JP4890402B2 - 有機発光素子 - Google Patents

有機発光素子 Download PDF

Info

Publication number
JP4890402B2
JP4890402B2 JP2007246042A JP2007246042A JP4890402B2 JP 4890402 B2 JP4890402 B2 JP 4890402B2 JP 2007246042 A JP2007246042 A JP 2007246042A JP 2007246042 A JP2007246042 A JP 2007246042A JP 4890402 B2 JP4890402 B2 JP 4890402B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
value
intermediate layer
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246042A
Other languages
English (en)
Other versions
JP2008108712A (ja
Inventor
正兒 木下
学 飛世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007246042A priority Critical patent/JP4890402B2/ja
Publication of JP2008108712A publication Critical patent/JP2008108712A/ja
Application granted granted Critical
Publication of JP4890402B2 publication Critical patent/JP4890402B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は外部量子効率が改良された有機発光素子に関する。特に、フルカラ−ディスプレイ、バックライト、照明光源等の面光源やプリンタ−等の光源アレイ等に有効に利用できる有機発光素子に関する。
有機発光素子(以後、有機EL素子と略記する。)は、発光層もしくは発光層を含む複数の有機機能層と、これらの層を挟んだ対向電極とから構成されている。有機EL素子は、陰極から注入された電子と陽極から注入された正孔とが発光層において再結合し、生成した励起子からの発光、及び/又は前記励起子からエネルギー移動して生成した他の分子の励起子からの発光を利用した、発光を得るための素子である。
これまで有機EL素子は、機能を分離した積層構造を用いることにより、輝度及び素子効率が大きく改善され発展してきた。例えば、正孔輸送層と発光兼電子輸送層を積層した二層積層型素子や正孔輸送層と発光層と電子輸送層とを積層した三層積層型素子や、正孔輸送層と発光層と正孔阻止層と電子輸送層とを積層した四層積層型素子がよく用いられる(例えば、非特許文献1参照。)。
しかしながら、有機EL素子の実用化には未だ多くの課題が残されている。第1に高い外部量子効率を達成すること、第2に高い駆動耐久性を達成することである。
例えば、発光層と正孔輸送層との間に0.1nm〜5nmの界面層をバリア層として設け、正孔の移動を遅くすることによって正孔と電子の移動バランスを調整して外部量子効率を高める試みが提案されている(例えば、特許文献1参照。)。しかしながら、この手段では、キャリア総体の移動は低下するので輝度が低下し、駆動電圧が増加し、また、キャリアの素子内滞留時間が長くなるために駆動耐久性が低下する問題が懸念される。
また、一つの発光ユニットを多層に積層した構成が知られている。例えば、複数の有機発光素子の発光ユニットを絶縁層で隔離し、各発光ユニットにそれぞれ対向する電極を配した構成が開示されている(例えば、特許文献2参照。)。しかしながら、この構成では、発光ユニット間の絶縁層および電極が発光の取り出しを妨げるため、実質的に各発光ユニットから発光が十分に利用することができない。また、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。
また、マルチフォトンと呼ばれる発光層と機能層を含む一つの発光ユニットを多層に積層した構成が知られている。前記マルチフォトンの有機EL素子とは、複数の発光層が、互いに電気絶縁性電荷発生層によって隔離されているものである(例えば、特許文献3参照。)。しかしながら、この構成においても、発光ユニットが単に複数積層されているだけであって、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。
高い外部量子効率と高い駆動耐久性とを両立させることは、実用的に有用な有機EL素子を設計する上で極めて重要な課題であり、常に改良を求められている課題であった。
サイエンス(Science),267巻,3号,1995年,1332頁 特開2003−123984号公報 特開平6−310275号公報 特開2003−45676号公報
本発明は、外部量子効率と駆動耐久性が改良された有機EL素子を提供することを目的とする。
本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に少なくとも3層に分割され、該分割された発光層は各々独立に発光材料とホスト材料とを含有し、該分割された発光層間に電子ブロック材料を含有する中間層を有し、該中間層に含有される前記電子ブロック材料のEa値(電子親和力)が、該中間層の陰極側に隣接する前記分割された発光層に含有される前記ホスト材料のEa値よりも小さく、該中間層に含有される前記電子ブロック材料のEa値が該中間層の陽極側に隣接する発光層に含有されるホスト材料のEa値以下であり、且つ、前記陰極側に近い前記中間層に含有される前記電子ブロック材料のEa値と該中間層の前記陰極側に隣接する前記分割された発光層に含有されるホスト材料のEa値との差△Ea値よりも、陽極側に近い前記中間層に含有される前記電子ブロック材料のEa値とその前記陰極側に隣接する前記発光層に含有されるホスト材料のEa値との差△Ea値が大きいことを特徴とする有機発光素子。
<2> 前記△Ea値が前記△Ea値より0.05eV以上1.5eV以下大きいことを特徴とする<1>に記載の有機発光素子。
