JP4995476B2 - Cultivation method to improve sugar content of solanaceous plants - Google Patents

Cultivation method to improve sugar content of solanaceous plants Download PDF

Info

Publication number
JP4995476B2
JP4995476B2 JP2006112119A JP2006112119A JP4995476B2 JP 4995476 B2 JP4995476 B2 JP 4995476B2 JP 2006112119 A JP2006112119 A JP 2006112119A JP 2006112119 A JP2006112119 A JP 2006112119A JP 4995476 B2 JP4995476 B2 JP 4995476B2
Authority
JP
Japan
Prior art keywords
light
tomato
sugar content
cultivation
red light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006112119A
Other languages
Japanese (ja)
Other versions
JP2007282544A (en
Inventor
文 秋草
広司 土屋
照喜治 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006112119A priority Critical patent/JP4995476B2/en
Publication of JP2007282544A publication Critical patent/JP2007282544A/en
Application granted granted Critical
Publication of JP4995476B2 publication Critical patent/JP4995476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、ナス科植物の糖度を向上させる栽培方法に関し、特に特定波長の光を照射するナス科植物の糖度を向上させる栽培方法に関する。 The present invention relates to a cultivation method for improving the sugar content of a solanaceous plant, and particularly to a cultivation method for improving the sugar content of a solanaceous plant that is irradiated with light of a specific wavelength.

近年、植物の生産性を向上させるため、人工光を用いて植物を照射する栽培方法が試みられている。例えば、特許文献1に開示された方法では、太陽光が照射されない時間帯で、発光波長が700〜800nmの遠赤色光を所定の光量子束密度以上になるように長日植物に連続照射することにより、長日植物の開花と草丈の成長を促進させる。特許文献2に開示された方法では、植物を照射する光源に含まれる青色光、赤色光及び遠赤色光の強度を調整することで、植物の栄養成分含有量を調整する。   In recent years, in order to improve the productivity of plants, cultivation methods in which plants are irradiated using artificial light have been tried. For example, in the method disclosed in Patent Document 1, a long-day plant is continuously irradiated with far-red light having an emission wavelength of 700 to 800 nm so as to be equal to or higher than a predetermined photon flux density in a time zone in which sunlight is not irradiated. This promotes the flowering of long-day plants and the growth of plant height. In the method disclosed in Patent Document 2, the nutrient component content of a plant is adjusted by adjusting the intensity of blue light, red light, and far red light contained in a light source that irradiates the plant.

また、特許文献3に開示された方法では、発光波長が700〜760nmの遠赤色光を成育中の植物に照射することにより、植物の可食部の増量を図っている。特許文献4に開示された方法では、温室内に栽培されたブドウに対し、無加温状態で開花、結実、収穫の第1期作過程の終了後、休眠打破剤を散布し加温と合わせて人工光による補光を行い、年間2期作を実現している。
特開2005−95132号公報 特開平08−205677号公報 特開平08−275681号公報 特開平11−155395号公報
In addition, in the method disclosed in Patent Document 3, the edible part of the plant is increased by irradiating the growing plant with far-red light having an emission wavelength of 700 to 760 nm. In the method disclosed in Patent Document 4, after the first cropping process of flowering, fruiting, and harvesting is completed, the dormancy breaker is sprayed on the grapes grown in the greenhouse without heating. And supplemented with artificial light to achieve the second phase of the year.
JP 2005-95132 A Japanese Patent Laid-Open No. 08-205777 JP 08-275681 A Japanese Patent Laid-Open No. 11-155395

しかしながら、これらの特許文献に記載された栽培方法は、植物の生産性向上を着目したものであり、植物の品質、特に高糖度の植物果実の生産には適用できないという欠点があった。   However, the cultivation methods described in these patent documents focus on improving the productivity of plants, and have the disadvantage that they cannot be applied to the production of plant quality, particularly high-sugar plant fruits.

本発明は、上記の問題点を解消する為になされたものであり、高糖度の果実を有するナス科植物の栽培方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a method for cultivating a solanaceous plant having a fruit having a high sugar content.

