JP4888077B2 - Led点灯回路およびそれを用いる照明器具 - Google Patents

Led点灯回路およびそれを用いる照明器具 Download PDF

Info

Publication number
JP4888077B2
JP4888077B2 JP2006312104A JP2006312104A JP4888077B2 JP 4888077 B2 JP4888077 B2 JP 4888077B2 JP 2006312104 A JP2006312104 A JP 2006312104A JP 2006312104 A JP2006312104 A JP 2006312104A JP 4888077 B2 JP4888077 B2 JP 4888077B2
Authority
JP
Japan
Prior art keywords
circuit
led
current
led load
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312104A
Other languages
English (en)
Other versions
JP2008130296A (ja
Inventor
博之 西野
英二 塩濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006312104A priority Critical patent/JP4888077B2/ja
Priority to PCT/JP2007/070429 priority patent/WO2008050679A1/ja
Priority to EP07830163A priority patent/EP2094063A4/en
Priority to US12/447,123 priority patent/US20100109537A1/en
Publication of JP2008130296A publication Critical patent/JP2008130296A/ja
Application granted granted Critical
Publication of JP4888077B2 publication Critical patent/JP4888077B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、LEDの点灯回路およびそれを用いる照明器具に関し、特に複数並列に設けられるLEDの電流を均等にするための手法に関する。
前記LED(発光ダイオード)を前記照明器具に用いる場合のように、必要な光出力を得るために多数のLEDを用いる場合、また少電流のLEDは効率が高く同じ光出力を得るにもチップを細分化する場合、それらを相互に直列に接続して点灯させるには、過大な電源電圧が必要になる。一方、前記多数のLEDを相互に並列に接続して点灯させると、過大な電流が必要になる。したがって、現実的には用途に応じた適当な直並列構成が採用される。しかしながら、青色LEDの場合、そのON電圧Vfは3〜3.5V程度で、ばらつきが大きく、前記直並列に組合わせると、相互に並列な各直列回路間の分流比に差が生じ易く、すなわち各直列回路間の明るさに差が生じ易いという問題がある。
詳しくは、LEDの光出力は通電電流値に依存するとされ、この観点からすれば、直列構成の場合は、個々のLEDのON電圧Vfにばらつきがあったとしても、通電電流値は同じであるので、個々のLEDの光出力ばらつきも小さい。これに対して、並列構成の場合は、直列構成のLEDのオン電圧Vfの和が異なれば、点灯回路(電源回路)の一括出力から各直列回路に流れる電流値は前記ON電圧Vfの低い回路に集中することになり、直列回路毎に光出力ばらつきは大きくなる。
図9は、典型的な従来技術のLED点灯回路1の構成を示すブロック図である。この従来技術は、特許文献1に示されたものである。このLED点灯回路1では、LED負荷を多数直列に接続したLED負荷回路u1〜u3を3回路並列に接続してLEDモジュール2が構成されている。そのLEDモジュール2には、商用電源3からの電圧Vacを、ノイズカット用のコンデンサc1から整流ブリッジ4にて直流化し、DC−DCコンバータ5を介して電圧変換した直流電圧VDCが与えられる。
DC−DCコンバータ5は、前記整流ブリッジ4の直流出力電圧をスイッチングするスイッチング素子q0と、前記のスイッチングによる励磁エネルギーを蓄積/放出するチョークコイルlと、前記チョークコイルlからの出力電流を整流・平滑化するダイオードdおよび平滑コンデンサc2と、前記スイッチング素子q0を流れる電流を電圧に変換して検知するための抵抗r1と、前記スイッチング素子q0のスイッチングを制御する制御回路6とを備えて構成される昇圧チョッパー回路から成る。
一方、各LED負荷回路u1〜u3には、それらを流れる通電電流値を相互に等しくするための定電流回路q1〜q3が各々直列に挿入されている。そして、前記定電流回路q1〜q3の印加電圧(負担電圧)は、比較回路7において、基準電圧源8からの基準電圧Vrefと比較され、比較結果が前記制御回路6に与えられており、制御回路6は、前記各定電流回路q1〜q3の印加電圧が直列LEDのON電圧Vfの総和よりも小さくなるように上記DC−DCコンバータ5の定電圧出力を制御する。これによって、各定電流回路q1〜q3での損失抑制が図られている。しかしながら、この従来技術では、前記LEDのON電圧Vfのばらつきが大きい程、全体の光出力レベルが変動し、定電流回路q1〜q3での損失も大きいなどの課題を有する。
図10は、他の従来技術のLED点灯回路11の構成を示すブロック図である。この従来技術は、特許文献2に示されたものである。このLED点灯回路11では、各LED負荷回路u1〜u3への総通電電流値を抵抗r2で電圧変換して検出し、比較器17において、その電圧を基準電圧Vrefと比較した結果が一定値になるように、PWM制御回路16を介してDC−DCコンバータ15を制御するように構成されている。DC−DCコンバータ15は、直流電源13からの電圧Vdcをスイッチング素子q0によってスイッチングしてトランスtの1次側に与え、2次側出力を整流平滑回路14にて整流・平滑化した直流電圧VDCを前記各LED負荷回路u1〜u3へ与えることで、電源側と負荷側とを絶縁する1石フライバックコンバータで構成されている。そして、このLED点灯回路11でも、各LED負荷回路u1〜u3に定電流回路d1〜d3がそれぞれ直列に設けられている。
