JP4887662B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4887662B2
JP4887662B2 JP2005142440A JP2005142440A JP4887662B2 JP 4887662 B2 JP4887662 B2 JP 4887662B2 JP 2005142440 A JP2005142440 A JP 2005142440A JP 2005142440 A JP2005142440 A JP 2005142440A JP 4887662 B2 JP4887662 B2 JP 4887662B2
Authority
JP
Japan
Prior art keywords
trench
region
conductivity type
semiconductor device
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005142440A
Other languages
Japanese (ja)
Other versions
JP2006319241A (en
Inventor
将伸 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005142440A priority Critical patent/JP4887662B2/en
Publication of JP2006319241A publication Critical patent/JP2006319241A/en
Application granted granted Critical
Publication of JP4887662B2 publication Critical patent/JP4887662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、シリコン(Si)基板上に、トレンチ内部にMOSゲート構造を形成した横型MOSFET(以下、TLPMと略すこともある)と半導体拡散抵抗素子とを備える半導体装置とその製造方法に関する。   The present invention relates to a semiconductor device including a lateral MOSFET (hereinafter also abbreviated as TLPM) in which a MOS gate structure is formed in a trench on a silicon (Si) substrate, and a semiconductor diffusion resistance element, and a manufacturing method thereof.

トレンチ横型MOSFET(TLPM)と拡散抵抗素子とを集積した従来の半導体装置を図17に示し、そのTLPM部200と拡散抵抗素子領域201の平面図を図17(a)に、この平面図のB−B線の位置で切断した断面図を図17(b)に示す。図17(a)では理解のため、一部透視的に描いた。以下に、トレンチの底部がNドレイン領域となるNチャネル型のTLPM部200とP型拡散抵抗素子領域201とを集積した従来の半導体装置について、図17を用いて説明する。
前記半導体装置はP型シリコン基板100の表面層に形成したPウエル領域101およびNウエル領域102と、各ウエル領域内にそれぞれ形成したPオフセット領域103と、Pオフセット領域103の表面からPオフセット領域を越えてそれぞれPウエル領域101およびNウエル領域102に達する深さに形成したトレンチ104、105と、TLPM部200のトレンチ104底面に形成したNドレイン領域106と、TLPM部200のトレンチ104の側壁に形成したゲート酸化膜107(このゲート酸化膜107はトレンチ104の底部と基板表面および拡散抵抗素子領域のトレンチ105内面と基板表面にも同時に形成される)と、トレンチ104、105の側壁のゲート酸化膜107に接触するように形成したゲート電極108(点状分散で示す領域)と、TLPM部200内のPオフセット領域103の基板表面に形成されトレンチの側壁に一端が露出するNソース領域109と、トレンチ104、105の内部とシリコン基板表面上に形成した層間絶縁膜110(格子点線で示す領域)と、この層間絶縁膜110とゲート酸化膜107とを層間絶縁膜110表面から開孔してそれぞれTLPM部のNドレイン領域106とNソース領域109とゲート電極108とに達するコンタクト孔111、112、113(太線斜線で示す領域であって、符号113は図17(a)に示す)と、拡散抵抗素子領域201の層間絶縁膜110表面から開孔して基板表面に達するコンタクト孔114底面の基板表面に形成したPプラグ領域115と、前記コンタクト孔111,112、113、114の側壁および底面にそれぞれ形成したバリアメタル116(細線斜線で示す領域)と、前記コンタクト孔をそれぞれ充填するプラグ金属導体117と、プラグ金属導体117上にそれぞれ接するAl電極配線(ソース、ドレイン、ゲート、抵抗の各電極配線)118、119、120、121とを有する。
A conventional semiconductor device in which a trench lateral MOSFET (TLPM) and a diffusion resistance element are integrated is shown in FIG. 17, and a plan view of the TLPM portion 200 and the diffusion resistance element region 201 is shown in FIG. A cross-sectional view taken along the line -B is shown in FIG. In FIG. 17 (a), for the sake of understanding, it is partially drawn in perspective. Hereinafter, a conventional semiconductor device in which an N-channel TLPM portion 200 in which the bottom of a trench is an N drain region and a P-type diffusion resistance element region 201 are integrated will be described with reference to FIG.
The semiconductor device includes a P well region 101 and an N well region 102 formed in a surface layer of a P-type silicon substrate 100, a P offset region 103 formed in each well region, and a P offset region from the surface of the P offset region 103. , Trenches 104 and 105 formed to a depth reaching P well region 101 and N well region 102, N drain region 106 formed on the bottom surface of trench 104 of TLPM portion 200, and sidewalls of trench 104 of TLPM portion 200, respectively. (The gate oxide film 107 is simultaneously formed on the bottom of the trench 104, the substrate surface, and the inner surface of the trench 105 in the diffusion resistance element region and the substrate surface), and the gates on the sidewalls of the trenches 104 and 105. Gate electrode formed in contact with oxide film 107 08 (region indicated by dotted dispersion), an N source region 109 formed on the substrate surface of the P offset region 103 in the TLPM portion 200 and having one end exposed on the sidewall of the trench, the inside of the trenches 104 and 105, and the silicon substrate surface The interlayer insulating film 110 (region indicated by the dotted line) formed above, the interlayer insulating film 110 and the gate oxide film 107 are opened from the surface of the interlayer insulating film 110, and the N drain region 106 and the N source of the TLPM portion are respectively formed. Contact holes 111, 112, and 113 (areas indicated by thick diagonal lines, reference numeral 113 is shown in FIG. 17A) reaching the area 109 and the gate electrode 108, and the surface of the interlayer insulating film 110 in the diffusion resistance element area 201 A P plug region 115 formed on the substrate surface at the bottom of the contact hole 114 reaching the substrate surface by opening from , 112, 113, 114, barrier metal 116 formed on the side walls and bottom surface of each of them (regions indicated by slanted thin lines), plug metal conductor 117 filling each of the contact holes, and Al electrode wiring in contact with plug metal conductor 117. (Source, drain, gate, and resistor electrode wirings) 118, 119, 120, and 121.