本発明に係るナス科植物の糖度を向上させる栽培方法は、ナス科植物に対し、日没から1〜3時間、特定波長が720nmより長く750nm以下の遠赤色光を含む光を照射することを特徴とする。 Cultivation method for improving the sugar content of the Solanaceae according to the present invention, compared Solanaceae, between hours 1 to 3 from sunset, a specific wavelength is irradiated with light containing far-red light longer than 750nm following 720nm It is characterized by that.

本願発明者は、上記の課題を解決するため、まず、浜松市と日本で高品質なトマトを生産する北海道余市町との環境条件等について調査を行い、余市町の朝方及び夕方の光は赤色光が多く含まれることが判明した。そこで、本願発明者は、この赤色光に着目し、波長域、照射タイミング、照射時間によるナス科植物の果実糖度への影響を更に調査研究した。その結果、日没から1〜3時間特定波長600〜700nmの赤色光及び特定波長700〜750nmの遠赤色光の少なくともいずれかを含む光を照射する(すなわち、補光する)ことにより、ナス科植物の果実の糖度を向上させることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventor first investigated the environmental conditions of Hamamatsu City and Hokkaido Yoichi Town, which produces high-quality tomatoes in Japan, and the morning and evening light in Yoichi Town is red. It turns out that it contains a lot of light. Accordingly, the inventors of the present application paid attention to this red light and further investigated and studied the influence of the wavelength range, irradiation timing, and irradiation time on the fruit sugar content of solanaceous plants. As a result, the eggplant family is irradiated with light containing at least one of red light having a specific wavelength of 600 to 700 nm and far red light having a specific wavelength of 700 to 750 nm from sunset (that is, supplemented). The present inventors have found that the sugar content of plant fruits can be improved and have completed the present invention.

ここで、特定波長600〜700nmの赤色光は他の波長の光に比べてナス科植物の光合成への寄与が高い光である。また特定波長700〜750nmの遠赤色光は植物の種子の発芽や形態に作用する光とされている。従って、これらの特定波長の光を用いて補光することにより、ナス科植物は効率的に光合成を行うことができ高糖度の果実を生産することができるものと考えられる。また、日没から1〜3時間の照射を行うことは、ナス科植物の光合成産物を効果的に果実に蓄積させ、より高糖度の果実を得ることができるものと考えられる。   Here, red light having a specific wavelength of 600 to 700 nm is light that contributes to photosynthesis of solanaceous plants higher than light of other wavelengths. Further, far-red light having a specific wavelength of 700 to 750 nm is light that acts on germination and morphology of plant seeds. Therefore, it is considered that by complementing with light of these specific wavelengths, solanaceous plants can efficiently carry out photosynthesis and produce fruits with a high sugar content. Moreover, it is thought that performing the irradiation for 1 to 3 hours from sunset can accumulate the photosynthesis product of a solanaceous plant in a fruit effectively, and can obtain the fruit of higher sugar content.

なお、ここで、「日没」とは、太陽の上辺が水平線(すなわち、地平線)に接した瞬間のことを意味する。   Here, “sunset” means the moment when the upper side of the sun touches the horizon (that is, the horizon).

本発明に係るナス科植物の糖度を向上させる栽培方法において、ナス科植物はトマトであることが好適である。この場合には、高糖度のトマト果実が得られる。 In the cultivation method for improving the sugar content of a solanaceous plant according to the present invention, the solanaceous plant is preferably a tomato. In this case, a high sugar content tomato fruit is obtained.

本発明によれば、高糖度の果実を有するナス科植物の栽培方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cultivation method of the solanaceous plant which has a fruit of high sugar content can be provided.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、本実施形態において、ナス科植物がトマトである場合について説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, a case where the solanaceous plant is a tomato will be described.

