WO2018199307A1 - Method for increasing amount of phenolic compound in plant - Google Patents

Method for increasing amount of phenolic compound in plant Download PDF

Info

Publication number
WO2018199307A1
WO2018199307A1 PCT/JP2018/017259 JP2018017259W WO2018199307A1 WO 2018199307 A1 WO2018199307 A1 WO 2018199307A1 JP 2018017259 W JP2018017259 W JP 2018017259W WO 2018199307 A1 WO2018199307 A1 WO 2018199307A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant
irradiation
amount
less
Prior art date
Application number
PCT/JP2018/017259
Other languages
French (fr)
Japanese (ja)
Inventor
敦司 岡澤
藤川 康夫
智大 鶴本
Original Assignee
公立大学法人大阪府立大学
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018038715A external-priority patent/JP6885360B2/en
Application filed by 公立大学法人大阪府立大学, 日亜化学工業株式会社 filed Critical 公立大学法人大阪府立大学
Priority to CA3060371A priority Critical patent/CA3060371A1/en
Priority to CN201880027839.0A priority patent/CN110809398B/en
Priority to IL269967A priority patent/IL269967B2/en
Priority to EP18789908.3A priority patent/EP3616499A4/en
Priority to US16/608,756 priority patent/US11606912B2/en
Publication of WO2018199307A1 publication Critical patent/WO2018199307A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a method for increasing the amount of a phenolic compound in a plant and a method for producing a plant having an increased content of a phenolic compound.
  • Phenolic compounds in plants e.g., polyphenols
  • Phenolic compounds in plants have been revealed to have various physiological activities such as antioxidant activity, antibacterial activity, and antihypertensive activity, coupled with the recent increase in health orientation, Much attention has been paid. Therefore, techniques for increasing the amount of phenolic compounds contained in plants have been developed. In particular, it is thought that plants synthesize flavonoids that have maximum absorption in the ultraviolet region in order to avoid the effects of ultraviolet light contained in sunlight. There is interest in increasing technology.
  • Patent Document 1 relates to a method for increasing the polyphenol content in a “post-harvest” plant by irradiating ultraviolet light in a specific wavelength region (240 nm or more and 320 nm or less or 300 nm or more and 400 nm or less).
  • an appropriate ultraviolet light irradiation amount is 0.5 J / cm 2 or more and 50 J / cm 2 or less per day. It describes that the wavelength of the ultraviolet light irradiated to the plant after harvesting should be selected according to the maximum absorption of the target polyphenol.
  • Patent Document 2 discloses that ascorbic acid and / or polyphenols in a monocotyledonous plant (especially bud leek) are irradiated with ultraviolet light having a wavelength range of 280 to 380 nm and having a peak in the vicinity of a wavelength of 312 nm. It relates to a method for increasing the content.
  • an appropriate ultraviolet light intensity is 0.1 to 1.0 mW ⁇ cm ⁇ 2 .
  • Non-Patent Document 1 aims at investigating the influence of UVB stress in Arabidopsis thaliana, and narrow-band UV-B (280 to 320 nm; peak wavelength 312 nm; 830 mW / m 2 / S) for 1 day or 4 days continuously. As a result, it is described that an increase in anthocyanins and flavonols was observed by ultraviolet light irradiation for one day or longer.
  • UVA or UVB ultraviolet light
  • UVA or UVB ultraviolet light
  • UVA or UVB ultraviolet light
  • UVB ultraviolet light
  • the emission spectrum of the UV lamp used in Non-Patent Document 1 is, for example, as shown in FIG. Although it has a peak wavelength at 312 nm, it covers a wide wavelength range. Therefore, if the wavelength range that truly contributes to the increase of the phenolic compound in the ultraviolet light can be identified, the amount of the phenolic compound can be increased efficiently while reducing the adverse effects of exposure to ultraviolet light in plants. be able to.
  • ultraviolet light in a specific wavelength range shorter than the conventionally known wavelength range is effective for increasing the phenolic compound.
  • ultraviolet light that has been used conventionally does not contribute to an increase in the amount of the phenolic compound, but rather includes light in a wavelength range that can cause a decrease in the abundance, and thus the present invention has been completed.
  • a plant is irradiated with ultraviolet light in a wavelength range of 270 to 290 nm, the irradiation dose of 1500 to 50000 ⁇ mol / m 2 , and the irradiation dose of light in the wavelength range of 310 to 400 nm is 270 to 290 nm.
  • a method for increasing the amount of a phenolic compound in a plant wherein the irradiation is carried out so as to be less than 50% of the irradiation amount of light in the wavelength region of.
  • the irradiation amount of light in the wavelength region of 270 to 290 nm is 1500 to 50000 ⁇ mol / m 2
  • the irradiation amount of light in the wavelength region of 310 to 400 nm is
  • a method for producing a plant having an increased content of a phenolic compound wherein the irradiation is performed so that the irradiation amount is less than 50% of light irradiation in a wavelength region of 270 to 290 nm.
  • the emission amount in the wavelength range 300 nm to 400 nm is less than 50% of the emission amount in the wavelength range 270 to 290 nm.
  • Control that controls the light source so that the amount of emitted light of less than 10% of the amount of emitted light in the wavelength range 270 to 290 nm and the irradiation amount of light in the wavelength range of 270 to 290 nm to the plant is 1500 to 50000 ⁇ mol / m 2
  • the method of the present invention it is possible to avoid adverse effects due to exposure to harmful ultraviolet light exclusively, so that it is possible to efficiently increase the phenolic compound in the plant, and efficiently to the plant rich in phenolic compound Can be produced.
  • the emission spectrum of the ultraviolet LED used in the example (experiment 1) is shown.
  • HPLC chromatogram 500 nm detection which shows the amount of anthocyanins in the plant (Arabidopsis thaliana) irradiated with ultraviolet light.
  • the peak wavelength of the irradiated ultraviolet light is 280 nm (BD) or 310 nm (FH), and the irradiation time is 15 minutes (B, F), 4 hours (C, G), or 4 days (D, H). It is.
  • a and E are ultraviolet light non-irradiation controls.
  • the emission spectrum of the ultraviolet LED used in the example (experiment 2) is shown.
  • the emission spectra with peak wavelengths of 280 nm and 310 nm are those used in Experiment 1.
  • the HPLC chromatogram 500 nm detection which shows the amount of phenolic compounds in the plant (Arabidopsis thaliana) irradiated with the ultraviolet light.
  • the peak wavelength of the irradiated ultraviolet light is shown on the left side in the figure.
  • the irradiation time is 0 (ie, UV light non-irradiation control; leftmost column), 15 minutes (second column from the left), 4 hours (third column from the left), or 4 days (rightmost column).
  • the results at peak wavelengths of 280 nm and 310 nm are those of Experiment 1.
  • the HPLC chromatogram (258 nm detection) which shows the amount of phenolic compounds in the plant (Sudachi (fruit skin), pod film (root), chanoki (leaf), and soybean (fruit skin)) irradiated with the ultraviolet light.
  • the peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 0 (ie, UV light non-irradiation control; leftmost column), 15 minutes (second column from the left) or 4 hours (third from the left) Column).
  • the rightmost column shows the absorption spectrum of the peak indicated by the arrow.
  • the HPLC chromatogram (520 nm detection) which shows the amount of anthocyanins in the grape (fruit peel) irradiated with the ultraviolet light.
  • the peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 0 (that is, ultraviolet light non-irradiation control; leftmost column), 15 minutes (second column from the left) or 4 hours (rightmost column). is there.
  • the HPLC chromatogram 500 nm detection which shows the amount of anthocyanins in the plant (Arabidopsis thaliana) darkened for 12, 24, 48, 72, 92, or 288 hours after ultraviolet irradiation.
  • the peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 15 minutes. Biosynthetic pathway of phenolic compounds (anthocyanins) in plants.
  • the emission spectrum of the ultraviolet lamp (CSL-30B, COSMO BIO) used in Non-Patent Document 1 is shown.
  • the present invention is a method for increasing the amount of a phenolic compound in a plant, wherein the plant is irradiated with ultraviolet light, and the irradiation dose of light in the wavelength region of 270 to 290 nm is 1500 to 50000 ⁇ mol / m 2 .
  • the irradiation is performed such that the irradiation amount of light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
  • Another aspect of the present invention is a method for producing a plant having an increased content of a phenolic compound, wherein the plant is irradiated with ultraviolet light, and an irradiation amount of light in a wavelength region of 270 to 290 nm is 1500. It is a method, which comprises irradiating ⁇ 50000 ⁇ mol / m 2, and the and so that the irradiation amount of light in the wavelength range of 310 nm ⁇ 400 nm is less than 50% of the dose of light in the wavelength range of the 270 ⁇ 290 nm .
  • the numerical range “a to b” (a and b are specific numerical values) means a range including the values “a” and “b” at both ends.
  • “ab” is synonymous with “a to b”.
  • ultraviolet light in the wavelength range of about 270 to 290 nm is effective for increasing the amount of phenolic compounds in plants
  • ultraviolet light in the wavelength range of about 310 to 400 nm is phenolic. It is based on a new finding that it does not contribute to the increase in the amount of the compound but even has an adverse effect. Therefore, according to the method of the present invention, the specific wavelength effective for increasing the amount of phenolic compound in the plant while reducing the adverse effect of exposure to ultraviolet light (resulting in a decrease in the amount of phenolic compound present). Therefore, the amount of phenolic compounds in the plant can be increased efficiently.
  • the irradiation amount of light in the wavelength region of 270 to 290 nm is 1500 to 50000 ⁇ mol / m 2
  • the plant is irradiated so that the irradiation amount of light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
  • the irradiation dose of ultraviolet light in the wavelength range of 270 to 290 nm is less than 1500 ⁇ mol / m 2 , it will probably not significantly activate the phenolic compound synthesis system, so a significant increase in the amount of phenolic compounds in the plant Cannot be achieved.
  • the irradiation dose of light in the wavelength region of 270 to 290 nm exceeds 50000 ⁇ mol / m 2 , plant damage is increased, so that a plant with an increased amount of phenolic compound cannot be obtained.
  • the irradiation dose of light in the wavelength region of 270 to 290 nm is 2000 to 40000 ⁇ mol / m 2 .
  • the irradiation amount of light in the wavelength region of 310 nm to 400 nm is preferably less than 30% and less than 20% of the irradiation amount of light in the wavelength region of 270 to 290 nm. Is more preferably less than 10%, most preferably less than 5%.
  • the irradiation amount of light in the wavelength region of 300 nm to 400 nm is less than 50%, preferably less than 30%, more preferably 20% of the irradiation amount of light in the wavelength region of 270 to 290 nm. Less, more preferably less than 10%.
  • the irradiation dose of light in the wavelength range of more than 290 nm and less than or equal to 400 nm is less than 50%, preferably less than 30%, more preferably less than 30%. Preferably it is less than 20%, more preferably less than 10%.
  • the irradiation amount of light having a wavelength of 200 nm to 260 nm is preferably less than 20%, more preferably less than 10%, and more preferably less than 5% of the irradiation amount of light in the wavelength region of 270 to 290 nm. More preferred is less than 1%.
  • the irradiation dose of light in the wavelength region of 200 nm or more and less than 270 nm is 270 to 290 nm. Is less than 20%, preferably less than 10%, more preferably less than 5%, and most preferably less than 1%.
  • Ultraviolet light having a wavelength range of 270 to 290 nm is irradiated with a photon flux density of, for example, 0.01 to 100 ⁇ mol / m 2 / s. If it is less than 0.01 ⁇ mol / m 2 / s, an increase in the phenolic compound in the plant may not be achieved efficiently. If it exceeds 100 ⁇ mol / m 2 / s, plant damage may be induced early.
  • Ultraviolet light in the wavelength region of 270 to 290 nm is preferably irradiated with a photon flux density of 0.1 to 20 ⁇ mol / m 2 / s, more preferably 1 to 5 ⁇ mol / m 2 / s.
  • the ultraviolet light source is not particularly limited as long as it can irradiate light in the wavelength region of 270 to 290 nm.
  • a commonly used ultraviolet light source such as a UV lamp can be used.
  • the UV lamp for example, a xenon lamp using a SrSiO3: Pb phosphor is preferably used.
  • the light source used is 310 to 400 nm, 300 to 400 nm, 300 to 400 nm, or more than 290 nm to 400 nm or less, and light in the 270 to 290 nm wavelength range.
  • the transmittance for light in the wavelength range of 270 to 290 nm is 310 nm to 400 nm, 300 nm to 400 nm, or more than 290 nm to 400 nm or less. You may use together the filter larger than the transmittance
  • a wavelength range of 200 nm to 260 nm or a wavelength range of less than 270 nm Is emitted at 10% or more of the photon flux density of light in the wavelength range of 270 to 290 nm
  • the transmittance for light in the wavelength range of 270 to 290 nm is 200 nm to 260 nm, respectively.
  • a filter having a larger transmittance than that of light having a wavelength range of less than 270 nm may be used.
  • light in the wavelength region of 270 to 290 nm is irradiated as light having a main peak wavelength within, for example, 280 ⁇ 5 nm, more preferably within 280 ⁇ 2 nm. It is preferable that the second peak does not exist or even if it exists, its intensity is 1/10 or less of the main peak.
  • the full width at half maximum of the main peak (within a peak wavelength of 270 to 290 nm) is preferably 5 to 15 nm.
  • the half-width of the main peak is 15 nm or less, so that it does not contribute to the increase in the amount of phenolic compounds in the plant (which may be harmful), while avoiding irradiation of light in the wavelength range to the plant, phenolic in the plant
  • energy efficiency is further improved.
  • Light having a main peak half width of less than 5 nm can also be used in the method of the present invention. However, from the viewpoint of cost effectiveness, it is preferable to use light having a main peak half width of 5 nm or more.
  • the ultraviolet light irradiated on the plant is light having a wavelength spectrum having a peak wavelength of 280 ⁇ 5 nm and a half-value width of 5 to 15 nm.
  • a light emitting diode (LED) having a single peak in the emission spectrum is particularly preferable.
  • LED When using an LED as a light source, it is effective in increasing the amount of phenolic compounds in the plant while avoiding irradiation of the light in the wavelength range that does not contribute to the increase in the amount of phenolic compounds in the plant (which may be harmful). Irradiation of light in the wavelength range (that is, selective irradiation) can be easily realized.
  • the use of LEDs is also preferable from the viewpoint of energy efficiency and economy due to low heat generation, low power consumption and long life. In addition, it becomes easy to control / manage the irradiation dose and / or the photon flux density.
  • An LED capable of emitting ultraviolet light of 270 to 290 nm can be, for example, one using an AlGaN-based material or an InAlGaN-based material.
  • a specific example of such an LED is Deep UV-LED / model NCSU234BU280 (central wavelength 280 nm; Nichia Corporation).
  • the amount of irradiation of light in the wavelength range of 270 to 290 nm to the plant is, for example, controlled by turning on and off the light source (for example, when the plant is placed in a closed space) or It can be set to 1500 to 50000 ⁇ mol / m 2 by controlling the time required for passing (for example, when the plant is moving on the transport device).
  • the plant is not particularly limited, but herb is preferable.
  • the plant can be, for example, an angiosperm, in particular a dicotyledonous plant.
  • Suitable dicotyledonous plants for the method of the present invention include, for example, Brassicaceae (especially Brassica, Daikon), Solanum (especially Solanum), Barberry (especially Solanum), Camellia (especially Camellia), legumes. Plants of the family (especially soybean genus), citrus (especially mandarin), grapes (especially grapes), roses (especially Dutch strawberrys), asteraceae (especially genus Akinesi), perillas (especially perillas) included.
  • a plant can be a plant having a UVR8 photoreceptor.
  • a UVR8 photoreceptor for example, phenylpropanoid, flavonoid
  • a phenolic compound for example, phenylpropanoid, flavonoid
  • the plant used in the present invention may be in the form of the whole plant including shoots (stems and leaves) and the root system, or may be in the form of a part of the plant such as shoots alone.
  • the plant When the plant is in the form of the entire plant body, it may be in a cultivated state or in a non-cultivated state (a state in which no nutrient is supplied through the roots).
  • the cultivation may be soil cultivation or hydroponics (for example, hydroponics or solid medium cultivation). Hydroponics can be performed under aseptic conditions.
  • Cultivation may be performed in a controlled environment.
  • the environmental conditions to be controlled include, for example, the light / dark cycle, temperature, humidity, irradiation amount of natural light and / or artificial light, and carbon dioxide concentration. These conditions are not particularly limited as long as they are suitable for the cultivation / growth of the plant to be used.
  • the light / dark cycle can be appropriately selected according to the plant to be cultivated and the growth stage (for example, a long-day condition of light period 14-18 hours, or a short-day condition of light period 6-10 hours).
  • As an artificial light source conventionally used incandescent lamps, fluorescent lamps, white lamps, high-pressure sodium lamps, metal halide lamps, LEDs, and the like can be used.
  • the photosynthetic photon flux density can be, for example, 100 to 500 ⁇ mol / m 2 / s.
