JP4887709B2 - Method and apparatus for increasing yield of plant polyphenols - Google Patents

Method and apparatus for increasing yield of plant polyphenols Download PDF

Info

Publication number
JP4887709B2
JP4887709B2 JP2005280878A JP2005280878A JP4887709B2 JP 4887709 B2 JP4887709 B2 JP 4887709B2 JP 2005280878 A JP2005280878 A JP 2005280878A JP 2005280878 A JP2005280878 A JP 2005280878A JP 4887709 B2 JP4887709 B2 JP 4887709B2
Authority
JP
Japan
Prior art keywords
light
polyphenol
wavelength
light source
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005280878A
Other languages
Japanese (ja)
Other versions
JP2007089430A (en
Inventor
陽子 鶴永
章英 工藤
正紀 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005280878A priority Critical patent/JP4887709B2/en
Publication of JP2007089430A publication Critical patent/JP2007089430A/en
Application granted granted Critical
Publication of JP4887709B2 publication Critical patent/JP4887709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、植物のポリフェノールの合成を促進させるポリフェノール増収方法及び増収装置に関するものである。   The present invention relates to a method and an apparatus for increasing yield of a polyphenol that promotes the synthesis of plant polyphenols.

従来から、植物のポリフェノール増収方法としては、例えば特許文献1に示すような、栽培中のサニーレタスの葉中に含まれるポリフェノールの一種であるアントシアニンの合成を促進させる方法が知られている。   Conventionally, as a method for increasing the yield of polyphenols in plants, for example, a method for promoting the synthesis of anthocyanin, which is a kind of polyphenol contained in the leaves of sunny lettuce during cultivation, as shown in Patent Document 1, is known.

この方法は、栽培中のサニーレタスに対し、アントシアニンの合成に有効とされる波長400〜500nmの青色成分を含む可視光を、アントシアニンが分解されやすい夜間に照射して、葉中のアントシアニンの合成を促進させるものであり、アントシアニンの不足に基づくサニーレタスの着色不良や、葉内の抗酸化成分の不足を防止するものである。しかし、このポリフェノール増収方法では、ポリフェノールの合成が必ずしも十分促進されるとはいえない可能性がある。
特開2003−204718号公報
This method irradiates the sunny lettuce under cultivation with visible light containing a blue component having a wavelength of 400 to 500 nm, which is effective for the synthesis of anthocyanins, at night when anthocyanins are easily decomposed to synthesize anthocyanins in leaves. It is intended to prevent poor coloring of Sunny lettuce based on the lack of anthocyanins and lack of antioxidant components in the leaves. However, this method for increasing the yield of polyphenols may not necessarily sufficiently promote the synthesis of polyphenols.
JP 2003-204718 A

本発明は、上記課題を解決するためになされたものであり、ポリフェノールの合成を十分促進することができ、着色不良や抗酸化成分の不足を防止することができるポリフェノール増収方法及び増収装置を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a polyphenol yield increasing method and a revenue increasing apparatus capable of sufficiently promoting the synthesis of polyphenol and preventing poor coloring and lack of antioxidant components. The purpose is to do.

上記目的を達成するために請求項1の発明は、栽培中のベビーリーフに、150〜600μmol/m/secである可視光、及び100μW/cm以上であり、280〜300nmの波長を除去したUV−B光を照射することを特徴とする植物のポリフェノール増収方法である。 The invention of claim 1 in order to achieve the above object, the baby leaves in cultivation, the visible light is 150~600μmol / m 2 / sec, and 100 .mu.W / cm 2 or more der is, the wavelength of 280~300nm A method for increasing the yield of polyphenols in plants, which comprises irradiating the removed UV-B light.

ここでベビーリーフとは、発芽後10〜30日程度の若い葉菜の総称を意味し,具体的には、例えば、レタス(ロロロッサ,デトロイト、レッドロメイン、レッドオーク等),ミズナ,ホウレンソウ,ビート,カラシナなどがある。ただし、上記野菜を使用しなければベビーリーフではないとするような規定はなく、若い葉を使用していればベビーリーフとみなされている。また、UV−B光とは、一般的に波長域が280〜320nmの光を意味する。   Here, baby leaf means a generic name of young leafy vegetables about 10 to 30 days after germination. Specifically, for example, lettuce (Lolorossa, Detroit, Red Romaine, Red Oak, etc.), Mizuna, Spinach, Beet , Mustard and so on. However, there is no provision that it is not a baby leaf if the above vegetables are not used, and it is regarded as a baby leaf if young leaves are used. UV-B light generally means light having a wavelength range of 280 to 320 nm.