図1は実施形態に係るナス科植物の栽培方法を利用した栽培装置を示す構成図である。この図に示される栽培装置1は、トマト10を収容するための空間を形成した栽培室12と、栽培室12内に設置された照射光源16と、太陽光を検知するセンサ14と、制御部18とを備えている。   Drawing 1 is a lineblock diagram showing the cultivation device using the cultivation method of the solanaceous plant concerning an embodiment. The cultivation apparatus 1 shown in this figure includes a cultivation room 12 that forms a space for housing tomatoes 10, an irradiation light source 16 installed in the cultivation room 12, a sensor 14 that detects sunlight, and a control unit. 18.

栽培室12は、太陽光等の外部からの光を透過した状態でトマト10を栽培するための部屋であり、例えば光透過性を有する透明なビニールやガラスから構成される。   The cultivation room 12 is a room for cultivating the tomato 10 in a state where light from the outside such as sunlight is transmitted, and is composed of, for example, transparent vinyl or glass having light permeability.

照射光源16は、特定波長600〜700nmの赤色光及び特定波長700〜750nmの遠赤色光の少なくともいずれかを含む人工光を発するものである。照射光源16としては、単色性及び発光率に優れた半導体レーザや発光ダイオード(LED)等が用いられる。例えば、照射光源16は、特定波長600〜700nmの赤色光を発するLEDと特定波長700〜750nmの遠赤色光を発するLEDとから構成されており、必要に応じて単独に、同時にまたは交互にこれらの光を発する。   The irradiation light source 16 emits artificial light including at least one of red light having a specific wavelength of 600 to 700 nm and far red light having a specific wavelength of 700 to 750 nm. As the irradiation light source 16, a semiconductor laser or a light emitting diode (LED) having excellent monochromaticity and light emission rate is used. For example, the irradiation light source 16 is composed of an LED that emits red light with a specific wavelength of 600 to 700 nm and an LED that emits far red light with a specific wavelength of 700 to 750 nm. Emits the light.

このような照射光源16は、トマト10のそれぞれに対して十分に均一に照射されるように複数配置されることが好適である。従って、照射光源16は、図1に示すようにトマト10の上方向に設けられることに限らず、トマト10の全体に均等に照射すると共に太陽光を遮らないようにトマト10の横方向や下方向などに設けられてもよい。また、照射光源16を設置する際に、照射光源16に起因したトマト10の高温障害の発生を防止するため、トマト10と照射光源16との距離を適宜調整する必要がある。   It is preferable that a plurality of such irradiation light sources 16 are arranged so that each of the tomatoes 10 is irradiated sufficiently uniformly. Therefore, the irradiation light source 16 is not limited to the upper direction of the tomato 10 as shown in FIG. 1, and the tomato 10 is irradiated in the horizontal direction or below so as to uniformly irradiate the entire tomato 10 and not to block sunlight. It may be provided in a direction or the like. Moreover, when installing the irradiation light source 16, in order to prevent the high temperature failure of the tomato 10 resulting from the irradiation light source 16, it is necessary to adjust the distance of the tomato 10 and the irradiation light source 16 suitably.

センサ14は、例えば栽培室12に入射されてきた太陽光を検知し、検知した検知信号を制御部18に送信するように設定されている。本実施形態において、センサ14は栽培室12の内部に配置されているが、栽培室12の外部であって、太陽光を当たる場所に設置されてもよい。   The sensor 14 is set to detect, for example, sunlight incident on the cultivation room 12 and transmit the detected detection signal to the control unit 18. In this embodiment, although the sensor 14 is arrange | positioned inside the cultivation room 12, it is the exterior of the cultivation room 12, Comprising: You may install in the place which hits sunlight.

制御部18は、センサ14から送信されてきた検知信号を解析し、その解析結果に基づいて日没であるか否かの判断を行う。日没であると判断された場合には、照射光源16に制御信号を送信し、照射光源16を所定時間にわたって連続あるいは断続的に点灯させる。   The control unit 18 analyzes the detection signal transmitted from the sensor 14 and determines whether it is sunset based on the analysis result. When it is determined that it is sunset, a control signal is transmitted to the irradiation light source 16 to turn on the irradiation light source 16 continuously or intermittently for a predetermined time.

