JP4888244B2 - Alkali development method - Google Patents

Alkali development method Download PDF

Info

Publication number
JP4888244B2
JP4888244B2 JP2007162209A JP2007162209A JP4888244B2 JP 4888244 B2 JP4888244 B2 JP 4888244B2 JP 2007162209 A JP2007162209 A JP 2007162209A JP 2007162209 A JP2007162209 A JP 2007162209A JP 4888244 B2 JP4888244 B2 JP 4888244B2
Authority
JP
Japan
Prior art keywords
developing
glass substrate
developing tank
tank
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007162209A
Other languages
Japanese (ja)
Other versions
JP2009003051A (en
Inventor
隆 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2007162209A priority Critical patent/JP4888244B2/en
Publication of JP2009003051A publication Critical patent/JP2009003051A/en
Application granted granted Critical
Publication of JP4888244B2 publication Critical patent/JP4888244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline development method for reducing line width dispersion, which is produced when developing is stopped with hardly a time difference between the front end part and the rear end part of a glass substrate 11 during water rinsing, after consecutive developing which is carried out through conveyance via a plurality of developing tanks 20, in the longitudinal direction of the glass substrate. <P>SOLUTION: A pH value of an alkaline developer jetted to the glass substrate 11 is maximized in a developing tank, in the center of a plurality of serial developing tanks, and the pH value is reduced gradually step by step so that it is brought close to a neutral value, toward a developing tank in the front end part adjacent to a convey-in device and directed toward a developing tank in the rear-end part which is adjacent to a carry-out device. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、カラーフィルタの着色画素の現像方法に関するものであり、特に、複数の現像槽で構成される現像槽中で現像し、続く水洗槽中でガラス基板の先端部と後端部との間で殆ど時間差なく現像を停止した際に発生する、線幅のバラツキを縮小することのできるアルカリ現像方法に関する。   The present invention relates to a method for developing colored pixels of a color filter, and in particular, development is performed in a developing tank composed of a plurality of developing tanks, and the glass substrate has a leading edge and a trailing edge in a subsequent washing tank. The present invention relates to an alkali development method capable of reducing the variation in line width that occurs when development is stopped with almost no time difference between them.

表示装置において、カラー表示、反射率の低減、コントラストの改善、分光特性制御などの目的にカラーフィルタを用いることは、有用な手段となっている。
この表示装置に用いるカラーフィルタは、多くの場合、カラーフィルタは画素として形成されて使用される。この表示装置に用いるカラーフィルタの画素を形成する方法としては、フォトリソグラフィ法が広く用いられている。
In a display device, it is a useful means to use a color filter for purposes such as color display, reflectance reduction, contrast improvement, and spectral characteristic control.
In many cases, the color filter used in the display device is formed as a pixel. A photolithography method is widely used as a method of forming pixels of a color filter used in this display device.

図1は、液晶表示装置に用いられるカラーフィルタの一例を模式的に示した平面図である。また、図2は、図1に示すカラーフィルタのX−X’線における断面図である。
図1、及び図2に示すように、液晶表示装置に用いられるカラーフィルタは、ガラス基板(50)上にブラックマトリックス(51)、着色画素(52)、透明導電膜(54)が順次に形成されたものである。
図1、及び図2はカラーフィルタを模式的に示したもので、着色画素(52)は12個表されているが、実際のカラーフィルタにおいては、例えば、対角17インチの画面に数百μm程度の着色画素が多数個配列されている。
FIG. 1 is a plan view schematically showing an example of a color filter used in a liquid crystal display device. 2 is a cross-sectional view of the color filter shown in FIG. 1 taken along line XX ′.
As shown in FIGS. 1 and 2, in the color filter used in the liquid crystal display device, a black matrix (51), a colored pixel (52), and a transparent conductive film (54) are sequentially formed on a glass substrate (50). It has been done.
FIG. 1 and FIG. 2 schematically show a color filter, and 12 colored pixels (52) are represented. In an actual color filter, for example, several hundreds are displayed on a 17-inch diagonal screen. A large number of colored pixels of about μm are arranged.