請求項2の発明は、前記可視光を照射する可視光源と、前記UV−B光を照射するUV−B光源と、を備え、請求項1に記載のポリフェノール増収方法により、ベビーリーフを栽培することを特徴とする植物のポリフェノール増収装置である。 Invention of Claim 2 is provided with the visible light source which irradiates the said visible light, and the UV-B light source which irradiates the said UV-B light, A baby leaf is cultivated with the polyphenol yield increasing method of Claim 1. This is a plant polyphenol yield increasing device .

請求項1の発明によれば、光量を限定した可視光、及び光量を限定したUV−B光を照射するので、従来技術に比べてより発色の良い収穫物を得ることができる。また、請求項1の発明によれば、280〜300nmの波長を除去したUV−B光を照射するので、従来技術に比べて、植物の枯死やわい化などの生育障害を防止することができる。 According to the first aspect of the present invention, the visible light having a limited light amount and the UV-B light having a limited light amount are irradiated, so that a crop with better color development can be obtained as compared with the prior art. In addition, according to the invention of claim 1, since UV-B light from which a wavelength of 280 to 300 nm is removed is irradiated, it is possible to prevent growth disorders such as plant death and dwarfing as compared with the prior art.

請求項2の発明によれば、各種光源を一体化したので、光源から出力される光の均斉度の調節が容易に実施できる。 According to the invention of claim 2, since various light sources are integrated, the uniformity of the light output from the light source can be easily adjusted.

以下、本発明の第1の実施形態に係る植物のポリフェノール増収方法及び増収装置について図面を参照して説明する。図1は、本実施形態に係るポリフェノール増収装置の構成を示す。このポリフェノール増収装置1は、可視光を照射する白色ランプ2(可視光源)と、UV−B光を照射する蛍光灯3(UV−B光源)と、を備えている。蛍光灯3は、280〜300nmの波長と340〜550nmの波長とを除去するホウケイ酸ガラスシリンダ6を有している。白色ランプ2及び蛍光灯3の直下には、U字状の栽培容器5が配置されている。栽培容器5の内部には、培地7が充填されており、培地7には、ベビーリーフ4が植えられている。ベビーリーフ4とは、発芽後10〜30日程度の若い葉菜の総称を意味し,具体的には、例えば、レタス(ロロロッサ,デトロイト、レッドロメイン、レッドオーク等),ミズナ,ホウレンソウ,ビート,カラシナなどがある。ただし、上記野菜を使用しなければベビーリーフではないとするような規定はなく、若い葉を使用していればベビーリーフとみなされている。   Hereinafter, a plant polyphenol increasing method and an increasing device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a polyphenol increase apparatus according to the present embodiment. The polyphenol gain-increasing apparatus 1 includes a white lamp 2 (visible light source) that emits visible light and a fluorescent lamp 3 (UV-B light source) that emits UV-B light. The fluorescent lamp 3 has a borosilicate glass cylinder 6 that removes a wavelength of 280 to 300 nm and a wavelength of 340 to 550 nm. A U-shaped cultivation container 5 is disposed immediately below the white lamp 2 and the fluorescent lamp 3. The inside of the cultivation container 5 is filled with a culture medium 7, and a baby leaf 4 is planted in the culture medium 7. Baby leaf 4 means a generic name of young leafy vegetables about 10 to 30 days after germination. Specifically, for example, lettuce (Lolo Rossa, Detroit, Red Romaine, Red Oak, etc.), Mizuna, Spinach, Beet, There are mustards. However, there is no provision that it is not a baby leaf if the above vegetables are not used, and it is regarded as a baby leaf if young leaves are used.

白色ランプ2と蛍光灯3とから出力される光は、照射強度測定機などの照射強度手段(図示せず)を用いて照射強度が測定される。白色ランプ2と蛍光灯3とは、この測定結果をフィードバックすることにより、所望の照射強度の光を出力するように制御されている。なお、ポリフェノール増収装置1は、各光源を一体化しているため、各光源から出力される光の均斉度の調節が容易に行える。また、栽培容器5と白色ランプ2又は蛍光灯3との間に、光の均斉度を向上させるためのフレネルレンズ等の光学部材を設けることにより、光の均斉度の調節を行うことができる。   The irradiation intensity of the light output from the white lamp 2 and the fluorescent lamp 3 is measured using irradiation intensity means (not shown) such as an irradiation intensity measuring machine. The white lamp 2 and the fluorescent lamp 3 are controlled so as to output light having a desired irradiation intensity by feeding back the measurement result. In addition, since the polyphenol-yielding apparatus 1 integrates each light source, it can adjust the uniformity of the light output from each light source easily. Further, by providing an optical member such as a Fresnel lens for improving the light uniformity between the cultivation container 5 and the white lamp 2 or the fluorescent lamp 3, the light uniformity can be adjusted.