<3> 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に少なくとも3層に分割され、該分割された発光層は各々独立に発光材料とホスト材料とを含有し、該分割された発光層間にホールブロック材料を含有する中間層を有し、該中間層に含有される前記ホールブロック材料のIp値(イオン化ポテンシャル)が、該中間層の陽極側に隣接する前記分割された発光層に含有されるホスト材料のIp値よりも大きく、該中間層に含有される前記ホールブロック材料のIp値が前記中間層の陰極側に隣接する発光層に含有されるホスト材料のIp値以上であり、且つ、陰極側に近い前記中間層の前記ホールブロック材料のIp値と該中間層の前記陽極側に隣接する前記発光層に含有される前記ホスト材料のIp値との差△Ip値よりも、前記陽極側に近い前記中間層の前記ホールブロック材料のIp値とその前記陽極側に隣接する前記発光層に含有される前記ホスト材料のIp値との差△Ip値が小さいことを特徴とする有機発光素子。
<4> 前記△Ip値が前記△Ip値より0.05eV以上1.5eV以下小さいことを特徴とする<3>に記載の有機発光素子。
<5> 前記発光層の発光材料が燐光材料であることを特徴とする<1>〜<4>のいずれかに記載の有機発光素子。
<6> 前記中間層が発光材料を含有することを特徴とする<1>〜<5>のいずれかに記載の有機発光素子。
<7> 前記中間層が含有する発光材料が燐光材料であることを特徴とする<6>に記載の有機発光素子。
本発明により、外部量子効率が改良された有機EL素子が提供される。さらに、外部量子効率の改良と共に駆動耐久性が改良された有機EL素子が提供される。
本発明の有機EL素子は、一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に少なくとも3層に分割され、該分割された発光層間に電子ブロック材料を含有する中間層を少なくとも2層有し、前記発光層のホスト材料のEa値(電子親和力)よりも前記発光層の陽極側に隣接する中間層の前記電子ブロック材料のEa値が小さく、その差△Ea値が陰極に近い前記中間層よりも陽極に近い前記中間層においてより大きく、該中間層に含有される前記電子ブロック材料のEa値が該中間層の陽極側に隣接する発光層に含有されるホスト材料のEa値以下である。
本発明における陰極に近い前記中間層の△Ea値よりも陽極に近い前記中間層の△Ea値が、好ましくは0.05eV以上1.5eV以下大きい。より好ましくは0.1eV以上1.3eV以下大きい。0.05eVより小さいと陰極に近い前記中間層の電子ブロック能と陽極に近い前記中間層の電子ブロック能に差が無くなり本発明の効果が十分に得られないことがあり、1.5eVを超えると陽極に近い前記中間層の電子ブロック効果が強すぎて電子蓄積による界面劣化を引き起こすことがあり、好ましくない。
本発明の有機EL素子の別の態様は、一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層のホスト材料のIp値(イオン化ポテンシャル)よりも前記発光層の陰極側に隣接する中間層の前記ホールブロック材料のIp値が大きく、その差△Ip値が陽極に近い前記中間層よりも陰極に近い前記中間層においてより大きく、該中間層に含有される前記ホールブロック材料のIp値が該中間層の陰極側に隣接する発光層に含有されるホスト材料のIp値以上である。
本発明における陰極に近い前記中間層の△Ip値よりも陽極に近い前記中間層の△Ip値が、好ましくは0.05eV以上1.5eV以下小さい。より好ましくは0.1eV以上1.3eV以下小さい。この差が0.05eVより小さいと陰極に近い前記中間層のホールブロック能と陽極に近い前記中間層のホールブロック能に差が無くなり本発明の効果が十分に得られないことがあり、1.5eVを超えると陰極に近い前記中間層のホールブロック効果が強すぎてホール蓄積による界面劣化を引き起こすことがあり、好ましくない。
本発明の有機EL素子が4層以上に細分化され、中間層を3層以上有する場合は、その中の任意の2層が上記条件を満たせば良い。好ましくは、少なくとも3層の中間層の△Ea値が陰極に近い前記中間層よりも陽極に近い前記中間層において順により大きい。もしくは、少なくとも3層の中間層の△Ip値が陽極に近い前記中間層よりも陰極に近い前記中間層において順により大きい。
本発明者らは、発光素子における外部量子効率の低い原因を解析した結果、主な発光は発光層と隣接層の極く限られた界面付近で起こっていること、また、電荷がこの極限られた界面に局在化する結果、再結合に至るまでに徐々に劣化を引き起こすことも原因と推定された。
本発明者らは改良手段を鋭意探索の結果、発光層を厚み方向に複数の薄層の発光層に細分し、細分された各発光層間に電荷ブロック能をもつ中間層を配し、かつ中間層が電子ブロック能をもつ場合はその電子ブロック能を陽極に近い中間層が大きく、陰極に近い中間層が小さくし、ホールブロック能をもつ場合はそのホールブロック能を陽極に近い中間層が小さく、陰極に近い中間層が大きくすることにより、改良出来ることを見出した。即ち、電子と正孔の局在化する領域間の距離が短縮され再結合の速度が速まり、また、各発光層からのキャリアーの漏れが改善され、発光効率が向上した。また、各薄層の発光ユニットを連結するのは中間層であり、駆動抵抗を大きく高めることなく、かつ各素子で発生した光を効率よく外部に取り出すことが可能となった。
好ましくは、さらに中間層に発光材料を含有させることにより、該層が発光することも可能であって、より高輝度の発光を得ることが可能である。
好ましくは、前記発光層が含有する発光材料が燐光材料である。さらに、好ましくは、前記中間層が含有する発光材料が燐光材料である。
1.発光層
本発明の有機EL素子は、一対の電極間に、少なくとも発光層を挟持してなる有機EL素子であって、前記発光層が厚み方向に分割され、分割された各発光層間に中間層を有する。該中間層は電荷ブロック材料を含有し電荷ブロック層として機能する。本願では厚み方向に細分された各発光層を「単位発光層」と以後記載する。
本発明における単位発光層の厚みは、好ましくは2nm以上50nm以下、より好ましくは2nm以上20nm以下、さらに好ましくは2nm以上10nm以下である。
本発明における発光層は、好ましくは、厚み方向に3層以上30層以下、より好ましくは、4層以上15層以下に細分される。