  • the temperature can be, for example, 20-30 ° C., and the humidity can be, for example, 50-80%.
  • the carbon dioxide concentration can be, for example, about 1000-1500 ppm.
  • Fertilizer / liquid fertilizer can be appropriately selected according to the plant to be cultivated. Generally, fertilizer / liquid fertilizer contains nitrogen, phosphorus and potassium.
  • Plants can be stored under natural light or in the dark, at normal temperatures (eg 15-30 ° C.) or at low temperatures (eg 0-15 ° C.) when not cultivated.
  • the plant at the time of ultraviolet light irradiation according to the present invention may be in any growth stage.
  • the plant upon irradiation is in the vegetative growth phase, and in another embodiment, the plant upon irradiation is in a non-cultivated state (ie, after harvest [crop]).
  • the plant may be a young plant or an adult plant.
  • the seedling can be a sprout.
  • Sprout is also called a germinating plant, and refers to a young plant body after seed germination and before development of the main leaves.
  • the sprout can be obtained, for example, by culturing for 7 to 10 days in a dark place at a temperature of 20 to 25 ° C.
  • the irradiation with ultraviolet light according to the present invention may be performed in either the light period or the dark period.
  • the method of the present invention may further comprise darkening the plant for 12 hours or more after irradiation with light (ultraviolet light) in the wavelength range of 270 to 290 nm.
  • “dark placement” means that a plant is in a dark place or a dark room (the level at which the photosynthetic photon flux density does not cause photosynthesis in the plant. More specifically, the photosynthetic photon flux density ⁇ 10 ⁇ mol / m 2 / s. ).
  • the dark period is preferably 24 hours or longer, more preferably 36 hours or longer, more preferably 48 hours or longer, and even more preferably 72 hours or longer.
  • the upper limit of the dark period is not particularly limited as long as the content of the phenolic compound in the plant is increased with respect to the non-irradiated plant, but may be, for example, 300 hours, more specifically, 288 hours (less than). There may be. Dark storage can be, for example, at room temperature or low temperature. By darkening a plant for 12 hours or more after irradiation with ultraviolet light, the amount (content) of the phenolic compound in the plant further increases.
  • the phenolic compound is not particularly limited as long as it can be naturally synthesized in the plant to be used, and may be, for example, phenylpropanoid and polyphenol.
  • Polyphenols include, for example, flavonoids, tannins and lignans.
  • flavonoids include anthocyanins, flavans (for example, catechin), flavones, isoflavones, and flavonols.
  • Anthocyanins are glycosides in which sugar chains (for example, glucose, galactose, rhamnose) are bound to anthocyanidins.
  • anthocyanidins contained in plants include pelargonidin, cyanidin, peonidin, delphinidin, petunidin, and malvidin.
  • Anthocyanins are red-purple to blue-colored pigments widely present in the plant kingdom. They are used as plant colorants (for example in foods) and are also known as antioxidants. It is one of the phenolic compounds suitable for increasing the amount.
  • anthocyanins contained in Arabidopsis thaliana those represented by the following chemical formula can be mentioned.
  • the portion surrounded by a line is an anthocyanidin portion, and in this case, a peonidin portion.
  • “increased amount of phenolic compound” or “increase in content of phenolic compound” means that the amount of phenolic compound is increased as compared to a plant not irradiated with ultraviolet light according to the present invention. For example, 10% or more, preferably 20% or more, more preferably 50% or more, more preferably 100% or more [result of 15 minutes irradiation in grape (2250 ⁇ mol / m 2 ) Added in consideration].
  • “Increased amount of phenolic compound” or “increased content of phenolic compound” includes that a phenolic compound that was not synthesized before irradiation is newly synthesized after irradiation. .
  • the quantification of the phenolic compound may be performed using any known method, for example, by chromatography. Chromatography includes liquid chromatography (eg, HPLC). The liquid chromatography can be reverse phase chromatography.
  • the amount of the phenolic compound is 1.1 times or more, preferably 1.2 times or more, more preferably 1.5 times or more, more preferably 2 times or more, for example 3 times as compared with the non-irradiated one.
  • Higher plants can be produced [Same as above]. Therefore, according to the method of the present invention, the produced plant can be provided inexpensively as a high value-added food.
  • the plant produced by the method of the present invention is suitable as a raw material for producing a phenolic compound having an increased content in the plant. Therefore, the present invention is a method for producing a phenolic compound. Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 310 to 400 nm is 1500 to 50000 ⁇ mol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light. The method of irradiating so that it may become less than 50% of the irradiation amount of this invention The process characterized by including the process of acquiring a phenolic compound from this plant is also provided.
  • the present invention is also a method for producing a phenolic compound comprising: Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 300 to 400 nm is 1500 to 50000 ⁇ mol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light.
  • a method comprising the step of obtaining a compound.
  • the acquisition process of the phenolic compound from a plant can be performed by extraction, for example.
  • the extraction can be performed by any known method, for example by solvent extraction or supercritical extraction.
  • the solvent used for solvent extraction can be appropriately selected from known solvents.
  • the solvent is, for example, water (room temperature to boiling water), an organic solvent miscible with water, or a mixed solvent thereof (a mixed solvent of water and one or more water-miscible organic solvents, two or more water). It is possible to use a mixed solvent of an organic solvent miscible with the solvent.
  • the water miscible organic solvent can be a polar organic solvent, such as methanol, ethanol, n- or iso-propanol, acetonitrile, acetone, dioxane, ethyl acetate, dimethyl sulfoxide, dimethylformamide, ethylene glycol, tetrahydrofuran. It is done.
  • Water may be used as hot water or boiling water. Extraction may be performed under heating (for example, 80 to 90 ° C.) and / or under pressure. The extraction may be reflux extraction.
  • the extraction time is not particularly limited and can be appropriately determined from the viewpoint of extraction efficiency.
  • leaves and / or stems of plants can be used regardless of the growth stage, but preferably the whole plant is used.
  • the plant may be used for extraction as it is, or may be used after pulverization.
  • the plants Prior to extraction or grinding, the plants may be dried and / or frozen.
  • the extract may be filtered through an appropriate filter or may be subjected to centrifugation.
  • a polar organic solvent can be used for extraction.
  • An acid may be added to the polar organic solvent.
  • the acid can be, for example, hydrochloric acid, sulfuric acid, formic acid, acetic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid or perchloric acid.
  • the acid may be included in the organic solvent in a weight ratio of, for example, 0.1 to 10%, preferably 1 to 3%.
  • the extraction solvent include trifluoroacetic acid, formic acid or a mixed solvent of acetic acid / methanol, a mixed solvent of acetone / methanol / formic acid or acetic acid, and a mixed solvent of hydrochloric acid / methanol.
  • Chromatography can be, for example, column chromatography (particularly HPLC), preferably in reverse phase mode.
  • the column used for column chromatography can be appropriately selected from known ones according to the separation mode.
  • ODS octadecylated silica gel
  • a C18 column is generally used, but the present invention is not limited to this.
  • a C30 column can also be used.
  • water, a polar organic solvent, or a mixed solvent thereof (a mixed solvent of water and one or more polar organic solvents, a mixed solvent of two or more polar organic solvents) can be used as an eluent.
  • the polar organic solvent is as described above.
  • 0.01 to 10 M of an acid such as trifluoroacetic acid, formic acid, acetic acid, phosphoric acid, trichloroacetic acid may be added to the eluent.
  • a gradient method can be employed.
  • a mixed solvent of a polar solvent and water for example, a mixing ratio of 0: 100 to 10:90
  • a mixed polar solvent containing 10 M acid for example, a mixing ratio of 50:50
  • a mixed solvent of a polar solvent and water for example, a mixing ratio of 50:50 to 100: 0
  • the gradient is increased, for example, for 30 to 60 minutes.
  • A: B between 100: 0 and 0: 100.
  • the flow rate is not particularly limited and can be, for example, 0.2 to 2 ml / min.
  • the detection of the phenolic compound can be performed, for example, by measuring the absorbance at 250 to 300 nm. Detection of anthocyanins can be performed by measuring absorbance at 500 to 550 nm.
  • the phenolic compound produced by the method of the present invention can be used as a raw material for functional foods (food for specified health use or functional nutrition food), pharmaceuticals and other industrial products. Therefore, according to the method of the present invention, the produced phenolic compound can be provided at low cost as a raw material for functional foods, pharmaceuticals and other industrial products.
  • the plant is Arabidopsis. Since Arabidopsis thaliana grows in a relatively short period of time and is easy to grow, it is suitable for the production of phenolic compounds (for example, anthocyanins) by the method of the present invention.
  • the present invention can also emit light in the wavelength region of 270 to 290 nm, and the emission amount in the wavelength region of 300 nm to 400 nm is less than 50% of the emission amount of the wavelength region of 270 to 290 nm, and the emission in the wavelength region of 200 nm to less than 270 nm.
  • a light source whose amount is less than 10% of the light emission amount in the wavelength range 270 to 290 nm, and a control unit that controls the light source so that the irradiation amount of light in the wavelength range 270 to 290 nm to the plant is 1500 to 50000 ⁇ mol / m 2 It is related with the illuminating device characterized by using to increase the amount of phenolic compounds in a plant.
  • the lighting device of the present invention is the above-described method for increasing the amount of the phenolic compound in the plant according to the present invention, the method for producing the plant having an increased content of the phenolic compound, and the method for producing the phenolic compound (collectively, Useful in “methods of the invention”).
  • the light source is similar to that described above with respect to the method of the present invention.
  • the light source preferably has a wavelength of light of 270 to 290 nm in the wavelength region of 200 nm to less than 270 nm (more preferably 100 nm to less than 270 nm, more preferably 10 nm to less than 270 nm, and even more preferably 1 nm to less than 270 nm).
  • the light source is less than 5%, more preferably less than 1% of the light irradiation amount of the area.
  • the light source preferably also has an irradiation amount of light in the wavelength range of 300 to 400 nm of less than 30%, more preferably less than 20%, and even more preferably less than 10% of the irradiation amount of light in the wavelength range of 270 to 290 nm.
  • the light source has an irradiation dose of light in a wavelength range of more than 290 nm and less than or equal to 400 nm less than 50% of an irradiation dose of light in the wavelength range of 270 to 290 nm, preferably Less than 30%, more preferably less than 20%, more preferably less than 10%.
  • the light source include an LED or a xenon lamp (for example, one using a SrSiO3: Pb phosphor) (with a necessary filter (see above)).
  • a xenon lamp for example, one using a SrSiO3: Pb phosphor
  • the lighting device of the present invention may have only one light source or a plurality of light sources.
  • the control unit controls the timing of turning on and off the light source and / or dimming.
  • the control unit can be, for example, a timer and / or a pulse width modulation circuit.
  • the lighting device of the present invention may be installed in a closed space for growing and / or storing plants.
  • the closed space is not limited in shape and size as long as plants can be grown and / or stored, and may be, for example, a plant cultivation facility, a plant factory, a warehouse, a container, a refrigerator, or the like.
  • the lighting device can be arranged above and / or laterally and / or below the plant.
  • An air conditioner that controls the internal temperature and / or humidity to a predetermined value may be installed in the closed space.
  • the photosynthetic photon flux density in the closed space is 10 ⁇ mol / mm for 12 hours or more after the dose of light in the wavelength region 270 to 290 nm from the illumination device reaches 1500 to 50000 ⁇ mol / m 2. m 2 / s or less (ie, “dark” or “dark room” state).
  • the dark state is preferably continued for 24 hours or longer, more preferably 36 hours or longer, more preferably 48 hours or longer, and further preferably 72 hours or longer.
  • the upper limit of the duration of the dark state is not particularly limited as long as the content of the phenolic compound in the plant is increased with respect to the non-irradiated plant, but can be, for example, 300 hours, for example, 288 hours (less than) Also good.
  • Example 1 Arabidopsis thaliana was aseptically grown on MS (Murashige-Skoog) agar. Specifically, sterilized seeds are sown on MS agar medium, and in a plant incubator (BMS-PS08RGB2, biomedical science) at a temperature of 22-23 ° C for long days (light period 16 hours / dark period) 8 hours; under a photosynthetic effective photon flux density of 200 ⁇ mol / m 2 / s), the seedlings were grown for 14 days.
  • BMS-PS08RGB2 biomedical science
  • Arabidopsis thaliana (dry weight about 30 mg) was freeze-ground and subjected to solvent extraction using 80% methanol. The amount of anthocyanins in the obtained extract was analyzed by high performance liquid chromatography (LC-10, Shimadzu Corporation) under the following conditions.
  • the peak wavelength of the LED used is 270 nm (half-width 10 nm; Deep UV-LED / model: NCU234BU270) or 300 nm (half-width 10 nm; Deep UV-LED / model: NCU234BU300), and the irradiation time is 15 for the peak wavelength 270 nm.
  • the same experiment as in Experiment 1 was performed except that the time was 1 minute (integrated photon number: 2250 ⁇ mol / m 2 ), and the peak wavelength of 300 nm was 15 minutes or 4 hours (integrated photon number: 2250 and 36000 ⁇ mol / m 2, respectively).
  • the emission spectrum of the LED used is shown in FIG. In FIG. 3, emission spectra with peak wavelengths of 280 nm and 310 nm are also shown for comparison.
  • the wavelength component ratio of the LED used in Experiments 1 and 2 is shown.
  • Example 3 Collected or purchased sudachi (pepper), pod film (root), tea tree (leaf), and soybean (pepper) using LED (Deep UV-LED / model: NCSU234BU280), peak wavelength 280nm (half width 10nm) ultraviolet Light was continuously irradiated for 15 minutes at an illuminance of 5 ⁇ mol / m 2 / s of photon number (integrated photon number: 4500 ⁇ mol / m 2 ). The leaves and stems were irradiated with ultraviolet light in a state where they were lightly immersed in pure water to prevent drying and aging. Then, it left still in the dark until the measurement of a phenolic compound.
  • each plant part dry weight about 30 mg was freeze-ground and subjected to solvent extraction using 80% methanol.
  • the amount of phenolic compound in the resulting extract was analyzed by high performance liquid chromatography (Prominence, Shimadzu Corporation) under the following conditions.
  • the peel After 24 hours of ultraviolet light irradiation, the peel (dry weight about 40-100 mg) was freeze-ground and subjected to solvent extraction using 80% methanol. The amount of phenolic compound in the obtained extract was analyzed by high performance liquid chromatography (Prominence, Shimadzu Corporation) under the same conditions as in Experiment 3.
  • Example 5 Arabidopsis thaliana was irradiated with ultraviolet light having a peak wavelength of 280 nm continuously for 15 minutes (integrated photon number: 2250 ⁇ mol / m 2 ). Then, it was left still in the dark for 12, 24, 48, 72, 96 or 288 hours until the measurement of anthocyanin. After darkening, Arabidopsis thaliana (dry weight about 30 mg) was freeze-ground and subjected to solvent extraction using 80% methanol. The amount of anthocyanin in the obtained extract was analyzed according to the method described in Experiment 1.
  • the results are shown in FIG.
  • the multiples shown in the figure are relative to the amount (reference value) when darkened for 24 hours after irradiation with ultraviolet light.
  • the amount of anthocyanin increased by a factor of 3 with respect to the non-irradiated control when darkened for 24 hours after UV irradiation [see FIG. 1]. That is, “0.4 times” and “4 times” with respect to dark storage for 24 hours after ultraviolet light irradiation mean “1.2 times” and “12 times” for the non-irradiation control, respectively. From this result, it was shown that the amount of the phenolic compound in the ultraviolet irradiation plant was further increased when left for 24 hours or longer after the ultraviolet irradiation.
  • RNA is RNeasy mini kit (Qiagen) immediately after irradiation from Arabidopsis thaliana irradiated for 45 minutes with UV light of peak wavelength 280nm (half width 10nm; Deep UV-LED / model: NCSU234BU280) And prepared according to the instruction manual.
  • Expression analysis RNA-seq analysis was performed on the prepared total RNA (Takara Bio Inc.). For sequence analysis, HiSeq2500 system (Illumina) was used and TAIR10.37 was used as reference sequence data.
  • Table 2 shows genes whose expression levels (FPKM: Fragments Per Kilobase of exon per million mapped reads) are more than twice.
  • FPKM Fragments Per Kilobase of exon per million mapped reads
  • a gene marked with “*” indicates a gene of an enzyme involved in the biosynthesis pathway of a phenol compound (FIG. 8).