白色ランプ2は、照射強度が150〜600μmol/m/secである、例えば、松下電器産業株式会社製FL20SS・EX-Nを用いている。図2は、白色ランプ2に松下電器産業株式会社製FL20SS・EX-Nを用いた場合の出力波長域の分布を示している。白色ランプ2の出力波長域は、図2に示すように、主に400〜780nmである。 The white lamp 2 uses, for example, FL20SS · EX-N manufactured by Matsushita Electric Industrial Co., Ltd., whose irradiation intensity is 150 to 600 μmol / m 2 / sec. FIG. 2 shows the distribution of the output wavelength region when the white lamp 2 uses FL20SS · EX-N manufactured by Matsushita Electric Industrial Co., Ltd. The output wavelength range of the white lamp 2 is mainly 400 to 780 nm as shown in FIG.

蛍光灯3は、UV-B光が100μW/cm以上得られる、例えば、株式会社三共製GL20SE、又は、フィリップス株式会社製TL20W/01RSの蛍光灯を用いている。図3は、蛍光灯3に株式会社三共製GL20SEを用いた場合の出力波長域の分布を示し、図4は、蛍光灯3にフィリップス株式会社製TL20W/01RSを用いた場合の出力波長域の分布を示している。株式会社三共製GL20SEの出力波長域は、図3に示すように、280〜580nmの範囲であり、ピーク波長は310nmである。 As the fluorescent lamp 3, for example, a fluorescent lamp of GL20SE manufactured by Sankyo Co., Ltd. or TL20W / 01RS manufactured by Philips Co., Ltd., which can obtain UV-B light of 100 μW / cm 2 or more is used. 3 shows the distribution of the output wavelength range when Sankyo GL20SE is used as the fluorescent lamp 3, and FIG. 4 shows the output wavelength range when Philips TL20W / 01RS is used as the fluorescent lamp 3. Distribution is shown. As shown in FIG. 3, the output wavelength range of Sankyo Co., Ltd. GL20SE is in the range of 280 to 580 nm, and the peak wavelength is 310 nm.

ホウケイ酸ガラスシリンダ6は、280〜300nmの波長を除去する例えば、コーニング社製パイレックス(登録商標)ガラスのシリンダから形成される。また、上記のコーニング社製パイレックスガラスを用いて光学多層膜を形成することにより、340〜550nmの波長も除去している。なお、コーニング社製パイレックスガラスを用いて、さらに光学多層膜を形成することにより340nm以上の波長を除去することや、コーニング社製パイレックスガラスを用いて、バンドパスフィルタを形成することにより、300〜340nmの波長だけを透過させることもできる。   The borosilicate glass cylinder 6 is formed from a cylinder of Pyrex (registered trademark) manufactured by Corning, for example, which removes a wavelength of 280 to 300 nm. Moreover, the wavelength of 340-550 nm is also removed by forming an optical multilayer film using the above-mentioned Corning Pyrex glass. In addition, by using Pyrex glass manufactured by Corning, further removing a wavelength of 340 nm or more by forming an optical multilayer film, or by forming a bandpass filter using Pyrex glass manufactured by Corning, 300 to Only the wavelength of 340 nm can be transmitted.

本実施形態に係るベビーリーフ4のポリフェノール増収方法では、ベビーリーフ4に対し、150〜600μmol/m2/secである可視光、及び100μW/cm2以上であるUV−B光を照射する。また、UV−B光源に含まれる280〜300nmの波長を除去したものを用いる。さらに、UV−B光源に含まれる340〜550nmの波長を除去したものを用いる。   In the method for increasing the yield of polyphenol of the baby leaf 4 according to the present embodiment, the baby leaf 4 is irradiated with visible light that is 150 to 600 μmol / m 2 / sec and UV-B light that is 100 μW / cm 2 or more. Moreover, what removed the wavelength of 280-300 nm contained in a UV-B light source is used. Furthermore, the thing remove | excluding the wavelength of 340-550 nm contained in a UV-B light source is used.

次に、ベビーリーフ4の栽培条件を示す。ポリフェノール増収装置1の培地7に、ベビーリーフ4の一種であるレッドロメインとレッドオークに植え、1日の内の14時間を明期、残りの10時間を暗期をとし、かつ、明期の間は30℃、暗期の間は25℃という条件の下、合計20日間栽培を行った。   Next, the cultivation conditions of the baby leaf 4 are shown. Planted in the red romaine and red oak, which are a kind of baby leaf 4, in the medium 7 of the polyphenol-yielding device 1, with 14 hours of the day being the light period, the remaining 10 hours being the dark period, and the light period Cultivation was performed for a total of 20 days under the conditions of 30 ° C. for the interval and 25 ° C. for the dark period.