発光層が3層の単位発光層に分割された場合、2層の中間層を有する。陰極側に隣接する中間層の△Eaを△Ea、陽極側に隣接する中間層の△Eaを△Eaとしたとき、△Ea>△Eaであり、陰極側より、陽極側が大きい。一方、陰極側に隣接する中間層の△Ipを△Ip、陽極側に隣接する中間層の△Ipを△Ipとしたとき、△Ip<△Ipと陰極側よりも陽極側が小さい。
発光層が4層の単位発光層に分割された場合、3層の中間層を有する。△Eaは、△Ea>△Ea>△Eaと陰極側から陽極側に向かって大きいことが好ましい。
△Ipは、△Ip<△Ip<△Ipと陰極側から陽極側に向かって小さいことが好ましい。
本発明における単位発光層は、中間層によって連結される。好ましくは、少なくとも厚み方向に4層の単位発光層とそれらを連結する3層の中間層を有する。
単位発光層は少なくとも一種の発光材料と少なくとも一種のホスト材料とを含む。好ましくは、前記単位発光層が発光材料として燐光材料を含有する。詳細については後述する。
本発明における中間層は、好ましくは、発光材料を含有する。前記電荷ブロック材料としてホールブロック材料または電子ブロック材料を含有する。
好ましくは、前記中間層が発光材料として燐光材料を含有する。
(中間層)
本発明における中間層についてより詳細に説明する。
本発明における中間層は、電荷ブロック層として機能する。
本発明における電荷ブロック層として機能する中間層とは、陰極側から発光層側に輸送された電子が、陽極側に通りぬけることを抑制するか、または、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを抑制する機能を有する層であり、完全にキャリアの移動を止めるための層ではない。
本発明における中間層は、さらに発光材料を含有することが好ましい。
1)中間層内の電子ブロック材料
本発明においては、単位発光層のホスト材料のEa値よりも前記単位発光層の陽極側に隣接する中間層の電子ブロック材料のEa値が小さく、さらにその差△Ea値が陰極に近い前記中間層よりも陽極に近い前記中間層においてより大きい。
△Ea = Ea(ホスト材料)− Ea(電子ブロック材料)
△Ea>0
陽極に近い中間層2、および陰極に近い中間層1としたとき、△Ea>△Eaである。中間層が3層以上存在する場合、追加される中間層の△Eaは、△Eaと△Eaの間にあることが好ましい。
これらの条件を満足する電子ブロック材料は、前記△Eaの関係を満たせば特に限定はされないが、具体的には、ピロール誘導体、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、および有機シラン誘導体などを挙げることができる。
2)中間層内のホールブロック材料
本発明の中間層に用いられるホールブロック材料は、単位発光層のホスト材料のIp値よりも前記単位発光層の陰極側に隣接する中間層のホールブロック材料のIp値が大きく、その差△Ip値が陽極に近い前記中間層よりも陰極に近い前記中間層においてより大きい。
△Ip = Ip(ホールブロック材料) − Ip(ホスト材料)
△Ip>0
陰極に近い中間層1、および陽極に近い中間層2としたとき、中間層1の△Ip及び中間層2の△Ipは、△Ip>△Ipである。中間層が3層以上存在する場合、追加される中間層の△Ipは、△Ipと△Ipの間にあることが好ましい。
これらの条件を満足するホールブロック材料は、前記△Ipの関係を満たせば特に限定はされないが、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
3)中間層の構成
本発明における中間層を構成する材料の割合は、一般的に、電荷ブロック材料が60質量%〜100質量%、発光材料が0質量%〜40質量%あることが好ましく、電荷ブロック材料が70質量%〜100質量%、発光材料が0質量%〜30質量%であることが好ましく、電荷ブロック材料が80質量%〜100質量%、発光材料が0質量%〜20質量%であることが更に好ましい。
電荷ブロック材料が60質量%を下回ると電荷のブロック性能が殆どなくなるため外部量子効率の向上効果が現れない問題があり好ましくない。
4)中間層の厚み
本発明における中間層の厚さは、駆動電圧を下げるため、一般的に3nm〜100nmであることが好ましく、5nm〜50nmであることがより好ましい。
厚みが100nmを超えるとキャリアの移動が大きく阻害され駆動電圧が上がる問題が生じるので好ましくない。厚みが3nmを下回ると層の形成が不十分となり中間層が電荷ブロック層としての機能を部分的あるいは全面的に失うので好ましくない。
5)中間層の層数
本発明における中間層の層数は、2〜29であることが好ましく、より好ましくは3〜14である。
(発光層の分割)
本発明に用いられる発光層の分割について説明する。各発光層の組成については後述の発光層の説明で詳細に説明する。
本発明の構成においては、発光層は厚み方向に3層以上の単位発光層に細分化され、好ましくは、3層以上30層以下、より好ましくは、4層以上15層以下の単位発光層に細分される。
本発明における単位発光層の厚みが2nm以上50nm以下、より好ましくは2nm以上20nm以下、さらに好ましくは2nm以上10nm以下と極めて薄層である。
本発明における単位発光層の厚みが2nmより小さいと十分な発光が得られず、50nmを超えると発光層の細分化の効果が十分に発揮できない。
本発明における多層の発光層は、互いに同一の波長の光を発光する材料構成の発光層であっても、互いに異なる波長の光を発光する材料構成の発光層であっても良い。例えば、同一の波長の光を発光する材料構成の発光層であれば、高効率の同一波長の発光を取り出すことができる。一方、互いに異なる波長の光を発光する材料構成の発光層の場合、それぞれの発光波長の組合せによって所望の色調の発光を取り出すことも、あるいは白色発光を得ることも出来る。
(分割された層構成)
図面により層構成を説明する。図1〜3に示した層構成は、本願の意図を説明するのに必要な層のみを示している。発光素子として必要であっても本願の説明に直接必要ではない要素は省略してある。
図1は比較の発光素子の層構成の概略図である。基板(図示していない)上にITO等からなる陽極電極1を有し、その上に順に正孔注入層2、正孔輸送層3、発光層4、電子輸送層5、電子注入層6、およびアルミニウム等の金属による陰極7を配する。