また、制御部18は、例えば照射光源16から発する光の照射強度や照射時間を変化させるように設定されることが好ましい。この場合には、トマトの品種、栽培条件、成育状況などによって光の照射強度と照射時間を調整することができ、安定した高糖度のトマト10の果実を生産することが可能となる。   Moreover, it is preferable that the control part 18 is set so that the irradiation intensity and irradiation time of the light emitted from the irradiation light source 16 may be changed, for example. In this case, the irradiation intensity and irradiation time of light can be adjusted according to the variety of tomato, cultivation conditions, growth conditions, etc., and it becomes possible to produce the fruit of tomato 10 having a stable high sugar content.

図2は、本実施形態に係るトマトの栽培方法の全体処理を示す流れ図である。以下、図2に従って本実施形態に係るトマト10の栽培方法について説明する。   FIG. 2 is a flowchart showing the entire process of the tomato cultivation method according to the present embodiment. Hereinafter, the cultivation method of the tomato 10 which concerns on this embodiment according to FIG. 2 is demonstrated.

本実施形態に係るトマトの栽培方法は、1日にあたり日没から1〜3時間、特定波長600〜700nmの赤色光及び特定波長700〜750nmの遠赤色光の少なくともいずれかを含む光を照射する特徴としており、その他の潅水や施肥等は、通常のビニールハウス等におけるトマトの栽培方法と同様の条件で行う。   The cultivation method of the tomato which concerns on this embodiment irradiates the light which contains at least any one of the red light of specific wavelength 600-700 nm and the far-red light of specific wavelength 700-750 nm for 1-3 hours from the sunset per day. It is a characteristic, and other irrigation, fertilization, etc. are performed under the same conditions as the cultivation method of tomatoes in a normal greenhouse.

図2に示すように、センサ14が常時に栽培室12に入射されてきた太陽光を検知し、検知した検知信号を制御部18に送信する(ステップS20)。制御部18では、例えばセンサ14から送信されてきた検知信号中の太陽光の強度変化を解析し、その解析結果に基づき日没であるか否かの判断を行う(ステップS21)。そして、日没であると判断された場合には、制御部18は、照射光源16に制御信号を送信し、特定波長600〜700nmの赤色光及び特定波長700〜750nmの遠赤色光の少なくともいずれかを含む人工光を1〜3時間にわたって連続的に出力するように、照射光源16を点灯させる(ステップS22)。   As shown in FIG. 2, the sensor 14 detects sunlight that has been incident on the cultivation room 12 at all times, and transmits the detected detection signal to the control unit 18 (step S <b> 20). For example, the control unit 18 analyzes the change in the intensity of sunlight in the detection signal transmitted from the sensor 14, and determines whether it is sunset based on the analysis result (step S21). And when it is judged that it is sunset, the control part 18 transmits a control signal to the irradiation light source 16, and at least any one of the red light of specific wavelength 600-700 nm and the far-red light of specific wavelength 700-750 nm The irradiation light source 16 is turned on so as to continuously output artificial light including the above for 1 to 3 hours (step S22).

本実施形態によれば、特定波長600〜700nmの赤色光と特定波長700〜750nmの遠赤色光とは、他の波長の光に比べてナス科植物の光合成への寄与と光合成産物をより効果的に果実に蓄積させる効果が高い光であるため、これらの特定波長の光を日没から1〜3時間照射することにより、トマト10は効率的に光合成を行うことができ、高糖度の果実が得られる。また、本実施形態に係る栽培方法は、通常の栽培方法に比べて果実の収穫量を増加する効果が期待できる。
[実施例]
According to the present embodiment, red light having a specific wavelength of 600 to 700 nm and far red light having a specific wavelength of 700 to 750 nm are more effective in contributing to the photosynthesis of solanaceous plants and photosynthesis products than light of other wavelengths. Since it is light that is highly effective to accumulate in fruits, tomato 10 can efficiently perform photosynthesis by irradiating light of these specific wavelengths for 1 to 3 hours from sunset, and fruits with high sugar content Is obtained. Moreover, the cultivation method which concerns on this embodiment can anticipate the effect which increases the yield of a fruit compared with a normal cultivation method.
[Example]

以下に実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.