ブラックマトリックス(51)は、遮光性を有するマトリックス状のものであり、着色画素(52)は、例えば、赤色、緑色、青色のフィルタ機能を有するものである。
ブラックマトリックスは、カラーフィルタの着色画素の位置を定め、大きさを均一なものとし、また、表示装置に用いられた際に、好ましくない光を遮蔽し、表示装置の画像をムラのない均一な、且つコントラストを向上させた画像にする機能を有している。
このブラックマトリックス(51)は、ガラス基板(50)上に、ブラックマトリックス形成用の黒色ホトレジストを用いてフォトリソグラフィ法によって形成された例であり、樹脂を用いて形成されたブラックマトリックスを樹脂ブラックマトリックス(51)と称している。
The black matrix (51) is a matrix having light shielding properties, and the colored pixels (52) have, for example, red, green, and blue filter functions.
The black matrix determines the position of the colored pixels of the color filter, makes the size uniform, and shields unwanted light when used in a display device, making the image of the display device uniform and uniform. In addition, it has a function of making an image with improved contrast.
This black matrix (51) is an example of being formed on a glass substrate (50) by a photolithography method using a black photoresist for forming a black matrix, and the black matrix formed using a resin is a resin black matrix. (51).

また、着色画素(52)は、この樹脂ブラックマトリックス(51)が形成されたガラス基板(50)上に、例えば、顔料などの色素を分散させたネガ型の着色フォトレジストを用いたフォトリソグラフィ法によって、すなわち、着色フォトレジストの塗布膜へのフォトマスクを介した露光、現像処理によって着色画素として形成されたものである。赤色、緑色、青色の着色画素は順次に形成されている。   The colored pixel (52) is a photolithography method using a negative colored photoresist in which a pigment such as a pigment is dispersed on the glass substrate (50) on which the resin black matrix (51) is formed. That is, it is formed as a colored pixel by exposure through a photomask to the coating film of the colored photoresist and development processing. Red, green, and blue colored pixels are sequentially formed.

また、透明導電膜(54)の形成は、樹脂ブラックマトリックス、着色画素が形成されたガラス基板上に、例えば、ITO(Indium Tin Oxide)を用いスパッタリング法によって透明導電膜を形成するといった方法がとられている。
透明導電膜の成膜は、室温で成膜した後にアニールをして結晶化させ目的とする特性を得る方法や、結晶化温度以上の温度で成膜する方法、或いは、100℃程度の結晶化する手前の低温加熱をした後にアニールをして目的とする特性を得る方法などがある。最近では、カラーフィルタへの影響を低減するために室温又は低温加熱にて形成する方法が一般的である。
In addition, the transparent conductive film (54) is formed by forming a transparent conductive film on a glass substrate on which a resin black matrix and colored pixels are formed by using, for example, ITO (Indium Tin Oxide) by a sputtering method. It has been.
The transparent conductive film is formed by annealing at a room temperature and then crystallizing by annealing, a method for forming a film at a temperature higher than the crystallization temperature, or a crystallization at about 100 ° C. There is a method of obtaining desired characteristics by annealing after performing low-temperature heating before performing. Recently, in order to reduce the influence on the color filter, a method of forming at room temperature or low temperature heating is common.

図1、及び図2に示すカラーフィルタは、液晶表示装置に用いられるカラーフィルタとして基本的な機能を備えたものである。液晶表示装置は、このようなカラーフィルタを内蔵することにより、フルカラー表示が実現し、その応用範囲が飛躍的に広がり、液晶カラーTV、ノート型PCなど液晶表示装置を用いた多くの商品が創出された。
多様な液晶表示装置の開発、実用に伴い、液晶表示装置に用いられるカラーフィルタには、上記基本的な機能に付随して種々な機能が付加されるようになった。
The color filter shown in FIGS. 1 and 2 has a basic function as a color filter used in a liquid crystal display device. The liquid crystal display device incorporates such a color filter to realize full color display, and its application range is dramatically expanded, and many products using liquid crystal display devices such as liquid crystal color TVs and notebook PCs are created. It was done.
With the development and practical use of various liquid crystal display devices, various functions have been added to the color filters used in the liquid crystal display devices in addition to the above basic functions.

図1に示すカラーフィルタに追加される機能としては、例えば、スペーサー機能、配向分割機能、高信頼性機能、透過・反射併用機能、分光特性調整機能、光路調整機能、光散乱機能などがあげられる。これら諸機能の内、そのカラーフィルタの用途、仕様にもとづき1機能或いは複数の機能が図1に示すカラーフィルタに追加される。   Examples of functions added to the color filter shown in FIG. 1 include a spacer function, an alignment division function, a high reliability function, a combined transmission / reflection function, a spectral characteristic adjustment function, an optical path adjustment function, and a light scattering function. . Among these functions, one function or a plurality of functions are added to the color filter shown in FIG. 1 based on the use and specification of the color filter.