図2は本願の発光素子の一例であり、発光層が第1発光層4a、第2発光層4bおよび第3発光層4cの3つに分割され、間に中間層8aおよび8bを配した構成である。中間層8aおよび8bは、電子ブロック材料を含有する。図2における3つの発光層および2つの中間層を含む総厚みは、図1における発光層4とほぼ同等である。
図3は本願の別の層構成の例を示す。発光層は4a、4b、4c、および4dに4分割され、各分割された発光層の間にそれぞれ中間層8a、8b、および8cを配する。中間層はホールブロック材料を含有する。図3における4つの分割された発光層と3つの中間層を含めた総厚みは、図1における発光層とほぼ同等である。
2.有機EL素子
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び/又は発光層と電子輸送層との間に、電子輸送性中間層を有していても良い。また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。
本発明の有機電界発光素子における有機化合物層の好適な態様は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(2)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、中間層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(3)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、中間層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)を有する態様である。
上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有することが好ましい。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能及び正孔をブロックする機能の少なくとも一方を有することが好ましい。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層の少なくとも一方は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
本発明における有機EL素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明または半透明電極、発光層、および金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
別の好ましい態様では、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。
第一の態様の場合の計算式は特開平9−180883号明細書に記載されている。第2の態様の場合の計算式は特開2004−127795号明細書に記載されている。
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
次に、本発明の発光素子を構成する要素について、詳細に説明する。
(発光層)
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性中間層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性中間層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層の各層には、少なくとも一種の発光性ドーパントとホスト材料とを含有することが好ましい。
本発明における発光層に含有する発光性ドーパントとホスト材料としては、一重項励起子からの発光(蛍光)が得られる蛍光発光性ドーパントとホスト材料との組み合せでも、三重項励起子からの発光(燐光)が得られる燐光発光性ドーパントとホスト材料との組み合せでもよい。
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
本発明における発光性ドーパントは、更に前記ホスト材料との間で、1.2eV>ホストのIpと発光性ドーパントのIpの差>0.2eV、及び1.2eV>ホストのEaと発光性ドーパントのEaの差>0.2eVの少なくとも一方の関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
《燐光発光性ドーパント》
燐光発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
遷移金属原子としては、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、カルベン配位子、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
これらの中でも、発光材料の具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、特開2001−247859、特願2000−33561、特開2002−117978、特開2002−225352、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特願2005−75341等の特許文献に記載の燐光発光化合物などが挙げられる。
《蛍光発光性ドーパント》
蛍光発光材料としては、例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、ペリレン誘導体、ペリノン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、芳香族ジメチリデン化合物、8−キノリノール誘導体の金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、及びポリフルオレン誘導体等の高分子化合物等が挙げられる。これらは1種または2種以上を混合して用いることができる。
これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。