[実施例1、2と比較例1、2]
(実施例1)
まず、トマト苗(品種:ハウス桃太郎)を対象とし、図4に示すような人工光を用いた完全制御型の栽培条件で、特定波長680nmの赤色光補光を行った。具体的には、主光源の消灯後に、図5示す補光条件で特定波長680nmの赤色光をトマト苗に照射した。なお、図4に示される総光光強度は主光源から発する光の強度である。また、実施例1において、赤色光補光の光強度は、20〜30μmol・m−2・s−1で、光合成有効放射束PPF値で照明光の約20分の1とした。
[Examples 1 and 2 and Comparative Examples 1 and 2]
(Example 1)
First, tomato seedlings (variety: House Momotaro) were subjected to red light supplementation with a specific wavelength of 680 nm under fully controlled cultivation conditions using artificial light as shown in FIG. Specifically, after turning off the main light source, the tomato seedlings were irradiated with red light having a specific wavelength of 680 nm under the supplementary conditions shown in FIG. The total light intensity shown in FIG. 4 is the intensity of light emitted from the main light source. In Example 1, the light intensity of the red light supplement was 20 to 30 μmol · m −2 · s −1, which was about 1/20 of the illumination light in terms of the photosynthetic effective radiant flux PPF.

(実施例2)
実施例1と同品種のトマト苗を対象とし、実施例1と同様の栽培条件及び補光条件で、蛍光灯による補光を行った(図3〜5参照)。
(比較例1)
実施例1と同品種のトマト苗を対象とし、実施例1と同様の栽培条件及び補光条件で、特定波長465nmの青色光による補光を行った(図3〜5参照)。
(比較例2)
実施例1と同品種のトマト苗を対象とし、実施例1と同様の栽培条件で無補光を行った(図3〜5参照)。
(Example 2)
For tomato seedlings of the same varieties as in Example 1, supplementing with a fluorescent lamp was performed under the same cultivation conditions and supplementary conditions as in Example 1 (see FIGS. 3 to 5).
(Comparative Example 1)
Targeting tomato seedlings of the same variety as in Example 1, supplementing with blue light having a specific wavelength of 465 nm was performed under the same cultivation conditions and supplementary conditions as in Example 1 (see FIGS. 3 to 5).
(Comparative Example 2)
For tomato seedlings of the same varieties as in Example 1, no supplemental light was performed under the same cultivation conditions as in Example 1 (see FIGS. 3 to 5).

上記の実施例1、2及び比較例1、2のトマト1果実に対し、収穫適期を迎えたものから順次に収穫し、Brix(%)糖度計(株式会社竹村電機製作所アタゴ製の手持屈折糖度計TN−1α)を用いて糖度を測定した。   The tomato 1 fruits of Examples 1 and 2 and Comparative Examples 1 and 2 were harvested in order from the one that reached the best harvest time, and the Brix (%) sugar content meter (Takemura Electric Manufacturing Co., Ltd. The sugar content was measured using a total of TN-1α).

その結果として、実施例1(赤色光補光)の場合は最も高い糖度を有するトマト果実が得られており、実施例1及び実施例2(赤色光を含む蛍光灯補光)の場合は、比較例1(青色光補光)及び比較例2(無補光)の場合に比べて、収穫した果実の平均糖度が高く、糖度9度以上を示す果実の割合が50%以上の結果であった(図6及び図7参照)。   As a result, in the case of Example 1 (red light supplementation), the tomato fruit having the highest sugar content has been obtained. In the case of Example 1 and Example 2 (fluorescent lamp supplementation including red light), Compared to the cases of Comparative Example 1 (blue light supplement) and Comparative Example 2 (non-complementary light), the average sugar content of the harvested fruits was high, and the percentage of fruits having a sugar content of 9 degrees or more was 50% or more. (See FIGS. 6 and 7).