Abstract

To provide a method whereby the amount of a phenolic compound such as polyphenol can be effectively/efficiently increased. The present invention provides a method for increasing the amount of a phenolic compound in a plant, said method being characterized by comprising irradiating the plant with ultraviolet light in such a manner that the irradiance of light within a wavelength range of 270-290 nm attains 1500-50000 μmol/m2 and the irradiance of light within a wavelength range of 310-400 nm attains a level corresponding to less than 50% of the irradiance of light within the wavelength range of 270-290 nm, or a method for producing a plant having an increased content of a phenolic compound.

Description

植物中のフェノール性化合物の増量方法Method for increasing the amount of phenolic compounds in plants
 本発明は、植物中のフェノール性化合物の増量方法及びフェノール性化合物の含有量が増加した植物を生産する方法に関する。 The present invention relates to a method for increasing the amount of a phenolic compound in a plant and a method for producing a plant having an increased content of a phenolic compound.
 植物中のフェノール性化合物(例えば、ポリフェノール)は、抗酸化活性、抗菌活性、血圧上昇抑制活性のような種々の生理活性を有することが明らかとなり、近年の健康志向の高まりと相俟って、大いに注目されている。
 そこで、植物に含まれるフェノール性化合物を増量させる技術が開発されている。なかでも、植物が太陽光に含まれる紫外光の影響を回避するために紫外領域に極大吸収を有するフラボノイドを合成していると考えられることに起因して、紫外光照射により植物中のフラボノイドを増量させる技術に関心が集まっている。
Phenolic compounds in plants (e.g., polyphenols) have been revealed to have various physiological activities such as antioxidant activity, antibacterial activity, and antihypertensive activity, coupled with the recent increase in health orientation, Much attention has been paid.
Therefore, techniques for increasing the amount of phenolic compounds contained in plants have been developed. In particular, it is thought that plants synthesize flavonoids that have maximum absorption in the ultraviolet region in order to avoid the effects of ultraviolet light contained in sunlight. There is interest in increasing technology.
 例えば、特許文献1は、特定波長域(240nm以上320nm以下又は300nm以上400nm以下)の紫外光を照射することにより、「収穫後」の植物においてポリフェノール含有量を増加させる方法に関する。特許文献1において、適切な紫外光照射量は、1日当たり0.5J/cm2以上50J/cm2以下とされている。収穫後の植物に照射する紫外光の波長は、目的とするポリフェノールの極大吸収に合わせて選択すべきことを記載している。 For example, Patent Document 1 relates to a method for increasing the polyphenol content in a “post-harvest” plant by irradiating ultraviolet light in a specific wavelength region (240 nm or more and 320 nm or less or 300 nm or more and 400 nm or less). In Patent Document 1, an appropriate ultraviolet light irradiation amount is 0.5 J / cm 2 or more and 50 J / cm 2 or less per day. It describes that the wavelength of the ultraviolet light irradiated to the plant after harvesting should be selected according to the maximum absorption of the target polyphenol.
 特許文献2は、波長域が280~380nmで、かつ波長312nm付近にピークを有する紫外光を、単子葉栽培植物(特に芽ネギ)に照射することにより、当該植物中のアスコルビン酸及び/又はポリフェノール含量を増加させる方法に関する。特許文献2において、適切な紫外光強度は、0.1~1.0mW・cm-2とされている。 Patent Document 2 discloses that ascorbic acid and / or polyphenols in a monocotyledonous plant (especially bud leek) are irradiated with ultraviolet light having a wavelength range of 280 to 380 nm and having a peak in the vicinity of a wavelength of 312 nm. It relates to a method for increasing the content. In Patent Document 2, an appropriate ultraviolet light intensity is 0.1 to 1.0 mW · cm −2 .
 また、非特許文献1は、シロイヌナズナにおけるUVBストレスの影響を調べることを目的として、狭帯域UV-B(280~320nm;ピーク波長312nm;830mW/m2/S)の1日間又は4日間連続照射した結果、1日以上の紫外光照射によりアントシアニンやフラボノールの増加が観察されたことを記載している。 In addition, Non-Patent Document 1 aims at investigating the influence of UVB stress in Arabidopsis thaliana, and narrow-band UV-B (280 to 320 nm; peak wavelength 312 nm; 830 mW / m 2 / S) for 1 day or 4 days continuously. As a result, it is described that an increase in anthocyanins and flavonols was observed by ultraviolet light irradiation for one day or longer.
特開2004-121228JP 2004-121228 A 特開2008-086272JP2008-086272
 上記のとおり、植物を紫外光(UVA又はUVB)に曝露することにより当該植物におけるフェノール性化合物の量が増加することは知られている。しかし、他方で、紫外光は植物に限らず生物一般に有害であることも知られている。そして、従来技術においては、紫外光として、波長域が比較的幅広な光が用いられており、非特許文献1において用いられているようなUVランプの発光スペクトルは、例えば図9に示すように、312nmにピーク波長を有するものの幅広い波長域にわたるものである。
 よって、紫外光のうち、フェノール性化合物の増量に真に寄与する波長域を特定することができれば、植物において、紫外光への曝露による悪影響を低減しつつ、フェノール性化合物を効率的に増量させることができる。
 このように、植物における、ポリフェノールのようなフェノール性化合物の量を効果的/効率的に増加させることのできる方法が依然として望まれている。
As mentioned above, it is known that exposing a plant to ultraviolet light (UVA or UVB) increases the amount of phenolic compound in the plant. On the other hand, it is also known that ultraviolet light is harmful not only to plants but also to organisms in general. In the prior art, light having a relatively wide wavelength range is used as the ultraviolet light, and the emission spectrum of the UV lamp used in Non-Patent Document 1 is, for example, as shown in FIG. Although it has a peak wavelength at 312 nm, it covers a wide wavelength range.
Therefore, if the wavelength range that truly contributes to the increase of the phenolic compound in the ultraviolet light can be identified, the amount of the phenolic compound can be increased efficiently while reducing the adverse effects of exposure to ultraviolet light in plants. be able to.
Thus, there remains a need for methods that can effectively / effectively increase the amount of phenolic compounds, such as polyphenols, in plants.
 本発明者らは、フェノール性化合物の増量に寄与する波長及び照射量を鋭意検討した結果、従来知られていた波長域より短い特定の波長域の紫外光がフェノール性化合物の増量に有効である一方、従来用いられていた紫外光にはフェノール性化合物の増量に寄与せず、むしろ存在量の低下をもたらし得る波長域の光が含まれていることを見出し、本発明を完成させた。 As a result of intensive studies on the wavelength and irradiation amount that contribute to the increase in the phenolic compound, the present inventors have found that ultraviolet light in a specific wavelength range shorter than the conventionally known wavelength range is effective for increasing the phenolic compound. On the other hand, it has been found that ultraviolet light that has been used conventionally does not contribute to an increase in the amount of the phenolic compound, but rather includes light in a wavelength range that can cause a decrease in the abundance, and thus the present invention has been completed.
 本発明によれば、植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となり、且つ310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とする植物中のフェノール性化合物の増量方法が提供される。
 本発明によれば、また、植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となる一方、310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とするフェノール性化合物の含有量が増加した植物を生産する方法が提供される。
 本発明によれば、また、波長域270~290nmの光を発することができ、且つ波長域300nm~400nmの発光量が波長域270~290nmの発光量の50%未満で、波長域200nm以上270nm未満の発光量が波長域270~290nmの発光量の10%未満である光源と、植物に対する波長域270~290nmの光の照射量が1500~50000μmol/m2となるように光源を制御する制御部とを備え、植物中のフェノール性化合物を増量させるために用いることを特徴とする照明装置が提供される。
According to the present invention, a plant is irradiated with ultraviolet light in a wavelength range of 270 to 290 nm, the irradiation dose of 1500 to 50000 μmol / m 2 , and the irradiation dose of light in the wavelength range of 310 to 400 nm is 270 to 290 nm. There is provided a method for increasing the amount of a phenolic compound in a plant, wherein the irradiation is carried out so as to be less than 50% of the irradiation amount of light in the wavelength region of.
According to the present invention, it is also possible to irradiate the plant with ultraviolet light, the irradiation amount of light in the wavelength region of 270 to 290 nm is 1500 to 50000 μmol / m 2 , while the irradiation amount of light in the wavelength region of 310 to 400 nm is There is provided a method for producing a plant having an increased content of a phenolic compound, wherein the irradiation is performed so that the irradiation amount is less than 50% of light irradiation in a wavelength region of 270 to 290 nm.
According to the present invention, it is also possible to emit light in the wavelength range 270 to 290 nm, and the emission amount in the wavelength range 300 nm to 400 nm is less than 50% of the emission amount in the wavelength range 270 to 290 nm. Control that controls the light source so that the amount of emitted light of less than 10% of the amount of emitted light in the wavelength range 270 to 290 nm and the irradiation amount of light in the wavelength range of 270 to 290 nm to the plant is 1500 to 50000 μmol / m 2 And a lighting device characterized in that it is used for increasing the amount of phenolic compounds in plants.
 本発明の方法によれば、専ら有害な紫外光への曝露による悪影響を回避できるので、植物中のフェノール性化合物を効率的に増加させることができ、フェノール性化合物を多く含む植物を効率的に生産することができる。 According to the method of the present invention, it is possible to avoid adverse effects due to exposure to harmful ultraviolet light exclusively, so that it is possible to efficiently increase the phenolic compound in the plant, and efficiently to the plant rich in phenolic compound Can be produced.
実施例(実験1)で用いた紫外光LEDの発光スペクトルを示す。The emission spectrum of the ultraviolet LED used in the example (experiment 1) is shown. 実験1において、紫外光を照射した植物(シロイヌナズナ)におけるアントシアニン量を示すHPLCクロマトグラム(500nm検出)。照射した紫外光のピーク波長は280nm(B~D)又は310nm(F~H)であり、照射時間は15分間(B,F)、4時間(C,G)又は4日間(D,H)である。A及びEは紫外光非照射コントロールである。In Experiment 1, HPLC chromatogram (500 nm detection) which shows the amount of anthocyanins in the plant (Arabidopsis thaliana) irradiated with ultraviolet light. The peak wavelength of the irradiated ultraviolet light is 280 nm (BD) or 310 nm (FH), and the irradiation time is 15 minutes (B, F), 4 hours (C, G), or 4 days (D, H). It is. A and E are ultraviolet light non-irradiation controls. 実施例(実験2)で用いた紫外光LEDの発光スペクトルを示す。ピーク波長280nm及び310nmの発光スペクトルは実験1で用いたものである。The emission spectrum of the ultraviolet LED used in the example (experiment 2) is shown. The emission spectra with peak wavelengths of 280 nm and 310 nm are those used in Experiment 1. 実施例(実験2)において、紫外光を照射した植物(シロイヌナズナ)におけるフェノール性化合物量を示すHPLCクロマトグラム(500nm検出)。照射した紫外光のピーク波長を図において左側に示す。照射時間は0(すなわち、紫外光非照射コントロール;最左側欄)、15分間(左から2番目の欄)、4時間(左から3番目の欄)又は4日間(最右側欄)である。ピーク波長280nm及び310nmの結果は実験1のものである。In the Example (Experiment 2), the HPLC chromatogram (500 nm detection) which shows the amount of phenolic compounds in the plant (Arabidopsis thaliana) irradiated with the ultraviolet light. The peak wavelength of the irradiated ultraviolet light is shown on the left side in the figure. The irradiation time is 0 (ie, UV light non-irradiation control; leftmost column), 15 minutes (second column from the left), 4 hours (third column from the left), or 4 days (rightmost column). The results at peak wavelengths of 280 nm and 310 nm are those of Experiment 1. 実施例(実験3)において、紫外光を照射した植物(スダチ(果皮)、ポドフィルム(根)、チャノキ(葉)及びダイズ(果皮))におけるフェノール性化合物量を示すHPLCクロマトグラム(258nm検出)。照射した紫外光のピーク波長は280nmであり、照射時間は、0(すなわち、紫外光非照射コントロール;最左側欄)、15分間(左から2番目の欄)又は4時間(左から3番目の欄)である。最右側欄は矢印で示したピークの吸収スペクトルを示す。In the Example (Experiment 3), the HPLC chromatogram (258 nm detection) which shows the amount of phenolic compounds in the plant (Sudachi (fruit skin), pod film (root), chanoki (leaf), and soybean (fruit skin)) irradiated with the ultraviolet light. The peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 0 (ie, UV light non-irradiation control; leftmost column), 15 minutes (second column from the left) or 4 hours (third from the left) Column). The rightmost column shows the absorption spectrum of the peak indicated by the arrow. 実施例(実験4)において、紫外光を照射したブドウ(果皮)におけるアントシアニン量を示すHPLCクロマトグラム(520nm検出)。照射した紫外光のピーク波長は280nmであり、照射時間は、0(すなわち、紫外光非照射コントロール;最左側欄)、15分間(左から2番目の欄)又は4時間(最右側欄)である。In the Example (experiment 4), the HPLC chromatogram (520 nm detection) which shows the amount of anthocyanins in the grape (fruit peel) irradiated with the ultraviolet light. The peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 0 (that is, ultraviolet light non-irradiation control; leftmost column), 15 minutes (second column from the left) or 4 hours (rightmost column). is there. 実施例(実験5)において、紫外光照射後、12、24、48、72、92又は288時間暗置した植物(シロイヌナズナ)におけるアントシアニン量を示すHPLCクロマトグラム(500nm検出)。照射した紫外光のピーク波長は280nmであり、照射時間は15分間である。In the Example (Experiment 5), the HPLC chromatogram (500 nm detection) which shows the amount of anthocyanins in the plant (Arabidopsis thaliana) darkened for 12, 24, 48, 72, 92, or 288 hours after ultraviolet irradiation. The peak wavelength of the irradiated ultraviolet light is 280 nm, and the irradiation time is 15 minutes. 植物におけるフェノール性化合物(アントシアニン)の生合成経路。Biosynthetic pathway of phenolic compounds (anthocyanins) in plants. 非特許文献1で用いられた紫外線ランプ(CSL-30B,COSMO BIO)の発光スペクトルを示す。The emission spectrum of the ultraviolet lamp (CSL-30B, COSMO BIO) used in Non-Patent Document 1 is shown.
 本発明は、1つの観点からは、植物中のフェノール性化合物の増量方法であって、植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となり、且つ310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とする方法である。
 本発明は、別の1つの観点からは、フェノール性化合物の含有量が増加した植物を生産する方法であって、植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となり、且つ310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とする方法である。
From one aspect, the present invention is a method for increasing the amount of a phenolic compound in a plant, wherein the plant is irradiated with ultraviolet light, and the irradiation dose of light in the wavelength region of 270 to 290 nm is 1500 to 50000 μmol / m 2 . In addition, the irradiation is performed such that the irradiation amount of light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
Another aspect of the present invention is a method for producing a plant having an increased content of a phenolic compound, wherein the plant is irradiated with ultraviolet light, and an irradiation amount of light in a wavelength region of 270 to 290 nm is 1500. It is a method, which comprises irradiating ~ 50000μmol / m 2, and the and so that the irradiation amount of light in the wavelength range of 310 nm ~ 400 nm is less than 50% of the dose of light in the wavelength range of the 270 ~ 290 nm .
 本明細書において、数値範囲「a~b」(a、bは具体的数値)は、両端の値「a」及び「b」を含む範囲を意味する。換言すれば、「a~b」は「a以上b以下」と同義である。 In this specification, the numerical range “a to b” (a and b are specific numerical values) means a range including the values “a” and “b” at both ends. In other words, “ab” is synonymous with “a to b”.
 本発明は、後記の実施例により示されるとおり、波長域約270~290nm付近の紫外光が植物におけるフェノール性化合物の増量に有効である一方、波長域約310~400nm付近の紫外光がフェノール性化合物の増量に寄与しないばかりか、悪影響すら及ぼすという新たな知見に基づく。よって、本発明の方法によれば、紫外光への曝露による悪影響(結果としてフェノール性化合物の存在量の低下をもたらす影響)を低減しつつ、植物におけるフェノール性化合物の増量に有効な特定の波長域の紫外光を照射することが可能になるため、植物中のフェノール性化合物を効率的に増量させることができる。 In the present invention, as shown in the examples below, ultraviolet light in the wavelength range of about 270 to 290 nm is effective for increasing the amount of phenolic compounds in plants, while ultraviolet light in the wavelength range of about 310 to 400 nm is phenolic. It is based on a new finding that it does not contribute to the increase in the amount of the compound but even has an adverse effect. Therefore, according to the method of the present invention, the specific wavelength effective for increasing the amount of phenolic compound in the plant while reducing the adverse effect of exposure to ultraviolet light (resulting in a decrease in the amount of phenolic compound present). Therefore, the amount of phenolic compounds in the plant can be increased efficiently.
 本発明において、紫外光は、遠紫外光に比べて大気中で吸収され難い近紫外光を用いることが好ましく、270~290nmの波長域の光の照射量が1500~50000μmol/m2となり、且つ310nm~400nmの波長域の光の照射量が270~290nmの波長域の光の照射量の50%未満となるように植物に照射する。
 270~290nmの波長域の紫外光の照射量が1500μmol/m2未満である場合、おそらくはフェノール性化合物合成系を有意に活性化するに至らないため、植物中のフェノール性化合物の有意な増量を達成できない。一方、270~290nmの波長域の光の照射量が50000μmol/m2を超える場合、植物の損傷が大きくなるため、フェノール性化合物が増量した状態の植物を得ることができない。好ましくは、270~290nmの波長域の光の照射量は2000~40000μmol/m2である。この範囲の照射量を用いることで、フェノール性化合物が増量した植物をより効率的に得ることができる。
In the present invention, it is preferable to use near-ultraviolet light that is less likely to be absorbed in the atmosphere than far-ultraviolet light, and the irradiation amount of light in the wavelength region of 270 to 290 nm is 1500 to 50000 μmol / m 2 , and The plant is irradiated so that the irradiation amount of light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