上記の中でも、本発明で用いる発光性ドーパントとしては、外部量子効率、耐久性の観点からD−2〜D−19、D−24〜D−31が好ましく、D−2〜D−8、D−12、D−14〜D−19、D−24〜D−27、またはD−28〜D−31がより好ましく、D−24〜D−27、またはD−28〜D−31が更に好ましい。
発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜30質量%含有されるが、耐久性、外部量子効率の観点から2質量%〜30質量%含有されることが好ましく、5質量%〜30質量%含有されることがより好ましい。
(ホスト材料)
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト材料(電子輸送性ホストと記載する場合がある)を用いることができる。
《正孔輸送性ホスト》
本発明の有機層に用いられる正孔輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
このような正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、カルバゾール、アザカルバゾール、インドール、アザインドール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
中でも、インドール誘導体、カルバゾール誘導体、アザインドール誘導体、アザカルバゾール誘導体、芳香族第三級アミン化合物、またはチオフェン誘導体が好ましく、特に分子内にカルバゾール骨格および/またはインドール骨格および/または芳香族第三級アミン骨格を複数個有するものが好ましい。
このような正孔輸送性ホストとしての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、およびターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、およびヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、および2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、および4−ビフェニルオキシなどが挙げられる。)、
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
電子輸送層ホストとしては、E−1〜E−6、E−8、E−9、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−21、またはE−22が更に好ましい。
本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト材料の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、外部量子効率、駆動耐久性の点で好ましい。
また、本発明におけるホスト材料の含有量は、特に限定されるものではないが、外部量子効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上85質量%以下であることが好ましい。
(発光層の層構成については前記参照)
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
正孔注入層、正孔輸送層の材料としては、具体的には、ピロール誘導体、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、ピラゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、またはカーボン等を含有する層であることが好ましい。
正孔注入層は正孔の移動のキャリアとなるドーパントを含有するのが好ましい。正孔注入層に導入するドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用でき、具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、および五塩化アンチモンなどのルイス酸化合物を好適に用いることができる。
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、またはトリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、またはフレーレンなどを好適に用いることができる。
具体的にはヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンが特に好ましい。
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔注入材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。該使用量が、正孔注入材料に対して0.01質量%未満のときには、本発明の効果が不十分であるため好ましくなく、50質量%を超えると正孔注入能力が損なわれるため好ましくない。
正孔注入層がアクセプタを含有する場合、正孔輸送層は、実質的にアクセプタを含有しないことが好ましい。
正孔注入層、正孔輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、外部量子効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が正孔輸送層であるとき、該正孔輸送層のIp(HTL)は前記発光層中に含有されるドーパントのIp(D)より小さいことが駆動耐久性の点で好ましい。
Ipは紫外線光電子分析装置AC−1(理研計器社)を用いて室温・大気下で測定した値で規定する。AC−1の測定原理については、安達千波矢等著「有機薄膜仕事関数データ集」(シーエムシー出版社2004年発行)に記載されている。
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入され得た正孔を障壁する機能のいずれかを有している層である。
電子注入層、電子輸送層の材料としては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属などが好適に用いられる。
特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。該使用量が、電子輸送層材料に対して0.1質量%未満のときには、本発明の効果が不十分であるため好ましくなく、99質量%を超えると電子輸送能力が損なわれるため好ましくない。