図11は、前記定電流回路d1〜d3の具体例を示す電気回路図である。この定電流回路d1〜d3は、前記LED負荷回路u1〜u3に直列に接続されるトランジスタq11および抵抗r11と、前記トランジスタq11のコレクタ−ベース間を接続する抵抗r12と、前記トランジスタq11のベース−エミッタ間に介在されるツェナダイオードdzとを備えて構成される。そして、抵抗r11の電圧降下とトランジスタq11のベース−エミッタ間電圧Vbeとの和がツェナダイオードdzのツェナ電圧と略一致する条件で、トランジスタq11のコレクタ電流が定電流化される。
これによって、各LED負荷回路u1〜u3の電流は個々に定電流化され、しかもDC−DCコンバータ15の一括出力電流も上述のように定電流制御されるので、LEDのON電圧Vfのばらつきによる光出力のばらつきはかなり抑制できる。しかしながら、FETのソースホロワ回路から成る簡単な前記定電流回路q1〜q3に比べて、この定電流回路d1〜d3は、損失が大きいという問題がある。
そこで、本件発明者は、図12で示すようなLED点灯回路21を、特許文献3で提案した。その従来技術によれば、各LED負荷回路u1,u2と直列にトランジスタq21,q22および抵抗r21,r22をそれぞれ接続するとともに、前記トランジスタq21,q22とカレントミラー回路を構成するトランジスタq20を抵抗r23,r24,r20によって直流電源23の端子間に接続している。そして、直流電源23からの電圧VDCおよび抵抗r23,r24,r20などによって定まる基準電流がトランジスタq20に流れ、その基準電流にトランジスタq21,q22を流れる電流をバランスさせることで、光出力のばらつきを抑制するようになっている。なお、何れかの抵抗(この例ではr24)と並列に設けたバイパススイッチswによって該抵抗r24を短絡することで、前記基準電流を増加させ、光出力を増加させられるようにもなっている。
特開2002−8409号公報 特開2004−319583号公報 特開2004−39290号公報
上述のようなミラー回路による方法は、各LED負荷回路u1,u2間の電流のバランスを取るのに都合が良いものの、電源電圧VDCの変動によって基準電流が変動し、また前記基準電流を作成する抵抗r23,r24,r20およびトランジスタq20での損失が発生するという問題もある。
本発明の目的は、多数のLEDの光出力を、低損失で均一化することができるLED点灯回路およびそれを用いる照明器具を提供することである。
本発明のLED点灯回路は、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、各LED負荷回路におけるLEDのON電圧の総和を含めて、LED電流による電圧降下が最も高いLED負荷回路が前記カレントミラーの基準電流回路となるように、対応するものがダイオード構造とされるそのような制御素子と、前記カレントミラーの基準電流回路となるLED負荷回路と並列に設けられ、該LED負荷回路内のLEDの断線時における通電電流値を基準電流となるように維持するインピーダンス回路とを含むことを特徴とする。
上記の構成によれば、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、前記各LED負荷回路におけるLEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路を基準として、そのLED負荷回路に対応した制御素子をダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにする。具体的には、前記制御素子がトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。さらに、その基準電流回路となったLED負荷回路と並列にインピーダンス回路を設け、該インピーダンス回路は、対応するLED負荷回路内のLEDが断線した場合に、LED負荷回路を流れるべき電流をバイパスして、前記カレントミラー回路の基準電流を維持する。
したがって、各LED負荷回路間の電流バランスはカレントミラー回路によって均等に制御されるので、多数のLEDからの光出力を、均一化することができる。また、前記カレントミラー回路の基準電流を作成する回路には、ON電圧Vfの総和が最も高いLED負荷回路を用いているので、基準電流のみを作成する回路が不要で、その分の回路損失を無くすことができる。さらにまた、その基準電流回路となるLED負荷回路のLEDに断線が生じても、基準電流は流れ続けることになり、消灯が他のLED負荷回路に及ばないようにすることができる。
また、本発明のLED点灯回路では、前記インピーダンス回路は、スイッチ素子が直列に接続されて前記カレントミラーの基準電流回路となるLED負荷回路に対して並列に設けられ、前記カレントミラーの基準電流回路となるLED負荷回路に関連して、前記LEDの断線を検知し、前記スイッチ素子をONさせる断線検知手段をさらに備えることを特徴とする。
上記の構成によれば、断線検知手段を設けるとともに、前記インピーダンス回路には直列にスイッチ素子を設けておき、断線が検知された場合に前記スイッチ素子をONさせてインピーダンス回路を挿入する。
前記断線検知手段は、たとえば、ツェナダイオードと、前記LEDの断線によるLED負荷回路の端子間電圧の上昇が前記ツェナダイオードのツェナ電圧以上となると、前記スイッチ素子をONさせる制御手段とで構成することができ、或いは前記カレントミラーの基準電流回路となるLED負荷回路に直列に設けられる電流検知抵抗や発光ダイオードなどの電流検知手段と、前記電流検知手段で前記LEDの断線による電流遮断が検出されると、前記スイッチ素子をONさせる制御トランジスタやフォトトランジスタなどの制御手段とで構成することができる。
したがって、インピーダンス回路による常時損失を抑え、低消費電力で、断線に備えることができる。
さらにまた、本発明のLED点灯回路では、前記インピーダンス回路は、スイッチ素子が直列に接続されて前記カレントミラーの基準電流回路となるLED負荷回路に対して並列に設けられ、前記直流電源の出力電圧の上昇または出力電流の減少から前記LEDの断線を検知する断線検知手段と、前記断線検知手段で一旦断線が検知されると、前記スイッチ素子をONさせ続けるラッチ手段とをさらに備えることを特徴とする。
上記の構成によれば、断線検知手段およびラッチ手段を設けるとともに、前記インピーダンス回路には直列にスイッチ素子を設けておき、直流電源の出力電圧の上昇または出力電流の減少から、一旦断線が検知されると、前記スイッチ素子をONさせてインピーダンス回路を挿入する。