If the irradiation dose of ultraviolet light in the wavelength range of 270 to 290 nm is less than 1500 μmol / m 2 , it will probably not significantly activate the phenolic compound synthesis system, so a significant increase in the amount of phenolic compounds in the plant Cannot be achieved. On the other hand, when the irradiation dose of light in the wavelength region of 270 to 290 nm exceeds 50000 μmol / m 2 , plant damage is increased, so that a plant with an increased amount of phenolic compound cannot be obtained. Preferably, the irradiation dose of light in the wavelength region of 270 to 290 nm is 2000 to 40000 μmol / m 2 . By using an irradiation amount in this range, a plant with an increased amount of phenolic compound can be obtained more efficiently.
 他方、310nm~400nmの波長域の紫外光は、植物におけるフェノール性化合物の増量には寄与せず、むしろ植物の損傷に作用するため、その照射量が270~290nmの波長域の紫外光の照射量の50%以上となると、フェノール性化合物が増量した状態の植物を効率的に得ることができなくなる。310nm~400nmの波長域の光の照射量は、植物への悪影響を回避する観点から、270~290nmの波長域の光の照射量の30%未満であることが好ましく、20%未満であることがより好ましく、10%未満であることがより好ましく、5%未満であることが最も好ましい。
 1つの実施形態においては、300nm~400nmの波長域の光の照射量は、前記270~290nmの波長域の光の照射量の50%未満であり、好ましくは30%未満、より好ましくは20%未満、より好ましくは10%未満である。別の1つの実施形態においては、290nmを超え400nm以下の波長域の光の照射量は、前記270~290nmの波長域の光の照射量の50%未満であり、好ましくは30%未満、より好ましくは20%未満、より好ましくは10%未満である。
On the other hand, ultraviolet light in the wavelength range of 310 nm to 400 nm does not contribute to the increase in the amount of phenolic compounds in plants, but rather acts on plant damage. When the amount is 50% or more, it becomes impossible to efficiently obtain a plant in an increased amount of the phenolic compound. From the viewpoint of avoiding adverse effects on plants, the irradiation amount of light in the wavelength region of 310 nm to 400 nm is preferably less than 30% and less than 20% of the irradiation amount of light in the wavelength region of 270 to 290 nm. Is more preferably less than 10%, most preferably less than 5%.
In one embodiment, the irradiation amount of light in the wavelength region of 300 nm to 400 nm is less than 50%, preferably less than 30%, more preferably 20% of the irradiation amount of light in the wavelength region of 270 to 290 nm. Less, more preferably less than 10%. In another embodiment, the irradiation dose of light in the wavelength range of more than 290 nm and less than or equal to 400 nm is less than 50%, preferably less than 30%, more preferably less than 30%. Preferably it is less than 20%, more preferably less than 10%.
 DNAやRNAの吸収極大波長が260nm付近であるため、波長が260nm以下の光は植物への悪影響(例えば細胞損傷)が大きいことが懸念される。よって、波長が200nm~260nmの光の照射量は、270~290nmの波長域の光の照射量の20%未満であることが好ましく、10%未満であることがより好ましく、5%未満であることがさらに好ましく、1%未満であることが最も好ましい。
 1つの実施形態において、200nm以上270nm未満(好ましくは100nm以上270nm未満、より好ましくは10nm以上270nm未満、さらに好ましくは1nm以上270nm未満)の波長域の光の照射量は、270~290nmの波長域の光の照射量の20%未満であり、好ましくは10%未満であり、より好ましくは5%未満であり、最も好ましくは1%未満である。
Since the maximum absorption wavelength of DNA and RNA is around 260 nm, there is a concern that light having a wavelength of 260 nm or less has a large adverse effect (for example, cell damage) on plants. Therefore, the irradiation amount of light having a wavelength of 200 nm to 260 nm is preferably less than 20%, more preferably less than 10%, and more preferably less than 5% of the irradiation amount of light in the wavelength region of 270 to 290 nm. More preferred is less than 1%.
In one embodiment, the irradiation dose of light in the wavelength region of 200 nm or more and less than 270 nm (preferably 100 nm or more and less than 270 nm, more preferably 10 nm or more and less than 270 nm, more preferably 1 nm or more and less than 270 nm) is 270 to 290 nm. Is less than 20%, preferably less than 10%, more preferably less than 5%, and most preferably less than 1%.
 270~290nmの波長域の紫外光は、例えば0.01~100μmol/m2/sの光子量束密度で照射される。0.01μmol/m2/s未満の場合には、植物におけるフェノール性化合物の増量を効率的に達成できないことがある。100μmol/m2/sを超える場合には、植物の損傷を早期に誘導することがある。270~290nmの波長域の紫外光は、好ましくは0.1~20μmol/m2/s、より好ましくは1~5μmol/m2/sの光子量束密度で照射される。 Ultraviolet light having a wavelength range of 270 to 290 nm is irradiated with a photon flux density of, for example, 0.01 to 100 μmol / m 2 / s. If it is less than 0.01 μmol / m 2 / s, an increase in the phenolic compound in the plant may not be achieved efficiently. If it exceeds 100 μmol / m 2 / s, plant damage may be induced early. Ultraviolet light in the wavelength region of 270 to 290 nm is preferably irradiated with a photon flux density of 0.1 to 20 μmol / m 2 / s, more preferably 1 to 5 μmol / m 2 / s.
 紫外光の光源としては、270~290nmの波長域の光を照射できるものであれば特に制限されず、例えば、UVランプなどの一般に使用される紫外光光源を用いることができる。UVランプとしては、例えば、SrSiO3:Pb蛍光体を用いたキセノンランプを用いることが好ましい。また、紫外光として、太陽光から光学フィルターなどにより取り出したものを用いてもよい。
 用いる光源が、270~290nmの波長域の光とともに310nm~400nmの波長域又は300nm~400nmの波長域又は290nmを超え400nm以下の波長域の光を、270~290nmの波長域の光の光子量束密度の50%以上で発するものである場合には、270~290nmの波長域の光に対する透過率がそれぞれ310nm~400nmの波長域又は300nm~400nmの波長域又は290nmを超え400nm以下の波長域の光に対する透過率より大きいフィルターを併せて用いてもよい。また、270~290nmの波長域の光とともに200nm~260nmの波長域又は270nm未満の波長域(例えば、200nm以上270nm未満、又は100nm以上270nm未満、又は10nm以上270nm未満、又は1nm以上270nm未満の波長域)の光を、270~290nmの波長域の光の光子量束密度の10%以上で発するものである場合には、270~290nmの波長域の光に対する透過率がそれぞれ200nm~260nmの波長域又は270nm未満の波長域の光に対する透過率より大きいフィルターを併せて用いてもよい。
The ultraviolet light source is not particularly limited as long as it can irradiate light in the wavelength region of 270 to 290 nm. For example, a commonly used ultraviolet light source such as a UV lamp can be used. As the UV lamp, for example, a xenon lamp using a SrSiO3: Pb phosphor is preferably used. Moreover, you may use what was taken out from sunlight with the optical filter etc. as ultraviolet light.
The light source used is 310 to 400 nm, 300 to 400 nm, 300 to 400 nm, or more than 290 nm to 400 nm or less, and light in the 270 to 290 nm wavelength range. When emitted at 50% or more of the bundle density, the transmittance for light in the wavelength range of 270 to 290 nm is 310 nm to 400 nm, 300 nm to 400 nm, or more than 290 nm to 400 nm or less. You may use together the filter larger than the transmittance | permeability with respect to the light. In addition to light in the wavelength range of 270 to 290 nm, a wavelength range of 200 nm to 260 nm or a wavelength range of less than 270 nm (for example, a wavelength of 200 nm to 270 nm, 100 nm to 270 nm, 10 nm to 270 nm, or 1 nm to 270 nm) Is emitted at 10% or more of the photon flux density of light in the wavelength range of 270 to 290 nm, the transmittance for light in the wavelength range of 270 to 290 nm is 200 nm to 260 nm, respectively. A filter having a larger transmittance than that of light having a wavelength range of less than 270 nm may be used.
 エネルギー効率の観点から、270~290nmの波長域の光は、主ピーク波長を、例えば280±5nm内に、より好ましくは280±2nm内に有する光として照射される。第2ピークは存在しないか、存在してもその強度が主ピークの1/10以下であることが好ましい。
 主ピーク(ピーク波長270~290nm内)の半値幅は5~15nmであることが好ましい。主ピークの半値幅が15nm以下であることにより、植物中のフェノール性化合物の増量に寄与しない(専ら有害であり得る)波長域の光の植物への照射を回避しつつ、植物中のフェノール性化合物の増量に有効な波長域の光の照射(すなわち、選択的照射)が可能となることに加え、エネルギー効率も更に向上する。主ピークの半値幅が5nm未満の光も、本発明の方法に使用可能であるが、費用対効果の観点から、主ピークの半値幅が5nm以上の光を用いることが現時点では好ましい。1つの好適な具体的実施形態においては、植物に照射される紫外光はピーク波長280±5nm及び半値幅5~15nmの波長スペクトルを有する光である。
From the viewpoint of energy efficiency, light in the wavelength region of 270 to 290 nm is irradiated as light having a main peak wavelength within, for example, 280 ± 5 nm, more preferably within 280 ± 2 nm. It is preferable that the second peak does not exist or even if it exists, its intensity is 1/10 or less of the main peak.
The full width at half maximum of the main peak (within a peak wavelength of 270 to 290 nm) is preferably 5 to 15 nm. The half-width of the main peak is 15 nm or less, so that it does not contribute to the increase in the amount of phenolic compounds in the plant (which may be harmful), while avoiding irradiation of light in the wavelength range to the plant, phenolic in the plant In addition to enabling light irradiation (that is, selective irradiation) in a wavelength range effective for increasing the amount of the compound, energy efficiency is further improved. Light having a main peak half width of less than 5 nm can also be used in the method of the present invention. However, from the viewpoint of cost effectiveness, it is preferable to use light having a main peak half width of 5 nm or more. In one preferred specific embodiment, the ultraviolet light irradiated on the plant is light having a wavelength spectrum having a peak wavelength of 280 ± 5 nm and a half-value width of 5 to 15 nm.
 紫外光の光源としては、発光スペクトルにおいてシングルピークを有する発光ダイオード(LED)が特に好ましい。光源としてLEDを用いる場合、植物中のフェノール性化合物の増量に寄与しない(専ら有害であり得る)波長域の光の植物への照射を回避しつつ、植物中のフェノール性化合物の増量に有効な波長域の光の照射(すなわち、選択的照射)が容易に実現可能となる。また、LEDの使用は、低発熱性、低消費電力や長寿命に起因して、エネルギー効率及び経済性の観点からも好ましい。加えて、照射量及び/又は光子量束密度の制御/管理が容易になる。
 270~290nmの紫外光を発することができるLEDは、例えばAlGaN系材料やInAlGaN系材料を用いたものであり得る。このようなLEDの具体例としては、Deep UV-LED/型式 NCSU234BU280(中心波長280nm;日亜化学工業)が挙げられる。
As the ultraviolet light source, a light emitting diode (LED) having a single peak in the emission spectrum is particularly preferable. When using an LED as a light source, it is effective in increasing the amount of phenolic compounds in the plant while avoiding irradiation of the light in the wavelength range that does not contribute to the increase in the amount of phenolic compounds in the plant (which may be harmful). Irradiation of light in the wavelength range (that is, selective irradiation) can be easily realized. The use of LEDs is also preferable from the viewpoint of energy efficiency and economy due to low heat generation, low power consumption and long life. In addition, it becomes easy to control / manage the irradiation dose and / or the photon flux density.
An LED capable of emitting ultraviolet light of 270 to 290 nm can be, for example, one using an AlGaN-based material or an InAlGaN-based material. A specific example of such an LED is Deep UV-LED / model NCSU234BU280 (central wavelength 280 nm; Nichia Corporation).
 270~290nmの波長域の光の植物への照射量は、例えば、光源の点灯及び消灯の制御により(例えば、植物が閉鎖空間内に静置されている場合)、又は、植物が照射領域を通過するに要する時間の制御により(例えば、植物が搬送装置上を移動している場合)、1500~50000μmol/m2に設定し得る。 The amount of irradiation of light in the wavelength range of 270 to 290 nm to the plant is, for example, controlled by turning on and off the light source (for example, when the plant is placed in a closed space) or It can be set to 1500 to 50000 μmol / m 2 by controlling the time required for passing (for example, when the plant is moving on the transport device).
 本明細書において、植物は、特に限定されないが、草本が好ましい。植物は、例えば、被子植物、特に双子葉植物であり得る。本発明の方法に好適な双子葉植物には、例えばアブラナ科(特にアブラナ属、ダイコン属)、ナス科(特にナス属)、メギ科(特にミヤオソウ属)、ツバキ科(特にツバキ属)、マメ科(特にダイズ属)、ミカン科(特にミカン属)、ブドウ科(特にブドウ属)、バラ科(特にオランダイチゴ属)、キク科(特にアキノゲシ属)、シソ科(特にシソ属)の植物が含まれる。本発明に用いることができる植物の具体例としては、シロイヌナズナ、ポドフィルム、チャノキ、ダイズ、スダチ、ブドウ、キャベツ、ブロッコリー、コマツナ、チンゲンサイ、ダイコン、カブ、トマト、ナス、イチゴ、レタス及びシソなどが挙げられる。 In the present specification, the plant is not particularly limited, but herb is preferable. The plant can be, for example, an angiosperm, in particular a dicotyledonous plant. Suitable dicotyledonous plants for the method of the present invention include, for example, Brassicaceae (especially Brassica, Daikon), Solanum (especially Solanum), Barberry (especially Solanum), Camellia (especially Camellia), legumes. Plants of the family (especially soybean genus), citrus (especially mandarin), grapes (especially grapes), roses (especially Dutch strawberrys), asteraceae (especially genus Akinesi), perillas (especially perillas) included. Specific examples of plants that can be used in the present invention include Arabidopsis thaliana, podophyllum, chanoki, soybean, sudachi, grape, cabbage, broccoli, komatsuna, radish, radish, turnip, tomato, eggplant, strawberry, lettuce, and perilla. It is done.
 本明細書において、植物は、UVR8光受容体を有する植物であり得る。
 理論には拘束されないが、後述する遺伝子発現解析の結果によれば、270~290nmの波長域の光は、植物のUVR8光受容体を介して、フェノール性化合物(例えば、フェニルプロパノイド、フラボノイド、アントシアニンなど)の生合成経路に関与する酵素や転写因子の遺伝子の発現をアップレギュレートし、その結果として、植物中のフェノール性化合物の生合成を活性化すると考えられる。
As used herein, a plant can be a plant having a UVR8 photoreceptor.
Although not bound by theory, according to the results of gene expression analysis described later, light in the wavelength region of 270 to 290 nm is transmitted through a UVR8 photoreceptor of a plant via a phenolic compound (for example, phenylpropanoid, flavonoid, It is thought to upregulate the expression of genes of enzymes and transcription factors involved in the biosynthetic pathway of anthocyanins and the like, and as a result, activate biosynthesis of phenolic compounds in plants.
 本発明に用いる植物は、シュート(茎及び葉)及び根系を含む植物体全体の形態であってもよいし、シュートのみのような植物体の一部分からなる形態であってもよい。
 植物は、植物体全体の形態である場合、栽培状態にあってもよいし、非栽培状態(根を通じた栄養供給がない状態)であってもよい。ここで、栽培は土壌栽培であってもよいし、養液栽培(例えば、水耕栽培や固形培地耕)であり得る。養液栽培は無菌下で行うことができる。
The plant used in the present invention may be in the form of the whole plant including shoots (stems and leaves) and the root system, or may be in the form of a part of the plant such as shoots alone.
When the plant is in the form of the entire plant body, it may be in a cultivated state or in a non-cultivated state (a state in which no nutrient is supplied through the roots). Here, the cultivation may be soil cultivation or hydroponics (for example, hydroponics or solid medium cultivation). Hydroponics can be performed under aseptic conditions.
 栽培は制御環境下で行われてもよい。制御される環境条件には、例えば、明暗周期、温度、湿度、自然光及び/又は人工光の照射量、二酸化炭素濃度が含まれる。これら条件は、用いる植物の栽培/成長に適するものであれば特に制限されない。
 明暗周期は、栽培する植物及び生育段階に応じて適切に選択することができる(例えば明期14~18時間の長日条件、又は例えば明期6~10時間の短日条件)。人工光の光源としては、従来使用されている白熱電灯、蛍光灯、白色灯、高圧ナトリウムランプ、メタルハライドランプ、LEDなどを用いることができる。人工光は、栽培する植物及び成長段階などに応じて適宜設定される光合成光子量束密度で照射される。光合成光子量束密度は、例えば100~500μmol/m2/sであり得る。
 温度は例えば20~30℃であり得、湿度は例えば50~80%であり得る。
 二酸化炭素濃度は例えば約1000~1500ppmであり得る。
 肥料/液肥は、栽培する植物に応じて適切に選択することができる。一般には、肥料/液肥は、窒素、リン、カリウムを含む。
Cultivation may be performed in a controlled environment. The environmental conditions to be controlled include, for example, the light / dark cycle, temperature, humidity, irradiation amount of natural light and / or artificial light, and carbon dioxide concentration. These conditions are not particularly limited as long as they are suitable for the cultivation / growth of the plant to be used.
The light / dark cycle can be appropriately selected according to the plant to be cultivated and the growth stage (for example, a long-day condition of light period 14-18 hours, or a short-day condition of light period 6-10 hours). As an artificial light source, conventionally used incandescent lamps, fluorescent lamps, white lamps, high-pressure sodium lamps, metal halide lamps, LEDs, and the like can be used. Artificial light is irradiated with a photosynthetic photon flux bundle density that is appropriately set according to the plant to be cultivated and the growth stage. The photosynthetic photon flux density can be, for example, 100 to 500 μmol / m 2 / s.
The temperature can be, for example, 20-30 ° C., and the humidity can be, for example, 50-80%.
The carbon dioxide concentration can be, for example, about 1000-1500 ppm.
Fertilizer / liquid fertilizer can be appropriately selected according to the plant to be cultivated. Generally, fertilizer / liquid fertilizer contains nitrogen, phosphorus and potassium.
 植物は、非栽培状態である場合、自然光下に又は暗所で、常温(例えば15~30℃)下又は低温(例えば0~15℃)下で貯蔵されているものであり得る。 Plants can be stored under natural light or in the dark, at normal temperatures (eg 15-30 ° C.) or at low temperatures (eg 0-15 ° C.) when not cultivated.
 本発明による紫外光照射時の植物は、いずれの生育段階のものであってもよい。1つの実施形態において、照射時の植物は栄養成長相であり、別の1つの実施形態においては、照射時の植物は非栽培状態(すなわち、収穫後のもの[収穫物])である。
 植物は、幼植物体であっても、成植物体であってもよい。幼植物体はスプラウトであり得る。スプラウトは、発芽植物とも呼ばれ、種子発芽後、本葉展開前の幼植物体をいう。スプラウトは、例えば、温度20~25℃の暗所で7日~10日間栽培することにより得ることができる。
 植物が栽培状態にある場合、本発明による紫外光の照射は、明期及び暗期のいずれに行なってもよい。
The plant at the time of ultraviolet light irradiation according to the present invention may be in any growth stage. In one embodiment, the plant upon irradiation is in the vegetative growth phase, and in another embodiment, the plant upon irradiation is in a non-cultivated state (ie, after harvest [crop]).
The plant may be a young plant or an adult plant. The seedling can be a sprout. Sprout is also called a germinating plant, and refers to a young plant body after seed germination and before development of the main leaves. The sprout can be obtained, for example, by culturing for 7 to 10 days in a dark place at a temperature of 20 to 25 ° C.