電子注入層、電子輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、外部量子効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が電子輸送層であるとき、該電子輸送層のEa(ETL)は前記発光層中に含有されるドーパントのEa(D)より大きいことが駆動耐久性の点で好ましい。
Eaは、単層膜の吸収スペクトルの長波端からバンドギャップ(Eg)を算出し、これと別に測定したIpの値からEa=Ip−Egで求め、この値で規定する。
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明においては、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層は、特に限定されるものではないが、具体的には、BAlq等のアルミニウム錯体、トリアゾール誘導体、ピラザボール誘導体等を含有することができる。
また、正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に50nm以下であることが好ましく、1nm〜50nmであることが好ましく、5nm〜40nmであることが更に好ましい。
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、またはCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、およびイオンプレーティング法等により形成することができる。
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
(基板)
本発明においては基板を用いることができる。用いられる基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、またはNi等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、またはTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、またはCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、または転写法を適用できる。
(封止)
さらに、本発明の有機EL素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。
水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、及びシリコーンオイル類が挙げられる。
3.駆動
本発明の有機EL素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機EL素子の駆動耐久性は、特定の輝度における、ある輝度まで減少する時間により測定することができる。例えば、KEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させ、初期輝度を1000cd/mの条件で連続駆動試験をおこない、輝度が初期輝度の80%になった時間を輝度減少時間として、該輝度減少時間を従来発光素子と比較することにより求めることができる。本発明においてはこの数値を用いた。
有機EL素子の重要な特性値として、外部量子効率がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
また、有機EL素子の外部量子効率は、「外部量子効率φ=内部量子効率×光取り出し効率」で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。
該外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100cd/m〜2000cd/m付近での外部量子効率の値を用いることができる。
本発明においては、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧をEL素子に印加し発光させ、その光量をトプコン社製輝度計SR−3を用いて測定し、その輝度での外部量子効率を算出した値を用いる。
また、発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出することができる。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を素子から放出されたフォトン数に換算することができる。これらから外部量子効率(%)は、「(素子から放出されたフォトン数/素子に入力した電子数)×100」で計算することができる。
本発明の有機EL素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
4.用途
本発明の有機EL素子の用途は特に限定されないが、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明等広い分野に適用できる。
以下に、本発明の有機EL素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。
実施例1
1.有機EL素子の作製
(比較の有機EL素子1の作製)
0.5mm厚み、2.5cm角のITOガラス基板(ジオマテック(株)製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
正孔注入層:ITOの上にCuPcを膜厚10nmに蒸着した。
正孔輸送層:正孔注入層の上に、α−NPDを膜厚30nmに蒸着した。
発光層:CBPとIr(ppy)を体積比で95:5となるように共蒸着を行った。
発光層の膜厚は140nmとした。
電子輸送層:発光層の上に、BAlqを10nmの厚みに蒸着した。
電子注入層:電子輸送層の上に、Alqを20nmの厚みに蒸着した。
この上にパタ−ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、フッ化リチウムを0.01nm/秒の蒸着速度にて1nm蒸着し電子注入層とした。更に金属アルミニウムを100nm蒸着し陰極とした。