上記、基本的な機能を備えたカラーフィルタ上に付随する層を形成する際には、パターンとして形成されない保護層(オーバーコート層)、及びスパッタリング法によって形成される透明導電膜を除き、いずれの層も前記ブラックマトリックス(51)、着色画素(52)と同様に、フォトレジストを用いてのフォトリソグラフィ法によってパターンに形成される。   When forming the accompanying layer on the color filter having the basic function described above, any of the protective layer (overcoat layer) not formed as a pattern and the transparent conductive film formed by the sputtering method is used. Similar to the black matrix (51) and the colored pixels (52), the layer is also formed into a pattern by photolithography using a photoresist.

上記ブラックマトリックス、着色画素、及び付随する各層をフォトリソグラフィ法によりパターンとして形成する際には、例えば、先ずガラス基板に対して必要に応じた洗浄処理を施し、続いて塗布装置による各々のフォトレジストの塗布、減圧乾燥装置による予備乾燥処理、プリベーク装置によるプリベーク処理、露光装置によるパターン露光、現像装置による現像処理、ポストベーク装置によるポストベーク処理が順次に施され、ガラス基板に所定のパターンを形成する。   When forming the black matrix, the colored pixels, and the associated layers as a pattern by photolithography, for example, the glass substrate is first subjected to a cleaning treatment as necessary, and then each photoresist by a coating apparatus is used. Coating, pre-drying with a vacuum dryer, pre-baking with a pre-baking device, pattern exposure with an exposure device, development with a developing device, and post-baking with a post-baking device are sequentially applied to form a predetermined pattern on the glass substrate. To do.

着色画素の形成時における現像方法としては、例えば、アルカリ現像液をノズルからシャワー状にしてガラス基板上に噴射し、未露光部の着色フォトレジストを溶解、除去し、次に純水をノズルからシャワー状にしてガラス基板上に噴射し、未露光部の着色フォトレジストの残渣を除去し、アルカリ現像液を純水置換する方法が一般的に用いられている。   As a developing method at the time of forming colored pixels, for example, an alkali developer is showered from a nozzle and sprayed onto a glass substrate to dissolve and remove the unexposed colored photoresist, and then pure water is discharged from the nozzle. A method is generally used in which a shower is formed and sprayed onto a glass substrate to remove a residue of a colored photoresist in an unexposed portion, and the alkali developer is replaced with pure water.

図3(a)、(b)は、着色画素を形成する際の現像装置の一例の概略を示す断面図である。図3(a)、(b)に示すように、この一例として示す現像装置は、搬入装置(10)、現像槽(20)、搬出装置(40)、搬入装置(60)、水洗槽(30)、搬出装置(70)、及びガラス基板を搬送しながら現像、水洗を行わせるコンベア装置(80)で構成されている。
現像槽(20)は、現像槽1(20−1)〜現像槽n(20−n)で構成され、各現像槽1〜現像槽n内には、ノズル(21)が設けられている。また、水洗槽(30)は1槽であり、水洗槽内には、ノズル(31)が設けられている。
FIGS. 3A and 3B are cross-sectional views schematically illustrating an example of a developing device when forming colored pixels. As shown in FIGS. 3A and 3B, the developing device shown as an example includes a carry-in device (10), a developing tank (20), a carry-out device (40), a carry-in device (60), and a washing tank (30). ), A carry-out device (70), and a conveyor device (80) for carrying out development and washing while conveying the glass substrate.
The developing tank (20) includes a developing tank 1 (20-1) to a developing tank n (20-n), and a nozzle (21) is provided in each of the developing tanks 1 to n. The washing tank (30) is one tank, and a nozzle (31) is provided in the washing tank.