したがって、インピーダンス回路による常時損失を抑え、低消費電力で、断線に備えることができる。
また、本発明のLED点灯回路は、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、各LED負荷回路におけるLEDのON電圧の総和を含めて、LED電流による電圧降下が最も高いLED負荷回路が前記カレントミラーの基準電流回路となるように、対応するものがダイオード構造とされるそのような制御素子と、前記カレントミラーの基準電流回路となるLED負荷回路に関連して設けられ、該LED負荷回路内のLEDの断線を検知する断線検知手段と、前記カレントミラーの基準電流回路となるLED負荷回路以外のLED負荷回路に対応する制御素子に関連して設けられ、前記断線検知手段によって断線が検知されると、それらの制御素子の内の1つをダイオード接続に切換えることができる短絡手段とを含むことを特徴とする。
上記の構成によれば、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、前記各LED負荷回路におけるLEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路を基準として、その回路における前記制御素子をダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにする。具体的には、前記制御素子がトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。さらに、その基準電流回路となったLED負荷回路に関連して、そのLED負荷回路内のLEDの断線を検知する断線検知手段を設けるとともに、前記カレントミラーの基準電流回路となるLED負荷回路以外のLED負荷回路に対応する制御素子に関連して、前記ベース−コレクタ間やゲート−ドレイン間を短絡することができる短絡手段を設け、前記断線検知手段によって断線が検知されると、前記短絡手段が制御素子の内の1つをダイオード接続に切換える。
したがって、各LED負荷回路間の電流バランスはカレントミラー回路によって均等に制御されるので、多数のLEDからの光出力を、均一化することができる。また、前記カレントミラー回路の基準電流を作成する回路には、ON電圧Vfの総和が最も高いLED負荷回路を用いているので、基準電流のみを作成する回路が不要で、その分の回路損失を無くすことができる。さらにまた、その基準電流回路となるLED負荷回路のLEDに断線が生じると、他のLED負荷回路に対応した制御素子の内の1つがダイオード接続されて、引続き定電流動作を行うので、消灯がその他のLED負荷回路に及ばないようにすることができる。
さらにまた、本発明のLED点灯回路では、前記直流電源は、DC−DCコンバータであり、前記各LED負荷回路を流れる総電流値または前記ダイオード接続された制御素子に対応するLED負荷回路を流れる電流値を検出する電流検出手段と、前記電流検出手段からの検出結果を比較するための基準電圧源および比較器と、前記比較器からの出力に応じて、前記LEDモジュールへの通電電流値の総和が予め定める値となるように前記直流電源をフィードバック制御する制御手段とを備えて構成されることを特徴とする。
上記の構成によれば、直流電源から前記各LED負荷回路への通電電流値を検出し、その検出結果に基づいて、前記通電電流値の総和が予め定める値となるように、フィードバックによって前記直流電源を定電流制御するので、定電圧制御に比べて、制御素子での損失が小さく、低損失化することができる。
また、本発明の照明器具は、前記のLED点灯回路を用いることを特徴とする。
上記の構成によれば、多数のLEDからの光出力を均一化することができるとともに、低損失な照明器具を実現することができる。
本発明のLED点灯回路は、以上のように、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、前記各LED負荷回路におけるLEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高いLED負荷回路を基準として、そのLED負荷回路に対応した前記制御素子をダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにするとともに、その基準電流回路となったLED負荷回路と並列にインピーダンス回路を設け、該インピーダンス回路は、対応するLED負荷回路内のLEDが断線した場合に、LED負荷回路を流れるべき電流をバイパスして、前記カレントミラー回路の基準電流を維持する。
それゆえ、各LED負荷回路間の電流バランスはカレントミラー回路によって均等に制御されるので、多数のLEDからの光出力を、均一化することができる。また、前記カレントミラー回路の基準電流を作成する回路には、ON電圧Vfの総和が最も高いLED負荷回路を用いているので、基準電流のみを作成する回路が不要で、その分の回路損失を無くすことができる。さらにまた、その基準電流回路となるLED負荷回路のLEDに断線が生じても、基準電流は流れ続けることになり、消灯が他のLED負荷回路に及ばないようにすることができる。
また、本発明のLED点灯回路は、以上のように、断線検知手段を設けるとともに、前記インピーダンス回路には直列にスイッチ素子を設けておき、断線が検知された場合に前記スイッチ素子をONさせてインピーダンス回路を挿入する。
それゆえ、インピーダンス回路による常時損失を抑え、低消費電力で、断線に備えることができる。
さらにまた、本発明のLED点灯回路は、以上のように、断線検知手段およびラッチ手段を設けるとともに、前記インピーダンス回路には直列にスイッチ素子を設けておき、直流電源の出力電圧の上昇または出力電流の減少から、一旦断線が検知されると、前記スイッチ素子をONさせてインピーダンス回路を挿入する。
それゆえ、インピーダンス回路による常時損失を抑え、低消費電力で、断線に備えることができる。