作製した積層体を、窒素ガスで置換したグロ−ブボックス内に入れ、ステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ製)を用いて封止し、有機EL素子1を作製した。
(比較の発光層を細分化した有機EL素子1の作製)
比較の有機EL素子1において、発光層を下記に示すように3つに分割し、各単位発光層の間に下記電荷ブロック層として下記中間層1および2を配した。正孔輸送層より順に発光層1−中間層2−発光層2−中間層1−発光層3を配置した。
発光層1:比較例1と同じ組成の発光層を膜厚30nmに蒸着した。
中間層2:mCPを膜厚25nmに蒸着した。
発光層2:比較例1と同じ組成の発光層を膜厚30nmに蒸着した。
中間層1:mCPを膜厚25nmに蒸着した。
発光層3:比較例1と同じ組成の発光層を膜厚30nmに蒸着した。
(本発明の発光層を細分化した有機EL素子2の作製)
有機EL素子1において中間層1,2の電子ブロック材料を表1に示す材料に変更して、その他は有機EL素子1と同様にして有機EL素子2を作製した。
2.性能評価結果
得られた比較有機EL素子および本発明の有機EL素子を同一条件で前述の手段によって外部量子効率と輝度減少時間を測定した。得られた結果を表2に示した。
その結果、比較素子1に対して細分化素子1の外部量子効率は向上したが、本発明による細分化素子2は更に外部量子効率が向上した。2つの中間層および3つの発光層の合計厚みは比較の有機EL素子の発光層厚み140nmと同等であるにも拘わらず高い外部量子効率と輝度減少時間の向上を同時に示したことは全く予想外の結果であった。
実施例2
1.有機EL素子の作製
(比較の有機EL素子11の作製)
比較の有機EL素子1において、発光層を以下の構成に変更する以外は、比較の有機EL素子1と同様にして比較の有機EL素子11を作製した。
発光層:mCPとIr(ppy)を体積比で95:5となるように共蒸着を行った。発光層の膜厚は140nmとした。
(比較の発光層を細分化した有機EL素子11の作製)
比較の有機EL素子11において、発光層を4層の単位発光層に分割し、各単位発光層の間に、中間層11〜13を配した。正孔輸送層より順に発光層11−中間層13−発光層12−中間層12−発光層13−中間層11−発光層14を配置した。
単位発光層11〜14:比較の有機EL素子11の発光層と同一組成で厚みをそれぞれ20nmになるように蒸着した。
中間層11〜13:化合物Cをそれぞれ厚み20nmに蒸着した。
即ち、単位発光層11/中間層13/単位発光層12/中間層12/単位発光層13/中間層11/単位発光層14の合計7層に細分化された構成でその総厚みは140nmであり、比較の有機EL素子11の発光層と同一である。
(本発明の発光層を細分化した有機EL素子12の作製)
有機EL素子11において、中間層11,12、および13のホールブロック材料を表3に示す材料に変更して、その他は有機EL素子11と同様にして有機EL素子12を作製した。
2.性能評価結果
得られた本発明の有機EL素子を実施例1と同様に外部量子効率と輝度減少時間を測定した。得られた結果を表4に示した。
その結果、比較素子11に対して細分化素子11の外部量子効率と輝度減少時間は向上したが、本発明による細分化素子12は更に外部量子効率と輝度減少時間が向上した。
前記の発光素子に用いられる化合物の構造を下記に示す。
比較の発光素子の層構成の概念図である。 本発明の発光素子の一例の概念図であり、発光層が3つの単位発光層に分割され、該単位発光層間に中間層を配した構成である。 本発明の発光素子の別の例の層構成の概念図である。発光層が4分割され、それぞれの間に中間層を配した構成である。
符号の説明
1:陽極
2:正孔注入層
3:正孔輸送層
4:発光層
4a、4b、4c、4d:単位発光層
5:電子輸送層
6:電子注入層
7:陰極
8:中間層
8a、8b、8c:発光層を分割する中間層

Claims (7)

  1. 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に少なくとも3層に分割され、該分割された発光層は各々独立に発光材料とホスト材料とを含有し、該分割された発光層間に電子ブロック材料を含有する中間層を有し、該中間層に含有される前記電子ブロック材料のEa値(電子親和力)が、該中間層の陰極側に隣接する前記分割された発光層に含有される前記ホスト材料のEa値よりも小さく、該中間層に含有される前記電子ブロック材料のEa値が該中間層の陽極側に隣接する発光層に含有されるホスト材料のEa値以下であり、且つ、前記陰極側に近い前記中間層に含有される前記電子ブロック材料のEa値と該中間層の前記陰極側に隣接する前記分割された発光層に含有されるホスト材料のEa値との差△Ea値よりも、陽極側に近い前記中間層に含有される前記電子ブロック材料のEa値とその前記陰極側に隣接する前記発光層に含有されるホスト材料のEa値との差△Ea値が大きいことを特徴とする有機発光素子。
  2. 前記△Ea値が前記△Ea値より0.05eV以上1.5eV以下大きいことを特徴とする請求項1に記載の有機発光素子。
  3. 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に少なくとも3層に分割され、該分割された発光層は各々独立に発光材料とホスト材料とを含有し、該分割された発光層間にホールブロック材料を含有する中間層を有し、該中間層に含有される前記ホールブロック材料のIp値(イオン化ポテンシャル)が、該中間層の陽極側に隣接する前記分割された発光層に含有されるホスト材料のIp値よりも大きく、該中間層に含有される前記ホールブロック材料のIp値が該中間層の陰極側に隣接する発光層に含有されるホスト材料のIp値以上であり、且つ、陰極側に近い前記中間層の前記ホールブロック材料のIp値と該中間層の前記陽極側に隣接する前記発光層に含有される前記ホスト材料のIp値との差△Ip値よりも、前記陽極側に近い前記中間層の前記ホールブロック材料のIp値とその前記陽極側に隣接する前記発光層に含有される前記ホスト材料のIp値との差△Ip値が小さいことを特徴とする有機発光素子。
  4. 前記△Ip値が前記△Ip値より0.05eV以上1.5eV以下小さいことを特徴とする請求項3に記載の有機発光素子。
  5. 前記発光層の発光材料が燐光材料であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機発光素子。
  6. 前記中間層が発光材料を含有することを特徴とする請求項1〜請求項5のいずれか1項に記載の有機発光素子。
  7. 前記中間層が含有する発光材料が燐光材料であることを特徴とする請求項6に記載の有機発光素子。
JP2007246042A 2006-09-28 2007-09-21 有機発光素子 Active JP4890402B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246042A JP4890402B2 (ja) 2006-09-28 2007-09-21 有機発光素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006265987 2006-09-28
JP2006265987 2006-09-28
JP2007246042A JP4890402B2 (ja) 2006-09-28 2007-09-21 有機発光素子

Publications (2)

Publication Number Publication Date
JP2008108712A JP2008108712A (ja) 2008-05-08
JP4890402B2 true JP4890402B2 (ja) 2012-03-07

Family

ID=39441856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246042A Active JP4890402B2 (ja) 2006-09-28 2007-09-21 有機発光素子

Country Status (1)

Country Link
JP (1) JP4890402B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641753B2 (en) 2017-07-31 2023-05-02 Samsung Electronics Co., Ltd. Organic light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441634B2 (ja) * 2008-12-08 2014-03-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329734A (ja) * 1998-03-10 1999-11-30 Mitsubishi Chemical Corp 有機電界発光素子
JP2001110569A (ja) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd 有機発光素子および画像表示装置
JP4592967B2 (ja) * 2000-01-31 2010-12-08 株式会社半導体エネルギー研究所 発光装置及び電気器具
JP2005100921A (ja) * 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
JP4429067B2 (ja) * 2004-04-21 2010-03-10 富士フイルム株式会社 有機電界発光素子
JP5261745B2 (ja) * 2005-03-04 2013-08-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、液晶表示装置及び照明装置
JP4853010B2 (ja) * 2005-12-15 2012-01-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641753B2 (en) 2017-07-31 2023-05-02 Samsung Electronics Co., Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
JP2008108712A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4833106B2 (ja) 有機発光素子
JP4896544B2 (ja) 有機電界発光素子
JP5117199B2 (ja) 有機電界発光素子
JP5441654B2 (ja) 有機電界発光素子
JP5063007B2 (ja) 有機電界発光素子
JP2007287652A (ja) 発光素子
JP2009016579A (ja) 有機電界発光素子および製造方法
JP2009055010A (ja) 有機電界発光素子
JP2007110102A (ja) 有機電界発光素子
JP2007141736A (ja) 有機電界発光素子
JP2007200938A (ja) 有機電界発光素子
JP2007134677A (ja) 有機電界発光素子
JP2009032990A (ja) 有機電界発光素子
WO2011021433A1 (ja) 有機電界発光素子
US7663309B2 (en) Organic electroluminescent element having plurality of light emitting layers with specific thicknesses
JP2007221097A (ja) 有機電界発光素子
JP5349921B2 (ja) 有機電界発光素子
JP4855286B2 (ja) 有機電界発光素子の製造方法
JP2009032987A (ja) 有機電界発光素子
US9012034B2 (en) Organic electroluminescence element
US20080180023A1 (en) Organic electroluminescence element
JP5478818B2 (ja) 有機電界発光素子
JP5211282B2 (ja) 有機電界発光素子
JP2007157629A (ja) 有機電界発光素子
JP5722291B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4890402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250