このような結果により、単独の赤色光あるいは赤色光を含む光は、高糖度を有するトマト果実を得ることに有効であることが実証された。   From these results, it was demonstrated that single red light or light containing red light is effective in obtaining tomato fruits having a high sugar content.

[実施例3と比較例3]
また、トマト10苗(品種:麗夏)を対象とし、上記の実施例1と同様の栽培条件及び補光条件で、特定波長735nmの遠赤色光(遠赤色LED使用)による補光(実施例3)と、無補光(比較例3)とを行い、実施例1と同様に収穫したトマト果実の糖度を測定した。
[Example 3 and Comparative Example 3]
In addition, for 10 tomato seedlings (variety: Reika), supplemented with far-red light (using far-red LEDs) with a specific wavelength of 735 nm under the same cultivation conditions and supplementary conditions as in Example 1 above (Examples) 3) and non-complementary light (Comparative Example 3) were performed, and the sugar content of the tomato fruit harvested in the same manner as in Example 1 was measured.

その結果として、図8に示すように、実施例3(遠赤色光による補光)の場合は、比較例3(無補光)の場合に比べて、収穫した果実の平均糖度が高いことが確認できた。また、糖度9以上を示す果実の割合については、実施例3の場合は約18%であることに対し、比較例3の場合は0であった(図9参照)。これにより、遠赤色光による補光の場合は、赤色光補光の場合と同様にトマト果実の糖度の向上に有効であると実証された。   As a result, as shown in FIG. 8, in the case of Example 3 (complementary light by far-red light), it was confirmed that the average sugar content of the harvested fruits was higher than that of Comparative Example 3 (non-complementary light). did it. Further, the ratio of the fruit having a sugar content of 9 or more was about 18% in Example 3, whereas it was 0 in Comparative Example 3 (see FIG. 9). As a result, in the case of supplementing with far-red light, it was proved that it was effective in improving the sugar content of tomato fruits as in the case of red supplementing light.

[実施例4と比較例4]
また、赤色光補光によるトマトの果実の収穫量への影響を調べるため、実施例4及び比較例4を行った。
[Example 4 and Comparative Example 4]
Moreover, Example 4 and Comparative Example 4 were performed in order to investigate the influence of red light supplementation on the yield of tomato fruits.

まず、本葉7、8枚が展開した状態のトマト苗(品種:麗夏)を、4月の中旬に静岡県浜松市にある無加温ガラス温室の栽培ベッドに定植し、8月中旬まで潅水や肥料は適宜行い、栽培管理を行った。また、当該温室内の気温が過度の上昇を防ぐため、晴天日の日中は温室上部に黒い寒冷紗を張った。このため、真夏の栽培に関わらず、日中の太陽光の光強度は通常より低くなった。   First, tomato seedlings (variety: Reika) with 7 or 8 true leaves developed are planted in a cultivation bed in an unheated glass greenhouse in Hamamatsu City, Shizuoka Prefecture until mid-August. Irrigation and fertilizer were performed appropriately and cultivation management was performed. In order to prevent the temperature in the greenhouse from rising excessively, a black chill was placed on the upper part of the greenhouse during the day of fine weather. For this reason, the light intensity of sunlight during the day was lower than usual, regardless of midsummer cultivation.

(実施例4)
上記のトマト10株に対し、特定波長680の赤色光を用いて4月下旬から8月中旬まで、日没から1時間の照射を行った。なお、照射光源はトマトの上部に取り付けられ、光強度は10μmol・m−2・s−1程度とした。
(比較例4)
上記のトマト10株に対し、無補光を行った。
Example 4
The above 10 tomato plants were irradiated for 1 hour from sunset from late April to mid-August using red light with a specific wavelength of 680. The irradiation light source was attached to the top of the tomato, and the light intensity was about 10 μmol · m −2 · s −1 .
(Comparative Example 4)
No supplementary light was applied to the above 10 tomato strains.

実施例4及び比較例4のトマト果実に対し、収穫適期を迎えたものから順次に収穫し、果実の個体重量を調査した。   The tomato fruits of Example 4 and Comparative Example 4 were harvested sequentially from those that had reached the appropriate harvest time, and the individual weight of the fruits was investigated.