現像液としては、例えば、炭酸ソーダ、重炭酸ソーダ、界面活性剤、有機化合物からなるアルカリ現像液が用いられ、各現像槽1〜現像槽nのノズル(21)からは、同一アルカリ濃度の現像液が噴射されるようになっている。
図3(a)中、符号(11)で表すガラス基板は、白太矢印で示すように、図3(a)中、左方から現像槽1(20−1)に投入され、現像が開始される。現像は、ガラス基板(11)の先端部(a)から開始され、次第に後端部(b)へと現像の開始が移る。
As the developer, for example, an alkali developer composed of sodium carbonate, sodium bicarbonate, a surfactant, and an organic compound is used. From the nozzles (21) of each developer tank 1 to developer tank n, a developer having the same alkali concentration is used. It comes to be injected.
In FIG. 3A, the glass substrate denoted by reference numeral (11) is charged into the developing tank 1 (20-1) from the left in FIG. Is done. Development starts from the front end (a) of the glass substrate (11), and gradually begins to develop toward the rear end (b).

ガラス基板(11)は、現像槽1(20−1)〜現像槽n(20−n)間を搬送されながら現像され、搬出装置(40)へと搬出される。この搬出された現像後のガラス基板(11B)の先端部(a)は、後端部(b)に比べ現像時間が長い状態となっている。   The glass substrate (11) is developed while being conveyed between the developing tank 1 (20-1) to the developing tank n (20-n), and is carried out to the carry-out device (40). The leading end portion (a) of the unloaded development glass substrate (11B) is in a state where the developing time is longer than that of the trailing end portion (b).

続く水洗槽(30)にては、各現像槽いおける現像液に比べ大量の純水が噴射される。ガラス基板(11C)の先端部(a)と後端部(b)での純水を与える時間差は、現像槽いおける現像液に比べ殆どなく、ガラス基板(11C)の全面に略同時に純水が大量に噴射され、現像後のアルカリ現像液は純水置換されるようになっている。   In the subsequent rinsing tank (30), a larger amount of pure water is ejected than the developer in each developing tank. There is almost no difference in time for supplying pure water at the front end portion (a) and the rear end portion (b) of the glass substrate (11C) as compared with the developer in the developing tank, and the pure water is almost simultaneously applied to the entire surface of the glass substrate (11C). Are ejected in large quantities, and the developed alkaline developer is replaced with pure water.

このように、水洗槽(30)にては、ガラス基板の先端部(a)と後端部(b)との間で、殆ど時間差なく現像が停止されるので、現像槽(20)での現像終了時にガラス基板の先端部(a)が後端部(b)に比べ現像時間が長い状態であったことが、着色画素の線幅に影響を与えている。
つまり、ガラス基板の長さ方向(搬送方向)の先端部(a)では、後端部(b)に比べ着色画素の線幅が細くなるといった線幅のバラツキ(面内線幅の不均一性)が問題となっている。
特開平10−123720号公報
Thus, in the washing tank (30), the development is stopped with almost no time difference between the front end (a) and the rear end (b) of the glass substrate. The fact that the development time is longer at the front end (a) of the glass substrate than at the rear end (b) at the end of development affects the line width of the colored pixels.
That is, the line width variation (in-plane line width non-uniformity) such that the line width of the colored pixels is narrower at the front end (a) in the length direction (transport direction) of the glass substrate than at the rear end (b). Is a problem.
JP-A-10-123720

本発明は、上記問題を解決するためになされたものであり、カラーフィルタの着色画素の現像方法において、複数の現像槽で構成される現像槽中を搬送しながら連続して現像し、続く純水による水洗にてガラス基板の先端部と後端部との間で殆ど時間差なく現像を停止した際に発生する、ガラス基板の長さ方向(搬送方向)の先端部では、後端部に比べ着色画素の線幅が細くなるといった線幅のバラツキ(面内線幅の不均一性)を縮小することのできるアルカリ現像方法を提供することを課題とする。   The present invention has been made to solve the above-described problem. In the development method of the colored pixels of the color filter, the development is continuously performed while being conveyed in a developing tank composed of a plurality of developing tanks, and the subsequent pure The tip of the glass substrate in the length direction (conveyance direction), which occurs when the development is stopped with almost no time difference between the front end and the rear end of the glass substrate by washing with water, compared to the rear end. It is an object of the present invention to provide an alkali developing method capable of reducing variation in line width (in-plane line width non-uniformity) such that the line width of a colored pixel is reduced.