また、本発明のLED点灯回路は、以上のように、照明器具などに用いられるLED点灯回路において、1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うにあたって、前記各LED負荷回路に直列に、カレントミラー回路を構成する制御素子を設け、それらの制御素子において、前記各LED負荷回路におけるLEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路を基準として、その回路における前記制御素子をダイオード構造とし、制御端子を介して残余の回路の制御素子の通電電流値を連動させることで、各LED負荷回路間のバランスを取るようにするとともに、その基準電流回路となったLED負荷回路に関連して、そのLED負荷回路内のLEDの断線を検知する断線検知手段を設け、また前記カレントミラーの基準電流回路となるLED負荷回路以外のLED負荷回路に対応する制御素子に関連して、前記ベース−コレクタ間やゲート−ドレイン間を短絡することができる短絡手段を設け、前記断線検知手段によって断線が検知されると、前記短絡手段が制御素子の内の1つをダイオード接続に切換える。
それゆえ、各LED負荷回路間の電流バランスはカレントミラー回路によって均等に制御されるので、多数のLEDからの光出力を、均一化することができる。また、前記カレントミラー回路の基準電流を作成する回路には、ON電圧Vfの総和が最も高いLED負荷回路を用いているので、基準電流のみを作成する回路が不要で、その分の回路損失を無くすことができる。さらにまた、その基準電流回路となるLED負荷回路のLEDに断線が生じると、他のLED負荷回路に対応した制御素子の内の1つがダイオード接続されて、引続き定電流動作を行うので、消灯がその他のLED負荷回路に及ばないようにすることができる。
さらにまた、本発明のLED点灯回路は、以上のように、直流電源から前記各LED負荷回路への通電電流値を検出し、その検出結果に基づいて、前記通電電流値の総和が予め定める値となるように、フィードバックによって前記直流電源を定電流制御する。
それゆえ、定電圧制御に比べて、制御素子での損失が小さく、低損失化することができる。
また、本発明の照明器具は、以上のように、前記のLED点灯回路を用いる。
それゆえ、多数のLEDからの光出力を均一化することができるとともに、低損失な照明器具を実現することができる。
[実施の形態1]
図1は、本発明の実施の一形態に係るLED点灯回路31の構成を示すブロック図である。このLED点灯回路31では、LEDD1を多数直列に接続したLED負荷回路U1〜U3を3回路並列に接続してLEDモジュール32が構成されている。各LED負荷回路U1〜U3における直列LED負荷の段数は任意であり、単一のLEDから構成されていてもよい。
各LED負荷回路U1〜U3は、LEDD1が共通の放熱板に搭載されてボンディングされ、波長変換用の蛍光体や光拡散用のレンズ等も取付けられて構成されている。このLEDモジュール32およびLED点灯回路31は、照明器具として用いられ、前記LED負荷としては青または紫外光を放出し、そのLED負荷からの光を前記蛍光体で波長変換して白色光として放射する。前記LED負荷回路U1〜U3の並列回路数も任意であり、たとえばRGBの3原色で発光させた光を合成するなどの白色光を得るための手法も任意である。
前記LEDモジュール32には、商用電源33からの電圧Vacを、ノイズカット用のコンデンサC1から整流ブリッジ34にて直流化し、DC−DCコンバータ35を介して電圧変換した直流電圧VDCが与えられる。DC−DCコンバータ35は、前記整流ブリッジ34の直流出力電圧をスイッチングするスイッチング素子Q0と、前記のスイッチングによる励磁エネルギーを蓄積/放出するチョークコイルLと、前記チョークコイルLからの出力電流を整流・平滑化するダイオードDおよび平滑コンデンサC2と、前記スイッチング素子Q0を流れる電流を電圧に変換して検知するための抵抗R1と、前記スイッチング素子Q0のスイッチングを制御する制御回路36とを備えて構成される昇圧チョッパー回路から成る。
そして直流電源であるそのDC−DCコンバータ35からLEDモジュール32へ流れる電流は、電流検知抵抗R2によって電圧値に変換されて、比較回路37において、基準電圧源38からの基準電圧Vrefと比較され、その比較結果が前記制御回路36にフィードバックされる。制御回路36は、前記抵抗R1,R2の検知結果に応答して、前記スイッチング素子Q0のスイッチング周波数やデューティを制御する。こうして、前記電圧VDCの定電圧制御およびLEDモジュール32へ流れる電流の定電流制御が行われるようになっている。
注目すべきは、本実施の形態では、各LED負荷回路U1〜U3には、それらを流れる通電電流値を相互に等しくするために、カレントミラー回路を構成する制御素子Q1〜Q3が直列に設けられており、それらの制御素子Q1〜Q3の内で、対応するLED負荷回路U1〜U3におけるLEDのON電圧Vfの総和を含めて、LED電流による電圧降下が最も高い回路(図1の例ではU1)を基準として、その回路における前記制御素子(図1の例ではQ1)をダイオード構造とし、制御端子を介して残余の回路(図1の例ではU2,U3)の制御素子(図1の例ではQ2,Q3)の通電電流値を連動させることで、各LED負荷回路U1〜U3間のバランスを取ることである。
具体的には、前記制御素子Q1〜Q3がこの図1のようにトランジスタである場合には、制御端子であるベースと、コレクタとを短絡するとともに、ベースを共通に接続する。また、前記制御素子がMOS型トランジスタである場合には、制御端子であるゲートと、ドレインとを短絡するとともに、ゲートを共通に接続する。
さらに注目すべきは、その基準電流回路となったLED負荷回路(図1の例ではU1)と並列にインピーダンス回路41を設け、該インピーダンス回路41が、対応するLED負荷回路U1内のLEDD10が断線した場合に、該LED負荷回路U1を流れるべき電流をバイパスして、前記カレントミラー回路の基準電流を維持することである。
具体的には、前記インピーダンス回路41は、抵抗、定電流回路、ツェナダイオード、およびツェナダイオードと抵抗との直列回路等、定電流を発生することができる素子または回路から構成されており、スイッチ素子Q4が直列に接続されて前記LED負荷回路U1に対して並列に設けられる。さらに、前記LED負荷回路U1に関連して、その回路内のLEDD10の断線を検知し、前記スイッチ素子Q4をONさせる断線検知回路42が設けられている。