When the plant is in a cultivated state, the irradiation with ultraviolet light according to the present invention may be performed in either the light period or the dark period.
 本発明の方法は、270~290nmの波長域の光(紫外光)の照射後、植物を12時間以上暗置することを更に含んでいてもよい。本明細書において、「暗置」とは、植物を暗所又は暗室(光合成光量子束密度が当該植物において光合成を起こさせないレベル。より具体的には、光合成光量子束密度≦10μmol/m2/s)に置くことをいう。暗置時間は、好ましくは24時間以上、より好ましくは36時間以上、より好ましくは48時間以上、更に好ましくは72時間以上であり得る。暗置時間の上限は、当該植物中のフェノール性化合物の含有量を非照射植物に対して増加させる限り特に限定されないが、例えば300時間であり得、より具体的には288時間(未満)であってもよい。
 暗置は、例えば、常温下又は低温下であり得る。
 紫外光の照射後に植物を12時間以上暗置することにより、当該植物中のフェノール性化合物の量(含有量)が更に増加する。
The method of the present invention may further comprise darkening the plant for 12 hours or more after irradiation with light (ultraviolet light) in the wavelength range of 270 to 290 nm. In this specification, “dark placement” means that a plant is in a dark place or a dark room (the level at which the photosynthetic photon flux density does not cause photosynthesis in the plant. More specifically, the photosynthetic photon flux density ≦ 10 μmol / m 2 / s. ). The dark period is preferably 24 hours or longer, more preferably 36 hours or longer, more preferably 48 hours or longer, and even more preferably 72 hours or longer. The upper limit of the dark period is not particularly limited as long as the content of the phenolic compound in the plant is increased with respect to the non-irradiated plant, but may be, for example, 300 hours, more specifically, 288 hours (less than). There may be.
Dark storage can be, for example, at room temperature or low temperature.
By darkening a plant for 12 hours or more after irradiation with ultraviolet light, the amount (content) of the phenolic compound in the plant further increases.
 本明細書において、フェノール性化合物は、用いる植物において天然に合成され得るものであれば特に制限されないが、例えばフェニルプロパノイド及びポリフェノールであり得る。ポリフェノールには例えばフラボノイド、タンニン、リグナンが含まれる。フラボノイドとしては例えばアントシアニン、フラバン(例えばカテキン)、フラボン、イソフラボン、フラボノールが挙げられる。
 アントシアニンは、アントシアニジンに糖鎖(例えば、グルコース、ガラクトース、ラムノース)が結合した配糖体である。植物に含まれる一般的なアントシアニジンとしては、ペラルゴニジン、シアニジン、ペオニジン、デルフィニジン、ペチュニジン、マルビジンが挙げられる。アントシアニンは、赤~紫~青色を呈する、植物界に広く存在する色素であり、植物性着色料として(例えば食品に)利用されており、抗酸化物質としても知られるため、本発明により植物中で増量させるに好適なフェノール性化合物の1つである。
 例えば、シロイヌナズナに含まれるアントシアニンの1つの例としては下記の化学式で表されるものが挙げられる。
In the present specification, the phenolic compound is not particularly limited as long as it can be naturally synthesized in the plant to be used, and may be, for example, phenylpropanoid and polyphenol. Polyphenols include, for example, flavonoids, tannins and lignans. Examples of flavonoids include anthocyanins, flavans (for example, catechin), flavones, isoflavones, and flavonols.
Anthocyanins are glycosides in which sugar chains (for example, glucose, galactose, rhamnose) are bound to anthocyanidins. Common anthocyanidins contained in plants include pelargonidin, cyanidin, peonidin, delphinidin, petunidin, and malvidin. Anthocyanins are red-purple to blue-colored pigments widely present in the plant kingdom. They are used as plant colorants (for example in foods) and are also known as antioxidants. It is one of the phenolic compounds suitable for increasing the amount.
For example, as an example of anthocyanins contained in Arabidopsis thaliana, those represented by the following chemical formula can be mentioned.
Figure JPOXMLDOC01-appb-C000001
(線で囲まれた部分がアントシアニジン部分であり、この場合、ペオニジン部分である。)
Figure JPOXMLDOC01-appb-C000001
(The portion surrounded by a line is an anthocyanidin portion, and in this case, a peonidin portion.)
 本明細書において、「フェノール性化合物の増量」又は「フェノール性化合物の含有量の増加」とは、本発明による紫外光照射を行っていない植物と比較して、フェノール性化合物の量が増加していること、例えば10%以上、好ましくは20%以上、より好ましくは50%以上、より好ましくは100%以上増加していることをいう[ブドウにおける15分間照射(2250μmol/m2)の結果を考慮して追加しました]。なお、「フェノール性化合物の増量」又は「フェノール性化合物の含有量の増加」には、照射前には合成されていなかったフェノール性化合物が照射後に新たに合成されるようになることも含まれる。
 フェノール性化合物の定量は、公知の方法のいずれを用いて行ってもよく、例えばクロマトグラフィーにより行うことができる。クロマトグラフィーとしては液体クロマトグラフィー(例えばHPLC)が挙げられる。液体クロマトグラフィーは逆相クロマトグラフィーであり得る。
In the present specification, “increased amount of phenolic compound” or “increase in content of phenolic compound” means that the amount of phenolic compound is increased as compared to a plant not irradiated with ultraviolet light according to the present invention. For example, 10% or more, preferably 20% or more, more preferably 50% or more, more preferably 100% or more [result of 15 minutes irradiation in grape (2250 μmol / m 2 ) Added in consideration]. “Increased amount of phenolic compound” or “increased content of phenolic compound” includes that a phenolic compound that was not synthesized before irradiation is newly synthesized after irradiation. .
The quantification of the phenolic compound may be performed using any known method, for example, by chromatography. Chromatography includes liquid chromatography (eg, HPLC). The liquid chromatography can be reverse phase chromatography.
 本発明に従う紫外光照射により、非照射のものと比較して、フェノール性化合物の量が1.1倍以上、好ましくは1.2倍以上、より好ましくは1.5倍以上、より好ましくは2倍以上、例えば3倍以上高い植物を生産することができる[同上]。よって、本発明の方法によれば、生産された植物を高付加価値食物として安価に提供することができる。 By irradiation with ultraviolet light according to the present invention, the amount of the phenolic compound is 1.1 times or more, preferably 1.2 times or more, more preferably 1.5 times or more, more preferably 2 times or more, for example 3 times as compared with the non-irradiated one. Higher plants can be produced [Same as above]. Therefore, according to the method of the present invention, the produced plant can be provided inexpensively as a high value-added food.
 本発明の方法により生産された植物は、当該植物中の含有量が増加したフェノール性化合物を生産するための原料として好適である。
 したがって、本発明は、フェノール性化合物の生産方法であって、
  植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となる一方、310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射する工程
  該植物からフェノール性化合物を取得する工程
を含んでなることを特徴とする方法も提供する。
The plant produced by the method of the present invention is suitable as a raw material for producing a phenolic compound having an increased content in the plant.
Therefore, the present invention is a method for producing a phenolic compound,
Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 310 to 400 nm is 1500 to 50000 μmol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light. The method of irradiating so that it may become less than 50% of the irradiation amount of this invention The process characterized by including the process of acquiring a phenolic compound from this plant is also provided.
 本発明はまた、フェノール性化合物の生産方法であって、
  植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となる一方、300nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満、200nm以上270nm未満の波長域の光の照射量が、前記270~290nmの波長域の光の照射量の10%未満となるように照射する工程
  該植物からフェノール性化合物を取得する工程
を含んでなることを特徴とする方法も提供する。
The present invention is also a method for producing a phenolic compound comprising:
Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 300 to 400 nm is 1500 to 50000 μmol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light. A step of irradiating light having a wavelength in the wavelength range of 200 nm to less than 270 nm to less than 10% of the light dose in the wavelength range of 270 to 290 nm. Also provided is a method comprising the step of obtaining a compound.
 植物からのフェノール性化合物の取得工程は、例えば、抽出により行うことができる。抽出は、公知の方法のいずれかにより行なうことができ、例えば溶媒抽出又は超臨界抽出による。
 溶媒抽出に用いる溶媒には、公知の溶媒から適宜選択することができる。溶媒は、例えば、水(常温のもの~沸騰水)、水と混和性の有機溶媒、又はこれらの混合溶媒(水と1以上の水と混和性の有機溶媒との混合溶媒、2以上の水と混和性の有機溶媒の混合溶媒)を用いることが可能である。水と混和性の有機溶媒は、極性有機溶媒であり得、例えば、メタノール、エタノール、n-若しくはイソ-プロパノール、アセトニトリル、アセトン、ジオキサン、酢酸エチル、ジメチルスルホキシド、ジメチルホルムアミド、エチレングリコール、テトラヒドロフランが挙げられる。水は熱水又は沸騰水として用いてもよい。
 抽出は加温(例えば80~90℃)及び/又は加圧下で行なってもよい。抽出は還流抽出であってもよい。抽出時間は特に制限されず、抽出効率の観点から適切に決定できる。
The acquisition process of the phenolic compound from a plant can be performed by extraction, for example. The extraction can be performed by any known method, for example by solvent extraction or supercritical extraction.
The solvent used for solvent extraction can be appropriately selected from known solvents. The solvent is, for example, water (room temperature to boiling water), an organic solvent miscible with water, or a mixed solvent thereof (a mixed solvent of water and one or more water-miscible organic solvents, two or more water). It is possible to use a mixed solvent of an organic solvent miscible with the solvent. The water miscible organic solvent can be a polar organic solvent, such as methanol, ethanol, n- or iso-propanol, acetonitrile, acetone, dioxane, ethyl acetate, dimethyl sulfoxide, dimethylformamide, ethylene glycol, tetrahydrofuran. It is done. Water may be used as hot water or boiling water.
Extraction may be performed under heating (for example, 80 to 90 ° C.) and / or under pressure. The extraction may be reflux extraction. The extraction time is not particularly limited and can be appropriately determined from the viewpoint of extraction efficiency.
 抽出には、生育段階を問わず、植物の葉及び/又は茎を用いることができるが、好ましくは植物全体を用いる。植物は、そのまま抽出に用いてもよいが、粉砕して用いてもよい。抽出又は粉砕の前に、植物を乾燥及び/又は凍結させてもよい。
 抽出液は、例えば、夾雑物を除去するため、適切なフィルターにより濾過してもよく、遠心分離に供されてもよい。
For the extraction, leaves and / or stems of plants can be used regardless of the growth stage, but preferably the whole plant is used. The plant may be used for extraction as it is, or may be used after pulverization. Prior to extraction or grinding, the plants may be dried and / or frozen.
For example, in order to remove impurities, the extract may be filtered through an appropriate filter or may be subjected to centrifugation.
 目的のフェノール性化合物がアントシアニンである場合、抽出には、例えば、極性有機溶媒を用いることができる。極性有機溶媒には酸が加えられていてもよい。酸は、例えば、塩酸、硫酸、ギ酸、酢酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸又は過塩素酸であり得る。酸は、有機溶媒に、例えば0.1~10%、好ましくは1~3%の重量比で含まれ得る。抽出溶媒の具体例として、トリフルオロ酢酸、ギ酸又は酢酸/メタノールの混合溶媒、アセトン/メタノール/ギ酸又は酢酸の混合溶媒、塩酸/メタノール混合溶媒を挙げることができる。 When the objective phenolic compound is anthocyanin, for example, a polar organic solvent can be used for extraction. An acid may be added to the polar organic solvent. The acid can be, for example, hydrochloric acid, sulfuric acid, formic acid, acetic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid or perchloric acid. The acid may be included in the organic solvent in a weight ratio of, for example, 0.1 to 10%, preferably 1 to 3%. Specific examples of the extraction solvent include trifluoroacetic acid, formic acid or a mixed solvent of acetic acid / methanol, a mixed solvent of acetone / methanol / formic acid or acetic acid, and a mixed solvent of hydrochloric acid / methanol.
 得られた抽出物から、フェノール性化合物を精製してもよい。
 精製は、例えばクロマトグラフィーにより行なうことができる。クロマトグラフィーは例えばカラムクロマトグラフィー(特にHPLC)であり得、逆相モードで行うことが好ましい。
 カラムクロマトグラフィーに用いるカラムは、分離モードに応じて公知のものから適宜選択できる。逆相クロマトグラフィーには、一般にはオクタデシル化シリカゲル(ODS)カラム(C18カラムとも呼ばれる)が用いられるがこれに限定されず、例えばC30カラムを用いることもできる。
You may refine | purify a phenolic compound from the obtained extract.
Purification can be performed, for example, by chromatography. Chromatography can be, for example, column chromatography (particularly HPLC), preferably in reverse phase mode.
The column used for column chromatography can be appropriately selected from known ones according to the separation mode. For reverse phase chromatography, an octadecylated silica gel (ODS) column (also referred to as a C18 column) is generally used, but the present invention is not limited to this. For example, a C30 column can also be used.
 クロマトグラフィーでは、溶離液として、水、極性有機溶媒、又はこれらの混合溶媒(水と1以上の極性有機溶媒との混合溶媒、2以上の極性有機溶媒の混合溶媒)を用いることができる。極性有機溶媒は上記のとおりである。溶離液には、トリフルオロ酢酸、ギ酸、酢酸、リン酸、トリクロロ酢酸などの酸を、例えば0.01~10M加えてもよい。
 クロマトグラフィーでは、グラジエント法を採用できる。この場合、溶離液Aとして、任意に0.01~10Mの酸を含む、極性溶媒と水との混合溶媒(例えば混合比0:100~10:90)を用い、溶離液Bとして、任意に0.01~10Mの酸を含む、混合極性溶媒(例えば混合比50:50)又は極性溶媒と水との混合溶媒(例えば混合比50:50~100:0)を用い、グラジエントを、例えば30~60分間で、A:B=100:0~0:100の間とすることができる。
 流速は特に限定されないが、例えば0.2~2ml/分であり得る。
 フェノール性化合物の検出は、例えば250~300nmでの吸光度を測定することにより行うことができる。アントシアニンの検出は、500~550nmでの吸光度を測定することにより行うことができる。
In chromatography, water, a polar organic solvent, or a mixed solvent thereof (a mixed solvent of water and one or more polar organic solvents, a mixed solvent of two or more polar organic solvents) can be used as an eluent. The polar organic solvent is as described above. For example, 0.01 to 10 M of an acid such as trifluoroacetic acid, formic acid, acetic acid, phosphoric acid, trichloroacetic acid may be added to the eluent.
In chromatography, a gradient method can be employed. In this case, a mixed solvent of a polar solvent and water (for example, a mixing ratio of 0: 100 to 10:90) optionally containing 0.01 to 10 M acid is used as the eluent A. Using a mixed polar solvent containing 10 M acid (for example, a mixing ratio of 50:50) or a mixed solvent of a polar solvent and water (for example, a mixing ratio of 50:50 to 100: 0), the gradient is increased, for example, for 30 to 60 minutes. , A: B = between 100: 0 and 0: 100.
The flow rate is not particularly limited and can be, for example, 0.2 to 2 ml / min.
The detection of the phenolic compound can be performed, for example, by measuring the absorbance at 250 to 300 nm. Detection of anthocyanins can be performed by measuring absorbance at 500 to 550 nm.
 本発明の方法により生産されたフェノール性化合物は、機能性食品(特定保健用食品や栄養機能食品)、医薬品その他の工業製品の原料として用いることができる。よって、本発明の方法によれば、生産されたフェノール性化合物を機能性食品、医薬品その他の工業製品の原料として安価に提供することができる。
 1つの実施形態において、植物はシロイヌナズナである。シロイヌナズナは比較的短期間で成長し、育成が容易であるため、本発明の方法によるフェノール性化合物(例えば、アントシアニン)の生産に好適である。
The phenolic compound produced by the method of the present invention can be used as a raw material for functional foods (food for specified health use or functional nutrition food), pharmaceuticals and other industrial products. Therefore, according to the method of the present invention, the produced phenolic compound can be provided at low cost as a raw material for functional foods, pharmaceuticals and other industrial products.
In one embodiment, the plant is Arabidopsis. Since Arabidopsis thaliana grows in a relatively short period of time and is easy to grow, it is suitable for the production of phenolic compounds (for example, anthocyanins) by the method of the present invention.
 本発明はまた、波長域270~290nmの光を発することができ、且つ波長域300nm~400nmの発光量が波長域270~290nmの発光量の50%未満で、波長域200nm以上270nm未満の発光量が波長域270~290nmの発光量の10%未満である光源と、植物に対する波長域270~290nmの光の照射量が1500~50000μmol/m2となるように光源を制御する制御部とを備え、植物中のフェノール性化合物を増量させるために用いることを特徴とする照明装置に関する。
 本発明の照明装置は、上述した、本発明に係る植物中のフェノール性化合物の増量方法、フェノール性化合物の含有量が増加した植物を生産する方法、及びフェノール性化合物の生産方法(まとめて、「本発明の方法」)における使用に有用である。
The present invention can also emit light in the wavelength region of 270 to 290 nm, and the emission amount in the wavelength region of 300 nm to 400 nm is less than 50% of the emission amount of the wavelength region of 270 to 290 nm, and the emission in the wavelength region of 200 nm to less than 270 nm. A light source whose amount is less than 10% of the light emission amount in the wavelength range 270 to 290 nm, and a control unit that controls the light source so that the irradiation amount of light in the wavelength range 270 to 290 nm to the plant is 1500 to 50000 μmol / m 2 It is related with the illuminating device characterized by using to increase the amount of phenolic compounds in a plant.
The lighting device of the present invention is the above-described method for increasing the amount of the phenolic compound in the plant according to the present invention, the method for producing the plant having an increased content of the phenolic compound, and the method for producing the phenolic compound (collectively, Useful in “methods of the invention”).
 光源は、本発明の方法に関して上述したものと同様である。
 光源は、好ましくは、200nm以上270nm未満(より好ましくは100nm以上270nm未満、より好ましくは10nm以上270nm未満、さらに好ましくは1nm以上270nm未満)の波長域の光の照射量が、270~290nmの波長域の光の照射量の5%未満であり、より好ましくは1%未満である光源である。
 光源はまた、好ましくは、300~400nmの波長域の光の照射量が、前記270~290nmの波長域の光の照射量の30%未満、より好ましくは20%未満、さらに好ましくは10%未満である光源である。1つのより具体的な実施形態においては、光源は、290nmを超え400nm以下の波長域の光の照射量は、前記270~290nmの波長域の光の照射量の50%未満であり、好ましくは30%未満、より好ましくは20%未満、より好ましくは10%未満である。
 上記の観点から、光源の好適な具体例としては、LED又は(必要なフィルター(上記参照)を備えた)キセノンランプ(例えば、SrSiO3:Pb蛍光体を用いるもの)が挙げられるが、LEDがより好ましい。
 本発明の照明装置は、光源を1つのみ有するものであってもよく、複数有するものであってもよい。
The light source is similar to that described above with respect to the method of the present invention.