その結果として、図10に示すように、実施例4(赤色光補光)の場合は、比較例4(無補光)の場合に比べ、果実の個体重量と株あたり収穫量共に増加したことが見られた。これにより、赤色光補光は、トマト果実の収穫量を増加する効果を有することが確認できた。   As a result, as shown in FIG. 10, in the case of Example 4 (red light supplemented light), both the individual weight of fruit and the yield per strain increased compared to the case of Comparative Example 4 (non-complementary light supplemented). It was seen. Thereby, it was confirmed that red light supplementation has an effect of increasing the yield of tomato fruit.

実施形態に係るナス科植物の栽培方法を利用した栽培装置を示す構成図である。It is a block diagram which shows the cultivation apparatus using the cultivation method of the solanaceous plant concerning embodiment. 実施形態に係るトマトの栽培方法の全体処理を示す流れ図である。It is a flowchart which shows the whole process of the cultivation method of the tomato which concerns on embodiment. 実施例1、2及び比較例1、2の光源を示す図である。It is a figure which shows the light source of Examples 1, 2 and Comparative Examples 1, 2. トマトの栽培条件を示す図である。It is a figure which shows the cultivation conditions of a tomato. トマトの補光条件を示す図である。It is a figure which shows the light supplement conditions of a tomato. 各補光、無補光とトマト果実の平均糖度の測定結果を示す図である。It is a figure which shows the measurement result of each supplementary light, non-complementary light, and the average sugar content of a tomato fruit. 各補光、無補光とトマト果実の糖度分布との関係を示す図である。It is a figure which shows the relationship between each supplementary light, non-complementary light, and sugar content distribution of a tomato fruit. 遠赤色光補光、無補光とトマト果実の平均糖度の測定結果を示す図である。It is a figure which shows the measurement result of the far-red light supplementary light, non-complementary light, and the average sugar content of a tomato fruit. 遠赤色光補光、無補光とトマト果実の糖度分布との関係を示す図である。It is a figure which shows the relationship between far-red light supplementation, non-complementary light, and sugar content distribution of a tomato fruit. 赤色光補光、無補光とトマト個体重量、株あたり収穫量との関係を示す図である。It is a figure which shows the relationship between red light supplementary light, non-complementary light, tomato individual weight, and the harvest amount per strain | stump | stock.

符号の説明Explanation of symbols

1…栽培装置、10…トマト、12…栽培室、14…センサ、16…照射光源、18…制御部。
DESCRIPTION OF SYMBOLS 1 ... Cultivation apparatus, 10 ... Tomato, 12 ... Cultivation room, 14 ... Sensor, 16 ... Irradiation light source, 18 ... Control part.

Claims (2)

ナス科植物に対し、日没から1〜3時間、特定波長が720nmより長く750nm以下の遠赤色光を含む光を照射する、ことを特徴とするナス科植物の糖度を向上させる栽培方法。 To Solanaceae, cultivation method for improving inter hours 1-3 sunset, a specific wavelength is irradiated with light containing long 750nm following far-red light from 720 nm, the sugar content of Solanaceae, wherein . 前記ナス科植物は、トマトであることを特徴とする請求項1に記載のナス科植物の糖度を向上させる栽培方法。   The cultivation method for improving the sugar content of a solanaceous plant according to claim 1, wherein the solanaceous plant is a tomato.
JP2006112119A 2006-04-14 2006-04-14 Cultivation method to improve sugar content of solanaceous plants Active JP4995476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112119A JP4995476B2 (en) 2006-04-14 2006-04-14 Cultivation method to improve sugar content of solanaceous plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112119A JP4995476B2 (en) 2006-04-14 2006-04-14 Cultivation method to improve sugar content of solanaceous plants

Publications (2)

Publication Number Publication Date
JP2007282544A JP2007282544A (en) 2007-11-01
JP4995476B2 true JP4995476B2 (en) 2012-08-08

Family

ID=38754872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112119A Active JP4995476B2 (en) 2006-04-14 2006-04-14 Cultivation method to improve sugar content of solanaceous plants

Country Status (1)

Country Link
JP (1) JP4995476B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070727A (en) * 2010-09-03 2012-04-12 Hamamatsu Photonics Kk Method for increasing nutrient component content per unit dry weight of tomato fruit
JP2012065601A (en) * 2010-09-24 2012-04-05 Hamamatsu Photonics Kk Method for making tomato fruit sugar content higher as tomato fruit weight become larger
JP5498904B2 (en) 2010-09-27 2014-05-21 パナソニック株式会社 Crop cultivation system
JP5821037B2 (en) * 2011-01-25 2015-11-24 パナソニックIpマネジメント株式会社 Crop cultivation system
JP5830661B2 (en) * 2011-08-24 2015-12-09 パナソニックIpマネジメント株式会社 Crop cultivation system
JP5874060B2 (en) * 2011-12-16 2016-03-01 パナソニックIpマネジメント株式会社 Plant breeding lighting device
JP7085839B2 (en) * 2015-03-31 2022-06-17 シグニファイ ホールディング ビー ヴィ Systems and methods for illuminating plants
JP6289569B1 (en) * 2016-09-23 2018-03-07 北海道電力株式会社 Greening control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181619A (en) * 1981-05-04 1982-11-09 Nippon Carbide Kogyo Kk Cultivation of useful plant
JPS63169917A (en) * 1987-01-09 1988-07-13 塚田 助四郎 Culture of fruits utilizing far infrared radiation body
JP2608668B2 (en) * 1993-01-22 1997-05-07 シーケーディ株式会社 Lighting device
JP2001028947A (en) * 1999-07-23 2001-02-06 Yamato Kogyo Kk Method for raising useful plant
JP4886181B2 (en) * 2004-09-03 2012-02-29 財団法人電力中央研究所 Method for promoting growth of short-day plants and neutral plants using short-time supplementary light

Also Published As

Publication number Publication date
JP2007282544A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4995476B2 (en) Cultivation method to improve sugar content of solanaceous plants
JP7541918B2 (en) Dimming method for constant light intensity
Meinen et al. Finding the optimal growth-light spectrum for greenhouse crops
EP3661348B1 (en) Wake up light optimization for plant growth
Hao et al. A review on smart application of supplemental lighting in greenhouse fruiting vegetable production
Kumar et al. Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production
Engbers et al. Plant physiological acclimation to irradiation by light-emitting diodes (LEDs)
JP2015526070A (en) Method for stimulating plant growth, apparatus and method for calculating cumulative light quantity
JP6091927B2 (en) Auxiliary light system
JP2021521832A (en) Bolting control using light containing high levels of far-infrared
Kowalczyk et al. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting
US20220061227A1 (en) Devices for an optimized, high-intensity, horticultural, led luminaire having a regulated photosynthetic flux density
Lu et al. Supplemental lighting for greenhouse-grown fruiting vegetables
Lanoue et al. The power of far-red light at night: photomorphogenic, physiological, and yield response in pepper during dynamic 24 hour lighting
Van Delm et al. Advancing the strawberry season in Belgian glasshouses with supplemental assimilation lighting
JP2006246798A (en) Plant cultivating method
Moerkens et al. The added value of LED assimilation light in combination with high pressure sodium lamps in protected tomato crops in Belgium
JP2006340689A (en) Method for cultivating green vegetables and installation for the same
JP2001057816A (en) Irradiation of light for raising plant and apparatus therefor
JP2011101616A (en) Method for cultivating plant by radiating three color mixed light
Chavan et al. An energy-saving glasshouse film reduces seasonal, and cultivar dependent Capsicum yield due to light limited photosynthesis
JP2001258389A (en) Method for cultivating plant
CN111418380B (en) Illumination culture method for promoting green stalk vegetable and Chinese cabbage heart to increase green
JP2006158262A (en) Cultivation method for plant
JP2014128252A (en) Light control apparatus for plant growth, light control method, light control program and data collection apparatus for light control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250