断線検知手段である前記断線検知回路42は、前記LED負荷回路U1の端子電圧、すなわち制御素子Q1のコレクタ電圧を検出するようになっており、前記LED負荷回路U1と並列に設けられるツェナダイオードZDおよび分圧抵抗R11,R12の直列回路に、抵抗R12と並列に設けられるコンデンサC11を備えて構成され、前記分圧抵抗R11と分圧抵抗R12およびコンデンサC11との接続点がトランジスタから成る前記スイッチ素子Q4のベースに接続されて構成されている。そして、LEDD10の断線によってLED負荷回路U1の端子電圧、すなわち制御素子Q1のコレクタ電圧が、前記LEDのON電圧Vfの総和よりも高い所定電圧まで上昇すると、ツェナダイオードZDがONしてスイッチ素子Q4もONし、前記断線したLED負荷回路U1に代えてインピーダンス回路41に電流が流れる。したがって、前記分圧抵抗R11,R12およびコンデンサC11は、前記ツェナダイオードZDでの検知結果に応答してスイッチ素子Q4を制御する制御手段を構成する。
このように構成することで、前記抵抗R2の検知結果による一括定電流制御によってDC−DCコンバータ35から各LED負荷回路U1〜U3への通電電流値の総和が一定となるように制御されるとともに、各LED負荷回路U1〜U3間の電流バランスはカレントミラー回路によって均等に制御されるので、多数のLEDD1からの光出力を、均一化することができる。また、前記カレントミラー回路の基準電流を作成する回路(図1の例ではQ1)には、LEDD1のON電圧Vfの総和が最も高いLED負荷回路(図1の例ではU1)を用いているので、基準電流のみを作成する回路が不要で、その分の回路損失を無くすことができる。さらにまた、トランジスタなどの制御素子Q1〜Q3の1つをダイオード構造とするとともに、ミラー回路に構成するだけであるので、安価な構成で実現することができる。
たとえば、LED負荷回路の数を前記U1〜U3の3つとし、その各LED負荷回路U1〜U3を5段のLEDD1で構成し、前記ON電圧Vfのばらつきを±5%とするとき、前記抵抗R2の検知結果による一括定電流制御のみの場合、すなわち制御素子Q1〜Q3が設けられていない場合には、各LED負荷回路U1〜U3間の電流ばらつきは、17.5〜22.7mA(前記一括定電流制御の電流値は60mA)となるのに対して、前記制御素子Q1〜Q3を設け、前記のようにON電圧Vfの総和が最も高いLED負荷回路U1に対応した制御素子Q1を基準として他の制御素子Q2,Q3にミラー動作を行わせることで、電流ばらつきは、20.0〜20.1mAに抑えることができる。同様に、前記ON電圧Vfのばらつきを±10%とした場合には、一括定電流制御のみで15.2〜25.8mA、ミラー動作を行わせることで、20.0〜20.1mAとすることができる。
このLED点灯回路31の直流電源は、前述の図10で示すLED点灯回路と同様に、チョークコイルLを有するDC−DCコンバータ35であるけれども、図11で示すトランスtを有する絶縁型のDC−DCコンバータであってもよく、特にLEDモジュール32に対する直流電源は任意である。しかしながら、前記制御素子Q1〜Q3を用いるカレントミラー動作による定電流制御を行うにあたって、直流電源には、定電圧制御と、定電流制御とでは、定電流制御を用いる方が好ましい。
図2には、DC−DCコンバータ35が、上述のような抵抗R2の検知結果による定電流制御のみを行った場合と、前記図11で示すような電圧VDCの定電圧制御のみを行った場合とにおける前記制御素子Q1〜Q3による損失について、詳しく示す。また、図2には、前述の図11および図12で示す定電流回路d1〜d3を用いた場合において、定電流制御を行った場合と、定電圧制御を行った場合とにおける損失についても詳しく示す。試算の条件は、各LED負荷回路U1〜U3を流れる電流、すなわちLEDD1の定格電流を20mA、LEDD1のON電圧Vfを3.2V、そのばらつきを±10%、制御素子(トランジスタ)Q1〜Q3のhfeを100とする。
図2から明らかなように、本実施の形態のカレントミラー回路による電流バランス制御では、ON電圧Vfのばらつきが無い方が損失が小さいものの、ON電圧Vfのばらつきの有無に拘わらず、定電流制御の方が、定電圧制御に比べて、損失が小さいことが理解される。これに対して、前述の図11および図12で示す定電流回路d1〜d3を用いた電流バランス制御でも、ON電圧Vfのばらつきの有無に拘わらず、定電流制御の方が、定電圧制御に比べて、損失が小さいけれど、定電流制御では、総電流量が制限されているので、ON電圧Vfのばらつきが有っても無くても、損失が同じであることが理解される。したがって、本実施の形態のカレントミラー回路による電流バランス制御に対しては、定電流制御が好ましく、何れの条件でも、定電流回路d1〜d3を用いる場合に比べて、電流バランスを確保するにあたっての損失を大幅に削減できることが理解される。
上述の説明では、制御素子(トランジスタ)Q1〜Q3のエミッタ面積比、すなわち各LED負荷回路U1〜U3におけるLEDD1の定格電流は、各相互に等しかったけれども、相互に異なるように構成されてもよく、その場合、制御素子Q1〜Q3は、その異なる設定電流比を維持するように制御を行う。また、本発明におけるLEDD1には、有機EL(オーガニックLED)も適用可能である。
また、本実施の形態のように構成することで、前記基準電流回路となるLED負荷回路U1のLEDD10に断線が生じても、インピーダンス回路41によって基準電流は流れ続けることになり、消灯が他のLED負荷回路U2,U3に及ばないようにすることができる。さらにまた、前記インピーダンス回路41は、スイッチ素子Q4が直列に接続されて前記カレントミラーの基準電流回路となるLED負荷回路U1に対して並列に設けられ、断線検知回路42によって前記LEDD10の断線を検知された場合に、前記スイッチ素子Q4がONされて挿入されるので、該インピーダンス回路41による常時損失を抑え、低消費電力で、断線に備えることができる。
前記断線検知回路42における断線検知の他の手段としては、前記ツェナダイオードZDに代えて、図3で示すLED点灯回路31aのように、前記基準電流回路となるLED負荷回路U1に対して直列に設けた電流電圧変換抵抗R13や、図4で示すLED点灯回路31bのように、発光ダイオードD11なども用いることができる。
詳しくは、図3の断線検知回路42aでは、電源ライン間に抵抗R14と制御用のトランジスタQ5とが直列に接続され、そのトランジスタQ5のベースに前記電流電圧変換抵抗R13によって得られた電圧が与えられ、コレクタからの出力が前記スイッチ素子Q4のベースに与えられる。したがって、LED負荷回路U1に電流が流れている間はトランジスタQ5がONし、前記スイッチ素子Q4がOFFして、インピーダンス回路41は切離されている。これに対して、断線によってLED負荷回路U1に電流が流れなくなると、トランジスタQ5がOFFし、スイッチ素子Q4がONして、インピーダンス回路41が挿入される。