The light source preferably has a wavelength of light of 270 to 290 nm in the wavelength region of 200 nm to less than 270 nm (more preferably 100 nm to less than 270 nm, more preferably 10 nm to less than 270 nm, and even more preferably 1 nm to less than 270 nm). The light source is less than 5%, more preferably less than 1% of the light irradiation amount of the area.
The light source preferably also has an irradiation amount of light in the wavelength range of 300 to 400 nm of less than 30%, more preferably less than 20%, and even more preferably less than 10% of the irradiation amount of light in the wavelength range of 270 to 290 nm. Is a light source. In one more specific embodiment, the light source has an irradiation dose of light in a wavelength range of more than 290 nm and less than or equal to 400 nm less than 50% of an irradiation dose of light in the wavelength range of 270 to 290 nm, preferably Less than 30%, more preferably less than 20%, more preferably less than 10%.
From the above viewpoint, preferred specific examples of the light source include an LED or a xenon lamp (for example, one using a SrSiO3: Pb phosphor) (with a necessary filter (see above)). preferable.
The lighting device of the present invention may have only one light source or a plurality of light sources.
 制御部は、光源の点灯及び消灯のタイミング並びに/又は調光を制御する。制御部は、例えば、タイマー及び/又はパルス幅変調回路であり得る。 The control unit controls the timing of turning on and off the light source and / or dimming. The control unit can be, for example, a timer and / or a pulse width modulation circuit.
 本発明の照明装置は、植物を栽培及び/又は保管するための閉鎖空間内に設置され得る。閉鎖空間は、植物を栽培及び/又は保管することが可能である限り、形状、大きさについて制限されず、例えば、植物栽培施設、植物工場、倉庫、コンテナ、冷蔵庫などであり得る。
 閉鎖空間内において、照明装置は、植物の上方及び/又は側方及び/又は下方に配置され得る。
 閉鎖空間内には、内部の温度及び/又は湿度を所定値に制御する空調装置が設置されていてもよい。
The lighting device of the present invention may be installed in a closed space for growing and / or storing plants. The closed space is not limited in shape and size as long as plants can be grown and / or stored, and may be, for example, a plant cultivation facility, a plant factory, a warehouse, a container, a refrigerator, or the like.
Within the enclosed space, the lighting device can be arranged above and / or laterally and / or below the plant.
An air conditioner that controls the internal temperature and / or humidity to a predetermined value may be installed in the closed space.
 1つの好適な実施形態において、閉鎖空間の光合成光量子束密度は、照明装置からの波長域270~290nmの光の照射量が1500~50000μmol/m2に達した後12時間以上の間、10μmol/m2/s以下(すなわち、「暗所」又は「暗室」状態)に保たれる。暗所状態は、より好ましくは24時間以上、より好ましくは36時間以上、より好ましくは48時間以上、更に好ましくは72時間以上継続される。暗所状態の継続時間の上限は、当該植物中のフェノール性化合物の含有量を非照射植物に対して増加させる限り特に制限されないが、例えば300時間であり得、288時間(未満)であってもよい。 In one preferred embodiment, the photosynthetic photon flux density in the closed space is 10 μmol / mm for 12 hours or more after the dose of light in the wavelength region 270 to 290 nm from the illumination device reaches 1500 to 50000 μmol / m 2. m 2 / s or less (ie, “dark” or “dark room” state). The dark state is preferably continued for 24 hours or longer, more preferably 36 hours or longer, more preferably 48 hours or longer, and further preferably 72 hours or longer. The upper limit of the duration of the dark state is not particularly limited as long as the content of the phenolic compound in the plant is increased with respect to the non-irradiated plant, but can be, for example, 300 hours, for example, 288 hours (less than) Also good.
(実験1)
 シロイヌナズナをMS(Murashige-Skoog)寒天培地にて無菌的に栄養育成した。具体的には、滅菌処理した種子をMS寒天培地に播種し、温度22~23℃にて、植物インキュベータ(BMS-PS08RGB2、バイオメディカルサイエンス)中で、長日条件(明期16時間/暗期8時間;光合成有効光量子束密度200μmol/m2/s)下、播種から14日間育成した。
 14日間の育成後、シロイヌナズナに、LEDを用いて、ピーク波長280nm(半値幅10nm;Deep UV-LED/型式:NCSU234BU280)又はピーク波長310nm(半値幅10nm;Deep UV-LED/型式:NCSU234BU310)の紫外光を、光量子数2.5μmol/m2/sの照度にて、15分間、4時間又は4日間連続で照射した(積算光量子数:2250、36000及び864000μmol/m2)。用いたLEDの発光スペクトルを図1に示す。
 その後、アントシアニンの測定まで暗所に静置した。コントロールとして、紫外光を照射することなく暗所に24時間静置したものを用いた。
(Experiment 1)
Arabidopsis thaliana was aseptically grown on MS (Murashige-Skoog) agar. Specifically, sterilized seeds are sown on MS agar medium, and in a plant incubator (BMS-PS08RGB2, biomedical science) at a temperature of 22-23 ° C for long days (light period 16 hours / dark period) 8 hours; under a photosynthetic effective photon flux density of 200 μmol / m 2 / s), the seedlings were grown for 14 days.
After growing for 14 days, using Arabidopsis thaliana with LED, peak wavelength 280nm (half width 10nm; Deep UV-LED / model: NCSU234BU280) or peak wavelength 310nm (half width 10nm; Deep UV-LED / model: NCSU234BU310) Ultraviolet light was irradiated for 15 minutes, 4 hours or 4 days continuously at an illuminance with a photon number of 2.5 μmol / m 2 / s (accumulated photon number: 2250, 36000 and 864000 μmol / m 2 ). The emission spectrum of the LED used is shown in FIG.
Then, it left still in the dark until the measurement of anthocyanin. As a control, one that was allowed to stand for 24 hours in the dark without being irradiated with ultraviolet light was used.
 紫外光照射の24時間後、シロイヌナズナ(乾燥重量約30mg)を凍結粉砕し、80%メタノールを用いる溶媒抽出に供した。
 得られた抽出液のアントシアニン量を下記の条件により高速液体クロマトグラフィー(LC-10、島津製作所)で分析した。
HPLC条件
・カラム:ODSカラム(Kinetex 5u C18 100 A、Phenomenex)
・カラム温度:40℃
・流速:2ml/分
・注入量:10μl
・移動相:溶離液A 0.1%ギ酸水溶液
     溶離液B 0.1%ギ酸アセトニトリル溶液
     リニアグラジエント 49分間かけてB:1%~99%
・検出:210~750nm
Twenty-four hours after irradiation with ultraviolet light, Arabidopsis thaliana (dry weight about 30 mg) was freeze-ground and subjected to solvent extraction using 80% methanol.
The amount of anthocyanins in the obtained extract was analyzed by high performance liquid chromatography (LC-10, Shimadzu Corporation) under the following conditions.
HPLC conditions / column: ODS column (Kinetex 5u C18 100 A, Phenomenex)
・ Column temperature: 40 ℃
・ Flow rate: 2 ml / min ・ Injection volume: 10 μl
-Mobile phase: eluent A 0.1% formic acid aqueous solution eluent B 0.1% formic acid acetonitrile solution linear gradient B: 1% to 99% over 49 minutes
・ Detection: 210 ~ 750nm
 結果を図2に示す。
 ピーク波長280nmの紫外光を15分間又は4時間照射したシロイヌナズナでは、アントシアニンの量(ピーク高)がコントロール(A)に対してそれぞれ3倍以上(B)又は2倍近く(C)に増加した。4日間照射後の植物では、アントシアニンは検出できなかった(D)。
 一方、ピーク波長310nmの紫外光を15分間、4時間又は4日間照射したシロイヌナズナでは、アントシアニンの量はコントロール(E)に対していずれも低下していた(F~H)。
The results are shown in FIG.
In Arabidopsis thaliana irradiated with ultraviolet light having a peak wavelength of 280 nm for 15 minutes or 4 hours, the amount of anthocyanin (peak height) increased to 3 times or more (B) or nearly 2 times (C) of the control (A), respectively. Anthocyanins could not be detected in plants after 4 days of irradiation (D).
On the other hand, in Arabidopsis thaliana irradiated with ultraviolet light having a peak wavelength of 310 nm for 15 minutes, 4 hours, or 4 days, the amount of anthocyanins was decreased with respect to the control (E) (F to H).
 この結果から、シロイヌナズナにおけるアントシアニン量の増加には、280nm付近の紫外光の照射が有効である一方、310nm付近の紫外光の照射は寄与しないどころか、アントシアニン量の低下を引き起こす何らかの負の影響をもたらすことが示された。 From these results, it is clear that irradiation with ultraviolet light near 280 nm is effective for increasing the amount of anthocyanins in Arabidopsis, while irradiation with ultraviolet light near 310 nm does not contribute, but rather has some negative effect that causes a decrease in the amount of anthocyanins. It was shown that.
(実験2)
 用いたLEDのピーク波長が270nm(半値幅10nm;Deep UV-LED/型式:NCU234BU270)又は300nm(半値幅10nm;Deep UV-LED/型式:NCU234BU300)であり、照射時間がピーク波長270nmについては15分間(積算光量子数:2250μmol/m2)、ピーク波長300nmについては15分間若しくは4時間(積算光量子数:それぞれ2250及び36000μmol/m2)であること以外は実験1と同様の実験を行った。用いたLEDの発光スペクトルを図3に示す。なお、図3において、比較のために、ピーク波長280nm及び310nmの発光スペクトルも示した。
(Experiment 2)
The peak wavelength of the LED used is 270 nm (half-width 10 nm; Deep UV-LED / model: NCU234BU270) or 300 nm (half-width 10 nm; Deep UV-LED / model: NCU234BU300), and the irradiation time is 15 for the peak wavelength 270 nm. The same experiment as in Experiment 1 was performed except that the time was 1 minute (integrated photon number: 2250 μmol / m 2 ), and the peak wavelength of 300 nm was 15 minutes or 4 hours (integrated photon number: 2250 and 36000 μmol / m 2, respectively). The emission spectrum of the LED used is shown in FIG. In FIG. 3, emission spectra with peak wavelengths of 280 nm and 310 nm are also shown for comparison.
 結果を図4に示す。なお、図には、比較のために、実験1の結果も示した。
 ピーク波長270nmの紫外光を15分間、又はピーク波長300nmの紫外光を15分間若しくは4時間照射したシロイヌナズナでは、アントシアニンの量(ピーク高)がコントロールに対していずれも低下していた。
 この結果から、270nm未満の紫外光の照射も300nm付近の紫外光の照射も、シロイヌナズナにおけるアントシアニン量の増加には寄与しないどころか、むしろアントシアニン量の低下を引き起こす何らかの負の影響をもたらすことが示された。
The results are shown in FIG. In addition, the figure also showed the result of Experiment 1 for comparison.
In Arabidopsis thaliana irradiated with ultraviolet light with a peak wavelength of 270 nm for 15 minutes or with ultraviolet light with a peak wavelength of 300 nm for 15 minutes or 4 hours, the amount of anthocyanin (peak height) was decreased relative to the control.
These results indicate that irradiation with UV light below 270 nm and UV light near 300 nm do not contribute to an increase in the amount of anthocyanins in Arabidopsis, but rather have some negative effect that causes a decrease in the amount of anthocyanins. It was.
 実験1及び2に用いたLEDの波長成分比を示す。
Figure JPOXMLDOC01-appb-T000002
The wavelength component ratio of the LED used in Experiments 1 and 2 is shown.
Figure JPOXMLDOC01-appb-T000002
(実験3)
 採取又は購入したスダチ(果皮)、ポドフィルム(根)、チャノキ(葉)及びダイズ(果皮)に、LED(Deep UV-LED/型式:NCSU234BU280)を用いて、ピーク波長280nm(半値幅10nm)の紫外光を、光量子数5μmol/m2/sの照度にて、15分間連続照射した(積算光量子数:4500μmol/m2)。葉や茎に対しては、乾燥及び老化を防ぐため純水に軽く浸した状態で紫外線を照射した。
 その後、フェノール性化合物の測定まで暗所に静置した。コントロールとして、紫外光を照射することなく暗所に24時間静置したものを用いた。なお、葉や茎については、乾燥及び老化を防ぐため純水に軽く浸した状態で暗置した。
(Experiment 3)
Collected or purchased sudachi (pepper), pod film (root), tea tree (leaf), and soybean (pepper) using LED (Deep UV-LED / model: NCSU234BU280), peak wavelength 280nm (half width 10nm) ultraviolet Light was continuously irradiated for 15 minutes at an illuminance of 5 μmol / m 2 / s of photon number (integrated photon number: 4500 μmol / m 2 ). The leaves and stems were irradiated with ultraviolet light in a state where they were lightly immersed in pure water to prevent drying and aging.
Then, it left still in the dark until the measurement of a phenolic compound. As a control, one that was allowed to stand for 24 hours in the dark without being irradiated with ultraviolet light was used. In addition, about the leaf and stem, in order to prevent dryness and aging, it was left in the state where it was lightly immersed in pure water.
 紫外光照射の24時間後、各植物の部位(乾燥重量約30mg)を凍結粉砕し、80%メタノールを用いる溶媒抽出に供した。
 得られた抽出液のフェノール性化合物量を下記の条件により高速液体クロマトグラフィー(Prominence、島津製作所)で分析した。
HPLC条件
・カラム:ODSカラム(Triart C18 (150×4.6mm, S-5μm)、YMC)
・カラム温度:40℃
・流速:1ml/分
・注入量:10μl
・移動相:溶離液A 0.1%ギ酸水溶液
     溶離液B 0.1%ギ酸アセトニトリル溶液
     リニアグラジエント 30分間かけてB:1%~100%
・検出:190~800nm
24 hours after the irradiation with ultraviolet light, each plant part (dry weight about 30 mg) was freeze-ground and subjected to solvent extraction using 80% methanol.
The amount of phenolic compound in the resulting extract was analyzed by high performance liquid chromatography (Prominence, Shimadzu Corporation) under the following conditions.
HPLC conditions / column: ODS column (Triart C18 (150 × 4.6mm, S-5μm), YMC)
・ Column temperature: 40 ℃
・ Flow rate: 1 ml / min ・ Injection volume: 10 μl
Mobile phase: Eluent A 0.1% formic acid aqueous solution Eluent B 0.1% formic acid acetonitrile solution Linear gradient B: 30% for 1% to 100%
・ Detection: 190-800nm
 結果を図5に示す。
 ピーク波長280nmの紫外光を15分間又は4時間照射したスダチ(果皮)、ポドフィルム(根)、チャノキ(葉)及びダイズ(果皮)で、フェノール性化合物の特徴である250~300nm付近に吸収を有するピークの増加が確認できた。
 この結果から、280nm付近の紫外光の照射は、スダチ、ポドフィルム、チャノキ及びダイズにおけるフェノール性化合物の増加に有効であることが示された。
The results are shown in FIG.
Sudachi (peel), pod film (root), chanoki (leaf), and soybean (peel) irradiated with ultraviolet light with a peak wavelength of 280 nm for 15 minutes or 4 hours have absorption at around 250 to 300 nm, which is characteristic of phenolic compounds An increase in peak was confirmed.
From this result, it was shown that the irradiation of ultraviolet light around 280 nm is effective for increasing phenolic compounds in sudachi, podophyllum, tea tree and soybean.
(実験4)
 購入したブドウの個々の実(果皮)に、LED(Deep UV-LED/型式:NCSU234BU280)を用いて、ピーク波長280nm(半値幅10nm)の紫外光を、光量子数2.5μmol/m2/sの照度にて、15分間又は4時間連続照射した(積算光量子数:それぞれ2250又は36000μmol/m2)。その後、フェノール性化合物の測定まで暗所に静置した。コントロールとして、紫外光を照射することなく暗所に24時間静置したものを用いた。
 紫外光照射の24時間後、果皮(乾燥重量約40~100mg)を凍結粉砕し、80%メタノールを用いる溶媒抽出に供した。得られた抽出液のフェノール性化合物量を、実験3と同条件により高速液体クロマトグラフィー(Prominence、島津製作所)で分析した。
(Experiment 4)
Using the LED (Deep UV-LED / model: NCSU234BU280), UV light with a peak wavelength of 280 nm (half width 10 nm) is applied to each purchased fruit (fruit skin) with a photon number of 2.5 μmol / m 2 / s. Irradiation was continued for 15 minutes or 4 hours at an illuminance (integrated photon number: 2250 or 36000 μmol / m 2, respectively). Then, it left still in the dark until the measurement of a phenolic compound. As a control, one that was allowed to stand for 24 hours in the dark without being irradiated with ultraviolet light was used.
After 24 hours of ultraviolet light irradiation, the peel (dry weight about 40-100 mg) was freeze-ground and subjected to solvent extraction using 80% methanol. The amount of phenolic compound in the obtained extract was analyzed by high performance liquid chromatography (Prominence, Shimadzu Corporation) under the same conditions as in Experiment 3.
 結果を図6に示す。
 ピーク波長280nmの紫外光を15分間又は4時間照射したブドウ(果皮)で、アントシアニンの特徴である520nm付近に吸収を有するピークの総面積の増加が確認できた(非照射コントロールに対して1.2~1.9倍増加)。
 この結果から、280nm付近の紫外光の照射は、非照射状態でアントシアニン含有量が多いブドウにおいても、アントシアニンの更なる増加に有効であることが示された。
The results are shown in FIG.
In grapes (fruit skin) irradiated with ultraviolet light with a peak wavelength of 280 nm for 15 minutes or 4 hours, an increase in the total area of the peak having an absorption around 520 nm, which is characteristic of anthocyanins, was confirmed (1.2 to 1.9 times increase).
From this result, it was shown that irradiation with ultraviolet light near 280 nm is effective for further increase of anthocyanins even in grapes having a high anthocyanin content in a non-irradiated state.
(実験5)
 実験1に記載の方法に従って、シロイヌナズナに、ピーク波長280nmの紫外光を15分間連続照射した(積算光量子数:2250μmol/m2)。
 その後、アントシアニンの測定まで12、24、48、72、96又は288時間暗所に静置した。
 暗置後、シロイヌナズナ(乾燥重量約30mg)を凍結粉砕し、80%メタノールを用いる溶媒抽出に供した。
 得られた抽出液のアントシアニン量は、実験1に記載の方法に従って分析した。
(Experiment 5)
According to the method described in Experiment 1, Arabidopsis thaliana was irradiated with ultraviolet light having a peak wavelength of 280 nm continuously for 15 minutes (integrated photon number: 2250 μmol / m 2 ).
Then, it was left still in the dark for 12, 24, 48, 72, 96 or 288 hours until the measurement of anthocyanin.
After darkening, Arabidopsis thaliana (dry weight about 30 mg) was freeze-ground and subjected to solvent extraction using 80% methanol.
The amount of anthocyanin in the obtained extract was analyzed according to the method described in Experiment 1.
 結果を図7に示す。図中に示す倍数(例えば、「×0.4」や「×4.0」)は、紫外光照射後24時間暗置したときの量(基準値)に対するものである。なお、紫外線照射後に24時間暗置したときには、アントシアニン量が、非照射コントロールに対して3倍増加していること留意されたい[図1を参照]。すなわち、紫外光照射後24時間暗置時に対する「0.4倍」及び「4倍」は、非照射コントロールに対してはそれぞれ「1.2倍」及び「12倍」を意味する。
 この結果から、紫外光照射後24時間以上暗置すると、紫外線照射植物におけるフェノール化合物の量が更に増加することが示された。
The results are shown in FIG. The multiples shown in the figure (for example, “× 0.4” or “× 4.0”) are relative to the amount (reference value) when darkened for 24 hours after irradiation with ultraviolet light. It should be noted that the amount of anthocyanin increased by a factor of 3 with respect to the non-irradiated control when darkened for 24 hours after UV irradiation [see FIG. 1]. That is, “0.4 times” and “4 times” with respect to dark storage for 24 hours after ultraviolet light irradiation mean “1.2 times” and “12 times” for the non-irradiation control, respectively.
From this result, it was shown that the amount of the phenolic compound in the ultraviolet irradiation plant was further increased when left for 24 hours or longer after the ultraviolet irradiation.
(実験6)
遺伝子発現解析
トータルRNAの調製
 トータルRNAは、ピーク波長280nm(半値幅10nm;Deep UV-LED/型式:NCSU234BU280)の紫外光を45分間照射したシロイヌナズナから、照射後すぐに、RNeasy mini kit (Qiagen)を用い、取扱説明書に従って調製した。

発現解析
 調製したトータルRNAについてRNA-seq解析を行った(タカラバイオ株式会社)。シーケンス解析には、HiSeq2500システム(イルミナ社)を用い、参照配列データとしてTAIR10.37を用いた。
(Experiment 6)
Preparation of total RNA for gene expression analysis Total RNA is RNeasy mini kit (Qiagen) immediately after irradiation from Arabidopsis thaliana irradiated for 45 minutes with UV light of peak wavelength 280nm (half width 10nm; Deep UV-LED / model: NCSU234BU280) And prepared according to the instruction manual.

Expression analysis RNA-seq analysis was performed on the prepared total RNA (Takara Bio Inc.). For sequence analysis, HiSeq2500 system (Illumina) was used and TAIR10.37 was used as reference sequence data.
 表2に、発現量(FPKM;Fragments Per Kilobase of exon per Million mapped reads)が2倍以上となった遺伝子を示す。
Figure JPOXMLDOC01-appb-T000003
 表中、「*」が付された遺伝子は、フェノール化合物の生合成経路(図8)に関与する酵素の遺伝子であることを示す。
Table 2 shows genes whose expression levels (FPKM: Fragments Per Kilobase of exon per million mapped reads) are more than twice.
Figure JPOXMLDOC01-appb-T000003
In the table, a gene marked with “*” indicates a gene of an enzyme involved in the biosynthesis pathway of a phenol compound (FIG. 8).
 280nm付近の紫外光を照射した植物におけるアントシアニンの増量は、280nm付近の紫外光が、光受容体UVR8の活性化(単量体化)を介して、UV-B光受容体媒介シグナル伝達系を刺激し(表2)、結果として、シキミ酸経路の律速の1つであるカルコンシンターゼの発現を増大させたことによるものと推察される。したがって、280nm付近の紫外光の照射により、植物中では、アントシアニンの量のみならず、シキミ酸経路を経て合成されるフェノール性化合物一般が増量すると考えられる(実験3及び4、図5及び6)。
 また、光受容体UVR8、UV-B光受容体媒介シグナル伝達系及びシキミ酸経路は、シロイヌナズナのみならず植物界一般に存在するため、280nmの紫外光の照射により、植物一般において、フェノール性化合物の量が増加すると考えられる。
The increase of anthocyanins in plants irradiated with ultraviolet light near 280 nm is caused by UV-B photoreceptor-mediated signal transduction via UVR8 activation (monomerization). It is speculated that this was caused by stimulating (Table 2) and, as a result, increasing the expression of chalcone synthase, which is one of the rate limiting factors of the shikimate pathway. Therefore, irradiation with ultraviolet light near 280 nm increases not only the amount of anthocyanins but also the amount of phenolic compounds synthesized in general via the shikimic acid pathway ( Experiments 3 and 4, FIGS. 5 and 6). .
Furthermore, the photoreceptor UVR8, UV-B photoreceptor-mediated signal transduction system and shikimate pathway exist not only in Arabidopsis but also in the plant kingdom. The amount is thought to increase.

Claims (21)

  1. 植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となり、且つ310nm~400nmの波長域の光の照射量が前記270nm~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とする植物中のフェノール性化合物の増量方法。 Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, and the irradiation dose of light in the wavelength range of 270 to 290 nm is 1500 to 50000 μmol / m 2 and the irradiation dose of light in the wavelength range of 310 to 400 nm is A method for increasing the amount of a phenolic compound in a plant, wherein the irradiation is performed so that the irradiation amount is less than 50%.
  2. 前記310nm~400nmの波長域の光の照射量が、前記270~290nmの波長域の光の照射量の10%未満である請求項1に記載の方法。 The method according to claim 1, wherein the irradiation amount of light in the wavelength region of 310 nm to 400 nm is less than 10% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
  3. 300~400nmの波長域の光の照射量が、前記270~290nmの波長域の光の照射量の50%未満である請求項1に記載の方法。 The method according to claim 1, wherein the irradiation amount of light in the wavelength region of 300 to 400 nm is less than 50% of the irradiation amount of light in the wavelength region of 270 to 290 nm.
  4. 前記270~290nmの波長域の光が1~5μmol/m2/sの光子量束密度で照射される請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the light in the wavelength region of 270 to 290 nm is irradiated at a photon flux density of 1 to 5 µmol / m 2 / s.
  5. 200nm~260nmの波長域の光の照射量が、前記270~290nmの波長域の光の照射量の20%未満である請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein an irradiation amount of light in a wavelength region of 200 nm to 260 nm is less than 20% of an irradiation amount of light in the wavelength region of 270 to 290 nm.
  6. 200nm以上270nm未満の波長域の光の照射量が、前記270~290nmの波長域の光の照射量の10%未満である請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein an irradiation amount of light in a wavelength region of 200 nm or more and less than 270 nm is less than 10% of an irradiation amount of light in the wavelength region of 270 to 290 nm.
  7. 前記紫外光がピーク波長280±5nm及び半値幅5~15nmの波長スペクトルを有する光である請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the ultraviolet light is light having a wavelength spectrum having a peak wavelength of 280 ± 5 nm and a half-value width of 5 to 15 nm.
  8. 前記紫外光がLEDを光源とする光である請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the ultraviolet light is light having an LED as a light source.
  9. 植物への紫外光照射が暗所で行われる請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the plant is irradiated with ultraviolet light in a dark place.
  10. 紫外光照射後、植物を12時間以上暗置することを更に含む請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, further comprising darkening the plant for 12 hours or longer after the irradiation with ultraviolet light.
  11. 植物を48時間以上288時間未満暗置する請求項10に記載の方法。 The method according to claim 10, wherein the plant is darkened for 48 hours or more and less than 288 hours.
  12. 前記植物がアブラナ科、メギ科、ツバキ科、マメ科、ミカン科又はブドウ科植物である請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the plant is a cruciferous, barberry, camellia, legume, citrus or grape plant.
  13. 前記植物がシロイヌナズナ、ポドフィルム、チャノキ、ダイズ、スダチ、ブドウ、キャベツ、ブロッコリー、コマツナ、チンゲンサイ、ダイコン、カブ、トマト、ナス、イチゴ、レタス及びシソから選択される植物である請求項1~12のいずれか1項に記載の方法。 The plant according to any one of claims 1 to 12, wherein the plant is a plant selected from Arabidopsis thaliana, podophyllum, chanoki, soybean, sudachi, grape, cabbage, broccoli, komatsuna, chingensai, radish, turnip, tomato, eggplant, strawberry, lettuce and perilla. The method according to claim 1.
  14. 前記フェノール性化合物がポリフェノールである請求項1~13のいずれか1項に記載の方法。 The method according to any one of claims 1 to 13, wherein the phenolic compound is polyphenol.
  15. 前記ポリフェノールがフラボノイドである請求項14に記載の方法。 15. The method of claim 14, wherein the polyphenol is a flavonoid.
  16. 前記フラボノイドがアントシアニンである請求項15に記載の方法。 The method of claim 15, wherein the flavonoid is an anthocyanin.
  17. 植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となる一方、310nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満となるように照射することを特徴とするフェノール性化合物の含有量が増加した植物を生産する方法。 Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 310 to 400 nm is 1500 to 50000 μmol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light. A method for producing a plant having an increased content of a phenolic compound, wherein the irradiation is performed so that the amount of irradiation is less than 50% of the amount of irradiation.
  18. 植物に、紫外光を、270~290nmの波長域の光の照射量が1500~50000μmol/m2となる一方、300nm~400nmの波長域の光の照射量が前記270~290nmの波長域の光の照射量の50%未満、200nm以上270nm未満の波長域の光の照射量が、前記270~290nmの波長域の光の照射量の10%未満となるように照射することを特徴とするフェノール性化合物の含有量が増加した植物を生産する方法。 Plants are irradiated with ultraviolet light in the wavelength range of 270 to 290 nm, while the irradiation dose of light in the wavelength range of 300 to 400 nm is 1500 to 50000 μmol / m 2 , while the light dose in the wavelength range of 270 to 290 nm is light. Irradiation is performed so that the irradiation amount of light in a wavelength region of less than 50% and less than 200 nm and less than 270 nm is less than 10% of the irradiation amount of light in the wavelength region of 270 to 290 nm. A method for producing a plant having an increased content of a sex compound.
  19. 植物がスプラウト状態である請求項17又は18に記載の方法。 The method according to claim 17 or 18, wherein the plant is in a sprout state.
  20. 植物が非栽培状態である請求項17又は18に記載の方法。 The method according to claim 17 or 18, wherein the plant is in a non-cultivated state.
  21.  波長域270~290nmの光を発することができ、且つ波長域300nm~400nmの発光量が波長域270~290nmの発光量の50%未満で、波長域200nm以上270nm未満の発光量が波長域270~290nmの発光量の10%未満である光源と、
     植物に対する波長域270~290nmの光の照射量が1500~50000μmol/m2となるように光源を制御する制御部
     を備え、植物中のフェノール性化合物を増量させるために用いることを特徴とする照明装置。
    It can emit light in the wavelength range 270 to 290 nm, and the emission amount in the wavelength range 300 nm to 400 nm is less than 50% of the emission amount in the wavelength range 270 to 290 nm, and the emission amount in the wavelength range 200 nm to less than 270 nm is the wavelength range 270. A light source that is less than 10% of the emitted light of ~ 290 nm;
    Illumination characterized by having a control unit that controls the light source so that the irradiation amount of light in the wavelength range of 270 to 290 nm to the plant is 1500 to 50000 μmol / m 2, and is used to increase the amount of phenolic compounds in the plant apparatus.
PCT/JP2018/017259 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant WO2018199307A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3060371A CA3060371A1 (en) 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant
CN201880027839.0A CN110809398B (en) 2017-04-28 2018-04-27 Method for increasing phenolic compounds in plants
IL269967A IL269967B2 (en) 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant
EP18789908.3A EP3616499A4 (en) 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant
US16/608,756 US11606912B2 (en) 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-090020 2017-04-28
JP2017090020 2017-04-28
JP2018-038715 2018-03-05
JP2018038715A JP6885360B2 (en) 2017-04-28 2018-03-05 Method of increasing the amount of phenolic compounds in plants

Publications (1)

Publication Number Publication Date
WO2018199307A1 true WO2018199307A1 (en) 2018-11-01

Family

ID=63919912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017259 WO2018199307A1 (en) 2017-04-28 2018-04-27 Method for increasing amount of phenolic compound in plant

Country Status (2)

Country Link
IL (1) IL269967B2 (en)
WO (1) WO2018199307A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006342A1 (en) 2019-07-10 2021-01-14 日亜化学工業株式会社 Plant treatment device
JP2022031122A (en) * 2020-08-05 2022-02-18 日亜化学工業株式会社 Method of increasing amount of stilbenoid in plant and/or metabolite of tca cycle, polyamine alkaloid, 4-amino butyrate, abscisic acid and/or salt thereof, method of growing plant in which amount of the compound is increased, plant in which amount of the compound is increased, and food or beverage using the plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121228A (en) 2002-08-01 2004-04-22 New Industry Research Organization Method for increasing polyphenol content of harvested plant
JP2008086272A (en) 2006-10-03 2008-04-17 Yamaguchi Univ Method for reinforcing nutritional component of plant body
JP2016007185A (en) * 2014-06-26 2016-01-18 広島県 Tomato seedling raising method, seedling raising apparatus and plant factory
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121228A (en) 2002-08-01 2004-04-22 New Industry Research Organization Method for increasing polyphenol content of harvested plant
JP2008086272A (en) 2006-10-03 2008-04-17 Yamaguchi Univ Method for reinforcing nutritional component of plant body
JP2016007185A (en) * 2014-06-26 2016-01-18 広島県 Tomato seedling raising method, seedling raising apparatus and plant factory
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUSANO ET AL., THE PLANT JOURNAL, vol. 67, 2011, pages 354 - 369

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006342A1 (en) 2019-07-10 2021-01-14 日亜化学工業株式会社 Plant treatment device
EP3997976A4 (en) * 2019-07-10 2023-08-02 Nichia Corporation Plant treatment device
JP7462139B2 (en) 2019-07-10 2024-04-05 日亜化学工業株式会社 Plant Treatment Equipment
JP2022031122A (en) * 2020-08-05 2022-02-18 日亜化学工業株式会社 Method of increasing amount of stilbenoid in plant and/or metabolite of tca cycle, polyamine alkaloid, 4-amino butyrate, abscisic acid and/or salt thereof, method of growing plant in which amount of the compound is increased, plant in which amount of the compound is increased, and food or beverage using the plant
JP7197813B2 (en) 2020-08-05 2022-12-28 日亜化学工業株式会社 A method for increasing the amount of stilbenoids and/or TCA cycle metabolites, polyamine alkaloids, 4-aminobutyric acid, abscisic acid and/or salts thereof in plants, a method for producing a plant having an increased content of said compound, and an increased content of said compound plants and foods or beverages using said plants

Also Published As

Publication number Publication date
IL269967B2 (en) 2023-12-01
IL269967B1 (en) 2023-08-01
IL269967A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6885360B2 (en) Method of increasing the amount of phenolic compounds in plants
Samuolienė et al. LED irradiance level affects growth and nutritional quality of Brassica microgreens
Johkan et al. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce
Brazaityte et al. Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens
Tegelberg et al. Red: far‐red light ratio and UV‐B radiation: their effects on leaf phenolics and growth of silver birch seedlings
Zheng et al. Effects of different irradiation levels of light quality on Chrysanthemum
Brazaitytė et al. Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions
Choi et al. Effect of different light emitting diode (LED) lights on the growth characteristics and the phytochemical production of strawberry fruits during cultivation
JP5448043B2 (en) Method for enhancing nutritional components of plants
JP4886181B2 (en) Method for promoting growth of short-day plants and neutral plants using short-time supplementary light
JP6096407B2 (en) Leafy vegetables cultivation method
KR20180054455A (en) A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source
WO2018199307A1 (en) Method for increasing amount of phenolic compound in plant
Brazaityte et al. The effect of short-term red lighting on Brassicaceae microgreens grown indoors
Lekkham et al. Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system
JP2006020565A (en) Method and device for producing sprout vegetable highly containing polyphenol
Wojciechowska et al. High ratio of red-to-blue LED light improves the quality of ‘Rupert’inflorescence
Li et al. Analysis of photosynthetic characteristics and UV-B absorbing compounds in mung bean using UV-B and red LED radiation
KR102418254B1 (en) Cultivation method to increase functional substances of hemp(Cannabis sativa)
Lopez et al. Introduction to specialty crop lighting
WAMBRAUW et al. Effect of supplemental light on the quality of green asparagus spears in winter ‘Fusekomi’forcing culture
KR102415907B1 (en) Cultivation method to increase cannabidiol(CBD) of hemp(Cannabis sativa)
JP5666217B2 (en) Leaf lettuce cultivation method and cultivation facility
JP6823504B2 (en) How to increase the amount of secondary metabolites contained in flowers
Son et al. Enhancement of accumulation of bioactive compounds in red leaf lettuce by manipulation of UV light before harvest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3060371

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018789908

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018789908

Country of ref document: EP

Effective date: 20191128