図18から図23は、図17に示す半導体装置の製造方法を示す半導体基板の断面図であり、主要な工程順に並べた断面図である。図18に示すように、P型シリコン基板100に選択的にPウエル領域101およびNウエル領域102を形成し、その後、選択的にTLPM部200のチャネル領域および拡散抵抗素子領域201の抵抗部となるPオフセット領域103を形成する。次に、図19に示すように、TLPM部200および拡散抵抗素子領域201を形成する部分に酸化膜(熱酸化膜、または、堆積酸化膜)をマスクにトレンチ104、105を形成する。トレンチ104、105はそれぞれ基板表面からPウエル領域101およびNウエル領域102に達する深さに形成する。前記酸化膜に、さらに前記トレンチ105内部を被覆する絶縁膜(図示せず)を形成し、TLPM部200のトレンチ104底面だけに選択的にNドレイン領域106を形成する。前記酸化膜および絶縁膜を除去した後に、図20に示すように、TLPM部200と拡散抵抗素子領域201との素子分離のための選択酸化膜(LOCOS)119を例えば600nmの厚みでPウエル領域101およびNウエル領域102の近傍にのみ形成する。次に、図21に示すように、ゲート酸化膜107を例えば17nmの厚みで全面に形成し、例えば厚さ300nmのドープトポリシリコンゲート電極108をCVD(Chemical Vapor Deposition)およびエッチバックによりトレンチ104、105側壁とゲート電極引出し領域122(図17(a)の一点鎖線で囲まれた領域)に形成する。この時、図17(a)に示すようにTLPM部においてはゲート電極の引き出し領域122を設けるが、拡散抵抗素子領域にはそれを設けないので、トレンチ105内のポリシリコン電極108は外部に接続されなず、電圧が印加されてもフローティング電位を示すことになる。そして、図22に示すように、TLPM部200のソース領域109を形成した後、層間絶縁膜110となるトレンチ埋め込み酸化膜110をCVDにより形成し、化学機械研磨(CMP)を用いて表面を平坦化する。そして、図23に示すように、フォトリソグラフィ工程によりTLPM部分のコンタクト孔111,112、113(図17(a)に示す)を、拡散抵抗素子領域の部分にコンタクトの114をそれぞれ形成し、拡散抵抗素子領域のコンタクト孔114底部にPプラグ領域115を形成する。その後、バリアメタル116、埋め込みプラグ117、金属電極配線118を形成して、TLPMと拡散抵抗素子とを集積した従来の半導体装置を完成させる。   18 to 23 are cross-sectional views of the semiconductor substrate showing the method of manufacturing the semiconductor device shown in FIG. 17, and are cross-sectional views arranged in the order of main steps. As shown in FIG. 18, a P-well region 101 and an N-well region 102 are selectively formed on a P-type silicon substrate 100, and then a channel region of the TLPM portion 200 and a resistance portion of the diffusion resistance element region 201 are selectively formed. A P offset region 103 is formed. Next, as shown in FIG. 19, trenches 104 and 105 are formed in a portion where the TLPM portion 200 and the diffusion resistance element region 201 are formed using an oxide film (thermal oxide film or deposited oxide film) as a mask. The trenches 104 and 105 are formed to a depth reaching the P well region 101 and the N well region 102 from the substrate surface, respectively. An insulating film (not shown) that covers the inside of the trench 105 is further formed on the oxide film, and an N drain region 106 is selectively formed only on the bottom surface of the trench 104 of the TLPM portion 200. After removing the oxide film and the insulating film, as shown in FIG. 20, a selective oxide film (LOCOS) 119 for element isolation between the TLPM portion 200 and the diffusion resistance element area 201 is formed in a P well region with a thickness of, for example, 600 nm. 101 and N well region 102 are formed only in the vicinity. Next, as shown in FIG. 21, a gate oxide film 107 is formed on the entire surface with a thickness of 17 nm, for example, and a doped polysilicon gate electrode 108 with a thickness of 300 nm is formed on the trench 104 by CVD (Chemical Vapor Deposition) and etch back, for example. , 105 are formed on the side wall and the gate electrode lead-out region 122 (region surrounded by a one-dot chain line in FIG. 17A). At this time, as shown in FIG. 17A, the gate electrode lead region 122 is provided in the TLPM portion, but is not provided in the diffusion resistance element region, so that the polysilicon electrode 108 in the trench 105 is connected to the outside. In other words, even if a voltage is applied, it shows a floating potential. Then, as shown in FIG. 22, after forming the source region 109 of the TLPM portion 200, a trench buried oxide film 110 to be the interlayer insulating film 110 is formed by CVD, and the surface is flattened using chemical mechanical polishing (CMP). Turn into. Then, as shown in FIG. 23, contact holes 111, 112, and 113 (shown in FIG. 17A) in the TLPM portion are formed by a photolithography process, and contacts 114 are formed in the diffusion resistance element region, respectively. A P plug region 115 is formed at the bottom of the contact hole 114 in the resistance element region. Thereafter, a barrier metal 116, a buried plug 117, and a metal electrode wiring 118 are formed to complete a conventional semiconductor device in which TLPM and diffusion resistance elements are integrated.

前述のような半導体装置に関連する公知技術として、次のようなものがある。半導体基板上に互いに独立して複数形成される能動素子領域と抵抗素子領域とを備え、前記抵抗素子間はトレンチによる誘電体層を介して絶縁分離される半導体装置において、前記抵抗素子間の寄生MOS構造を形成することが無くて高密度に集積可能な抵抗素子領域を備えた半導体装置に関する発明の開示がある(特許文献1)。
特公平7−112005号公報
The following are known techniques related to the semiconductor device as described above. In a semiconductor device comprising a plurality of active element regions and resistor element regions formed independently of each other on a semiconductor substrate, wherein the resistor elements are insulated and separated via a dielectric layer formed by a trench. There is a disclosure of an invention related to a semiconductor device having a resistance element region that can be integrated at a high density without forming a MOS structure (Patent Document 1).
Japanese Patent Publication No.7-112005

しかしながら、前述の半導体装置を作製する際には、作製効率上、TLPM領域の作製の際に、拡散抵抗素子領域のトレンチ側壁にもTLPM部と同様に薄いゲート酸化膜を介してドープトポリシリコン電極が同時形成されるため(図21)、残ってしまう(図22、図23)。この拡散抵抗素子領域側のポリシリコン電極は、前述のように電位的にはフローティング状態であるものの、チャージアップされるため、酸化膜を介してPオフセット領域に影響を及ぼす。その結果、この領域の抵抗値を使用する拡散抵抗素子の抵抗値が安定しない、または変化してしまう恐れがあるという問題が生じる。
また、拡散抵抗素子領域のトレンチ底面にはNウエル領域があるだけなので、隣り合うPオフセット抵抗間でパンチスルーを引き起こす可能性があるという問題も生じる。
前者の問題を避ける手段として、ポリシリコン電極層の成膜前にCVDおよびエッチバックでトレンチ内を予め絶縁膜で埋め込んでおくことが考えられるが、TLPM部のトレンチも同時に埋め込まれてしまうために、この方法用いることができない。また、TLPM部と拡散抵抗素子領域を別々の工程により形成すれば前記問題は解消されるが、大幅に工程が増えてしまい、現実的ではない。
However, when manufacturing the above-described semiconductor device, doped polysilicon is formed on the trench side wall of the diffusion resistance element region via a thin gate oxide film in the same manner as the TLPM portion when manufacturing the TLPM region. Since the electrodes are formed simultaneously (FIG. 21), they remain (FIGS. 22 and 23). Although the polysilicon electrode on the diffusion resistance element region side is in a floating state in terms of potential as described above, it is charged up, and thus affects the P offset region via the oxide film. As a result, there arises a problem that the resistance value of the diffusion resistance element using the resistance value in this region is not stable or may change.
In addition, since there is only an N well region at the bottom of the trench in the diffusion resistance element region, there is a problem that punch through may occur between adjacent P offset resistors.
As a means for avoiding the former problem, it is considered that the trench is pre-filled with an insulating film by CVD and etch back before forming the polysilicon electrode layer, but the trench in the TLPM portion is also buried at the same time. This method cannot be used. Further, if the TLPM portion and the diffusion resistance element region are formed by separate steps, the above problem can be solved, but the number of steps is greatly increased, which is not realistic.

本発明は、以上のべた問題点に鑑みてなされたものであり、本発明の目的は、TLPM部と拡散抵抗素子領域の両方のトレンチ側壁にゲート酸化膜を介してドープトポリシリコン電極を同時に形成する工程を有する半導体装置であっても、拡散抵抗素子領域に形成されたドープトポリシリコン電極がチャージアップされても前記抵抗素子の抵抗値が不安定になることのない、また、拡散抵抗素子間でパンチスルーすることのない半導体装置およびその製造方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to simultaneously apply doped polysilicon electrodes to the trench sidewalls of both the TLPM portion and the diffusion resistance element region via a gate oxide film. Even in a semiconductor device having a process of forming, the resistance value of the resistance element does not become unstable even when the doped polysilicon electrode formed in the diffusion resistance element region is charged up, and the diffusion resistance It is an object of the present invention to provide a semiconductor device that does not punch through between elements and a manufacturing method thereof.

特許請求の範囲の請求項1記載の本発明によれば、本発明の目的は、第一導電型半導体基板に、第一トレンチと第二トレンチをそれぞれ複数備え、前記第一トレンチは内部にゲート絶縁膜を介してゲート電極を備えるMOSゲート構造を形成し、前記半導体基板の表面に第二導電型ソース領域、前記第一トレンチの底部に第二導電型ドレイン領域を備える横型MOSトランジスタ領域を構成し、前記第二トレンチは拡散抵抗素子領域を取り囲んで複数の前記拡散抵抗素子領域を相互に絶縁分離する機能を備えた半導体装置において、前記第二トレンチの少なくとも側壁に形成された前記ゲート絶縁膜よりも厚く100nm以上の厚さの酸化膜と、前記酸化膜の内壁に形成された前記ゲート電極と同時形成のフローティング電極と、を備えている半導体装置とすることにより、達成される。
特許請求の範囲の請求項2記載の本発明によれば、第一導電型半導体基板に、第一トレンチと第二トレンチをそれぞれ複数備え、前記第一トレンチは内部にゲート絶縁膜を介してゲート電極を備えるMOSゲート構造を形成し、前記半導体基板の表面に第二導電型ソース領域、前記第一トレンチの底部に第二導電型ドレイン領域を備える横型MOSトランジスタ領域を構成し、第二トレンチは拡散抵抗素子領域を取り囲んで複数の前記拡散抵抗素子領域を相互に絶縁分離する機能を備えた半導体装置において、前記第二トレンチの底部に前記第二導電型ドレイン領域と同時形成の第二導電型高濃度領域を有する半導体装置とすることによっても前記目的は達成される。
According to the present invention as set forth in claim 1, the object of the present invention is to provide a first conductive type semiconductor substrate with a plurality of first trenches and a plurality of second trenches, wherein the first trenches are gated inside. A MOS gate structure including a gate electrode is formed through an insulating film, and a lateral MOS transistor region including a second conductivity type source region on the surface of the semiconductor substrate and a second conductivity type drain region at the bottom of the first trench is formed. In the semiconductor device having a function of surrounding the diffusion resistance element region and isolating and separating the plurality of diffusion resistance element regions from each other, the gate insulating film formed on at least a side wall of the second trench equipped with 100nm or thicker oxide film thicker than, and a floating electrode of the gate electrode formed simultaneously formed on the inner wall of the oxide film With the semiconductor device is achieved.
According to the second aspect of the present invention, the first conductivity type semiconductor substrate includes a plurality of first trenches and a plurality of second trenches, and the first trenches are gated through a gate insulating film inside. Forming a MOS gate structure including an electrode, and forming a lateral MOS transistor region including a second conductivity type source region on the surface of the semiconductor substrate and a second conductivity type drain region at the bottom of the first trench; In a semiconductor device having a function of surrounding a diffusion resistance element region and isolating and separating the plurality of diffusion resistance element regions from each other, a second conductivity type formed simultaneously with the second conductivity type drain region at the bottom of the second trench The object can also be achieved by forming a semiconductor device having a high concentration region.

特許請求の範囲の請求項3記載の本発明によれば、前記第二トレンチの少なくとも側壁に100nm以上の厚さの酸化膜を備えている特許請求の範囲の請求項2記載の半導体装置とすることが好ましい。
特許請求の範囲の請求項4記載の本発明によれば、酸化膜の厚さを前記第二トレンチの幅の半分以上にする特許請求の範囲の請求項1または3記載の半導体装置とすることも好ましい。
特許請求の範囲の請求項5記載の本発明によれば、酸化膜の厚さが300nm以上で、前記第二トレンチの幅が600nm以下である特許請求の範囲の請求項4記載の半導体装置とすることが望ましい。
特許請求の範囲の請求項6記載の本発明によれば、半導体基板表面に第一導電型ウエル領域と第二導電型ウエル領域とをそれぞれ形成して前記両領域にそれぞれ第一導電型オフセット領域を形成し、両方の前記第一導電型オフセット領域の表面から前記第一導電型および第二導電型ウエル領域にそれぞれ達するように第一、第二トレンチを形成し、前記第一トレンチ底部への第二導電型ドレイン領域の形成と、前記第一トレンチ側の前記第一導電型オフセット領域の表面への第二導電型のソース領域の形成とをそれぞれ行なって前記第一トレンチ側を横型MOSトランジスタ領域とし、前記第二トレンチは、前記第一導電型オフセット領域を取り囲む形状にすることにより拡散抵抗素子領域とした後、前記横型MOSトランジスタ領域および前記拡散抵抗素子領域を素子分離させるための酸化膜と前記第二トレンチの少なくとも側壁に100nm以上の厚さの酸化膜とを同時形成する酸化工程後、ゲート電極を前記第一トレンチの側壁にゲート絶縁膜を介して形成し、前記第一、二トレンチを埋め且つ前記半導体基板表面を覆う層間絶縁膜を形成して、該層間絶縁膜の表面から前記第一トレンチ底部および前記半導体基板表面に達する横型MOSトランジスタ用開孔部と拡散抵抗素子用開孔部とを形成し、前記開孔部内にそれぞれ導体を埋め込む工程を備える半導体装置の製造方法とすることにより、前記目的は達成される。
According to the third aspect of the present invention, in the semiconductor device according to the second aspect, the oxide film having a thickness of 100 nm or more is provided on at least the side wall of the second trench. It is preferable.
According to the present invention as set forth in claim 4, the thickness of the oxide film is made half or more of the width of the second trench, so that the semiconductor device according to claim 1 or 3 is formed. Is also preferable.
According to the present invention as set forth in claim 5, the thickness of the oxide film is 300 nm or more and the width of the second trench is 600 nm or less. It is desirable to do.
According to the present invention, the first conductivity type well region and the second conductivity type well region are respectively formed on the surface of the semiconductor substrate, and the first conductivity type offset region is formed in each of the two regions. Forming first and second trenches so as to reach the first conductivity type and second conductivity type well regions respectively from the surfaces of both of the first conductivity type offset regions, and to the bottom of the first trench The formation of the second conductivity type drain region and the formation of the second conductivity type source region on the surface of the first conductivity type offset region on the first trench side are respectively performed, and the first trench side is formed as a lateral MOS transistor. And the second trench is formed as a diffused resistance element region by surrounding the first conductivity type offset region, and then the lateral MOS transistor region and After an oxidation process for simultaneously forming an oxide film for isolating the diffusion resistance element region and an oxide film having a thickness of 100 nm or more on at least a side wall of the second trench, a gate electrode is formed on the side wall of the first trench. An interlayer insulating film is formed through an insulating film, filling the first and second trenches and covering the surface of the semiconductor substrate, and reaches the bottom of the first trench and the surface of the semiconductor substrate from the surface of the interlayer insulating film. The object is achieved by forming a lateral MOS transistor opening and a diffusion resistance element opening, and a method of manufacturing a semiconductor device including a step of embedding a conductor in each of the openings.

特許請求の範囲の請求項7記載の本発明によれば、前記酸化膜の厚さが前記第二トレンチの幅の半分以上である請求項6記載の半導体装置の製造方法とすることができる。
特許請求の範囲の請求項8記載の本発明によれば、前記第二トレンチ底部に、前記第二導電型ドレイン領域と同時に第二導電型高濃度領域を形成する請求項6または7記載の半導体装置の製造方法とすることが好ましい。
本発明は要するに、課題を解決するために、拡散抵抗素子領域の第二トレンチの側壁またはその内面全体に厚い酸化膜を有する構成とする。
また、前記酸化膜は素子分離用の酸化膜形成時に、拡散抵抗素子領域の第二トレンチにも同時に酸化を行うことにより形成する。
また、拡散抵抗素子領域の第二トレンチ幅を600nm以下とすることで、300nm以上の酸化膜を形成した場合に、第二トレンチ内部にはポリシリコン膜は残らず、酸化膜のみで埋め込むことができるため、ポリシリコン電極が拡散抵抗素子領域の第二トレンチ内に形成されないので、より好ましい。
According to the seventh aspect of the present invention, the thickness of the oxide film can be equal to or greater than half the width of the second trench.
8. The semiconductor device according to claim 6, wherein a second conductivity type high concentration region is formed simultaneously with the second conductivity type drain region at the bottom of the second trench. It is preferable to use a method for manufacturing the device.
In short, in order to solve the problem, the present invention is configured to have a thick oxide film on the side wall of the second trench in the diffusion resistance element region or the entire inner surface thereof.
The oxide film is formed by simultaneously oxidizing the second trench in the diffusion resistance element region when forming an oxide film for element isolation.
In addition, by setting the width of the second trench in the diffusion resistance element region to 600 nm or less, when an oxide film having a thickness of 300 nm or more is formed, the polysilicon film is not left inside the second trench, and only the oxide film is buried. This is more preferable because the polysilicon electrode is not formed in the second trench in the diffusion resistance element region.

また、拡散抵抗素子領域の第二トレンチ底面には、底面に露出するウエル領域と同導電型で、ウエル領域より高濃度の拡散領域を形成する。
また、前記第二トレンチ底面の高濃度拡散領域の形成は、横型MOSトランジスタ領域の第一トレンチ底部に形成されるドレイン領域の形成と同一の工程で行う半導体装置の製造方法とする。
A diffusion region having the same conductivity type as the well region exposed on the bottom surface and having a higher concentration than the well region is formed on the bottom surface of the second trench in the diffusion resistance element region.
The formation of the high-concentration diffusion region on the bottom surface of the second trench is a semiconductor device manufacturing method performed in the same process as the formation of the drain region formed at the bottom of the first trench in the lateral MOS transistor region.

本発明によれば、TLPM部と拡散抵抗素子領域の両方のトレンチ側壁にゲート酸化膜を介してドープトポリシリコン電極を同時に形成する工程を有する半導体装置であっても、拡散抵抗素子領域のドープトポリシリコン電極がチャージアップされて前記抵抗素子の抵抗値が不安定になることのない、または、拡散抵抗素子間でパンチスルーすることのない半導体装置およびその製造方法を提供することができる。
本発明により、TLPM部のゲート電極を形成する工程を経ても拡散抵抗素子領域のトレンチ側壁とポリシリコン電極間は厚い酸化膜を挟むか、もしくは、トレンチ内部にポリシリコン電極が形成されないため、ポリシリコン電極がチャージアップすることがなく、抵抗値が安定しなかったり、変化したりすることはない。
また、素子分離の酸化膜形成時に、拡散抵抗素子領域のトレンチ部も同時に酸化膜の形成を行う手法については、従来から工程を増やすことなく作製することが可能である。
According to the present invention, even in a semiconductor device including a step of simultaneously forming a doped polysilicon electrode on the trench sidewalls of both the TLPM portion and the diffusion resistance element region via the gate oxide film, the doping of the diffusion resistance element region is performed. It is possible to provide a semiconductor device that does not cause the resistance value of the resistive element to become unstable due to the charge-up of the polysilicon electrode or punch-through between the diffused resistive elements, and a method for manufacturing the same.
According to the present invention, a thick oxide film is sandwiched between the trench sidewall of the diffusion resistance element region and the polysilicon electrode even after the process of forming the gate electrode of the TLPM portion, or the polysilicon electrode is not formed inside the trench. The silicon electrode is not charged up, and the resistance value is not stabilized or changed.
In addition, when forming an oxide film for element isolation, a technique for forming an oxide film at the same time in the trench portion of the diffused resistor element region can be manufactured without increasing the number of processes.

また、拡散抵抗素子領域のトレンチ底面にもウエルより高濃度の拡散領域を形成するため、隣り合う拡散抵抗素子間でパンチスルーすることはない。
また、前記高濃度拡散領域の形成をTLPM部のドレイン領域形成と同一工程で行う製造方法では、従来から工程を増やすことなく本発明にかかる半導体装置を作製することが可能となる。
Further, since a diffusion region having a higher concentration than the well is formed on the bottom surface of the trench in the diffusion resistance element region, punch-through is not performed between adjacent diffusion resistance elements.
Further, in the manufacturing method in which the formation of the high concentration diffusion region is performed in the same process as the formation of the drain region of the TLPM part, the semiconductor device according to the present invention can be manufactured without increasing the number of processes.

図1は本発明にかかる半導体装置の要部構成図、(a)は半導体基板の平面図、(b)はA−Aで切断した半導体基板の断面図、図2乃至図7は本発明にかかる半導体装置の製造工程を示す半導体基板の断面図である。図8は本発明にかかる、異なる半導体装置を示す半導体基板の断面図、図9乃至図13は本発明にかかる、異なる半導体装置の製造工程を示す半導体基板の断面図である。図14は本発明にかかる、さらに異なる半導体装置を示す半導体基板の断面図、図15乃至図16は本発明にかかる、さらに異なる半導体装置の製造工程を示す半導体基板の断面図である。   1A is a plan view of a semiconductor substrate according to the present invention, FIG. 1B is a plan view of the semiconductor substrate, FIG. 1B is a sectional view of the semiconductor substrate cut along AA, and FIGS. It is sectional drawing of the semiconductor substrate which shows the manufacturing process of this semiconductor device. FIG. 8 is a cross-sectional view of a semiconductor substrate showing a different semiconductor device according to the present invention, and FIGS. 9 to 13 are cross-sectional views of the semiconductor substrate showing a manufacturing process of the different semiconductor device according to the present invention. FIG. 14 is a cross-sectional view of a semiconductor substrate showing still another semiconductor device according to the present invention, and FIGS. 15 to 16 are cross-sectional views of the semiconductor substrate showing a manufacturing process of still another semiconductor device according to the present invention.

以下、本発明にかかる半導体装置およびその製造方法の実施例について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
以下の説明ではP導電型、N導電型とあるは、それぞれいっせいに逆の導電型に置き換えても構わない。また、TLPM部のソース、ドレインの呼称も前記導電型の置き換えに合わせて逆にしても構わない。また、TLPM部は、トレンチ底面のコンタクトを持たず、2つのMOSFETが直列に接続された、双方向TLPM部としても構わない。
図1(a)は、この発明の実施例1の半導体装置を示す模式的平面図、図1(b)はA−A線での模式的断面図であり、TLPM部300と拡散抵抗素子領域301が同一の半導体基板上に構成される。
Hereinafter, embodiments of a semiconductor device and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
In the following description, the P conductivity type and the N conductivity type may be replaced with the opposite conductivity types. Further, the names of the source and drain of the TLPM section may be reversed in accordance with the replacement of the conductivity type. The TLPM section may be a bidirectional TLPM section in which two MOSFETs are connected in series without having a contact at the bottom of the trench.
FIG. 1A is a schematic plan view showing a semiconductor device according to Embodiment 1 of the present invention, and FIG. 1B is a schematic cross-sectional view taken along line AA, showing a TLPM portion 300 and a diffusion resistance element region. 301 is formed on the same semiconductor substrate.

TLPM部300はシリコン基板00の表面層に形成したPウエル領域1と、Pウエル領域1に形成したPオフセット領域3と、Pオフセット領域3に形成した第一トレンチ4と、第一トレンチ4底面に形成したNドレイン領域6と、第一トレンチ4の側壁に形成したゲート酸化膜7(このゲート酸化膜7は第一トレンチの底部と基板表面にも形成される)と、第一トレンチ4側壁のゲート酸化膜7上に形成したドープトポリシリコンゲート電極8と、Pオフセット領域3の表面層に形成し、一端が第一トレンチ4の側壁に露出するNソース領域9と、第一トレンチ4の内部とNソース領域9の表面に形成した層間絶縁膜10と、この層間絶縁膜10とゲート酸化膜7を開孔してNドレイン領域6またはNソース領域9またはゲート電極8に達するコンタクト孔11、12、13と、コンタクト孔11、12、13の側壁および底面に形成したバリアメタル16と、コンタクト孔11、12、13を充填するプラグ金属導体17と、プラグ金属導体17上に形成したAl電極配線18、19、20とを有する。Al電極配線18、19、20はこの順にソース電極配線、ドレイン電極配線、ゲート電極配線となる。   The TLPM portion 300 includes a P well region 1 formed in the surface layer of the silicon substrate 00, a P offset region 3 formed in the P well region 1, a first trench 4 formed in the P offset region 3, and a bottom surface of the first trench 4 An N drain region 6 formed on the first trench 4, a gate oxide film 7 formed on the sidewall of the first trench 4 (the gate oxide film 7 is also formed on the bottom of the first trench and the substrate surface), and the sidewall of the first trench 4. The doped polysilicon gate electrode 8 formed on the gate oxide film 7, the N source region 9 formed on the surface layer of the P offset region 3 and having one end exposed on the side wall of the first trench 4, and the first trench 4 And an interlayer insulating film 10 formed on the surface of the N source region 9, and the interlayer insulating film 10 and the gate oxide film 7 are opened to form an N drain region 6, an N source region 9, or a gate electrode 8. Contact holes 11, 12, 13 to be formed, barrier metal 16 formed on the side walls and bottom surfaces of the contact holes 11, 12, 13, plug metal conductor 17 filling the contact holes 11, 12, 13, and plug metal conductor 17 Al electrode wirings 18, 19, and 20 formed in the above. The Al electrode wirings 18, 19, and 20 are a source electrode wiring, a drain electrode wiring, and a gate electrode wiring in this order.

拡散抵抗素子領域301はシリコン基板00の表面層に形成したNウエル領域2と、Nウエル領域2に形成したPオフセット領域3と、Pオフセット領域3に形成した第二トレンチ5と、第二トレンチ5の少なくとも側壁に形成した厚い選択酸化膜(LOCOS酸化膜)19aと、第二トレンチ5の内部と基板表面に形成した層間絶縁膜10と、この層間絶縁膜10を表面から開孔して基板表面に達するコンタクト孔14と、コンタクト孔14底面に形成したPプラグ領域15と、コンタクト孔14の側壁および底面に形成したバリアメタル16と、コンタクト孔14を充填するプラグ金属導体17と、プラグ金属導体17上に形成したAl電極配線21とを有する。Al電極配線21は図1(a)の符号301で示す平面ユニットにおいて、符号21aと21b間のPオフセット領域における抵抗値を利用する。   The diffusion resistance element region 301 includes an N well region 2 formed in the surface layer of the silicon substrate 00, a P offset region 3 formed in the N well region 2, a second trench 5 formed in the P offset region 3, and a second trench. 5, a thick selective oxide film (LOCOS oxide film) 19a formed on at least the side wall, an interlayer insulating film 10 formed in the inside of the second trench 5 and on the substrate surface, and the interlayer insulating film 10 opened from the surface to form a substrate Contact hole 14 reaching the surface, P plug region 15 formed on the bottom surface of contact hole 14, barrier metal 16 formed on the side wall and bottom surface of contact hole 14, plug metal conductor 17 filling contact hole 14, and plug metal And an Al electrode wiring 21 formed on the conductor 17. The Al electrode wiring 21 uses the resistance value in the P offset region between the reference numerals 21a and 21b in the planar unit denoted by reference numeral 301 in FIG.

以上説明した実施例1の半導体装置では、前記図17を用いて説明した従来の半導体装置と比較すると、実施例1では素子分離のための選択酸化膜19aが、図17と異なり、拡散抵抗素子領域内のトレンチ5内部にまで延長されて形成されていることが分かる。このようにすることにより、実施例1では、トレンチ4内と同時にトレンチ5内にポリシリコン電極8aが形成されても、トレンチ5の側壁との間に、従来の薄いゲート酸化膜より厚い選択酸化膜が介在することになるので、前述した拡散抵抗素子領域のドープトポリシリコン電極8aがチャージアップされて前記拡散抵抗素子の抵抗値を不安定になるという問題点を解消することができる。
図2から図7は、実施例1の半導体装置の製造方法を工程順に示した半導体基板の要部断面図である。図2に示すように、P型シリコン基板00に選択的にPウエル領域1およびNウエル領域2を形成し、その後、選択的にTLPM部300のチャネル形成領域および拡散抵抗領域となるPオフセット領域3を形成する。次に、図3に示すように、TLPM部300および拡散抵抗素子領域301を形成する部分に酸化膜(熱酸化膜、または、堆積酸化膜)をマスクに幅3μm、深さ2μmの第一トレンチ4、幅1.5μm、深さ2μmの第二トレンチ5を同時形成し、前記酸化膜に、さらに前記トレンチ5内部を被覆する絶縁膜(図示せず)を形成し、TLPM部300の第一トレンチ4底面だけに選択的にNドレイン領域6を形成する。前記酸化膜および絶縁膜を除去した後に、図4に示すように、素子分離のための選択酸化膜19aをLOCOS法により、例えば600nmの厚みで形成する。この際、拡散抵抗素子の第二トレンチ5部分も同時にLOCOS酸化膜19を形成する。次に、図5に示すように、ゲート酸化膜7を例えば17nmの厚みで形成し、次に厚さ300nmのドープトポリシリコンゲート電極8、8aをCVDおよびエッチバック法により形成する。この時、図1に示すようにTLPM部300においてはゲート電極8の引き出し領域22を設けるが、拡散抵抗素子領域301にはそれに対応する領域を設けない。その結果、拡散抵抗素子領域301のトレンチ5内のポリシリコン電極8aは外部電極に接続されることのないフローティング電極となる。そして、図6に示すように、TLPM部300のソース領域9を形成した後、層間絶縁膜10となるトレンチ4、5に埋め込み酸化膜をCVDにより形成し、化学機械研磨(CMP)を用いて表面を平坦化する。そして、図7に示すように、フォトリソグラフィ工程により必要な部分にコンタクト孔11、12,13、14を形成し、拡散抵抗素子301のコンタクト孔14底部にPプラグ領域15を形成する。その後、バリアメタル16、埋め込み金属プラグ17、金属電極配線18、19、20、21を形成する。
In the semiconductor device of the first embodiment described above, the selective oxide film 19a for element isolation in the first embodiment is different from the conventional semiconductor device described with reference to FIG. It can be seen that the region extends to the inside of the trench 5. Thus, in the first embodiment, even if the polysilicon electrode 8a is formed in the trench 5 simultaneously with the trench 4, the selective oxidation thicker than the conventional thin gate oxide film is formed between the side wall of the trench 5 and the polysilicon electrode 8a. Since the film is interposed, the above-described problem that the doped polysilicon electrode 8a in the diffusion resistance element region is charged up and the resistance value of the diffusion resistance element becomes unstable can be solved.
2 to 7 are main-portion cross-sectional views of the semiconductor substrate showing the manufacturing method of the semiconductor device of Example 1 in the order of steps. As shown in FIG. 2, a P-well region 1 and an N-well region 2 are selectively formed on a P-type silicon substrate 00, and then a P offset region that selectively becomes a channel formation region and a diffusion resistance region of the TLPM section 300. 3 is formed. Next, as shown in FIG. 3, a first trench having a width of 3 μm and a depth of 2 μm is formed by using an oxide film (thermal oxide film or deposited oxide film) as a mask in a portion where the TLPM portion 300 and the diffusion resistance element region 301 are formed. 4. A second trench 5 having a width of 1.5 μm and a depth of 2 μm is formed at the same time, and an insulating film (not shown) covering the inside of the trench 5 is further formed on the oxide film. An N drain region 6 is selectively formed only on the bottom surface of the trench 4. After removing the oxide film and the insulating film, as shown in FIG. 4, a selective oxide film 19a for element isolation is formed with a thickness of, for example, 600 nm by the LOCOS method. At this time, the LOCOS oxide film 19 is simultaneously formed in the second trench 5 portion of the diffusion resistance element. Next, as shown in FIG. 5, a gate oxide film 7 is formed with a thickness of, for example, 17 nm, and then doped polysilicon gate electrodes 8 and 8a with a thickness of 300 nm are formed by CVD and etch back methods. At this time, as shown in FIG. 1, in the TLPM portion 300, the lead region 22 of the gate electrode 8 is provided, but the diffusion resistance element region 301 is not provided with a corresponding region. As a result, the polysilicon electrode 8a in the trench 5 in the diffusion resistance element region 301 becomes a floating electrode that is not connected to the external electrode. Then, as shown in FIG. 6, after forming the source region 9 of the TLPM section 300, a buried oxide film is formed by CVD in the trenches 4 and 5 to be the interlayer insulating film 10, and chemical mechanical polishing (CMP) is used. Flatten the surface. Then, as shown in FIG. 7, contact holes 11, 12, 13, and 14 are formed at necessary portions by a photolithography process, and a P plug region 15 is formed at the bottom of the contact hole 14 of the diffusion resistance element 301. Thereafter, the barrier metal 16, the buried metal plug 17, and the metal electrode wirings 18, 19, 20, and 21 are formed.

実施例1の製造方法によれば、LOCOS酸化膜を形成する領域の素子分離領域から拡散抵抗素子領域を含むように拡大するだけで、前述した課題を解消できるという効果が得られる。   According to the manufacturing method of the first embodiment, the above-described problem can be solved only by enlarging the element isolation region in the region where the LOCOS oxide film is formed so as to include the diffusion resistance element region.

図8は、本発明の実施例2の半導体装置を示す模式的断面図である。
TLPM部300は実施例1と同様の構成であり、拡散抵抗素子領域301はシリコン基板00の表面層に形成したNウエル領域2と、Nウエル領域2に形成したPオフセット領域3と、Pオフセット領域3に形成したトレンチ5と、トレンチ5底面に形成したNウエル領域より高不純物濃度のNドレイン領域6aと、トレンチ5の内部と基板表面に形成した層間絶縁膜10と、この層間絶縁膜10を開孔して基板表面に達するコンタクト孔14と、コンタクト孔14底面に形成したPプラグ領域15と、コンタクト孔14の側壁および底面に形成したバリアメタル16、コンタクト孔14を充填するプラグ金属導体17と、プラグ金属導体上に形成した電極配線21とを有する。
実施例2の半導体装置では、拡散抵抗素子領域301のトレンチ5の底部にNウエル領域より高不純物濃度のNドレイン領域6aを形成したので、隣り合う拡散抵抗素子間でパンチスルーすることはない。
FIG. 8 is a schematic cross-sectional view showing a semiconductor device according to Example 2 of the present invention.
The TLPM section 300 has the same configuration as that of the first embodiment, and the diffusion resistance element region 301 includes an N well region 2 formed in the surface layer of the silicon substrate 00, a P offset region 3 formed in the N well region 2, and a P offset. Trench 5 formed in region 3, N drain region 6a having a higher impurity concentration than the N well region formed on the bottom of trench 5, interlayer insulating film 10 formed in the trench 5 and on the substrate surface, and interlayer insulating film 10 A contact hole 14 reaching the substrate surface by opening a hole, a P plug region 15 formed on the bottom surface of the contact hole 14, a barrier metal 16 formed on the side wall and bottom surface of the contact hole 14, and a plug metal conductor filling the contact hole 14 17 and electrode wiring 21 formed on the plug metal conductor.
In the semiconductor device of the second embodiment, since the N drain region 6a having a higher impurity concentration than the N well region is formed at the bottom of the trench 5 in the diffusion resistance element region 301, punch-through does not occur between adjacent diffusion resistance elements.

図9から図13は、前記実施例2の半導体装置の製造方法を示す半導体基板の要部断面図である。Pオフセット領域3までの形成は実施例1の図2と同様であり、その後、図9に示すように、TLPM部300および拡散抵抗素子領域301を形成する部分に酸化膜(熱酸化膜、または、堆積酸化膜)をマスクに幅3μm、深さ2μmのトレンチ4と、幅1.5μm、深さ2μmのトレンチ5を形成し、マスク酸化膜をそのままマスクとしてトレンチ4、5底面だけに選択的にNドレイン領域6、6aを形成する。マスク酸化膜を除去した後に、図10に示すように、素子分離のための選択酸化膜19aを素子分離領域のみにLOCOS法により例えば600nmの厚みで形成する。次に、図11に示すように、ゲート酸化膜7を例えば17nmの厚みで全面に形成し、例えば厚さ300nmのドープトポリシリコンゲート電極をCVDおよびエッチバック法によりトレンチ4、5内に形成する。この時、TLPM部300においてはゲート電極の引き出し領域22(図1(a))を設けるが、拡散抵抗素子領域301にはそれを設けず前記ポリシリコン電極8aはフローティングとする。そして、図12に示すように、TLPM部300のソース領域9を形成した後、層間絶縁膜10となるトレンチ4、5埋め込み酸化膜をCVDにより形成し、化学機械研磨(CMP)を用いて表面を平坦化する。そして、図13に示すように、フォトリソグラフィ工程により必要な部分にコンタクト孔11,12,13,14を形成し、拡散抵抗素子領域301のコンタクト孔14底部にPプラグ領域15を形成する。その後、バリアメタル16、埋め込みプラグ17、Al金属電極配線を18,19,20,21形成する。   9 to 13 are cross-sectional views of relevant parts of the semiconductor substrate showing the method of manufacturing the semiconductor device according to the second embodiment. The formation up to the P offset region 3 is the same as that in FIG. 2 of the first embodiment, and thereafter, as shown in FIG. 9, an oxide film (thermal oxide film or , A trench oxide 4 having a width of 3 μm and a depth of 2 μm and a trench 5 having a width of 1.5 μm and a depth of 2 μm are formed using the deposited oxide film) as a mask. N drain regions 6 and 6a are formed. After removing the mask oxide film, as shown in FIG. 10, a selective oxide film 19a for element isolation is formed only in the element isolation region with a thickness of, for example, 600 nm by the LOCOS method. Next, as shown in FIG. 11, a gate oxide film 7 is formed on the entire surface with a thickness of 17 nm, for example, and a doped polysilicon gate electrode with a thickness of 300 nm, for example, is formed in the trenches 4 and 5 by CVD and etch back methods. To do. At this time, the gate electrode lead-out region 22 (FIG. 1A) is provided in the TLPM section 300, but the diffusion resistance element region 301 is not provided and the polysilicon electrode 8a is in a floating state. Then, as shown in FIG. 12, after forming the source region 9 of the TLPM section 300, the trench 4 and the 5 buried oxide film to be the interlayer insulating film 10 are formed by CVD, and the surface is formed by chemical mechanical polishing (CMP). To flatten. Then, as shown in FIG. 13, contact holes 11, 12, 13, and 14 are formed in necessary portions by a photolithography process, and a P plug region 15 is formed at the bottom of the contact hole 14 in the diffusion resistance element region 301. Thereafter, barrier metal 16, buried plug 17, and Al metal electrode wirings 18, 19, 20, 21 are formed.

実施例2の製造方法によれば、前述のように隣り合う拡散抵抗素子間でのパンチスルーを防ぐために行われる拡散抵抗素子領域301におけるNドレイン領域6aの形成が前記TLPM部300におけるNドレイン領域の形成と同時に行われるので、新たな工程の増加をすることなく、効率的に前述の問題点が解消されるという効果がある。   According to the manufacturing method of the second embodiment, as described above, the formation of the N drain region 6a in the diffusion resistance element region 301 performed to prevent punch-through between adjacent diffusion resistance elements is the N drain region in the TLPM section 300. Since it is carried out simultaneously with the formation of the above, there is an effect that the above-mentioned problems can be efficiently solved without increasing a new process.

図14は、この発明の実施例3を示す模式的断面図である。実施例3の特徴は、実施例1と実施例2を組み合わせた構成になっており、こうすることで、拡散抵抗素子領域301に形成されたドープトポリシリコン電極がチャージアップされても前記抵抗素子の抵抗値が不安定になることがなく、且つ、拡散抵抗素子間でパンチスルーすることのない半導体装置が得られるという点で好ましい。
図15、図16は、この発明の実施例3に述べた半導体装置の製造方法を示す半導体基板の要部断面図である。実施例1と実施例2の製造方法を組み合わせたものである。本実施例の半導体装置によっても本発明の課題である、拡散抵抗素子領域301に形成されたドープトポリシリコン電極がチャージアップされても前記抵抗素子の抵抗値が不安定になることがなく、且つ、拡散抵抗素子間でパンチスルーすることのない半導体装置を、従来方法から工程を増やすことなく、極めて効率的に作製することが可能である。
FIG. 14 is a schematic sectional view showing Embodiment 3 of the present invention. The feature of the third embodiment is a combination of the first embodiment and the second embodiment. With this configuration, even if the doped polysilicon electrode formed in the diffusion resistance element region 301 is charged up, the resistance is reduced. This is preferable in that the resistance value of the element does not become unstable, and a semiconductor device that does not punch through between the diffusion resistance elements can be obtained.
15 and 16 are cross-sectional views of the main part of the semiconductor substrate showing the method of manufacturing the semiconductor device described in the third embodiment of the present invention. This is a combination of the manufacturing methods of Example 1 and Example 2. Even if the doped polysilicon electrode formed in the diffusion resistance element region 301 is charged up, the resistance value of the resistance element does not become unstable even with the semiconductor device of this embodiment, which is a problem of the present invention. In addition, a semiconductor device that does not punch through between the diffusion resistance elements can be manufactured extremely efficiently without increasing the number of steps from the conventional method.

本発明にかかる半導体装置の要部構成図、(a)は平面図(b)はA−Aで切断した断面図The principal part block diagram of the semiconductor device concerning this invention, (a) is a top view, (b) is sectional drawing cut | disconnected by AA 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その1)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 1) 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その2)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 2) 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その3)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 3) 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その4)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 4) 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その5)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 5) 本発明にかかる半導体装置の製造工程を示す半導体基板の断面図(その6)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the semiconductor device concerning this invention (the 6) 本発明にかかる、異なる半導体装置を示す半導体基板の断面図Sectional drawing of the semiconductor substrate which shows a different semiconductor device concerning this invention 本発明にかかる、かかる半導体装置の製造工程を示す半導体基板の断面図(その1)Sectional drawing of the semiconductor substrate which shows the manufacturing process of this semiconductor device concerning the present invention (the 1) 本発明にかかる、異なる半導体装置の製造工程を示す半導体基板の断面図(その2)Sectional drawing of the semiconductor substrate which shows the manufacturing process of a different semiconductor device concerning the present invention (the 2) 本発明にかかる、異なる半導体装置の製造工程を示す半導体基板の断面図(その3)Sectional drawing of the semiconductor substrate which shows the manufacturing process of a different semiconductor device concerning the present invention (the 3) 本発明にかかる、異なる半導体装置の製造工程を示す半導体基板の断面図(その4)Sectional drawing of the semiconductor substrate which shows the manufacturing process of a different semiconductor device concerning the present invention (the 4) 本発明にかかる、異なる半導体装置の製造工程を示す半導体基板の断面図(その5)Sectional drawing of the semiconductor substrate which shows the manufacturing process of a different semiconductor device concerning the present invention (the 5) 本発明にかかる、さらに異なる半導体装置を示す半導体基板の断面図Sectional drawing of the semiconductor substrate which shows the further different semiconductor device concerning this invention 本発明にかかる、さらに異なる半導体装置の製造工程を示す半導体基板の断面図(その1)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the further different semiconductor device concerning this invention (the 1) 本発明にかかる、さらに異なる半導体装置の製造工程を示す半導体基板の断面図(その2)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the further different semiconductor device concerning the present invention (the 2) 従来の半導体装置の要部構成図、(a)は平面図(b)はB−Bで切断した断面図FIG. 2 is a main part configuration diagram of a conventional semiconductor device, FIG. 従来の半導体装置の製造工程を示す半導体基板の断面図(その1)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 1) 従来の半導体装置の製造工程を示す半導体基板の断面図(その1)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 1) 従来の半導体装置の製造工程を示す半導体基板の断面図(その2)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 2) 従来の半導体装置の製造工程を示す半導体基板の断面図(その3)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 3) 従来の半導体装置の製造工程を示す半導体基板の断面図(その4)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 4) 従来の半導体装置の製造工程を示す半導体基板の断面図(その5)Sectional drawing of the semiconductor substrate which shows the manufacturing process of the conventional semiconductor device (the 5)

符号の説明Explanation of symbols

00… シリコン基板
1… Pウエル領域
2… Nウエル領域
3… Pオフセット領域
4… 第一トレンチ
5… 第二トレンチ
6… Nドレイン領域
7… ゲート酸化膜
8… ドープトポリシリコンゲート電極
8a… フローティング電極
9… Nソース領域
10… 層間絶縁膜
11、12、13、14…開孔部
15… Pプラグ領域
16… メタルバリヤ
17… 埋め込み金属プラグ
18、19、20、21…Al金属電極配線
22… ゲート電極の引き出し領域
300… TLPM部
301… 拡散抵抗素子領域。

00 ... Silicon substrate 1 ... P well region 2 ... N well region 3 ... P offset region 4 ... First trench 5 ... Second trench 6 ... N drain region 7 ... Gate oxide film 8 ... Doped polysilicon gate electrode 8a ... Floating Electrode 9 ... N source region 10 ... Interlayer insulating film 11, 12, 13, 14 ... Opening 15 ... P plug region 16 ... Metal barrier 17 ... Embedded metal plug 18, 19, 20, 21 ... Al metal electrode wiring 22 ... Gate Electrode extraction region 300... TLPM portion 301... Diffusion resistance element region.

Claims (8)

第一導電型半導体基板に、第一トレンチと第二トレンチをそれぞれ複数備え、前記第一トレンチは内部にゲート絶縁膜を介してゲート電極を備えるMOSゲート構造を形成し、前記半導体基板の表面に第二導電型ソース領域、前記第一トレンチの底部に第二導電型ドレイン領域を備える横型MOSトランジスタ領域を構成し、前記第二トレンチは拡散抵抗素子領域を取り囲んで複数の前記拡散抵抗素子領域を相互に絶縁分離する機能を備えた半導体装置において、前記第二トレンチの少なくとも側壁に形成された前記ゲート絶縁膜よりも厚く100nm以上の厚さの酸化膜と、前記酸化膜の内壁に形成された前記ゲート電極と同時形成のフローティング電極と、を備えていることを特徴とする半導体装置。 The first conductivity type semiconductor substrate includes a plurality of first trenches and a plurality of second trenches, and the first trench forms a MOS gate structure including a gate electrode through a gate insulating film, and is formed on the surface of the semiconductor substrate. A second conductivity type source region, a lateral MOS transistor region having a second conductivity type drain region at the bottom of the first trench is configured, and the second trench surrounds the diffusion resistance element region and includes a plurality of the diffusion resistance element regions. In a semiconductor device having a function of insulating and isolating from each other, an oxide film having a thickness of 100 nm or more thicker than the gate insulating film formed at least on the side wall of the second trench and an inner wall of the oxide film A semiconductor device comprising: a floating electrode formed simultaneously with the gate electrode . 第一導電型半導体基板に、第一トレンチと第二トレンチをそれぞれ複数備え、前記第一トレンチは内部にゲート絶縁膜を介してゲート電極を備えるMOSゲート構造を形成し、前記半導体基板の表面に第二導電型ソース領域、前記第一トレンチの底部に第二導電型ドレイン領域を備える横型MOSトランジスタ領域を構成し、前記第二トレンチは拡散抵抗素子領域を取り囲んで複数の前記拡散抵抗素子領域を相互に絶縁分離する機能を備えた半導体装置において、前記第二トレンチの底部に前記第二導電型ドレイン領域と同時形成の第二導電型高濃度領域を有することを特徴とする半導体装置。 The first conductivity type semiconductor substrate includes a plurality of first trenches and a plurality of second trenches, and the first trench forms a MOS gate structure including a gate electrode through a gate insulating film, and is formed on the surface of the semiconductor substrate. A second conductivity type source region, a lateral MOS transistor region having a second conductivity type drain region at the bottom of the first trench is configured, and the second trench surrounds the diffusion resistance element region and includes a plurality of the diffusion resistance element regions. A semiconductor device having a function of insulating and isolating from each other, wherein the second trench has a second conductivity type high concentration region formed simultaneously with the second conductivity type drain region at the bottom of the second trench. 前記第二トレンチの少なくとも側壁に100nm以上の厚さの酸化膜を備えていることを特徴とする請求項2記載の半導体装置。 The semiconductor device according to claim 2, wherein an oxide film having a thickness of 100 nm or more is provided on at least a side wall of the second trench. 前記酸化膜の厚さを前記第二トレンチの幅の半分以上にすることを特徴とする請求項1または3記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the thickness of the oxide film is set to be not less than half of the width of the second trench. 前記酸化膜の厚さが300nm以上で、前記第二トレンチの幅が600nm以下であることを特徴とする請求項4記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the thickness of the oxide film is 300 nm or more and the width of the second trench is 600 nm or less. 半導体基板表面に第一導電型ウエル領域と第二導電型ウエル領域とをそれぞれ形成して前記両領域にそれぞれ第一導電型オフセット領域を形成し、両方の前記第一導電型オフセット領域の表面から前記第一導電型および第二導電型ウエル領域にそれぞれ達するように第一、第二トレンチを形成し、前記第一トレンチ底部への第二導電型ドレイン領域の形成と、前記第一トレンチ側の前記第一導電型オフセット領域の表面への第二導電型のソース領域の形成とをそれぞれ行なって前記第一トレンチ側を横型MOSトランジスタ領域とし、前記第二トレンチは、前記第一導電型オフセット領域を取り囲む形状にすることにより拡散抵抗素子領域とした後、前記横型MOSトランジスタ領域および前記拡散抵抗素子領域を素子分離させるための酸化膜と前記第二トレンチの少なくとも側壁に100nm以上の厚さの酸化膜とを同時形成する酸化工程後、ゲート電極を前記第一トレンチの側壁にゲート絶縁膜を介して形成し、前記第一、二トレンチを埋め且つ前記半導体基板表面を覆う層間絶縁膜を形成して、該層間絶縁膜の表面から前記第一トレンチ底部および前記半導体基板表面に達する横型MOSトランジスタ用開孔部と拡散抵抗素子用開孔部とを形成し、前記開孔部内にそれぞれ導体を埋め込む工程を備えることを特徴とする半導体装置の製造方法。 A first conductivity type well region and a second conductivity type well region are respectively formed on the surface of the semiconductor substrate, and a first conductivity type offset region is formed in each of the two regions, and from both surfaces of the first conductivity type offset region, Forming first and second trenches to reach the first conductivity type and second conductivity type well regions, respectively, forming a second conductivity type drain region at the bottom of the first trench, A source region of a second conductivity type is formed on the surface of the first conductivity type offset region, and the first trench side is used as a lateral MOS transistor region, and the second trench is the first conductivity type offset region. After forming the diffused resistive element region by forming a shape surrounding the gate electrode, the lateral MOS transistor region and the diffused resistive element region are oxidized for element isolation. And an oxidation step of simultaneously forming an oxide film having a thickness of 100 nm or more on at least the side wall of the second trench, a gate electrode is formed on the side wall of the first trench through a gate insulating film, and the first, second, An interlayer insulating film that fills the trench and covers the surface of the semiconductor substrate is formed, and a lateral MOS transistor opening and a diffusion resistance element opening that reach the bottom of the first trench and the surface of the semiconductor substrate from the surface of the interlayer insulating film. Forming a hole and embedding a conductor in each of the openings. A method for manufacturing a semiconductor device, comprising: 前記酸化膜の厚さが前記第二トレンチの幅の半分以上であることを特徴とする請求項6記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 6, wherein the thickness of the oxide film is not less than half of the width of the second trench. 前記第二トレンチ底部に、前記第二導電型ドレイン領域と同時に第二導電型高濃度領域を形成することを特徴とする請求項6または7記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 6, wherein a second conductivity type high concentration region is formed simultaneously with the second conductivity type drain region at the bottom of the second trench.
JP2005142440A 2005-05-16 2005-05-16 Semiconductor device and manufacturing method thereof Active JP4887662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142440A JP4887662B2 (en) 2005-05-16 2005-05-16 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142440A JP4887662B2 (en) 2005-05-16 2005-05-16 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006319241A JP2006319241A (en) 2006-11-24
JP4887662B2 true JP4887662B2 (en) 2012-02-29

Family

ID=37539616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142440A Active JP4887662B2 (en) 2005-05-16 2005-05-16 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4887662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978000B2 (en) * 2005-11-28 2012-07-18 富士電機株式会社 Semiconductor device and manufacturing method thereof
DE102015221375A1 (en) 2015-11-02 2017-05-04 Robert Bosch Gmbh Semiconductor component and method for producing a semiconductor device and control device for a vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368167A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Semiconductor device and manufacture thereof
JPH04218971A (en) * 1990-07-25 1992-08-10 Semiconductor Energy Lab Co Ltd Fabrication of vertical channel insulated gate type filed effect semiconductor device
JP3822092B2 (en) * 2001-10-30 2006-09-13 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
JP4487481B2 (en) * 2002-01-16 2010-06-23 富士電機システムズ株式会社 Semiconductor device and manufacturing method thereof
JP4961658B2 (en) * 2003-02-17 2012-06-27 富士電機株式会社 Bidirectional element and semiconductor device
JP4374866B2 (en) * 2003-02-18 2009-12-02 富士電機デバイステクノロジー株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2006319241A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP5729745B2 (en) Semiconductor device and manufacturing method thereof
US7528041B2 (en) Method of manufacturing semiconductor device that utilizes oxidation prevention film to form thick and thin gate insulator portions
JP6817796B2 (en) Manufacturing method of semiconductor devices
JP4241856B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2015174197A1 (en) Semiconductor device and method for manufacturing semiconductor device
KR20180111534A (en) Semiconductor device and method of manufacturing the same
US7825482B2 (en) Semiconductor device and method for fabricating the same
JP5164333B2 (en) Semiconductor device
JP2005136150A (en) Semiconductor device and its manufacturing method
US7868412B2 (en) Semiconductor device and method of fabricating the same
JP4487481B2 (en) Semiconductor device and manufacturing method thereof
JP4564469B2 (en) Semiconductor device
JP4623294B2 (en) Manufacturing method of semiconductor device
JP4579512B2 (en) Semiconductor device and manufacturing method thereof
JP4887662B2 (en) Semiconductor device and manufacturing method thereof
JP2012004510A (en) Semiconductor device and method of manufacturing the same
JP3906032B2 (en) Semiconductor device
JP5788678B2 (en) Semiconductor device and manufacturing method thereof
JP2008060537A (en) Semiconductor device, and its manufacturing method
JPH09181197A (en) Cmos analog semiconductor device and its manufacture
JP2007053399A (en) Semiconductor device
JP2008078331A (en) Semiconductor device
JP4984697B2 (en) Manufacturing method of semiconductor device
JPH11163325A (en) Semiconductor device and manufacture thereof
JP6637139B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250