上述した条件によるベビーリーフの育成状況及びアントシアニンの生成量についての検証結果を表1に示す。なお、各ベビーリーフの育成状況は、目視で観察した。各ベビーリーフのアントシアニンの生成量は、採取した試料を5%ギ酸で48時間浸漬抽出後、抽出液を、測定波長を540nmとした吸光分析にて評価し、シアニジン相当量で得られたものを相対値で表示した。

Figure 0004887709
Table 1 shows the results of verification of the growth status of baby leaves and the amount of anthocyanin produced under the conditions described above. The growth status of each baby leaf was visually observed. The amount of anthocyanin produced in each baby leaf was obtained by immersing and extracting the collected sample with 5% formic acid for 48 hours, and evaluating the extract by absorption spectrometry with a measurement wavelength of 540 nm. Displayed as a relative value.
Figure 0004887709

表1より、150〜600μmol/m/secである可視光、及び100μW/cm以上であり、280〜300nmの波長を除去したUV-B光を照射することにより、ベビーリーフ4のアントシアニンの合成が促進されることが分かる。また、280〜300nmの波長を除去したUV−B光を照射することにより、ベビーリーフ4の枯死やわい化などの生育障害を防止できることが分かる。また、340〜550nmの波長を除去したUV−B光を照射することにより、特に夜間にUV−Bを照射する場合、虫の誘引を抑制できることが分かる。なお、この検証では、UV-B光を明期時間のみ点灯させたが、暗期に点灯しても同様に効果が得られる。 From Table 1, the irradiation of 150 to 600 μmol / m 2 / sec of visible light and 100 μW / cm 2 or more of UV-B light from which a wavelength of 280 to 300 nm has been removed is applied to the baby leaf 4 anthocyanins. It can be seen that the synthesis is promoted. Moreover, it turns out that the growth disorder | damage | failure, such as the death or dwarf of the baby leaf 4, can be prevented by irradiating UV-B light which removed the wavelength of 280-300 nm. It can also be seen that by attracting UV-B light from which wavelengths of 340 to 550 nm have been removed, attracting insects can be suppressed particularly when UV-B is irradiated at night. In this verification, the UV-B light is turned on only during the light period, but the same effect can be obtained even when it is turned on in the dark period.

なお、上記実施形態では、可視光を照射する光源として、白色ランプ2を単独で用いているが、白色ランプ2と自然光と併用するものであってもよい。この場合は、自然光の照射強度を測定する測定手段を備え、この測定結果と目標照射強度との差分だけ白色ランプ2が可視光を照射すればよく、白色ランプ2を単独で用いる場合に比べてコストの低減を図ることができる。   In the above-described embodiment, the white lamp 2 is used alone as a light source for irradiating visible light. However, the white lamp 2 and natural light may be used in combination. In this case, a measuring means for measuring the irradiation intensity of natural light is provided, and the white lamp 2 only needs to irradiate visible light by a difference between the measurement result and the target irradiation intensity, compared with the case where the white lamp 2 is used alone. Cost can be reduced.

次に、本発明の第2の実施形態に係る植物のポリフェノール増収方法及び増収装置について図面を参照して説明する。図5は、本実施形態に係るポリフェノール増収装置の構成を示す。このポリフェノール増収装置1は、遠赤色光(Far-Red)を意味し、700〜800nmの波長の光であるFR光を照射する蛍光ランプ8と、各光源から照射した光を反射する反射板10を備え、蛍光灯3が、280〜300nmの波長を除去するホウケイ酸ガラスシリンダ11を有している以外は、第1の実施形態に係るポリフェノール増収装置と同様である。また、栽培容器5の培地7には、スプラウト9が植えられている。白色ランプ2と、蛍光灯3と、蛍光ランプ8とから出力される光は、第1の実施形態に係るポリフェノール増収装置と同様に、照射強度測定機などの照射強度手段(図示せず)を用いて照射強度が測定され、所望の照射強度の光を出力するように制御されている。スプラウト9とは、発芽後10日程度の植物新芽の総称を意味し、具体的には、例えば、ソバスプラウト、タデ、ベニバナ、ダイコン、ブロッコリー、キャベツ、ハクサイなどがあり、その他にも多数が食用として栽培されている。   Next, a plant polyphenol yield increasing method and a revenue increasing apparatus according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 shows a configuration of the polyphenol increase apparatus according to the present embodiment. This polyphenol gain increasing device 1 means far-red light (Far-Red), a fluorescent lamp 8 that irradiates FR light that is light having a wavelength of 700 to 800 nm, and a reflector 10 that reflects light emitted from each light source. Except that the fluorescent lamp 3 has a borosilicate glass cylinder 11 that removes a wavelength of 280 to 300 nm. A sprout 9 is planted in the culture medium 7 of the cultivation container 5. The light output from the white lamp 2, the fluorescent lamp 3, and the fluorescent lamp 8 is irradiated with an irradiation intensity means (not shown) such as an irradiation intensity measuring device, as in the polyphenol increasing apparatus according to the first embodiment. The irradiation intensity is measured by using the laser beam and is controlled so as to output light having a desired irradiation intensity. Sprout 9 is a generic term for plant shoots about 10 days after germination, and specifically includes, for example, Soba sprout, Tade, safflower, Japanese radish, broccoli, cabbage, Chinese cabbage, and many others are edible It is cultivated as.

蛍光ランプ8は、汎用的な蛍光ランプである、例えば、松下電器産業株式会社製FL20S・FR・Pを用いている。蛍光ランプ8は、FR光と可視光成分とを同時に出光し、照射強度は可視光換算で10〜40μmol/m/secの範囲で任意のものを選択できる。図6は、蛍光ランプ8に松下電器産業株式会社製FL20S・FR・Pを用いた場合の出力波長域の分布を示し、出力波長域は、主に400〜780nmである。 The fluorescent lamp 8 is a general-purpose fluorescent lamp, for example, FL20S · FR · P manufactured by Matsushita Electric Industrial Co., Ltd. The fluorescent lamp 8 emits the FR light and the visible light component simultaneously, and the irradiation intensity can be arbitrarily selected in the range of 10 to 40 μmol / m 2 / sec in terms of visible light. FIG. 6 shows the distribution of the output wavelength region when FL20S · FR · P manufactured by Matsushita Electric Industrial Co., Ltd. is used for the fluorescent lamp 8, and the output wavelength region is mainly 400 to 780 nm.

ホウケイ酸ガラスシリンダ11は、第1の実施形態と同様に、ホウケイ酸ガラス(コーニング社製パイレックスガラス)シリンダに光学多層膜を形成したものである。   The borosilicate glass cylinder 11 is formed by forming an optical multilayer film on a borosilicate glass (Corning Pyrex glass) cylinder as in the first embodiment.

本実施形態に係る植物のポリフェノール増収方法では、スプラウト9に対し、100〜600μW/cmであるUV−B光を照射する。また、10〜40μmol/m/secである可視光を照射する。また、可視光換算で10〜40μmol/m/secのFR光を照射する。また、UV−B光源に含まれる280〜300nmの波長を除去したものを用いる。 In the plant polyphenol yield increasing method according to this embodiment, the sprout 9 is irradiated with UV-B light of 100 to 600 μW / cm 2 . Moreover, the visible light which is 10-40 micromol / m < 2 > / sec is irradiated. Moreover, 10-40 micromol / m < 2 > / sec FR light is irradiated in conversion of visible light. Moreover, what removed the wavelength of 280-300 nm contained in a UV-B light source is used.

次に、スプラウト9の栽培条件を示す。ここでは、例えば、スプラウト9の一種であるソバスプラウトを用いる。まず、種子重量の2倍重量の水道水に8時間種子を25℃で浸漬する。そして、ウレタンマットに播種した後、散水栽培装置(図示せず)にセットし、1時間に10秒間散水させる環境の下、25℃で7日間暗黒の中で栽培する。この時点のソバスプラウトは、白色でアントシアニンの発色はほとんどない。その後、ソバスプラウトを、ポリフェノール増収装置1の培地7にセットし、温度25℃の下、0〜72時間連続で光照射を行ない、ポリフェノール成分を増加させる。   Next, the cultivation conditions of the sprout 9 are shown. Here, for example, a soba sprout which is a kind of sprout 9 is used. First, seeds are soaked at 25 ° C. for 8 hours in tap water twice the weight of the seeds. Then, after seeding on a urethane mat, it is set in a watering cultivation device (not shown) and cultivated in the dark at 25 ° C. for 7 days under an environment of watering for 10 seconds per hour. The soba sprout at this point is white with little anthocyanin coloration. Thereafter, the soba sprout is set in the culture medium 7 of the polyphenol yield increasing apparatus 1, and light irradiation is continuously performed at a temperature of 25 ° C. for 0 to 72 hours to increase the polyphenol component.