同様に、図4の断線検知回路42bでは、電源ライン間に前記抵抗R14と制御用のフォトトランジスタQ6とが直列に接続され、そのフォトトランジスタQ6が前記発光ダイオードD11とフォトカプラPCを構成し、コレクタからの出力が前記スイッチ素子Q4のベースに与えられる。したがって、LED負荷回路U1に電流が流れている間はフォトトランジスタQ6がONし、前記スイッチ素子Q4がOFFして、インピーダンス回路41は切離されている。これに対して、断線によってLED負荷回路U1に電流が流れなくなると、フォトトランジスタQ6がOFFし、スイッチ素子Q4がONして、インピーダンス回路41が挿入される。
[実施の形態2]
図5は、本発明の実施の他の形態に係るLED点灯回路51の構成を示すブロック図である。このLED点灯回路51において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、このLED点灯回路51では、DC−DCコンバータ35に定電流のフィードバック制御を行うにあたって、その電流検知抵抗R2を、前記基準電流作成回路であるLED負荷回路U1に挿入することである。この場合、前記抵抗R2による損失を削減することができる(図5の例では、図1の例に対して、略1/3)。また、基準となるLED負荷回路以外でLEDD1に断線が生じても、残余の回路は、一定の電流値のままで点灯を続けることができる。
[実施の形態3]
図6は、本発明の実施のさらに他の形態に係るLED点灯回路61の構成を示すブロック図である。このLED点灯回路61において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、このLED点灯回路61では、前記基準電流作成回路であるLED負荷回路U1以外のLED負荷回路U2,U3に対応する制御素子Q2,Q3には、前記断線検知回路42によって基準電流作成回路であるLED負荷回路U1の断線が検知されると、スイッチ切換え制御回路62が、対応する制御素子Q2,Q3をダイオード接続に切換えることができるスイッチSW2,SW3が設けられていることである。
したがって、断線の発生に応答して、前記断線検知回路42が、短絡手段であるスイッチSW2,SW3の内の1つ(図6の例ではSW2)をONさせると、引続きそのONされた側のLED負荷回路(図6の例ではU2)で定電流動作が行われ、残余のLED負荷回路(図6の例ではU3)との間の電流バランスが維持される。こうして、消灯が他のLED負荷回路(図6の例ではU2,U3)に及ばないようにしつつ、残されたLED負荷回路は均一な電流値のままで点灯を続けることができる。
[実施の形態4]
図7および図8は、本発明の実施の他の形態に係るLED点灯回路71,81の構成を示すブロック図である。これらのLED点灯回路71,81において、前述のLED点灯回路31に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、先ずLED点灯回路71では、断線検知回路42cは、DC−DCコンバータ35の出力電流の減少から前記LEDD10の断線を検知することである。具体的には、前記インピーダンス素子41と直列にサイリスタQ7を接続するとともに、前記電流検知抵抗R2のハイ側端子にツェナダイオードZDのカソードが接続され、そのツェナダイオードZDのアノードが抵抗R15からスイッチ素子Q4のベースに接続され、スイッチ素子Q4のエミッタが前記電流検知抵抗R2のロー側端子に接続される。また、前記制御素子Q4のコレクタは、バイアス抵抗R20を介して前記サイリスタQ7のゲートに接続される。
したがって、LEDD10が断線していないときには、電流検知抵抗R2の端子間電圧が高く、ツェナダイオードZDおよびスイッチ素子Q4がONし、サイリスタQ7のゲートがローレベルとなって該サイリスタQ7がOFFして、前記インピーダンス回路41は挿入されず、LEDD10が断線すると、前記電流検知抵抗R2の端子電圧が低くなり、ツェナダイオードZDおよび制御素子Q4がOFFし、サイリスタQ7のゲートがハイレベルとなって該サイリスタQ7がONして、前記インピーダンス回路41が挿入される。そして、一旦サイリスタQ7がONすると、電源供給が停止されるまで、その状態を保持する。したがって、サイリスタQ7は、ラッチ手段となる。なお、抵抗R15は、定電流のフィードバック制御のための電流検知抵抗R2での電圧降下を、前記ツェナダイオードZDおよびスイッチ素子Q4が吸収してしまわないように設けられている。
一方、LED点灯回路81では、断線検知回路82は、DC−DCコンバータ35の出力電圧VDCの上昇から前記LEDD10の断線を検知する。具体的には、前記断線検知回路82は、前記DC−DCコンバータ35の出力端間に介在される分圧抵抗R21,R22と、その接続点の電圧を予め定める基準電圧Vref1と比較する比較器83および基準電圧源84とを備えて構成され、前記比較器83の出力が前記サイリスタQ7のゲートに与えられる。
したがって、LEDD10が断線していないときには、前記出力電圧VDCは規定の電圧となって比較器83はローレベルを出力し、サイリスタQ7がOFFして、インピーダンス回路41は挿入されず、LEDD10が断線すると、前記出力電圧VDCは前記規定の電圧より高くなって比較器83はハイレベルを出力し、サイリスタQ7がONして、前記インピーダンス回路41が挿入される。一旦サイリスタQ7がONすると、電源供給が停止されるまで、その状態を保持する点は、前記図7と同様である。
このようにしてもまた、インピーダンス回路41による常時損失を抑えつつ、基準となるLED負荷回路U1のLEDD10に断線が生じても、全消灯してしまうことを防止することができる。
本発明の実施の一形態に係るLED点灯回路の構成を示すブロック図である。 図1で示す本発明の一実施形態と図10および図11で示す従来技術とで、並列のLED負荷回路へ供給する電流のバランス制御に要する損失計算の結果を示す図である。 図1で示すLED点灯回路において、断線検知回路の他の例を示すブロック図である。 図1で示すLED点灯回路において、断線検知回路のさらに他の例を示すブロック図である。 本発明の実施の他の形態に係るLED点灯回路の構成を示すブロック図である。 本発明の実施のさらに他の形態に係るLED点灯回路の構成を示すブロック図である。 本発明の実施の他の形態に係るLED点灯回路の構成を示すブロック図である。 本発明の実施の他の形態に係るLED点灯回路の構成を示すブロック図である。 典型的な従来技術のLED点灯回路の構成を示すブロック図である。 他の従来技術のLED点灯回路の構成を示すブロック図である。 図11で示すLED点灯回路における定電流回路の具体例を示す電気回路図である。 さらに他の従来技術のLED点灯回路の構成を示すブロック図である。
符号の説明
31,31a,31b,51,61,71,81 LED点灯回路
32 LEDモジュール
33 商用電源
34 整流ブリッジ
35 DC−DCコンバータ
36 制御回路
37 比較回路
38 基準電圧源
41 インピーダンス回路
42,42a,42b,42c,82 断線検知回路
62 スイッチ切換え制御回路
C2 平滑コンデンサ
D ダイオード
D1,D10 LED
D11 発光ダイオード
L チョークコイル
PC フォトカプラ
Q0 スイッチング素子
Q1〜Q3 制御素子
Q4 スイッチ素子
Q5 トランジスタ
Q6 フォトトランジスタ
Q7 サイリスタ
R1,R2;R11,R12,R14 抵抗
R13 電流電圧変換抵抗
R21,R22 分圧抵抗
SW2,SW3 スイッチ
U1〜U3 LED負荷回路
ZD ツェナダイオード

Claims (8)

  1. 1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、
    前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、各LED負荷回路におけるLEDのON電圧の総和を含めて、LED電流による電圧降下が最も高いLED負荷回路が前記カレントミラーの基準電流回路となるように、対応するものがダイオード構造とされるそのような制御素子と、
    前記カレントミラーの基準電流回路となるLED負荷回路と並列に設けられ、該LED負荷回路内のLEDの断線時における通電電流値を基準電流となるように維持するインピーダンス回路とを含むことを特徴とするLED点灯回路。
  2. 前記インピーダンス回路は、スイッチ素子が直列に接続されて前記カレントミラーの基準電流回路となるLED負荷回路に対して並列に設けられ、
    前記カレントミラーの基準電流回路となるLED負荷回路に関連して、前記LEDの断線を検知し、前記スイッチ素子をONさせる断線検知手段をさらに備えることを特徴とする請求項1記載のLED点灯回路。
  3. 前記断線検知手段は、ツェナダイオードと、前記LEDの断線によるLED負荷回路の端子間電圧の上昇が前記ツェナダイオードのツェナ電圧以上となると、前記スイッチ素子をONさせる制御手段とを備えて成ることを特徴とする請求項2記載のLED点灯回路。
  4. 前記断線検知手段は、前記カレントミラーの基準電流回路となるLED負荷回路に直列に設けられる電流検知手段と、前記電流検知手段で前記LEDの断線による電流遮断が検出されると、前記スイッチ素子をONさせる制御手段とを備えて成ることを特徴とする請求項2記載のLED点灯回路。
  5. 前記インピーダンス回路は、スイッチ素子が直列に接続されて前記カレントミラーの基準電流回路となるLED負荷回路に対して並列に設けられ、
    前記直流電源の出力電圧の上昇または出力電流の減少から前記LEDの断線を検知する断線検知手段と、前記断線検知手段で一旦断線が検知されると、前記スイッチ素子をONさせ続けるラッチ手段とをさらに備えることを特徴とする請求項1記載のLED点灯回路。
  6. 1または直列複数段のLEDから成るLED負荷回路が相互に並列に複数配置されて成るLEDモジュールに対して、直流電源から通電を行うようにしたLED点灯回路において、
    前記各LED負荷回路に直列に設けられ、カレントミラー回路を構成して前記各LED負荷回路における通電電流値を連動させる制御素子であって、各LED負荷回路におけるLEDのON電圧の総和を含めて、LED電流による電圧降下が最も高いLED負荷回路が前記カレントミラーの基準電流回路となるように、対応するものがダイオード構造とされるそのような制御素子と、
    前記カレントミラーの基準電流回路となるLED負荷回路に関連して設けられ、該LED負荷回路内のLEDの断線を検知する断線検知手段と、
    前記カレントミラーの基準電流回路となるLED負荷回路以外のLED負荷回路に対応する制御素子に関連して設けられ、前記断線検知手段によって断線が検知されると、それらの制御素子の内の1つをダイオード接続に切換えることができる短絡手段とを含むことを特徴とするLED点灯回路。
  7. 前記直流電源は、DC−DCコンバータであり、
    前記各LED負荷回路を流れる総電流値または前記ダイオード接続された制御素子に対応するLED負荷回路を流れる電流値を検出する電流検出手段と、
    前記電流検出手段からの検出結果を比較するための基準電圧源および比較器と、
    前記比較器からの出力に応じて、前記LEDモジュールへの通電電流値の総和が予め定める値となるように前記直流電源をフィードバック制御する制御手段とを備えて構成されることを特徴とする請求項1〜6のいずれか1項に記載のLED点灯回路。
  8. 前記請求項1〜7のいずれか1項に記載のLED点灯回路を用いることを特徴とする照明器具。
JP2006312104A 2006-10-25 2006-11-17 Led点灯回路およびそれを用いる照明器具 Expired - Fee Related JP4888077B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006312104A JP4888077B2 (ja) 2006-11-17 2006-11-17 Led点灯回路およびそれを用いる照明器具
PCT/JP2007/070429 WO2008050679A1 (fr) 2006-10-25 2007-10-19 Circuit d'éclairage de diode électroluminescente et appareil d'éclairage utilisant ledit circuit
EP07830163A EP2094063A4 (en) 2006-10-25 2007-10-19 LIGHT EMITTING DIODE LIGHTING CIRCUIT AND LIGHTING APPARATUS USING SAID CIRCUIT
US12/447,123 US20100109537A1 (en) 2006-10-25 2007-10-19 Led lighting circuit and illuminating apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312104A JP4888077B2 (ja) 2006-11-17 2006-11-17 Led点灯回路およびそれを用いる照明器具

Publications (2)

Publication Number Publication Date
JP2008130296A JP2008130296A (ja) 2008-06-05
JP4888077B2 true JP4888077B2 (ja) 2012-02-29

Family

ID=39555936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312104A Expired - Fee Related JP4888077B2 (ja) 2006-10-25 2006-11-17 Led点灯回路およびそれを用いる照明器具

Country Status (1)

Country Link
JP (1) JP4888077B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029546B1 (ko) 2009-05-29 2011-04-15 한양대학교 산학협력단 색온도 제어가 가능한 발광장치
JP5233904B2 (ja) * 2009-08-18 2013-07-10 サンケン電気株式会社 Led駆動回路
DE102010028406A1 (de) * 2010-02-12 2011-08-18 Osram Gesellschaft mit beschränkter Haftung, 81543 LED-Leuchtvorrichtung und Verfahren zum Betreiben einer LED-Leuchtvorrichtung
JP2012004175A (ja) * 2010-06-14 2012-01-05 Casio Comput Co Ltd 定電流回路
JP5331158B2 (ja) 2011-05-16 2013-10-30 シャープ株式会社 発光素子駆動回路
KR20130063863A (ko) * 2011-12-07 2013-06-17 매그나칩 반도체 유한회사 Led 어레이 오픈여부 감지회로 및 이를 이용한 led 구동장치
WO2014065091A1 (ja) * 2012-10-22 2014-05-01 シャープ株式会社 回路、制御プログラム、および記録媒体
JP6615318B2 (ja) * 2016-03-29 2019-12-04 三菱電機株式会社 レーザ光源モジュール、および故障レーザダイオードの特定方法
KR102034966B1 (ko) * 2018-12-04 2019-10-22 매그나칩 반도체 유한회사 Led 어레이 오픈여부 감지회로 및 이를 이용한 led 구동장치

Also Published As

Publication number Publication date
JP2008130296A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4888082B2 (ja) Led点灯回路およびそれを用いる照明器具
JP4888077B2 (ja) Led点灯回路およびそれを用いる照明器具
JP2008108564A (ja) Led点灯回路およびそれを用いる照明器具
EP2094063A1 (en) Led lighting circuit and illuminating apparatus using the same
JP2008130377A (ja) Led点灯回路およびそれを用いる照明器具
JP2008130513A (ja) Led点灯回路およびそれを用いる照明器具
EP2298030B1 (en) Led lamp driver and method
US10298014B2 (en) System and method for controlling solid state lamps
JP2008130989A (ja) Led点灯回路およびそれを用いる照明器具
JP2008108565A (ja) Led点灯回路およびそれを用いる照明器具
JP5981337B2 (ja) 低コストの電力供給回路及び方法
US8274237B2 (en) LED driver circuit with over-current protection during a short circuit condition
US9706613B2 (en) LED driver operating from unfiltered mains on a half-cycle by half-cycle basis
US8680783B2 (en) Bias voltage generation using a load in series with a switch
JP2008130295A (ja) Led点灯回路およびそれを用いる照明器具
KR101687358B1 (ko) 엘이디 컨버터 보호회로
TW200950589A (en) Light emitting diode driving circuit and controller thereof
JP2006319172A (ja) Ledランプ調光用アダプタ装置
JP7050755B2 (ja) センサ対応ledドライバ用の絶縁補助電源及びdali電源の制御
JP2003059676A (ja) 発光ダイオードの点灯用電源装置
JP2015042030A (ja) Led電源装置及びled照明装置
JP7155150B2 (ja) Led照明ドライバ及び駆動方法
Dietrich et al. A capacitor-free single-inductor multiple-output LED driver
US20230108118A1 (en) Led driving arrangement and driving method
CN112119578B (zh) 电力供应电路、控制方法和电设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4888077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees