JP4886181B2 - Method for promoting growth of short-day plants and neutral plants using short-time supplementary light - Google Patents
Method for promoting growth of short-day plants and neutral plants using short-time supplementary light Download PDFInfo
- Publication number
- JP4886181B2 JP4886181B2 JP2004257364A JP2004257364A JP4886181B2 JP 4886181 B2 JP4886181 B2 JP 4886181B2 JP 2004257364 A JP2004257364 A JP 2004257364A JP 2004257364 A JP2004257364 A JP 2004257364A JP 4886181 B2 JP4886181 B2 JP 4886181B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- growth
- red light
- short
- far
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cultivation Of Plants (AREA)
Description
本発明は補光の利用による植物の成長促進方法に関する。更に詳細に説明すると、本発明は、夜間短時間補光を利用した短日植物並びに中性植物の葉菜類の成長促進方法の改良に関する。 The present invention relates to a method for promoting plant growth by using supplementary light. More specifically, the present invention relates to an improvement in a method for promoting the growth of leafy vegetables of short-day plants and neutral plants using short-time supplementary light at night.
昼間の日照条件が悪い環境下での施設栽培では光不足による植物の成長不良を改善するため、補光照明の導入が検討されている。例えば、これまでの研究によると、主な施設野菜であるホウレンソウは、低照度の夜間照明の利用でも成長促進が起こることが知られている。夜間照明により朝夕の日長を数時間延長すると、様々な照度条件下で同程度の成長促進を示すため、夜間照明によるホウレンソウの成長促進は光合成量の増大によるものではなく、日長延長にともなう効果と考えられてきた。このため、成長促進効果を得るには、より長く夜間照明を行う必要があると考えられ、多くの電力消費を伴うという問題を含んでいた。このことから、補光照明の導入による成長促進方法を実用技術として普及を図るには、電力消費が少なく効果の大きい補光技術の開発が望まれている。 In the case of greenhouse cultivation under poor daylight conditions, the introduction of supplementary lighting is being considered to improve poor plant growth due to lack of light. For example, according to research so far, it is known that spinach, which is the main institutional vegetable, promotes growth even when using low-light night lighting. Extending the morning and evening day length by night lighting for several hours shows the same level of growth promotion under various illuminance conditions. Therefore, the growth promotion of spinach by night lighting is not due to an increase in the amount of photosynthesis, but with the extension of the day length. It has been considered an effect. For this reason, in order to obtain the growth promotion effect, it is thought that it is necessary to carry out night illumination for a longer time, which involves a problem that it involves much power consumption. For this reason, in order to spread the growth promotion method by introducing supplementary illumination as a practical technology, it is desired to develop a supplementary technology that consumes less power and has a large effect.
本発明者等は、かかる要望に応えるため、主な施設野菜であるホウレンソウに対して、夜間補光の光質と照射時間更には照射時間帯などが成長に及ぼす影響について種々実験を繰り返した結果、花成が誘導されない短日条件下でホウレンソウを育成しても、夜間の短時間補光による成長促進が認められ、その効果は日長延長によるものではないことを確かめた。そこで、植物が有する生理機能に着目し、低光量でも作物の収量と品質を高められるような、光を刺激として利用する方法を探るため、主要な施設野菜であるホウレンソウを用いて、夜間補光の光質と照射時間帯が成長に及ぼす影響を人工光チャンバー実験により調べてきた。その結果、夜の終了時に青色光を照射するか、夜の開始時に赤色光を照射すると、30分間の補光でも成長促進が起こり、その現象が光刺激によることを見出した(非特許文献1)。さらに、青色や赤色の短時間補光はともに、低照度条件による成長不良を改善する目的に有効であり、両補光を併用すると成長促進の効果が高められることが確かめられた。また、これらの短時間の光照射は、低照度条件下の成長不良を補う補光法として有効なことが確かめられた(非特許文献2)。 In order to respond to such demands, the present inventors have repeatedly conducted various experiments on the effects of nighttime supplementary light quality and irradiation time, as well as the irradiation time zone, on spinach, which is the main facility vegetable. It was confirmed that even if spinach was grown under short-day conditions where no flowering was induced, growth was promoted by short-time light supplementation at night, and the effect was not due to prolonged daylength. Therefore, we focused on the physiological functions of plants, and in order to find ways to use light as a stimulus, which can improve the yield and quality of crops even with low light intensity, we used spinach, a major institutional vegetable, to supplement light at night. The effects of light quality and irradiation time on growth have been investigated by artificial light chamber experiments. As a result, it was found that when blue light was irradiated at the end of the night or red light was irradiated at the start of the night, growth was promoted even with supplementary light for 30 minutes (Non-patent Document 1). ). Further, both blue and red short-time supplementary light are effective for the purpose of improving poor growth under low illumination conditions, and it has been confirmed that the growth promotion effect can be enhanced by using both supplementary light supplements. Moreover, it has been confirmed that these short-time light irradiations are effective as a light supplementing method that compensates for poor growth under low illumination conditions (Non-Patent Document 2).
そこで、この短時間補光照明による成長促進技術は、ホウレンソウ以外の様々な葉菜類の生産に応用が期待できるものと考えられた。 Therefore, it was considered that this growth promotion technology using short-time supplementary illumination can be expected to be applied to the production of various leaf vegetables other than spinach.
しかしながら、ホウレンソウと同じ長日植物であるダイコンでは、ホウレンソウと同様に夜の始めに赤色光を照射することにより成長促進を誘導できたが、シソ、エンサイ、サニーレタスなどの短日植物あるいは中性植物では、夜の始めに赤色光を照射しても、夜の終わりに青色光を照射しても、成長促進は起こらなかった。
即ち、ホウレンソウにおいて効果的であった赤色光と青色光の短時間補光に対する成長促進反応が、シソ、エンサイ、サニーレタスなどの短日植物あるいは中性植物については起こらず、成長促進に効果がないことが本発明者等の研究により明らかになった。
However, in radish, which is the same long-day plant as spinach, it was possible to induce growth promotion by irradiating red light at the beginning of the night like spinach, but short-day plants such as perilla, ensai, sunny lettuce, etc. The plants did not promote growth when irradiated with red light at the beginning of the night or with blue light at the end of the night.
That is, the growth promotion reaction to short-time supplementation of red light and blue light, which was effective in spinach, does not occur in short-day plants or neutral plants such as perilla, ensai and sunny lettuce, and is effective in promoting growth. It has been clarified by research by the present inventors that there is no such thing.
そこで、本発明は、短日植物並びに中性植物の葉菜類について効果のある夜間短時間補光を利用した成長促進方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a growth promotion method using short-time supplementary light that is effective for leafy vegetables of short-day plants and neutral plants.
かかる目的を達成するため、本発明者等は、ホウレンソウ以外の葉菜類生産への利用の可能性も探るため、夜間の青、赤、遠赤色の短時間照射に対するシソ、エンサイ、サニーレタス、ダイコンの成長反応を調べた。 In order to achieve such an object, the present inventors explored the possibility of using leaf vegetables other than spinach for the production of perilla, ensai, sunny lettuce, radish for short-time irradiation of blue, red, and far red at night. The growth response was examined.
その結果、本発明者等は、短日性のシソとエンサイ、日長の影響を受けにくい条件的長日性のサニーレタス(中性植物)は、遠赤色光を照射すると成長促進を示し、その反面、長日性のダイコンはホウレンソウと同様に赤色光を照射すると成長促進を生じるが、遠赤色光を照射すると成長促進を止めることを知り得た。このように、野菜は、赤色光か遠赤色光のどちらかを短時間照射すると成長促進を示し、正反対の2つの光反応タイプに分類されること、換言すれば遠赤色光に対する成長反応の異なる2つのタイプの植物が存在することを知見するに至った。また、ホウレンソウ以外の野菜では、夜の終わりに青色光を照射しても成長促進の効果が小さいこと、ホウレンソウを含むいずれの野菜でも、栄養成分であるβ-カロテンやアスコルビン酸を維持しながら成長促進の効果が得られることを知見するに至った。 As a result, the present inventors, such as short-day perilla and ensai, conditional long-day Sunny lettuce (neutral plant) that is not easily affected by daylength, show growth promotion when irradiated with far-red light, On the other hand, it was found that long-day radish, like spinach, produced growth promotion when irradiated with red light, but stopped growth promotion when irradiated with far-red light. In this way, vegetables show growth promotion when irradiated with either red light or far red light for a short time, and are classified into two opposite photoreaction types, in other words, different growth responses to far red light. It came to discover that there are two types of plants. In addition, vegetables other than spinach have little growth-promoting effect even when irradiated with blue light at the end of the night, and any vegetable containing spinach grows while maintaining nutrients such as β-carotene and ascorbic acid. It came to know that the effect of promotion is acquired.
本発明はかかる知見に基づくものであって、短日植物または中性植物の葉菜類の栽培において、に夜の開始時に遠赤色光を照射するものである。ここで、遠赤色光は、波長700〜800nmの光である。そして、遠赤色光による補光は、成長促進反応を誘導する光刺激となる程度の光エネルギー量(放射照度×時間長)が確保されれば十分であり、弱光であっても短時間であっても誘導を起こさせ得るものである。他方、遠赤色光は光合成に寄与しないので長時間照射しても成長・乾物量の増加に直接影響がなく、投入電気エネルギの無駄である。しかも、短日植物並びに中性植物の葉菜類の成長促進反応は、これら植物の光受容体が遠赤色光を関知して何らかのシグナルを送ることで昼夜の周期的変化を感知する、スイッチとして機能しておこるものと推定される。このことから、遠赤色光の補光は、光刺激となる程度の光エネルギー量が確保される場合には、成長促進は1分間でも誘導可能であると考えられ、実験に用いた50μmol m−2s−1程度の低放射照度の弱光の場合でも誘導を起こさせるものであり、この場合にも少なくとも5分間、好ましくは30分程度の短時間で十分である。本発明者等の実験によると、50μmol m−2s−1程度の放射照度で、30分程度補光を行ったが、それよりも短くても効果があるし、また長くても効果は得られるが、投入するエネルギ(電気量)に対する効果が低減することから、30分程度が最も効果的でありかつ十分である。また、弱光で誘導されること、すなわち光刺激であることから、放射照度は50μmol m−2s−1のレベルで十分であるが、実験の経験から、数分の一程度のレベルでも成長促進は誘導されると考えられる。 The present invention is based on this finding, and irradiates far-red light at the start of night in the cultivation of leafy vegetables of short-day plants or neutral plants. Here, the far red light is light having a wavelength of 700 to 800 nm. In addition, it is sufficient for the supplementary light by far-red light to secure a light energy amount (irradiance × time length) that is a light stimulus for inducing a growth promoting reaction, and even in the case of weak light in a short time. Even if there is, it can cause induction. On the other hand, since far-red light does not contribute to photosynthesis, even if it is irradiated for a long time, there is no direct influence on the growth and increase in the amount of dry matter, and input electric energy is wasted. Moreover, the growth-promoting reaction of short-day and neutral plant leafy vegetables functions as a switch that senses the periodic change of day and night by the photoreceptors of these plants detecting far-red light and sending some signal. Presumed to occur. From this, it is considered that the supplemental light of far-red light can induce the growth promotion even for 1 minute when the amount of light energy sufficient to cause light stimulation is secured, and 50 μmol m − used in the experiment. Even in the case of weak light with a low irradiance of about 2 s −1 , induction is caused. In this case as well, a short time of at least 5 minutes, preferably about 30 minutes is sufficient. According to the experiments by the present inventors, supplementation was performed for about 30 minutes at an irradiance of about 50 μmol m −2 s −1 , but the effect was obtained even if it was shorter or longer than that. However, since the effect on the input energy (amount of electricity) is reduced, about 30 minutes is the most effective and sufficient. Further, since it is induced by weak light, that is, light stimulation, an irradiance level of 50 μmol m −2 s −1 is sufficient. However, from experimental experience, it can grow even at a fraction of a fraction. Promotion is thought to be induced.
しかして、短日植物あるいは中性植物の葉菜類に対して夜の開始時に遠赤色光を照射すると、全乾物重が平均して30%程度(シソで29%、エンサイで27%、サニーレタスで35%)増加した。しかも、夜間の短時間補光により成長促進が生じても、葉菜類の主要な栄養成分であるβ-カロテンやアスコルビン酸(ビタミンC)の濃度の低下は小さいことが確かめられた。即ち、遠赤色光の夜の開始時の短時間補光は、低照度条件下で栽培される様々な短日植物ないし中性植物である葉菜類に対してビタミンなどの主要な栄養成分の減少を抑え、成長不良を改善する有効な方法である。勿論、十分な日照条件下においてもさらなる成長促進効果を得ることは可能である。 When the leafy vegetables of short-day plants or neutral plants are irradiated with far-red light at the start of the night, the average total dry weight is about 30% (29% for perilla, 27% for ensai, and sunny lettuce). 35%). Moreover, even when growth was promoted by short-time supplementary light at night, it was confirmed that the decrease in the concentrations of β-carotene and ascorbic acid (vitamin C), which are the main nutritional components of leafy vegetables, was small. In other words, short-time supplementary light at the beginning of night of far-red light reduces the decrease of major nutrients such as vitamins against various short-day and neutral plant leafy vegetables grown under low-light conditions. It is an effective method to suppress and improve growth defects. Of course, further growth promoting effects can be obtained even under sufficient sunshine conditions.
本発明の短日植物並びに中性植物の成長促進方法は、短日植物並びに中性植物の葉菜類の栽培において、夜の開始時に遠赤色光を照射するものである。ここで、遠赤色光は、波長700〜800nmの光であり、遠赤色光ランプ(FRランプ)が使用可能である。遠赤色光の補光は、成長促進反応を誘導する光刺激となる程度の光エネルギー量(放射照度×時間長)が確保されれば十分であり、弱光であっても短時間であっても誘導を起こさせ得るものである。本発明者等の実験によれば、補光の光エネルギー量は、10−3mol m−2程度以上のレベルが確保される場合には、光刺激として十分であることが確認された。したがって、この光刺激となる程度の光エネルギー量例えば10−3mol m−2程度以上のレベルが確保される場合には、1分間でも誘導可能であると考えられ、実験に用いた50μmol m−2s−1程度の低放射照度の弱光の場合でも誘導を起こさせるものであり、この場合にも少なくとも5分間、好ましくは30分間程度の短時間で十分である。すなわち、本発明者等の実験によると、50μmol m−2s−1程度の放射照度で、30分間程度補光を行ったが、それよりも短くても効果があるし、また長くても効果は得られるが、投入するエネルギ(電気量)に対する効果が低減することから、30分間程度が最も効果的でありかつ十分である。また、弱光で誘導されること、すなわち光刺激であることから、放射照度は50μmol m−2s−1のレベルで十分であるが、実験の経験から、数分の一程度のレベルでも成長促進は誘導されると考えられる。尚、遠赤色光の短時間補光による成長誘導の惹起に要する光エネルギー量は、同じ短日植物や中性植物の葉菜類であっても植物種によって異なるかも知れないし、場合によっては10−3mol m−2程度以下のレベルの光エネルギー量で起こるかも知れない。しかしながら、補光に必要とされる光エネルギー量の臨界を厳密に特定することは本発明を成立させる上においては重要なことではない。本発明において重要なことは、成長誘導を惹起する光刺激として十分な光エネルギー量の遠赤色光を夜の開始時に照射するということであり、好ましくは省エネルギーの観点から必要以上の光エネルギー量を与えないということである。具体的には、遠赤色光の照射は、少なくとも15m mol/m 2 の光エネルギー量で行われればよい。 The growth promotion method for short-day plants and neutral plants of the present invention irradiates far-red light at the start of night in the cultivation of leafy vegetables of short-day plants and neutral plants. Here, the far red light is light having a wavelength of 700 to 800 nm, and a far red light lamp (FR lamp) can be used. Far-red light supplementation is sufficient if the amount of light energy (irradiance x time length) is sufficient to be a light stimulus that induces a growth promoting reaction, and even in the case of weak light, Can also induce induction. According to experiments by the present inventors, it was confirmed that the amount of light energy of supplementary light is sufficient as a light stimulus when a level of about 10 −3 mol m −2 or more is secured. Therefore, when a level of light energy sufficient to cause this light stimulation, for example, a level of about 10 −3 mol m −2 or more is secured, it is considered that induction can be performed even for 1 minute, and 50 μmol m − used in the experiment Even in the case of weak light with a low irradiance of about 2 s −1 , induction is caused. In this case as well, a short time of at least 5 minutes, preferably about 30 minutes is sufficient. That is, according to the experiments by the present inventors, supplementation was performed for about 30 minutes at an irradiance of about 50 μmol m −2 s −1 , but the effect was obtained even if it was shorter or longer. However, about 30 minutes is the most effective and sufficient because the effect on the input energy (amount of electricity) is reduced. Further, since it is induced by weak light, that is, light stimulation, an irradiance level of 50 μmol m −2 s −1 is sufficient. However, from experimental experience, it can grow even at a fraction of a fraction. Promotion is thought to be induced. It should be noted that the amount of light energy required for inducing growth induction by short-time supplementation of far-red light may vary depending on the plant species, even in the same short-day plant or neutral plant leafy vegetable , and in some cases 10 −3. It may occur at a light energy level of about mol m −2 or less. However, strictly specifying the criticality of the amount of light energy required for supplementary light is not important for the establishment of the present invention. What is important in the present invention is to irradiate far-red light having a sufficient amount of light energy at the start of the night as a light stimulus for inducing growth induction, and preferably an amount of light energy more than necessary from the viewpoint of energy saving. That is not to give. Specifically, irradiation with far-red light may be performed with a light energy amount of at least 15 mmol / m 2 .
また、夜の開始とは、人工光による施設栽培の場合には昼間の照明(PPFD)を切ったときからであるが、自然光下の栽培条件下では日が落ちる速度によっても変わるが日没からであり、1〜2時間の誤差を含むものである。しかし、真夜中に遠赤色光の補光を行っても効果がなかった、このことから、明期の終わり(夕暮れ)に補光すれば、成長が誘導される。ここで、本発明は、昼間の日照条件が悪い環境下での光不足による植物の成長不良を改善するためのものであることから、人工光による施設栽培の場合の昼間の照明(PPFD)は低照度であること、あるいは裏日本などの日照条件が悪い自然光下であること場合により効果的なものではあるが、良好な日照条件あるいは高照度下における栽培でも効果があることはいうまでもない。 In addition, the start of the night is from when the daytime lighting (PPFD) is turned off in the case of facility cultivation by artificial light, but it changes depending on the speed at which the day falls under natural light cultivation conditions. And includes an error of 1 to 2 hours. However, supplementing far-red light at midnight had no effect, so if it is supplemented at the end of the light period (dusk), growth is induced. Here, the present invention is for improving poor plant growth due to lack of light in an environment with poor daylight conditions, so daylighting (PPFD) in the case of facility cultivation by artificial light is Needless to say, it is more effective when it is under low illuminance or under bad natural light conditions such as Japan, but it is also effective in cultivation under good sunshine conditions or high illuminance. .
以下、主要な施設野菜であり長日植物であるホウレンソウと、短日植物であるシソ科のアオジソ、ヒルガオ科のエンサイ、条件的長日植物(栽培適温では長日性を示しにくい)であるキク科のサニーレタス、また、ホウレンソウと同じく長日植物としてアブラナ科のダイコンを用いて、以下の方法で育成し、短時間補光による成長への影響を実験した。 The followings are spinach, which is a major institutional vegetable and a long-day plant, and a chrysanthemum plant that is a short-day plant, a perillaceae of the family Lamiaceae, an ensai of the convolvulaceae family, and a conditional long-day plant (it is difficult to show long-day characteristics at suitable cultivation temperatures). Sunny lettuce of the family, and radish of the Brassicaceae family as a long-day plant like spinach was grown by the following method, and the effect on growth by short-time supplementary light was tested.
(植物材料及び栽培方法)
(a)ホウレンソウの種子は流水に一晩浸けた後、プラスチックケース中の湿らせたペーパータオル上に播いて25℃、暗黒下で発芽させた。2日後に覆いを除き、幼根が1〜2cmに伸びた種子をプラスチックトレイ内のウレタンキューブ培地に移植し、25℃に維持した恒温室内において白色蛍光ランプ(FLR110HW/A/100;三菱電機)下で7日間育成した。
(b)シソの種子は、プラスチックケース中の湿らせたペーパータオル上に播いて28℃、暗黒下で発芽させた。2日後に、幼根が1〜2cmに伸びた種子をプラスチックトレイ内のウレタンキューブ培地に移植し、25℃に維持した恒温室内において白色蛍光ランプ(同上)下で14日間育成した。
(c)エンサイの種子は、流水に4時間浸けた後、バーミキュライトを詰めたプラスチックバットに播いて25℃、暗黒下で発芽させた。2日後に覆いを除き、25℃に維持した恒温室内において白色蛍光ランプ(同上)下で7日間育成し、幼根が2〜3cmに伸びた苗をプラスチックトレイ内のウレタンキューブ培地に移植して、さらに5日間育成した。
(d)サニーレタスの種子は、プラスチックトレイ内のウレタンキューブ培地に直接播いて25℃、暗黒下で発芽させた。3日後に覆いを除き、25℃に維持した恒温室内において白色蛍光ランプ(同上)下で4日間育成した。
(e)ダイコンの種子は、流水に1時間浸けた後、プラスチックトレイ内のウレタンキューブ培地に直接播いて25℃、暗黒下で発芽させた。2日後に覆いを除き、25℃に維持した恒温室内において白色蛍光ランプ(同上)下で7日間育成した。
(Plant material and cultivation method)
(A) Spinach seeds were soaked in running water overnight, then sown on moistened paper towels in a plastic case and germinated at 25 ° C. in the dark. Two days later, the cover was removed, and the seeds with young roots extended to 1 to 2 cm were transplanted to urethane cube medium in a plastic tray, and white fluorescent lamp (FLR110HW / A / 100; Mitsubishi Electric) in a constant temperature room maintained at 25 ° C. Grown for 7 days under.
(B) Perilla seeds were sown on a damp paper towel in a plastic case and germinated in the dark at 28 ° C. Two days later, seeds with larvae extended to 1 to 2 cm were transplanted to a urethane cube medium in a plastic tray and grown under a white fluorescent lamp (same as above) in a temperature-controlled room maintained at 25 ° C. for 14 days.
(C) Ensai seeds were soaked in running water for 4 hours, then sown in plastic bats filled with vermiculite and germinated at 25 ° C. in the dark. After 2 days, remove the cover and grow for 7 days under a white fluorescent lamp (same as above) in a constant temperature room maintained at 25 ° C. Transplant the seedlings whose radicles have grown to 2 to 3 cm onto a urethane cube medium in a plastic tray. Cultivated for another 5 days.
(D) Sunny lettuce seeds were directly sown on a urethane cube medium in a plastic tray and germinated at 25 ° C. in the dark. After 3 days, the cover was removed and the plants were grown for 4 days under a white fluorescent lamp (same as above) in a constant temperature room maintained at 25 ° C.
(E) The radish seeds were soaked in running water for 1 hour, then directly sown on a urethane cube medium in a plastic tray and germinated at 25 ° C. in the dark. After 2 days, the cover was removed, and the plants were grown for 7 days under a white fluorescent lamp (same as above) in a constant temperature room maintained at 25 ° C.
尚、供試植物の育苗に用いた恒温室は、明期と暗期をそれぞれ12時間、光合成有効光量子束密度(PPFD)を110μmol m-2 s-1に設定した。また、各実験とも最初の2枚の葉がほぼ同じサイズに展開した苗を選別して、下記のグロースチャンバ内に設置した栽培ベッドに移植し、各区10株(成分分析時には15株)ずつ水耕栽培により育成した。培養液はNH423、 NO3 223、 P2O5120、 K2O360、 CaO2 30、MgO75、 MnO1.5、 B2O1.5、 Fe2.7(mg L-1)を含む大塚ハウス肥料A処方(大塚化学)を用いて作製し、電気伝導度は定植時に1.2 dSm-1、定植5日目に2.4 dSm-1に調整し、pHはほぼ5〜6に維持した。 The temperature-controlled room used for raising the test plants was set to light and dark periods of 12 hours each and the photosynthesis effective photon flux density (PPFD) was set to 110 μmol m −2 s −1 . In each experiment, the seedlings with the first two leaves having the same size were selected and transplanted to the cultivation bed installed in the growth chamber below. Grown by tillage. Culture solution contains NH 4 23, NO 3 223, P 2 O 5 120, K 2 O 3 60, CaO 2 30, MgO75, MnO1.5, B 2 O1.5, Fe2.7 (mg L -1 ) Otsuka House Fertilizer A formulation (Otsuka Chemical) was used, and the electrical conductivity was adjusted to 1.2 dSm −1 at the time of planting, 2.4 dSm −1 on the fifth day of planting, and the pH was maintained at about 5-6.
(実験装置)
主光源の点灯本数と高さを制御できる4台のグロースチャンバ(VB1514−内寸200×75×140cm; Votsch社)内に水耕ベッド(90×60×10cm、上下循環液式)を設置し、移植直後からホウレンソウは26日間、シソは19日間、エンサイは17日間、サニーレタスは16日間、またダイコンは19日間、補光照明下で栽培した。グロースチャンバは内蔵の空調機により気温を25℃、相対湿度を60%に維持した。
昼間の照明には、30-wの昼光色蛍光ランプ(Wランプ、Lumilux plus L30w/31-830、 Osram社)を装着した主光源を用いた。夜間補光には、同じく32-wの青色、赤色および遠赤色蛍光ランプ(Bランプ(λmax454nm)、Rランプ(λmax659nm)およびFRランプ(λmax749nm)、FLR900T6型、 ニッポ電気)を、主光源の昇降の妨げにならないように側壁上部に配置して利用した。補光ランプの出力はパワーユニット(FDP-2001、ニッポ電気)により調節した。
各蛍光ランプのスペクトル光量子分布は分光放射計 (MSR7000、 オプトリサーチ)で測定した。 また、PPFDは光量子センサー(LI-190SB、 Li-Cor Inc.)で計測し、栽培パネル上の9点の平均値として求めた。
(Experimental device)
A hydroponic bed (90 x 60 x 10 cm, vertically circulating fluid type) is installed in four growth chambers (VB1514-internal dimensions 200 x 75 x 140 cm; Votsch) that can control the number and height of the main light sources. Immediately after transplanting, spinach was cultivated under supplementary lighting for 26 days, perilla for 19 days, ensai for 17 days, sunny lettuce for 16 days, and radish for 19 days. The growth chamber maintained an air temperature of 25 ° C and a relative humidity of 60% with a built-in air conditioner.
The main light source equipped with a 30-w daylight fluorescent lamp (W lamp, Lumilux plus L30w / 31-830, Osram) was used for daytime lighting. For nighttime supplementary lighting, the 32-w blue, red and far-red fluorescent lamps (B lamp (λmax 454 nm), R lamp (λmax 659 nm) and FR lamp (λmax 749 nm), FLR900T6 type, Nippon Electric) It was used by placing it on the upper side of the side wall so as not to hinder it. The output of the supplementary lamp was adjusted by a power unit (FDP-2001, Nippon Electric).
The spectral photon distribution of each fluorescent lamp was measured with a spectroradiometer (MSR7000, Opt Research). PPFD was measured with a photon sensor (LI-190SB, Li-Cor Inc.) and obtained as an average value of 9 points on the cultivation panel.
(光処理)
グロースチャンバー実験はいずれも、昼間のPPFDを低照度条件の200μmol m-2 s-1一定に設定した。青色、赤色、遠赤色の夜間補光は、いずれも放射照度を50μmol m-2 s-1、照射時間を30分間とし、成育や栄養成分に対する影響を無補光の場合と比較検討した。
(a)ホウレンソウへの短時間補光:比較例1
実験は、昼間を10時間(6:00〜16:00)、夜間を14時間(16:00〜6:00)とし、夜間の補光照明については、無補光を対照区とし、夜の終了時の前30分間(5:30〜6:00)に青色光を照射するか、夜の開始時から30分間(16:00〜16:30)に赤色光または遠赤色光を照射し、以下の実験1並びに2の異なる光処理条件を設けて26日間処理した。
(実験1):夜の開始時(16:00〜)に赤色光(R区)や遠赤色光(FR区)を30分間照射するか、赤色光と遠赤色光を交互に30分間ずつ照射した(R+FR区)。
(実験2):夜の開始時(16:00〜)に赤色光と遠赤色光を交互に30分間ずつ照射した(R+FR区、R+FR+R区、R+FR+R+FR区)。
(b)シソへの短時間補光:実施例1
昼間を14時間(6:00〜20:00)、夜間を10時間(20:00〜6:00)とした。夜間の補光照明については、無補光を対照区とし、夜の終了時(5:30〜6:00)に青色光を照射するか、夜の開始時(20:00〜20:30)に赤色光または遠赤色光を照射し、19日間処理した。
(c)エンサイへの短時間補光:実施例2
昼間を14時間(6:00〜20:00)、夜間を10時間(20:00〜6:00)とした。夜間の補光照明については、無補光を対照区とし、夜の終了時(5:30〜6:00)に青色光を照射するか、夜の開始時(20:00〜20:30)に赤色光または遠赤色光を照射し、17日間処理した。
(d)サニーレタスへの短時間補光:実施例3
日長感応性が高くないことから、昼間を14時間(6:00〜20:00)、夜間を10時間(20:00〜6:00)とした。夜間の補光照明については、無補光を対照区とし、夜の終了時(5:30〜6:00)に青色光を照射するか、夜の開始時(20:00〜20:30)に赤色光または遠赤色光を照射して、16日間処理した。
(e)ダイコンへの短時間補光:比較例2
昼間を10時間(6:00〜16:00)、夜間を14時間(16:00〜6:00)とした。夜間の補光照明については、無補光を対照区とし、夜の終了時(5:30〜6:00)に青色光を照射するか、夜の開始時(16:00〜16:30)に赤色光または遠赤色光を照射して、19日間処理した。
(Light processing)
In all growth chamber experiments, daytime PPFD was set constant at 200 μmol m −2 s −1 under low illumination conditions. For blue, red, and far-red nighttime supplements, the irradiance was 50 μmol m -2 s -1 and the irradiation time was 30 minutes, and the effects on growth and nutritional components were compared with those of no supplementary light.
(A) Short-time supplementation to spinach: Comparative Example 1
In the experiment, the daytime is 10 hours (6: 00-16: 00) and the nighttime is 14 hours (16: 00-6: 00). Irradiate with blue light for 30 minutes before the hour (5:30 to 6:00) or with red light or far red light for 30 minutes (16:00 to 16:30) from the beginning of the night. Experiments 1 and 2 were performed for 26 days under different light treatment conditions.
(Experiment 1): At the beginning of the night (16: 00-), irradiate red light (R zone) or far red light (FR zone) for 30 minutes, or alternately irradiate red light and far red light for 30 minutes each. (R + FR).
(Experiment 2): Red light and far-red light were alternately irradiated for 30 minutes at the beginning of the night (16: 00-) (R + FR, R + FR + R, R + FR + R + FR) Ward).
(B) Short-time supplementation to perilla: Example 1
The daytime was 14 hours (6: 00-20: 00) and the night was 10 hours (20: 00-6: 00). For supplementary lighting at night, use non-complementary light as a control zone and irradiate with blue light at the end of the night (5:30 to 6:00) or at the start of the night (20:00 to 20:30) Irradiated with red or far red light and treated for 19 days.
(C) Short-time supplement to ensai: Example 2
The daytime was 14 hours (6: 00-20: 00) and the night was 10 hours (20: 00-6: 00). For supplementary lighting at night, use non-complementary light as a control zone and irradiate with blue light at the end of the night (5:30 to 6:00) or at the start of the night (20:00 to 20:30) Irradiated with red or far red light and treated for 17 days.
(D) Short-time supplementation to sunny lettuce: Example 3
Since day length sensitivity was not high, the daytime was set to 14 hours (6: 00-20: 00) and the night was set to 10 hours (20: 00-6: 00). For supplementary lighting at night, use non-complementary light as a control zone and irradiate with blue light at the end of the night (5:30 to 6:00) or at the start of the night (20:00 to 20:30) Irradiated with red or far red light and treated for 16 days.
(E) Short-time supplementation to Japanese radish: Comparative Example 2
Daytime was 10 hours (6: 00-16: 00) and nighttime was 14 hours (16: 00-6: 00). For supplementary illumination at night, use non-complementary light as a control zone and irradiate with blue light at the end of the night (5:30 to 6:00) or at the start of the night (16:00 to 16:30) Irradiated with red or far red light and treated for 19 days.
(植物の成長測定および解析)
供試植物は光処理終了日に各区10株ずつ収穫し、ホウレンソウ、シソ、エンサイ、ダイコンは葉、葉柄、茎および根に分け、サニーレタスは葉、茎および根に分けた。また、葉数、節数、茎長、を調査し、茎の短いホウレンソウとダイコンでは最大の葉柄長(葉柄長)を測定した。葉については、画像処理装置(最小検出面積0.03cm2)を用いて総葉面積(葉面積)を測定するとともに、形態の違いを比較するため、葉面積/葉数(個葉面積)と比葉面積(SLA;葉面積/葉乾物重)を計算した。また、最大葉の葉長と葉幅を測り、葉長:葉幅比(L: W比)を求めた。分別された材料は、通風乾燥機を用いて7日間60℃で乾燥し、葉、葉柄と茎(以下葉柄・茎)もしくは茎、根の別に乾物重を測定して全乾物重を求めた。
全ての成長パラメータはTukeyの多重比較検定(n=10、 p<0.05)により解析し、平均値間の有意差の有無を比較した。
(Plant growth measurement and analysis)
The test plants were harvested 10 strains on each day of the light treatment, spinach, perilla, ensai and Japanese radish were divided into leaves, petioles, stems and roots, and sunny lettuce was divided into leaves, stems and roots. In addition, the number of leaves, the number of nodes, and the stem length were investigated, and the maximum petiole length (petiole length) was measured for spinach and radish with short stems. For leaves, the total leaf area (leaf area) was measured using an image processing device (minimum detection area 0.03 cm 2 ), and the ratio of leaf area / number of leaves (individual leaf area) was compared with the difference in morphology. Leaf area (SLA; leaf area / leaf dry weight) was calculated. In addition, the leaf length and leaf width of the largest leaf were measured, and the leaf length: leaf width ratio (L: W ratio) was determined. The separated material was dried at 60 ° C. for 7 days using an air dryer, and the dry weight was measured separately for leaves, petiole and stem (hereinafter referred to as petiole / stem) or stem and root to determine the total dry matter weight.
All growth parameters were analyzed by Tukey's multiple comparison test (n = 10, p <0.05), and the presence or absence of a significant difference between the mean values was compared.
(植物成分の定量)
各植物種とも光処理終了日(成育調査日)の翌日に各区5株ずつ収穫し、株ごとに葉などの可食部を1〜2cm2の大きさに細断して2.0gずつ3試料を量り取り、直ちにアスコルビン酸(ビタミンC)およびβ-カロテン(ビタミンA)の定量用の抽出溶媒(各20ml)に浸漬した。
(Quantification of plant components)
For each plant type, harvest 5 plants in each ward on the day after the end of light treatment (growth survey date), and chop the edible part such as leaves into 1-2 cm 2 for each strain and sample 3 samples of 2.0 g each. Was immediately immersed in an extraction solvent (20 ml each) for quantification of ascorbic acid (vitamin C) and β-carotene (vitamin A).
(アスコルビン酸の定量)
細断試料2.0gを抽出溶媒(5%メタリン酸水溶液)に浸漬し、ホモジナイザー(POLYTRON、 KINEMATICA AG.、 Switzerland)を用いて氷中で粉砕した。その溶液から1.5 mlを分取して10、000 rpmで1 分間遠心したのち、上澄みの抽出液にアスコルビン酸検査用試験紙(Merck、 KGaA、 Darmstadt、 Germany)を浸し、小型反射式光度計RQflex plus(Merck、 KGaA、 Darmstadt、 Germany)を用いて定量した。
(Quantitative determination of ascorbic acid)
2.0 g of the chopped sample was immersed in an extraction solvent (5% metaphosphoric acid aqueous solution) and pulverized in ice using a homogenizer (POLYTRON, KINEMATICA AG., Switzerland). A 1.5 ml aliquot is taken from the solution, centrifuged at 10,000 rpm for 1 minute, and then the ascorbic acid test paper (Merck, KGaA, Darmstadt, Germany) is immersed in the supernatant extract, and the small reflective photometer RQflex Quantification was performed using plus (Merck, KGaA, Darmstadt, Germany).
(β-カロテンの定量)
2.0gの細断試料を0.4gのピロガロールを含むアセトン20ml浸漬し、直ちに暗所において氷中で粉砕した。その溶液を濾紙(GF/A、 Whatman)で吸引濾過して抽出液とした。それをアセトンにより100 mlに定容したのち、50μlを分取してHPLCで定量分析した。
HPLCカラムにはInertsil ODS-3(4.6φ、 150mm、 GL Science)を、移動相にはメタノールとクロロフォルムを4:1(v/v)に混合したのち、脱気した溶液を使用した。ポンプ(L-7100、 日立)流量は1.5ml min-1、カラムオーブン(L-7300、 日立)の温度は30℃、紫外吸光検出器(SPD-6AV、 島津)の検出波長は450 nmに設定した。
(Quantification of β-carotene)
A 2.0 g chopped sample was immersed in 20 ml of acetone containing 0.4 g of pyrogallol and immediately ground in ice in the dark. The solution was suction filtered through a filter paper (GF / A, Whatman) to obtain an extract. After making up to 100 ml with acetone, 50 μl was taken and quantitatively analyzed by HPLC.
Inertsil ODS-3 (4.6φ, 150 mm, GL Science) was used for the HPLC column, and methanol and chloroform were mixed at a ratio of 4: 1 (v / v) as the mobile phase, and then a degassed solution was used. The pump (L-7100, Hitachi) flow rate is 1.5 ml min -1 , the temperature of the column oven (L-7300, Hitachi) is 30 ° C, and the detection wavelength of the UV absorption detector (SPD-6AV, Shimadzu) is set to 450 nm did.
(アントシアニンの定量)
林(1988)の方法に従い、2.0gの細断試料を1%塩酸メタノール溶液(v/v)に加え、冷蔵庫内(4℃)で24時間静置し、色素を抽出した。96穴マイクロプレート(Costar 3370 Assay Plate)に抽出液を200ml分注し、マイクロプレートリーダー(Benchmark、 Bio・Rad)を用いて530nmの吸光度を測定した。
(Quantitative determination of anthocyanins)
According to the method of Hayashi (1988), 2.0 g of shredded sample was added to 1% hydrochloric acid / methanol solution (v / v) and left in a refrigerator (4 ° C.) for 24 hours to extract the pigment. 200 ml of the extract was dispensed into a 96-well microplate (Costar 3370 Assay Plate), and the absorbance at 530 nm was measured using a microplate reader (Benchmark, Bio • Rad).
(実験結果)
1.野菜の成長に対する短時間補光の影響
(Experimental result)
1. Effects of short-time supplementary light on vegetable growth
a.ホウレンソウ
赤色光や遠赤色光の交互照射とホウレンソウの成長促進(図1、図2および表1参照)
実験1 においては、赤色光を照射すると全乾物重、葉面積、個葉面積、葉長、葉柄長および地上部への乾物分配が無補光の場合に比べて増加し、SLAも増加した。これに対して、赤色光の替わりに遠赤色光を照射すると、全乾物重、葉面積、個葉面積、葉長および地上部への乾物分配の増加は認められず(葉面積は減少し)、葉柄長のみが増加した。また、赤色光に引き続いて遠赤色光を照射すると、全乾物重、葉面積、個葉面積、葉長および地上部への乾物分配の増加は認められなかったが、葉柄長が増加し、遠赤色光を照射した場合と同様の成長変化を示した。
そこで実験2において、赤色光と遠赤色光の交互照射を重ねたところ、葉柄長はいずれの照射条件においても増加するが、全乾物重、葉面積、個葉面積、葉長、SLAおよび地上部への乾物分配は、「赤色光+遠赤色光」と「赤色光+遠赤色光+赤色光+遠赤色光」の場合に増加が認められず、「赤色光+遠赤色光+赤色光」の場合には増加が認められた。
実験1および実験2の結果から、赤色光を照射すると成長促進が起こり、遠赤色光の照射では葉柄が伸長するものの、成長促進は起こらないこと、赤色光と遠赤色光を交互照射すると、赤色光と遠赤色光の成長に対する作用は可逆的で、赤色光が最後の場合に全乾物重が増加するなど成長促進が起こることが明らかになった。また、赤色光を照射すると葉は薄く拡張したが、L:W比に対する有意な影響は認められなかった。尚、詳細な説明は省略するが、夜の終了時に青色光を短時間照射すると、葉や葉柄の伸長が促され、地上部(とくに葉柄・茎)への乾物分配が増加して成長促進が起こることが認められた。
In Experiment 1, irradiation with red light increased the total dry matter weight, leaf area, individual leaf area, leaf length, petiole length, and dry matter distribution to the aerial part compared to the case without supplemental light, and SLA also increased. In contrast, when far-red light is irradiated instead of red light, the total dry matter weight, leaf area, individual leaf area, leaf length, and increase in dry matter distribution to the aerial part are not observed (the leaf area decreases) Only the petiole length increased. In addition, irradiation with red light followed by far red light showed no increase in total dry matter weight, leaf area, individual leaf area, leaf length, and dry matter distribution to the aerial part, but petiole length increased, The growth change was the same as when red light was irradiated.
In Experiment 2, when red and far-red light were alternately irradiated, the petiole length increased under all irradiation conditions, but total dry weight, leaf area, individual leaf area, leaf length, SLA and above-ground part There is no increase in dry matter distribution to "red light + far red light" and "red light + far red light + red light + far red light", but "red light + far red light + red light". In the case of, an increase was observed.
From the results of Experiment 1 and Experiment 2, growth is promoted when irradiated with red light, and the petiole expands when irradiated with far red light, but growth promotion does not occur, and when red light and far red light are irradiated alternately, red The effects of light and far-red light on the growth were reversible, and it became clear that growth promotion occurred such as the total dry matter weight increased when red light was the last. Moreover, when the red light was irradiated, the leaf was thinly expanded, but no significant effect on the L: W ratio was observed. Although detailed explanation is omitted, when the blue light is irradiated for a short time at the end of the night, the growth of leaves and petiole is promoted, and the distribution of dry matter to the above-ground part (especially petiole / stem) is increased to promote growth. It was confirmed that it would happen.
b.シソ
夜間の短時間補光がシソの成長に及ぼす影響を図4に示す。遠赤色光を照射すると、全乾物重、葉面積、葉面積/葉数、茎長が無補光に比べて増加し、成長促進の効果がみられた。これに対して、青色光や赤色光を照射した場合には、いずれの項目についても有意な増加は認められなかった。
葉の形態については、遠赤色光を照射すると、L: W比は変わらないがSLAが増加し、葉が薄く拡張することが明らかになった。また、赤色光を照射すると、 SLAに有意な変化は認められないが、L: W比が減少し葉が丸みを帯びること、青色光の照射では 、SLAおよびL: W比の変化は認められないことがわかった。
遠赤色光を照射すると、図5に示すように、無補光に比べて乾物分配に変化が認められ、葉と根への分配が減少して茎・葉柄への分配が増加し、可食部である地上部への分配も多少増加することが明らかになった。
b. Perilla Figure 4 shows the effect of short-time supplementary light on perilla growth. Irradiation with far-red light increased the total dry weight, leaf area, leaf area / number of leaves, and stem length compared to non-complementary light, and showed the effect of promoting growth. On the other hand, when blue light or red light was irradiated, no significant increase was observed for any item.
As for the leaf morphology, it became clear that irradiation with far-red light did not change the L: W ratio but increased the SLA and the leaf expanded thinly. In addition, no significant change in SLA is observed when red light is irradiated, but the L: W ratio decreases and leaves are rounded, and blue light irradiation shows no change in SLA and L: W ratio. I knew it was n’t there.
Irradiation with far-red light, as shown in Fig. 5, shows a change in dry matter distribution compared to non-complementary light, distribution to leaves and roots decreases, distribution to stem and petiole increases, edible part It became clear that the distribution to the above-ground part also increased somewhat.
c.エンサイ
夜間の短時間補光がエンサイの成長に及ぼす影響を図6に示す。遠赤色光を照射すると、全乾物重、葉面積/葉数、茎長が無補光に比べて増加し(葉面積も増加傾向を示し)、成長促進の効果が認められた。これに対し、青色光や赤色光を照射した場合には、いずれ項目についても有意な増加は認められなかった。
葉の形態については、 遠赤色光を照射すると SLAが増加するとともにL: W比が減少し、薄く幅広く拡張することが明らかになった。また、赤色光や青色光を照射しても、SLAとL: W比はともに変化しなかった。
遠赤色光を照射すると、図7に示すように、無補光と比べて乾物分配に変化がみられ、葉と根への分配が減少し、茎・葉柄への分配が10%増加した。これにともない、可食部である地上部への分配も増加した。
c. Ensai Figure 6 shows the effect of short-time supplementary light on nightlife growth. Irradiation with far-red light increased the total dry weight, leaf area / number of leaves, and stem length compared to non-complementary light (the leaf area also showed an increasing tendency), and the effect of promoting growth was observed. On the other hand, when blue light or red light was irradiated, no significant increase was observed for any item.
Regarding the leaf morphology, it became clear that irradiation with far-red light increased the SLA and decreased the L: W ratio, expanding thinly and widely. Also, neither SLA nor L: W ratio changed when red light or blue light was irradiated.
When far-red light was irradiated, as shown in FIG. 7, changes in dry matter distribution were observed compared to non-complementary light, distribution to leaves and roots decreased, and distribution to stems and petioles increased by 10%. Along with this, distribution to the above-ground part, which is an edible part, also increased.
d.サニーレタス
夜間の短時間補光がサニーレタスの成長に及ぼす影響を図8に示す。遠赤色光を照射すると、全乾物重、葉面積、葉面積/葉数、茎長が無補光に比べて増加した。これに対して、青色光や赤色光を照射した場合には、いずれの項目についても有意な増加は認められなかった。
葉の形態に関しては、 遠赤色光を照射すると SLAは変化することなくL: W比が増加し、葉は厚みを保ちながら細長く拡張することがわかった。一方、赤色光や青色光を照射してもL: W比に変化は認められないが、赤色光を照射するとSLAが減少し葉は厚みを増した。
レタスでは葉柄がないため地上部(葉と茎)と根の乾物分配を比較したが、図9に示すように、遠赤色光を照射すると、無補光と比べて可食部である地上部への分配が増加し、根への分配は減少した。
d. Sunny lettuce Figure 8 shows the effect of short-time supplementary light at night on the growth of sunny lettuce. Irradiation with far-red light increased total dry weight, leaf area, leaf area / number of leaves, and stem length compared to non-complementary light. On the other hand, when blue light or red light was irradiated, no significant increase was observed for any item.
With regard to leaf morphology, it was found that when irradiated with far-red light, the SLA did not change and the L: W ratio increased, and the leaf expanded elongated while maintaining its thickness. On the other hand, no change was observed in the L: W ratio when irradiated with red or blue light, but when irradiated with red light, the SLA decreased and the leaves increased in thickness.
Since lettuce has no petiole, we compared the dry matter distribution of the ground part (leaves and stems) and roots, but as shown in Fig. 9, when irradiated with far-red light, to the ground part which is an edible part compared to non-complementary light The distribution to the root increased and the distribution to the root decreased.
e.ダイコン
夜間の短時間補光がダイコンの成長に及ぼす影響を図10に示す。遠赤色光を照射すると、葉柄長が無補光に比べて76%増加したが、葉面積、葉面積/葉数は減少し(全乾物重も現象の傾向を示し)、成長が抑制された。これに対して、赤色光を照射した場合には全乾物重と葉面積の増加傾向が認められ、青色光を照射すると葉面積が減少の傾向を示した。
葉の形態については、 遠赤色光の照射により SLAの減少とL: W比が増加し、葉の拡張が抑えられて厚く細長くなることが明らかになった。一方、赤色光や青色光を照射しても、L: W比に変化は認められないが、青色光を照射するとSLAが減少し葉は厚みを増した。
遠赤色光を照射すると、図11に示すように、無補光と比べて乾物の茎・葉柄への分配が5%増加し、地上部への分配が増える傾向がみられた。青色光や赤色光を照射しても、乾物分配の変化は小さかった。
e. Japanese radish Figure 10 shows the effect of short-time light supplements at night on radish growth. Irradiation with far-red light increased the petiole length by 76% compared to non-complementary light, but the leaf area and leaf area / number of leaves decreased (total dry weight also showed a tendency), and growth was suppressed. In contrast, when the red light was irradiated, the total dry matter weight and the leaf area increased, and when the blue light was irradiated, the leaf area decreased.
Regarding the leaf morphology, it became clear that irradiation with far-red light decreased SLA and increased the L: W ratio, suppressing leaf expansion and becoming thick and elongated. On the other hand, no change was observed in the L: W ratio when irradiated with red or blue light, but when irradiated with blue light, the SLA decreased and the leaf thickness increased.
When far-red light was irradiated, as shown in FIG. 11, the distribution of dry matter to the stem and petiole increased by 5% compared to non-complementary light, and the distribution to the above-ground part tended to increase. Even when irradiated with blue or red light, the change in dry matter distribution was small.
2.栄養成分濃度に対する短時間補光の影響
上記の夜間の短時間補光(夜の終了時に青色光、夜の開始時に赤色光、夜の開始時に遠赤色光)条件下で栽培したシソ、エンサイ、サニーレタスにおいて、葉など可食部に含まれるβ-カロテンとアスコルビン酸、ならびにシソとサニーレタスに着色成分として含まれるアントシアニンの濃度分析の結果を表2に示す。
アスコルビン酸については、シソとサニーレタスでは青色光、赤色光、遠赤色光のいずれを照射した場合も濃度低下が小さく、エンサイでは個体間の濃度差が大きいため、 3種類の葉菜とも光照射による影響は認められなかった。
このように、シソ、エンサイ、サニーレタスでは、遠赤色光を照射すると成長が促進されたが、栄養成分であるβ-カロテンおよびアスコルビン酸の有意な濃度低下は認められないことが明らかになった。
また、シソとサニーレタスに含まれるアントシアニン濃度は、青色光や赤色光を照射しても無補光と比べて有意差は認められなかったが、シソでは遠赤色光を照射すると22%低下し、着色が抑制された。
2. Effect of short-time supplementation on nutrient concentration Perilla, ensai cultivated under short-term supplementation at night (blue light at the end of the night, red light at the start of the night, far red light at the start of the night), In Sunny lettuce, Table 2 shows the results of concentration analysis of β-carotene and ascorbic acid contained in edible parts such as leaves, and anthocyanin contained as a coloring component in perilla and sunny lettuce.
Ascorbic acid is irradiated with blue light, red light, and far-red light in Shiso and Sunny lettuce, and the concentration difference between individuals is large in Ensai. No effects were observed.
In this way, in perilla, ensai, and sunny lettuce, irradiation with far-red light promoted growth, but no significant decrease in the concentrations of β-carotene and ascorbic acid, which are nutrients, was observed. .
In addition, the anthocyanin concentration contained in perilla and sunny lettuce was not significantly different from non-complementary light even when irradiated with blue light or red light, but perilla decreased 22% when irradiated with far red light, Coloring was suppressed.
以上の実験結果から、長日植物であるホウレンソウの場合には、夜の開始時に赤色光を短時間照射すると、成長促進が認められたのに対し、遠赤色光を照射すると、葉柄は伸びるが、全乾物重や葉面積などの増加は認められなかった。更に、赤色光と遠赤色光を交互に照射すると、赤色光による成長促進は、遠赤色光によって打ち消された。このことから、ホウレンソウにおいては、赤色光と遠赤色光の成長に対する作用は可逆的で、赤色光は成長を誘導するスイッチとして機能し、遠赤色光は誘導を停止させるスイッチとして機能することが判明した。 From the above experimental results, in the case of spinach, which is a long-day plant, growth promotion was observed when irradiated with red light for a short time at the start of the night, whereas when exposed to far red light, the petiole grew. No increase in total dry weight or leaf area was observed. Further, when red light and far red light were alternately applied, the growth promotion by red light was canceled by the far red light. From this, in spinach, the effect on the growth of red light and far-red light is reversible, red light functions as a switch that induces growth, and far-red light functions as a switch that stops induction. did.
他方、短日植物のシソ、エンサイと日長の影響を受けにくいサニーレタス(中性植物)は、青色光や赤色光を夜の開始時に照射しても成長促進は起こらなかったが、夜の開始時に遠赤色光を照射すると、成長促進の効果が認められた。これに対し、ダイコンでは葉柄が伸びるが成長はむしろ抑制された(図4、図6、図8および図10)。このように、遠赤色光に対する成長反応について、ダイコンはホウレンソウと一致し、シソ、エンサイおよびサニーレタスはホウレンソウと対照的な特徴を示したが、 5種類の野菜が遠赤色光に対する成長反応にもとづいて 2つに分類されることは、ホウレンソウとダイコンが長日植物、シソやエンサイは短日植物、またサニーレタスは日長の影響を受けにくい条件的長日植物である(Wareing and Phillips、 1983)ことを考慮すると、光周反応型を反映している可能性がある。 On the other hand, Sunny lettuce (neutral plant), which is not easily affected by perilla, ensai and day length of short-day plants, did not promote growth even when irradiated with blue or red light at the start of the night, Irradiation with far-red light at the start showed an effect of promoting growth. In contrast, radish grew petiole but growth was rather suppressed (Figs. 4, 6, 8 and 10). In this way, regarding the growth response to far-red light, Japanese radish coincided with spinach, and perilla, ensai and sunny lettuce showed contrasting characteristics with spinach, but five types of vegetables were based on the growth response to far-red light. The spinach and radish are long-day plants, perilla and ensai are short-day plants, and Sunny lettuce is a conditional long-day plant that is not susceptible to daylength (Wareing and Phillips, 1983). ), It may reflect the photoperiodic reaction type.
遠赤色光の照射により成長促進が認められたシソ、エンサイおよびサニーレタスにおいて、乾物分配の変化を比較すると(図5、図7および図9)、葉柄のないレタスでは無補光と比べて地上部への分配が増加して根への分配が減少し、シソとエンサイにおいては葉と根への分配が減少して茎・葉柄への分配が増加することが明らかになった。しかし、乾物分配を地上部と根に分けて比較すると、これら3種類の葉菜は根から地上部に同化産物が再分配される共通点をもつ。 Comparison of changes in dry matter distribution in perilla, ensai and sunny lettuce, where growth was recognized by irradiation with far-red light (Figs. 5, 7, and 9). The distribution to the roots decreased and the distribution to the roots decreased. In perilla and ensai, the distribution to the leaves and roots decreased and the distribution to the stem and petiole increased. However, when the dry matter distribution is divided into the above-ground part and the root, these three kinds of leafy vegetables have a common point that the assimilation product is redistributed from the root to the above-ground part.
一方、ダイコンとホウレンソウが、夜の開始時に遠赤色光を照射しても成長促進を示さないという結果については、ダイコンとホウレンソウでは、遠赤色光の照射により葉柄や茎の伸長は促進されるが、葉面積が増加しないことを考慮すると、成長促進が起こるためには葉の伸長促進が必要不可欠と考えられる。 On the other hand, regarding the results that radish and spinach do not show growth promotion even when irradiated with far-red light at the beginning of the night, in radish and spinach, the growth of petiole and stem is promoted by irradiation with far-red light. Considering that the leaf area does not increase, it is considered essential to promote the elongation of leaves in order to promote growth.
なお、夜の開始時に遠赤色光を照射すると、葉面積が増大し(ダイコンでは減少し)、形状は野菜の種類によって異なる変化を示した(図4、図6、図8、図10)。遠赤色光の照射により、葉長の方向と葉幅の方向への伸長が異なる大きさを示す原因を示唆する知見は見受けられないが、シソ、エンサイ、ダイコンとは逆に、サニーレタスにおいて葉幅に比べて葉長の方向への伸長が大きいという結果は、サニーレタスには葉柄がないため、葉長の増加が葉柄の伸長促進を代替するためではないかと推察される。 In addition, when far-red light was irradiated at the start of the night, the leaf area increased (decrease in radish), and the shape varied depending on the type of vegetable (FIGS. 4, 6, 8, and 10). There is no finding that suggests the cause of the difference in length between the leaf length and leaf width due to the irradiation of far-red light, but contrary to perilla, ensai and radish, The result that the elongation in the direction of the leaf length is larger than the width is presumed that the increase in the leaf length substitutes for the promotion of the elongation of the petiole because the sunny lettuce has no petiole.
以上のように、夜の開始時に遠赤色光を照射すると、葉柄の伸長は種間で異なる反応を示すが、成長促進は短日植物のシソ、エンサイと日長の影響を受けにくいサニーレタス(中性植物)においては、成長促進の効果が認められた。具体的には、全乾物重がシソで29%、エンサイで27%、サニーレタスで35%増加し、栄養成分であるβ-カロテンやアスコルビン酸を維持しながら成長促進の効果が得られることが明らかになった。これに対して、ホウレンソウ並びにホウレンソウと同じ長日植物のダイコンでは、遠赤色光による成長促進が認められなかった。更に、夜の終了時に青色光を照射すると、成長促進はホウレンソウでのみ認められ、長日性のダイコンでも確認されなかった。このことから、遠赤色光に対する成長反応の異なる2つのタイプの植物が存在することが判明した(図3、表2並びに図12参照)。 As mentioned above, when irradiating far-red light at the beginning of the night, petiole elongation shows different reactions between species, but growth promotion is not affected by perilla, ensai and day length of short-day plants. In neutral plants), the effect of promoting growth was observed. Specifically, the total dry matter weight increased by 29% for perilla, 27% for ensai, and 35% for sunny lettuce, and the effect of promoting growth was obtained while maintaining the nutritional components β-carotene and ascorbic acid. It was revealed. On the other hand, growth promotion by far-red light was not recognized in the radish of the same long-day plant as spinach and spinach. Furthermore, when blue light was irradiated at the end of the night, growth promotion was observed only in spinach, and was not confirmed even in long-day radish. This revealed that there are two types of plants with different growth responses to far-red light (see FIG. 3, Table 2 and FIG. 12).
この成長誘導現象は光刺激(光シグナル)によるもので、省エネルギーの補光照明として利用が期待できる。例えば、少ない補光量(50μmol m-2 s-1×1時間)でもPPFDが200μmol m-2 s-1の場合に300μmol m-2 s-1の条件下に相当する成長促進が可能なことから、低照度条件下で成長促進の効果を高める有効な方法と判断された。
しかも、葉菜類の主要な栄養成分であるβ-カロテン(ビタミンA)やアスコルビン酸(ビタミンC)の濃度は、夜の開始時の遠赤色光照射による成長促進反応時にも、両成分の濃度に対する影響は認められないことを確認した(表2)。栽培環境や成育段階は、葉菜類のβ-カロテンやアスコルビン酸濃度に影響を及ぼす可能性があるとみられる。しかし、シソ、エンサイ、サニーレタスを用いた本実験でも夜間の短時間補光による影響が小さいことは確認された。尚、シソではアントシアニンの濃度が低下したため、着色成分が減る可能性はあるが、夜間の短時間補光は、低照度条件下で栽培される様々な葉菜類に対してビタミンなどの主要な栄養成分の減少を抑え、成長不良を改善する有効な方法と考えられる。
このことから、夜間の短時間補光は、低照度条件下で栽培される様々な葉菜類に対して、ビタミンなどの主要な栄養成分を減らさずに、成長不良を改善する有効な方法であると考えられる。
This growth induction phenomenon is caused by light stimulation (light signal), and can be expected to be used as energy-saving supplementary illumination. For example, even if a small amount of supplementary light (50 μmol m −2 s −1 × 1 hour) is used, if PPFD is 200 μmol m −2 s −1 , it is possible to promote growth equivalent to 300 μmol m −2 s −1 Therefore, it was judged as an effective way to enhance the growth promotion effect under low light conditions.
Moreover, the concentrations of β-carotene (vitamin A) and ascorbic acid (vitamin C), which are the main nutritional components of leafy vegetables, have an effect on the concentration of both components during the growth-promoting reaction by far-red light irradiation at the beginning of the night (Table 2). Cultivation environment and growth stage may affect β-carotene and ascorbic acid concentrations in leafy vegetables. However, in this experiment using perilla, ensai, and sunny lettuce, it was confirmed that the effect of short-time supplementary light at night was small. In perilla, the concentration of anthocyanins has decreased, so coloring components may be reduced, but short-time supplementary light at night is the main nutritional component such as vitamins for various leaf vegetables grown under low-light conditions. This is considered to be an effective method of suppressing the decrease in growth and improving growth defects.
From this, short-time supplementary light at night is an effective method for improving poor growth without reducing the main nutrients such as vitamins for various leaf vegetables grown under low-light conditions. Conceivable.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257364A JP4886181B2 (en) | 2004-09-03 | 2004-09-03 | Method for promoting growth of short-day plants and neutral plants using short-time supplementary light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257364A JP4886181B2 (en) | 2004-09-03 | 2004-09-03 | Method for promoting growth of short-day plants and neutral plants using short-time supplementary light |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006067948A JP2006067948A (en) | 2006-03-16 |
JP2006067948A5 JP2006067948A5 (en) | 2007-08-16 |
JP4886181B2 true JP4886181B2 (en) | 2012-02-29 |
Family
ID=36149207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004257364A Expired - Fee Related JP4886181B2 (en) | 2004-09-03 | 2004-09-03 | Method for promoting growth of short-day plants and neutral plants using short-time supplementary light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4886181B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4995476B2 (en) * | 2006-04-14 | 2012-08-08 | 浜松ホトニクス株式会社 | Cultivation method to improve sugar content of solanaceous plants |
JP2013039035A (en) * | 2009-12-11 | 2013-02-28 | Mignon Belle:Kk | Apparatus for accelerating growth of plant such as fruit and vegetable |
JP2012070727A (en) * | 2010-09-03 | 2012-04-12 | Hamamatsu Photonics Kk | Method for increasing nutrient component content per unit dry weight of tomato fruit |
JP5498904B2 (en) | 2010-09-27 | 2014-05-21 | パナソニック株式会社 | Crop cultivation system |
JP5821037B2 (en) * | 2011-01-25 | 2015-11-24 | パナソニックIpマネジメント株式会社 | Crop cultivation system |
JP5830661B2 (en) * | 2011-08-24 | 2015-12-09 | パナソニックIpマネジメント株式会社 | Crop cultivation system |
JP5874060B2 (en) * | 2011-12-16 | 2016-03-01 | パナソニックIpマネジメント株式会社 | Plant breeding lighting device |
JP5779677B2 (en) * | 2013-02-04 | 2015-09-16 | 昭和電工株式会社 | Plant cultivation method and plant cultivation apparatus |
JP5723901B2 (en) | 2013-02-04 | 2015-05-27 | 昭和電工株式会社 | Plant cultivation method |
JP5723903B2 (en) * | 2013-02-04 | 2015-05-27 | 昭和電工株式会社 | Plant cultivation method |
JP5779604B2 (en) | 2013-02-04 | 2015-09-16 | 昭和電工株式会社 | Plant cultivation method |
JP5724002B2 (en) * | 2013-02-04 | 2015-05-27 | 昭和電工株式会社 | Plant cultivation method |
JP5723900B2 (en) | 2013-02-04 | 2015-05-27 | 昭和電工株式会社 | Plant cultivation method |
JP5723902B2 (en) * | 2013-02-04 | 2015-05-27 | 昭和電工株式会社 | Plant cultivation method |
JP2017060442A (en) * | 2015-09-25 | 2017-03-30 | 三菱化学株式会社 | Method for producing mixed vegetable |
JP6289569B1 (en) * | 2016-09-23 | 2018-03-07 | 北海道電力株式会社 | Greening control method |
CN115568385A (en) * | 2022-09-20 | 2023-01-06 | 福建省中科生物股份有限公司 | Lettuce cultivation method adopting dark-period supplementary lighting |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4788793A (en) * | 1983-03-07 | 1988-12-06 | Gte Laboratories Incorporated | Method of inhibiting premature budding of short-day floral crops |
JPH08228599A (en) * | 1995-02-24 | 1996-09-10 | Mitsubishi Chem Corp | Illumination culture of short-day flowering plant |
JPH09149729A (en) * | 1995-11-29 | 1997-06-10 | Mitsubishi Chem Corp | Raising of plant seedling |
JPH10178901A (en) * | 1996-12-20 | 1998-07-07 | Matsushita Electric Ind Co Ltd | Device and method for cultivating plant and recording medium for recording the same |
JP2001057816A (en) * | 1999-08-19 | 2001-03-06 | Kiyoji Suzuki | Irradiation of light for raising plant and apparatus therefor |
JP4684444B2 (en) * | 2001-03-22 | 2011-05-18 | 浜松ホトニクス株式会社 | Flower bud differentiation promoting device and flower bud differentiation promoting method using artificial light |
JP2004089031A (en) * | 2002-08-30 | 2004-03-25 | Meiji Univ | Method for accelerating photosynthesis by giving low-frequency stimulation |
-
2004
- 2004-09-03 JP JP2004257364A patent/JP4886181B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006067948A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4886181B2 (en) | Method for promoting growth of short-day plants and neutral plants using short-time supplementary light | |
Son et al. | Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes | |
Meng et al. | The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida | |
US8384047B2 (en) | Fluorescence-based ultraviolet illumination | |
KR101231624B1 (en) | agreculture apparatus | |
Długosz-Grochowska et al. | Modifying folate and polyphenol concentrations in Lamb's lettuce by the use of LED supplemental lighting during cultivation in greenhouses | |
Hernández et al. | Physiological, morphological, and energy-use efficiency comparisons of LED and HPS supplemental lighting for cucumber transplant production | |
CN103222420B (en) | Small vegetable indoor cultivation technique based on LED energy saving light source | |
US11606912B2 (en) | Method for increasing amount of phenolic compound in plant | |
Blando et al. | Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses | |
KR102093373B1 (en) | A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source | |
JP4995476B2 (en) | Cultivation method to improve sugar content of solanaceous plants | |
JP2007075073A (en) | Method for cultivating sprouts | |
JP2006340689A (en) | Method for cultivating green vegetables and installation for the same | |
WO2018199307A1 (en) | Method for increasing amount of phenolic compound in plant | |
JP2006246798A (en) | Plant cultivating method | |
JP2007089445A (en) | Plant body cultivating method | |
Bergstrand et al. | Growth and photosynthesis of ornamental plants cultivated under different light sources | |
Pocock | Influence of light-emitting diodes (LEDs) on light sensing and signaling networks in plants | |
CN106718755A (en) | A kind of utilization LED light source quickly effectively reduces the cultural method of Chinese cabbage nitrate content | |
Lopez et al. | Introduction to specialty crop lighting | |
Mortensen et al. | Vase life: the influence of variation in air humidity, temperature and super-elevated CO2 concentration in roses grown under continuous light | |
Nicole et al. | Nitrate content control in green vegetables grown under led lighting | |
CN111201912B (en) | Method for increasing iron content in tomato fruits | |
KR20180006992A (en) | Cultivation method of spinach by using light quality in closed-type plant factory system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4886181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |