりまでの時間よりも短い時間幅であること
    を特徴とする請求項1乃至請求項3の何れか1項に記載の分布型光ファイバセンサ。
  5. 前記サブ光パルスの光強度は、時間経過に従って減少すること
    を特徴とする請求項1乃至請求項3の何れか1項に記載の分布型光ファイバセンサ。
  6. 前記サブ光パルスの光強度は、時間経過に従って増加すること
    を特徴とする請求項1乃至請求項3の何れか1項に記載の分布型光ファイバセンサ。
  7. 前記サブ光パルスの光強度は、時間経過に従って増加した後に減少すること
    を特徴とする請求項1乃至請求項3の何れか1項に記載の分布型光ファイバセンサ。
  8. 前記光パルス光源及び前記連続光光源は、
    線幅の狭い所定の周波数であって略一定の光強度である光を連続的に発光する第1及び第2発光素子と、
    前記第1及び第2発光素子の各温度を実質的に一定にそれぞれ保持する第1及び第2温度制御部と、
    前記第1及び第2発光素子が発光する前記各光の各周波数を実質的に一定にそれぞれ保持する第1及び第2周波数制御部と、
    前記第1及び第2発光素子が発光する前記各光の一部がそれぞれ入射され、ブリルアン散乱現象を起こす第1及び第2光における周波数差と前記ブリルアン散乱現象に係る光の光強度との関係が既知の基準用光ファイバと、
    前記基準用光ファイバから射出したブリルアン散乱現象に係る光の光強度と既知の前記関係とに基づいて前記第1及び第2発光素子が発光する前記各光の周波数差が所定の周波数差となるように、前記第1周波数制御部及び/又は前記第2周波数制御部を制御する周波数設定部とを備えること
    を特徴とする請求項1乃至請求項7の何れか1項に記載の分布型光ファイバセンサ。
  9. 前記光パルス光源は、
    線幅の狭い所定の周波数であって略一定の第1光強度である光を連続的に発光する発光素子と、
    前記発光素子が発光する光を互いに光強度が異なるように2個に分岐する光分岐部と、
    前記光分岐部で分岐され光強度が相対的に大きい方の光の光強度を変調する第1光強度変調器と、
    前記光分岐部で分岐され光強度が相対的に小さい方の光の光強度を変調する第2光強度変調器と、
    前記第1及び第2光強度変調器でそれぞれ変調された各光を合波する光合波部とを備え、
    前記第1光強度変調器は、前記メイン光パルスを生成し、
    前記第2光強度変調器は、前記サブ光パルスを生成すること
    を特徴とする請求項1乃至請求項8の何れか1項に記載の分布型光ファイバセンサ。
  10. 前記検出用光ファイバは、歪み及び/又は温度を測定すべき計測対象物に固定されること
    を特徴とする請求項1乃至請求項9の何れか1項に記載の分布型光ファイバセンサ。
JP2007133074A 2007-05-18 2007-05-18 分布型光ファイバセンサ Active JP4896814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133074A JP4896814B2 (ja) 2007-05-18 2007-05-18 分布型光ファイバセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133074A JP4896814B2 (ja) 2007-05-18 2007-05-18 分布型光ファイバセンサ

Publications (2)

Publication Number Publication Date
JP2008286697A JP2008286697A (ja) 2008-11-27
JP4896814B2 true JP4896814B2 (ja) 2012-03-14

Family

ID=40146549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133074A Active JP4896814B2 (ja) 2007-05-18 2007-05-18 分布型光ファイバセンサ

Country Status (1)

Country Link
JP (1) JP4896814B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607621A (zh) * 2012-03-29 2012-07-25 中国科学院上海光学精密机械研究所 同时检测温度和应变的分布式光纤布里渊传感装置和方法
KR20220075072A (ko) * 2020-11-27 2022-06-07 (주)노티스 광을 이용한 온도 측정 장치 및 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936057B2 (ja) * 2012-08-27 2016-06-15 国立大学法人 東京大学 光ファイバ特性測定装置及び光ファイバ特性測定方法
ITBO20130142A1 (it) 2013-03-29 2014-09-30 Filippo Bastianini Interrogatore per sensori distribuiti a fibra ottica per effetto brillouin stimolato impiegante un laser brillouin ad anello sintonizzabile rapidamente
JP6266384B2 (ja) * 2014-03-04 2018-01-24 東京エレクトロン株式会社 温度測定装置及び温度測定方法
US9823098B2 (en) 2014-05-05 2017-11-21 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
CN115060187B (zh) * 2022-08-18 2022-12-02 天津市计量监督检测科学研究院 一种分布式光纤应变传感性能检测系统与方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524431B2 (ja) * 1998-06-19 2004-05-10 岸田 欣増 測定装置
JP3502329B2 (ja) * 2000-04-24 2004-03-02 日本電信電話株式会社 光ファイバひずみ計測方法およびその装置
US7170590B2 (en) * 2002-11-01 2007-01-30 Kinzo Kishida Distributed optical fiber sensor system
US7719666B2 (en) * 2004-06-25 2010-05-18 Neubrex Co., Ltd. Distributed optical fiber sensor
JP5021221B2 (ja) * 2006-03-09 2012-09-05 ニューブレクス株式会社 分布型光ファイバセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607621A (zh) * 2012-03-29 2012-07-25 中国科学院上海光学精密机械研究所 同时检测温度和应变的分布式光纤布里渊传感装置和方法
KR20220075072A (ko) * 2020-11-27 2022-06-07 (주)노티스 광을 이용한 온도 측정 장치 및 방법
KR102549446B1 (ko) * 2020-11-27 2023-06-30 (주)노티스 광을 이용한 온도 측정 장치 및 방법

Also Published As

Publication number Publication date
JP2008286697A (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4463818B2 (ja) 分布型光ファイバセンサ
US8699009B2 (en) Distributed optical fiber sensor
JP5322162B2 (ja) 分布型光ファイバ圧力センサ
JP5021221B2 (ja) 分布型光ファイバセンサ
JP4896814B2 (ja) 分布型光ファイバセンサ
JP5213125B2 (ja) 分布型光ファイバセンサ
CN107367734B (zh) 测量装置
JP4758227B2 (ja) 分布型光ファイバセンサ
JP5654891B2 (ja) 光ファイバ特性測定装置及び方法
US8693512B2 (en) Frequency referencing for tunable lasers
EP3141880B1 (en) Fiber measurement with pulse shaping
JP2013200305A (ja) 光センサアレイ、光学装置、および光バスを構成するための方法
US5511086A (en) Low noise and narrow linewidth external cavity semiconductor laser for coherent frequency and time domain reflectometry
US20220163355A1 (en) Brillouin distributed optical fiber sensor capable of measuring long measuring distance
KR20130114321A (ko) 수직 공진 표면발광 레이저를 이용한 물리량 측정 시스템
JP5092910B2 (ja) 光変調装置及び光ファイバ測定装置
US5864400A (en) Method of and device for measuring return losses in optical fiber components
Fernández-Ruiz et al. Statistical Analysis of SNR in Chirped-pulse ΦOTDR
JPH11257914A (ja) バルグ試料における光学的性質の測定のための干渉計
US20210199782A1 (en) Apparatus and method for testing coupled ac circuit
Youn et al. High-resolution distributed analysis on Brillouin dynamic grating by differential measurement and matched filtering
RU2214584C1 (ru) Оптический бриллюэновский рефлектометр
US20130083325A1 (en) Light source device
JP5521178B2 (ja) 時間ゲート付き光検出装置およびこれを用いた多点計測システム
KR20220071936A (ko) 장거리 측정이 가능한 브릴루앙 분포형 광섬유 센서

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250