本発明は、ガラス基板を複数の連続した現像槽中を水平に搬送しながら、該現像槽に設けられたノズルからシャワー状にしたアルカリ現像液をガラス基板上に噴射して現像を行い、続いて、水洗槽中を水平に搬送しながら、該水洗槽に設けられたノズルからシャワー状にした純水を、ガラス基板の先端部と後端部とで殆ど時間差なくガラス基板上に噴射して水洗を行うアルカリ現像方法において、前記ガラス基板上に噴射するアルカリ現像液のpH値を、複数の連続した現像槽の中央部の現像槽で最大値にし、搬入装置に隣接する先端部の現像槽及び搬出装置に隣接する後端部の現像槽に向かって、中性値に近づくよう段階的に漸減させることを特徴とするアルカリ現像方法である。   The present invention performs development by spraying a glass substrate onto a glass substrate with an alkaline developer made into a shower from a nozzle provided in the developing tank while horizontally conveying the glass substrate in a plurality of continuous developing tanks. Then, while transporting the inside of the washing tank horizontally, the pure water showered from the nozzle provided in the washing tank is sprayed onto the glass substrate with almost no time difference between the front end portion and the rear end portion of the glass substrate. In the alkali developing method for washing with water, the pH value of the alkaline developer sprayed onto the glass substrate is maximized in the central developing tank of a plurality of continuous developing tanks, and the developing tank at the tip adjacent to the carry-in device And an alkali developing method characterized by gradually reducing the density toward the neutral value toward the developing tank at the rear end adjacent to the carry-out device.

本発明は、ガラス基板を複数の連続した現像槽中を水平に搬送しながら、該現像槽に設けられたノズルからシャワー状にしたアルカリ現像液をガラス基板上に噴射して現像を行い、続いて、水洗槽中を水平に搬送しながら、該水洗槽に設けられたノズルからシャワー状にした純水を、ガラス基板の先端部と後端部とで殆ど時間差なくガラス基板上に噴射して水洗を行うアルカリ現像方法において、前記ガラス基板上に噴射するアルカリ現像液のpH値を、複数の連続した現像槽の中央部の現像槽で最大値にし、搬入装置に隣接する先端部の現像槽及び搬出装置に隣接する後端部の現像槽に向かって、中性値に近づくよう段階的に漸減させるアルカリ現像方法であるので、ガラス基板の長さ方向(搬送方向)の先端部では、後端部に比べ着色画素の線幅が細くなるといった線幅のバラツキ(面内線幅の不均一性)を縮小することのできるアルカリ現像方法となる。
これにより、従来における線幅のバラツキ1.0〜1.5μmに対し、線幅のバラツキは、0.5〜1.0μmといった許容内に改善され、また、従来における着色画素の膜厚のバラツキ1.0〜2.0%に対し、膜厚のバラツキは、0.5〜1.0%といった許容内に改善される。
The present invention performs development by spraying a glass substrate onto a glass substrate with an alkaline developer made into a shower from a nozzle provided in the developing tank while horizontally conveying the glass substrate in a plurality of continuous developing tanks. Then, while transporting the inside of the washing tank horizontally, the pure water showered from the nozzle provided in the washing tank is sprayed onto the glass substrate with almost no time difference between the front end portion and the rear end portion of the glass substrate. In the alkali developing method for washing with water, the pH value of the alkaline developer sprayed onto the glass substrate is maximized in the central developing tank of a plurality of continuous developing tanks, and the developing tank at the tip adjacent to the carry-in device And an alkali development method that gradually reduces the neutral value gradually toward the developing tank at the rear end adjacent to the carry-out device, so that the rear end of the glass substrate in the length direction (conveyance direction) Colored image compared to the edge The alkali developing method capable of reducing the variation of the line width, such as line width becomes narrower (non-uniformity of the surface extension width).
As a result, the line width variation is improved within an allowable range of 0.5 to 1.0 μm compared to the conventional line width variation of 1.0 to 1.5 μm, and the conventional color pixel film thickness variation is improved. The film thickness variation is improved within an allowable range of 0.5 to 1.0% with respect to 1.0 to 2.0%.

以下に本発明の実施の形態を説明する。
本発明によるアルカリ現像方法は、アルカリ現像液のpH値を、複数の連続した現像槽の中央部の現像槽で最大値にし、搬入装置に隣接する先端部の現像槽及び搬出装置に隣接する後端部の現像槽に向かって、中性値に近づくよう段階的に漸減させることを特徴としている。
Embodiments of the present invention will be described below.
In the alkali developing method according to the present invention, the pH value of the alkaline developer is maximized in the developing tank at the center of a plurality of continuous developing tanks, and is adjacent to the developing tank and the unloading apparatus at the tip adjacent to the carrying-in apparatus. It is characterized by being gradually reduced toward the developing tank at the end so as to approach the neutral value.