従来は、施設内で太陽光を照射するが、夏場は太陽光が強すぎて、ポリフェノールは増加するが、子葉が黄化して商品価値を損なう。また、場合によっては枯死に至ることもある。一方、冬場や曇天時には、ポリフェノールが充分に形成されないなど、安定的な生産が困難である。   Conventionally, sunlight is radiated in a facility, but in the summer, sunlight is too strong and polyphenols increase, but the cotyledons turn yellow and impair commercial value. In some cases, it may lead to death. On the other hand, in winter and cloudy weather, stable production is difficult because polyphenols are not sufficiently formed.

上述した条件によるソバスプラウトの育成状況及びアントシアニンの生成量について、検証結果を表2に示す。なお、ソバスプラウトの育成状況は、目視で観察した。各ソバスプラウトのアントシアニンの生成量は、採取した試料を5%ギ酸で48時間浸漬抽出後、抽出液を、測定波長を540nmとした吸光分析にて評価し、シアニジン相当量で得られたもので表示した。

Figure 0004887709
Table 2 shows the results of verification of the growth status of soba sprout and the amount of anthocyanin produced under the conditions described above. In addition, the growth situation of Soba sprout was observed visually. The amount of anthocyanin produced in each soba sprout was obtained by immersing and extracting a collected sample with 5% formic acid for 48 hours, and then evaluating the extract by absorption spectrometry with a measurement wavelength of 540 nm, which was obtained in an amount equivalent to cyanidin. displayed.
Figure 0004887709

表2により、ソバスプラウトにそれぞれ光量を限定したUV−B光、可視光、及びFR光を照射するので、従来技術に比べてよりポリフェノール含有量の多く、また、発色の良い収穫物を得ることができるが分かる。   According to Table 2, UV-B light, visible light, and FR light with a limited amount of light are irradiated on the soba sprout, so that a crop with a higher polyphenol content and better color development than the prior art can be obtained. I understand.

次に、イチゴ果実表皮の着色について、ポリフェノール増収装置1を用いて検証を行った。検証結果を表3に示す。本検証は、ハウス栽培時に曇天が続き、やや着色不足なイチゴを用いて行った。

Figure 0004887709
Next, about the coloring of the strawberry fruit skin, it verified using the polyphenol yield increase apparatus 1. FIG. Table 3 shows the verification results. This verification was performed using strawberries that were cloudy during house cultivation and slightly undercolored.
Figure 0004887709

表3より、25℃で48時間、UV-B光を360μW/cm、可視光を23μmol/m/sec照射することで、イチゴ果実の表皮が充分な赤色に着色することが分かる。 From Table 3, it can be seen that irradiation of UV-B light at 360 μW / cm 2 and visible light at 23 μmol / m 2 / sec for 48 hours at 25 ° C. causes the strawberry fruit epidermis to be colored sufficiently red.

また、バラ花びらの着色についても、ポリフェノール増収装置1を用いて検証を行った。検証結果を表4に示す。本検証は、上述したイチゴと同様な処理をやや着色不足のバラを用いて行った。

Figure 0004887709
In addition, the coloration of rose petals was also verified using the polyphenol increase device 1. Table 4 shows the verification results. In this verification, the same process as that of the strawberry described above was performed using roses that were slightly undercolored.
Figure 0004887709

表4より、バラは、25℃、48時間で鮮やかな赤色に着色することが分かる。   From Table 4, it can be seen that roses are colored bright red at 25 ° C. for 48 hours.

また、上記の本実施形態に係るポリフェノール増収方法によれば、280〜300nmの波長を除去したUV−B光を照射するので、従来技術に比べて、植物の枯死やわい化などの生育障害を防止することができる。   In addition, according to the polyphenol yield increasing method according to the above-described embodiment, UV-B light from which a wavelength of 280 to 300 nm is removed is irradiated, so that growth disorders such as plant death and dwarfing are prevented as compared with the prior art. can do.

なお、本発明は上記各実施形態の構成に限定されるものではなく、発明の趣旨を変更しない範囲で適宜に種々の変形が可能である。   The present invention is not limited to the configuration of each of the above embodiments, and various modifications can be made as appropriate without departing from the spirit of the invention.

本発明の第1の実施形態に係る植物のポリフェノール増収装置の構成図。1 is a configuration diagram of a plant polyphenol yield increasing device according to a first embodiment of the present invention. FIG. 上記装置における可視光源の出力波長域を示す分布図。The distribution map which shows the output wavelength range of the visible light source in the said apparatus. 上記装置におけるUV−B光源の出力波長域を示す分布図。The distribution map which shows the output wavelength range of the UV-B light source in the said apparatus. 上記装置における上記とは別のUV−B光源の出力波長域を示す分布図。The distribution map which shows the output wavelength range of the UV-B light source different from the above in the said apparatus. 本発明の第2の実施形態に係る植物のポリフェノール増収装置の構成図。The block diagram of the polyphenol increase apparatus of the plant which concerns on the 2nd Embodiment of this invention. 上記装置におけるFR光源の出力波長域を示す分布図。The distribution map which shows the output wavelength range of the FR light source in the said apparatus.

符号の説明Explanation of symbols

1 ポリフェノール増収装置
2 白色ランプ(可視光源)
3 蛍光灯(UV−B光源)
4 ベビーリーフ
5 栽培容器
6 ホウケイ酸ガラスシリンダ
7 培地
8 蛍光ランプ(FR光源)
9 スプラウト
10 反射板
11 ホウケイ酸ガラスシリンダ
1 Polyphenol increase device 2 White lamp (visible light source)
3 Fluorescent lamp (UV-B light source)
4 Baby leaf 5 Cultivation container 6 Borosilicate glass cylinder 7 Medium 8 Fluorescent lamp (FR light source)
9 Sprout 10 Reflector 11 Borosilicate glass cylinder

Claims (2)

栽培中のベビーリーフに、150〜600μmol/m/secである可視光、及び100μW/cm以上であり、280〜300nmの波長を除去したUV−B光を照射することを特徴とする植物のポリフェノール増収方法。 Baby leaf in cultivation, the visible light is 150~600μmol / m 2 / sec, and 100 .mu.W / cm 2 or more der is, and then irradiating the UV-B light to remove wavelengths of 280~300nm How to increase plant polyphenols. 前記可視光を照射する可視光源と、前記UV−B光を照射するUV−B光源と、を備え、請求項1に記載のポリフェノール増収方法により、ベビーリーフを栽培することを特徴とする植物のポリフェノール増収装置 A plant comprising: a visible light source for irradiating the visible light; and a UV-B light source for irradiating the UV-B light. Polyphenol increase device .
JP2005280878A 2005-09-27 2005-09-27 Method and apparatus for increasing yield of plant polyphenols Active JP4887709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280878A JP4887709B2 (en) 2005-09-27 2005-09-27 Method and apparatus for increasing yield of plant polyphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280878A JP4887709B2 (en) 2005-09-27 2005-09-27 Method and apparatus for increasing yield of plant polyphenols

Publications (2)

Publication Number Publication Date
JP2007089430A JP2007089430A (en) 2007-04-12
JP4887709B2 true JP4887709B2 (en) 2012-02-29

Family

ID=37975811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280878A Active JP4887709B2 (en) 2005-09-27 2005-09-27 Method and apparatus for increasing yield of plant polyphenols

Country Status (1)

Country Link
JP (1) JP4887709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021536234A (en) * 2018-08-28 2021-12-27 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co., Ltd. Herb cultivation equipment and herb cultivation method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162740B2 (en) 2007-07-17 2013-03-13 パナソニック株式会社 Lighting device for plant disease control
JP5219245B2 (en) * 2007-12-25 2013-06-26 パナソニック株式会社 Lighting device for plant pest control
JP4983701B2 (en) * 2008-03-10 2012-07-25 雅夫 山▲崎▼ Production method of flavones
JP5047117B2 (en) * 2008-10-20 2012-10-10 パナソニック株式会社 Lighting system for plant disease control
JP5439649B2 (en) * 2011-03-31 2014-03-12 山口県 Fruit coloring promotion device
JP5687562B2 (en) * 2011-05-24 2015-03-18 パナソニックIpマネジメント株式会社 Lighting equipment for plant disease control
CN103704035B (en) * 2013-12-27 2015-09-02 广东药学院 A kind of cultivation method improving Dendrobium officinale polysaccharide class and phenols component
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method
JP2017060441A (en) * 2015-09-25 2017-03-30 三菱化学株式会社 Baby leaves
JP2017060442A (en) * 2015-09-25 2017-03-30 三菱化学株式会社 Method for producing mixed vegetable
JP7129906B2 (en) * 2016-06-02 2022-09-02 三菱ケミカルアクア・ソリューションズ株式会社 Seedling cultivation method
CN107006332B (en) * 2017-06-14 2020-11-24 会东县天有老君滩种养专业合作社 Artificial cultivation method of wild eagle tea
JP7133812B2 (en) * 2018-07-11 2022-09-09 学校法人玉川学園 How to treat Madagascar periwinkle to increase vinblastine
WO2020013245A1 (en) * 2018-07-11 2020-01-16 学校法人玉川学園 Method for treating catharanthus roseus for increasing vinblastine content
CN111225557A (en) * 2018-08-09 2020-06-02 首尔伟傲世有限公司 Plant cultivation device and cultivation method using same
US11125405B2 (en) * 2018-08-10 2021-09-21 Seoul Viosys Co., Ltd. Light source for plant cultivation and plant cultivation device
JP7462139B2 (en) 2019-07-10 2024-04-05 日亜化学工業株式会社 Plant Treatment Equipment
US20220330489A1 (en) * 2021-03-03 2022-10-20 Seoul Viosys Co., Ltd. Light source module and plants cultivation device including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918621A (en) * 1972-06-13 1974-02-19
JPH08308383A (en) * 1995-05-17 1996-11-26 Susumu Kiyokawa Raising of ornamental plant and aquarium fish
JPH1160A (en) * 1997-06-13 1999-01-06 Chisso Corp Growing of sunny lettuce
JP2952222B2 (en) * 1997-10-02 1999-09-20 アグリ食品有限会社 How to grow soybean sprouts
JPH11275982A (en) * 1998-03-30 1999-10-12 Koito Ind Ltd Device for growing plant
JP2003009665A (en) * 2001-07-03 2003-01-14 Japan Science & Technology Corp Method for increasing yield of polyphenol in plant body and physiologically active substance thereof
JP2004121228A (en) * 2002-08-01 2004-04-22 New Industry Research Organization Method for increasing polyphenol content of harvested plant
JP2005151850A (en) * 2003-11-21 2005-06-16 Ccs Inc Method and device for growing buckwheat
JP2005192448A (en) * 2004-01-05 2005-07-21 Yae Kogyo:Kk Freshness-retaining apparatus
JP2005216572A (en) * 2004-01-28 2005-08-11 Iwasaki Electric Co Ltd Lamp with green filter
JP2006020565A (en) * 2004-07-08 2006-01-26 Mori Sangyo Kk Method and device for producing sprout vegetable highly containing polyphenol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021536234A (en) * 2018-08-28 2021-12-27 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co., Ltd. Herb cultivation equipment and herb cultivation method
JP7466523B2 (en) 2018-08-28 2024-04-12 ソウル バイオシス カンパニー リミテッド Herb Cultivation Equipment

Also Published As

Publication number Publication date
JP2007089430A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4887709B2 (en) Method and apparatus for increasing yield of plant polyphenols
Samuolienė et al. LED illumination affects bioactive compounds in romaine baby leaf lettuce
US8384047B2 (en) Fluorescence-based ultraviolet illumination
CN110769684B (en) Plant cultivation method using UV and plant cultivation system therefor
JP2016507223A (en) Method and lighting system for restoring plants from stress
JP2009077652A (en) Method for promoting maturation of fruit
JP2018186802A (en) Methods for increasing amount of phenolic compounds in plants
US11684071B2 (en) System and method for post-harvest treatment of vegetables and fruits
US11666076B2 (en) Method to naturally brand a lettuce
KR20210098925A (en) Method for cultivating or increasing of saponin contents of sprout ginseng using led
JP2003204718A (en) Method and system for cultivating sunny lettuce
JP2007089445A (en) Plant body cultivating method
JP5666217B2 (en) Leaf lettuce cultivation method and cultivation facility
Cabral et al. Different spectral qualities do not influence the in vitro and ex vitro survival of Epidendrum denticulatum Barb. Rod.: A Brazilian orchid
Paradiso et al. Light use efficiency at different wavelengths in rose plants
JP2009183208A (en) Wheat growth promoting method and wheat mating breeding method
Reinders-Gouwentak et al. Growth and flowering of the tomato in artificial light
US20220408658A1 (en) Method of growing a plant having at least one light absorbing pigment
Gilli et al. Supplemental lighting in tomato crop on substrate in Swiss conditions
RU2308180C2 (en) Method for pre-sowing treatment of common spruce seeds
Maran et al. Preliminary Study on the Effect of Artificial Lighting on the Production of Basil, Mustard, and Red Cabbage Seedlings. AgriEngineering 2024, 6, 1043–1054
JP2023174498A (en) Plant cultivation method and plant cultivation device
JP2023174451A (en) Plant cultivation method and plant cultivation device
JP2000050731A (en) Culture of long-day plant
Dantas et al. Colored Growing Benches with Different Wavelengths Increase Production and Bioactive Compounds in Baby Leaf Kale

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3