例えば、図3(a)に示す搬入装置(10)に隣接する先端部の現像槽1(20−1)のノズルから噴射するアルカリ現像液のpH値を最も中性値に近いものとし、現像槽2(20−2)以降におけるアルカリ現像液のpH値を、複数の連続した現像槽の中央部の現像槽(現像槽i(20−i)とする。図示せず。)に向かって最大値になるように、段階的に漸増させたものとする。
これにより、現像初期におけるガラス基板上の先端部(a)と後端部(b)の時間差が着色画素の線幅に与える影響を少ないものとする。尚、上記最も中性値に近い値は、pH9.0〜pH9.5程度である。
For example, the pH value of the alkaline developer sprayed from the nozzle of the developing tank 1 (20-1) at the tip adjacent to the carry-in device (10) shown in FIG. The pH value of the alkaline developer in the tank 2 (20-2) and thereafter is maximum toward the developing tank (developing tank i (20-i), not shown) at the center of a plurality of continuous developing tanks. It is assumed that the value is gradually increased to a value.
Thereby, the influence which the time difference of the front-end | tip part (a) on a glass substrate in the early stage of development and a rear-end part (b) has on the line width of a coloring pixel shall be made small. The value closest to the neutral value is about pH 9.0 to pH 9.5.

現像槽の中央部の現像槽i(20−i)に向かってpH値を段階的に漸増させ、現像作用を漸増させ現像を促進する。中央部の現像槽i(20−i)において現像作用を最大とする。
また、現像槽(i+1)(20−(i+1))以降におけるアルカリ現像液のpH値を、図3(a)に示す搬出装置(40)に隣接する後端部の現像槽n(20−n)に向かって最も中性値に近づくように段階的に漸減させたものとする。
これにより、現像末期におけるガラス基板上の先端部(a)と後端部(b)の時間差が着色画素の線幅に与える影響を少ないものとする。尚、上記最も中性値に近い値は、pH9.0〜pH9.5程度である。
The pH value is gradually increased stepwise toward the developing tank i (20-i) in the center of the developing tank, and the developing action is gradually increased to promote development. The developing action is maximized in the central developing tank i (20-i).
Further, the pH value of the alkaline developer after the developing tank (i + 1) (20- (i + 1)) is set to the developing tank n (20-n) at the rear end adjacent to the carry-out device (40) shown in FIG. ) And gradually decrease so as to approach the neutral value most.
Thereby, the influence which the time difference of the front-end | tip part (a) on a glass substrate in the last stage of development and a rear-end part (b) has on the line width of a coloring pixel shall be made small. The value closest to the neutral value is about pH 9.0 to pH 9.5.

従って、搬出装置(40)へ搬出された現像後のガラス基板の先端部(a)は、後端部(b)に比べ現像時間が長い状態となっているものの、ガラス基板の長さ方向(搬送方向)の先端部(a)では、後端部(b)に比べ着色画素の線幅が細くなるといった線幅のバラツキ(面内線幅の不均一性)は縮小されたものとなる。   Therefore, although the front-end | tip part (a) of the glass substrate after the development carried out to the carrying-out apparatus (40) is in the state where development time is long compared with the rear end part (b), the length direction ( At the front end portion (a) in the transport direction), the line width variation (in-plane line width non-uniformity) such that the line width of the colored pixels becomes narrower than the rear end portion (b) is reduced.

尚、アルカリ現像液による現像量は、複数の連続した現像槽における現像の累計となるので、所望する現像量となるように、複数の連続した現像槽のpH値は適宜に設定することになる。
各現像槽のpH値は、中央部の現像槽i(20−i)のpH値を対称の基準として、〔現像槽1のpH値〕=〔現像槽nのpH値〕、〔現像槽2のpH値〕=〔現像槽(n−1)のpH値〕、・・・・とすることが好ましい。
Since the development amount with the alkaline developer is the cumulative amount of development in a plurality of continuous development tanks, the pH values of the plurality of continuous development tanks are appropriately set so as to obtain a desired development amount. .
The pH value of each developing tank is expressed as follows: [pH value of developing tank 1] = [pH value of developing tank n], [Developing tank 2] with the pH value of the developing tank i (20-i) in the center as a symmetric reference. PH value] = [pH value of developing tank (n-1)],...

表1は、本発明によるアルカリ現像方法において用いられるアルカリ現像装置の一例における、現像槽の構成と各現像槽のアルカリ現像液のpH値を示したものである。
表1に示すように、このアルカリ現像装置は、現像槽1〜現像槽8の8槽で構成されている。搬入装置に隣接する先端部の現像槽1のノズルから噴射するアルカリ現像液のpH値は、最も中性値に近いものとなっており、以降、段階的に漸増し、中央部の現像槽4及び5にては最大値であるpH12となっている。
Table 1 shows the constitution of the developing tank and the pH value of the alkaline developer in each developing tank in an example of the alkali developing apparatus used in the alkali developing method according to the present invention.
As shown in Table 1, this alkali developing device is composed of eight tanks, a developing tank 1 to a developing tank 8. The pH value of the alkaline developer sprayed from the nozzle of the developing tank 1 at the tip adjacent to the carry-in device is the closest to the neutral value, and thereafter gradually increases step by step to the central developing tank 4. At 5 and 5, pH 12 is the maximum value.

Figure 0004888244
また、現像槽4及び5以降は、段階的に漸減し、現像槽8にては最も中性値に近いpH9となっている。
また、〔現像槽1のpH9〕=〔現像槽8のpH9〕、〔現像槽2のpH10〕=〔現像槽7のpH10〕、・・・・と対称の関係を保っている。
Figure 0004888244
Further, the developing tanks 4 and 5 and thereafter are gradually decreased, and the developing tank 8 has a pH 9 that is closest to the neutral value.
Also, [pH 9 of developing tank 1] = [pH 9 of developing tank 8], [pH 10 of developing tank 2] = [pH 10 of developing tank 7],...

このアルカリ現像装置におけるアルカリ現像液の平均pH値は、10.5である。つまり、「pH10.5×8槽」が、このアルカリ現像方法における現像量を略表したものとなる。
上記により、従来における線幅のバラツキ1.0〜1.5μmに対し、線幅のバラツキは、0.5〜1.0μmといった許容内に改善され、また、従来における着色画素の膜厚のバラツキ1.0〜2.0%に対し、膜厚のバラツキは、0.5〜1.0%といった許容内に改善された。
The average pH value of the alkali developer in this alkali developing device is 10.5. That is, “pH 10.5 × 8 tank” is a schematic representation of the development amount in this alkali development method.
As described above, the line width variation is improved within an allowable range of 0.5 to 1.0 μm compared to the conventional line width variation of 1.0 to 1.5 μm, and the conventional color pixel film thickness variation is also improved. The film thickness variation was improved within an allowable range of 0.5 to 1.0% with respect to 1.0 to 2.0%.


液晶表示装置に用いられるカラーフィルタの一例を模式的に示した平面図である。It is the top view which showed typically an example of the color filter used for a liquid crystal display device. 図1に示すカラーフィルタのX−X’線における断面図である。It is sectional drawing in the X-X 'line | wire of the color filter shown in FIG. (a)、(b)は、着色画素を形成する際の現像装置の一例の概略を示す断面図である。(A), (b) is sectional drawing which shows the outline of an example of the image development apparatus at the time of forming a colored pixel.

符号の説明Explanation of symbols

10、60・・・搬入装置
11・・・ガラス基板
11B・・・現像後のガラス基板
11C・・・水洗槽中のガラス基板
20・・・現像槽
(20−1)〜(20−n)・・・現像槽1〜現像槽n
21、31・・・ノズル
30・・・水洗槽
40、70・・・搬出装置
50・・・ガラス基板
51・・・ブラックマトリックス
52・・・着色画素
54・・・透明導電膜
80・・・コンベア装置
a・・・ガラス基板の先端部
b・・・ガラス基板の後端部
DESCRIPTION OF SYMBOLS 10, 60 ... Carry-in apparatus 11 ... Glass substrate 11B ... Glass substrate 11C after image development ... Glass substrate 20 in washing tank ... Developing tank (20-1)-(20-n) ... Developing tank 1 to developing tank n
21, 31 ... Nozzle 30 ... Washing tub 40, 70 ... Unloading device 50 ... Glass substrate 51 ... Black matrix 52 ... Colored pixel 54 ... Transparent conductive film 80 ... Conveyor device a ... tip end b of glass substrate ... rear end of glass substrate

Claims (1)

ガラス基板を複数の連続した現像槽中を水平に搬送しながら、該現像槽に設けられたノズルからシャワー状にしたアルカリ現像液をガラス基板上に噴射して現像を行い、続いて、水洗槽中を水平に搬送しながら、該水洗槽に設けられたノズルからシャワー状にした純水を、ガラス基板の先端部と後端部とで殆ど時間差なくガラス基板上に噴射して水洗を行うアルカリ現像方法において、前記ガラス基板上に噴射するアルカリ現像液のpH値を、複数の連続した現像槽の中央部の現像槽で最大値にし、搬入装置に隣接する先端部の現像槽及び搬出装置に隣接する後端部の現像槽に向かって、中性値に近づくよう段階的に漸減させることを特徴とするアルカリ現像方法。   While the glass substrate is transported horizontally in a plurality of continuous developing tanks, the alkali developer in the form of a shower is sprayed onto the glass substrate from the nozzles provided in the developing tank, and then development is performed. Alkaline for water washing by spraying pure water in the form of a shower from a nozzle provided in the water rinsing tank onto the glass substrate with little time difference between the front and rear ends of the glass substrate while transporting the inside horizontally. In the developing method, the pH value of the alkaline developer sprayed onto the glass substrate is maximized in the developing tank at the center of a plurality of continuous developing tanks, and the developing tank and the unloading apparatus at the front end adjacent to the carrying-in apparatus are used. An alkali developing method characterized by gradually reducing the thickness toward a neutral value toward an adjacent rear end developing tank.
JP2007162209A 2007-06-20 2007-06-20 Alkali development method Expired - Fee Related JP4888244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162209A JP4888244B2 (en) 2007-06-20 2007-06-20 Alkali development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162209A JP4888244B2 (en) 2007-06-20 2007-06-20 Alkali development method

Publications (2)

Publication Number Publication Date
JP2009003051A JP2009003051A (en) 2009-01-08
JP4888244B2 true JP4888244B2 (en) 2012-02-29

Family

ID=40319533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162209A Expired - Fee Related JP4888244B2 (en) 2007-06-20 2007-06-20 Alkali development method

Country Status (1)

Country Link
JP (1) JP4888244B2 (en)

Also Published As

Publication number Publication date
JP2009003051A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US10192894B2 (en) Thin film transistor and method of manufacturing the same, array substrate and display panel
US20210336182A1 (en) Oled display substrate, manufacturing method thereof and display device
JP4888244B2 (en) Alkali development method
JP4157116B2 (en) Substrate processing equipment
KR101252481B1 (en) In-line apparatus for developing having a cleaning device and method of fabricating liquid crystal display device using thereof
WO2015162892A1 (en) Method for manufacturing organic el display panel and system for manufacturing organic el display panels
US10488719B2 (en) IPS array substrate and liquid crystal display panel
CN105527801B (en) A kind of patterning method of film layer, substrate and preparation method thereof, display device
JP2008108878A (en) Color filter production line system
JP4539336B2 (en) Color filter substrate developing method and developing apparatus
US6792957B2 (en) Wet etching apparatus and method
JP2007286398A (en) Development device and method of manufacturing color filter using the development device
WO2018216612A1 (en) Apparatus for treating substrate
JP2019070766A (en) Method for manufacturing liquid crystal panel
KR20070060713A (en) Apparatus and method for cleaning a substrate
JP2008028156A (en) Method for removing resist of end of glass substrate
JP4946410B2 (en) Color filter production line
JP2010256686A (en) Glass substrate regenerating device for color filter substrate and regenerating method
KR100442452B1 (en) Process Equipment for Wet etching
JP2007094311A (en) Exposing/developing/cleaning method and device therefor
KR102245499B1 (en) Developing apparatus and developing method using the same
JP2000338317A (en) Color filter for liquid crystal display and its production
JP5104605B2 (en) Regeneration method of glass substrate for color filter
JP4696872B2 (en) Manufacturing apparatus and manufacturing method of color filter for liquid crystal display device
JP5446242B2 (en) Manufacturing method of color filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees