JP4884101B2 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP4884101B2
JP4884101B2 JP2006177680A JP2006177680A JP4884101B2 JP 4884101 B2 JP4884101 B2 JP 4884101B2 JP 2006177680 A JP2006177680 A JP 2006177680A JP 2006177680 A JP2006177680 A JP 2006177680A JP 4884101 B2 JP4884101 B2 JP 4884101B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
crystal
crystal particles
manganese
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006177680A
Other languages
Japanese (ja)
Other versions
JP2008010530A (en
Inventor
勇介 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006177680A priority Critical patent/JP4884101B2/en
Publication of JP2008010530A publication Critical patent/JP2008010530A/en
Application granted granted Critical
Publication of JP4884101B2 publication Critical patent/JP4884101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層セラミックコンデンサに関し、特に、チタン酸バリウムを主成分とする結晶粒子によって形成される誘電体層と内部電極層と備えた小型高容量の積層セラミックコンデンサに関する。
The present invention relates to a multilayer ceramic con den Sa, particularly, it relates to a multilayer ceramic con den Sa small high capacitance with the dielectric layers and internal electrode layers formed by crystal grains mainly composed of barium titanate.

近年、積層セラミックコンデンサは小型化および高容量化の要求に対して、誘電体層の薄層化が行われており、誘電体層を構成するチタン酸バリウムなどの結晶粒子は微粒化が図られている。   In recent years, multilayer ceramic capacitors have been made thinner dielectric layers in response to demands for smaller size and higher capacity, and crystal grains such as barium titanate constituting the dielectric layers have been made finer. ing.

また、内部電極層の卑金属化により、還元雰囲気での焼成が必要なことから、誘電体層となる誘電体磁器の主成分であるチタン酸バリウムは、希土類元素、マグネシウムおよびマンガンなどの添加物が加えられ、耐還元性を高めたものとなっている。   In addition, since the internal electrode layer needs to be fired in a reducing atmosphere due to the formation of a base metal, barium titanate, which is the main component of the dielectric porcelain serving as the dielectric layer, contains additives such as rare earth elements, magnesium and manganese. In addition, the reduction resistance is improved.

上記のような添加物を含むチタン酸バリウムを主成分とする結晶粒子は、内部が強誘電性を示すドメイン分域を残した正方晶の割合の多いコア部となり、一方、コア部の周囲は添加物が固溶することにより結晶構造が正方晶から立方晶へと変化したシェル部となり、コアシェル構造が形成されている(例えば、特許文献1参照)。   Crystal grains mainly composed of barium titanate containing the above-mentioned additive have a core portion with a large proportion of tetragonal crystals leaving a domain domain showing ferroelectricity, while the periphery of the core portion is When the additive is dissolved, a shell portion in which the crystal structure is changed from a tetragonal crystal to a cubic crystal is formed, and a core-shell structure is formed (for example, see Patent Document 1).

そしてこのようなコアシェル構造を有する微粒のチタン酸バリウムを主成分とする誘電体磁器を薄層化した誘電体層とし、小型高容量の積層セラミックコンデンサが作られている。
特開平6−5460号公報
A dielectric ceramic layer composed mainly of such fine-grained barium titanate having a core-shell structure is used as a thin dielectric layer to produce a small-sized and high-capacity multilayer ceramic capacitor.
JP-A-6-5460

しかしながら、チタン酸バリウムを主成分とする誘電体粉末から得られた結晶粒子にはサイズ効果があることから結晶粒子径が小さくなると比誘電率が低下するという問題があり、一方、結晶粒子径が大きくなると所定厚みの誘電体層中に形成される粒界数が減少することから絶縁性が低下する。このため薄層化した誘電体層において高誘電率かつ高絶縁性を確保することが困難になってきている。   However, there is a problem that the relative permittivity decreases when the crystal particle size is reduced because the crystal particles obtained from the dielectric powder mainly composed of barium titanate have a size effect. When it is increased, the number of grain boundaries formed in the dielectric layer having a predetermined thickness is reduced, so that the insulating property is lowered. For this reason, it has become difficult to ensure a high dielectric constant and high insulation in a thin dielectric layer.

従って、本発明は、結晶粒子径を小さくしても高誘電率かつ高絶縁性の得られる誘電体層を具備する積層セラミックコンデンサを提供することを目的とする。
Accordingly, the present invention aims at providing a multilayer ceramic con den support having a high dielectric constant by reducing the crystal grain size and highly insulating the dielectric layer obtained.

本発明の積層セラミックコンデンサは、チタン酸バリウムを主成分とし、マグネシウム、マンガンおよび希土類元素が酸化物として固溶した複数の結晶粒子により形成された誘電体層と内部電極層とが交互に積層されている積層セラミックコンデンサであって、前記結晶粒子は粒界からの深さ20nmにおける前記マグネシウム、マンガンおよび希土類元素の合計の固溶量がBa、Ti、マグネシウム、マンガン、希土類元素の全量に対して0.05〜0.15原子%である第1結晶粒子と、粒界からの深さ20nmにおける前記マグネシウム、マンガンおよび希土類元素の合計の固溶量がBa、Ti、マグネシウム、マンガン、希土類元素の全量に対して0.2〜0.4原子%である第2結晶粒子とを有し、前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径よりも小さいことを特徴とするものであり、上記積層セラミックコンデンサでは、前記第1結晶粒子の平均粒径が0.271〜0.316μmの範囲であり、かつ第2結晶粒子の平均粒径が0.33〜0.39μmの範囲であることが望ましい。
The multilayer ceramic capacitor of the present invention is composed of alternately laminated dielectric layers and internal electrode layers formed of a plurality of crystal particles containing barium titanate as a main component and magnesium, manganese and rare earth elements dissolved as oxides. In the multilayer ceramic capacitor, the crystal particles have a total solid solution amount of magnesium, manganese and rare earth elements at a depth of 20 nm from the grain boundary with respect to the total amount of Ba, Ti, magnesium, manganese and rare earth elements. The total solid solution amount of the first crystal grains of 0.05 to 0.15 atomic% and the magnesium, manganese, and rare earth elements at a depth of 20 nm from the grain boundary is Ba, Ti, magnesium, manganese, rare earth elements. and a second crystal grains is 0.2 to 0.4 atomic% of the total amount, the average particle diameter of the first crystal grains And characterized in a serial smaller this than the average grain size of the second crystal grains, in the multilayer ceramic capacitor, the average particle diameter of the first crystal grains is in the range of 0.271~0.316Myuemu, The average grain size of the second crystal particles is preferably in the range of 0.33 to 0.39 μm.

本発明の積層セラミックコンデンサは、マグネシウム、マンガンおよび希土類元素の酸化物の固溶量が上記した範囲で異なる結晶粒子が混在するように誘電体層を形成したものである。上記酸化物の固溶量の多い結晶粒子は粒成長により高い比誘電率を得ることができ、一方、同酸化物の固溶量の少ない結晶粒子はサイズ効果のために結晶粒子径は小さいが高い絶縁性を得ることができる。   The multilayer ceramic capacitor of the present invention is such that a dielectric layer is formed so that different crystal grains are mixed within the above-mentioned ranges of solid solution amounts of oxides of magnesium, manganese and rare earth elements. Crystal grains having a large solid solution amount of the oxide can obtain a high relative dielectric constant by grain growth, whereas crystal particles having a small solid solution amount of the oxide have a small crystal particle diameter due to the size effect. High insulation can be obtained.

この場合、上記酸化物の固溶量の多い結晶粒子の粒子間に同酸化物の固溶量の少ない結晶粒子を混在させることにより、所定厚みの誘電体層中において高誘電率かつ高絶縁性を確保できる。   In this case, a high dielectric constant and a high insulating property can be obtained in a dielectric layer having a predetermined thickness by mixing crystal particles having a small solid solution amount of the oxide between the crystal particles having a large solid solution amount of the oxide. Can be secured.

図1は、本発明の積層セラミックコンデンサを示す断面模式図である。本発明の積層セラミックコンデンサはコンデンサ本体1の端部に外部電極2が設けられている。この外部電極2は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。コンデンサ本体1は誘電体層3と内部電極層4とが交互に積層され構成されている。この誘電体層3の厚みは1.5μm以下、特に1.2μm以下であることが望ましい。誘電体層3の厚みが1.5μm以下であると誘電体層3の薄層化により積層セラミックコンデンサの静電容量が高められるという利点がある。なお、誘電体層3の厚みは0.5μm以上であることが望ましい。誘電体層5の厚みが0.5μm以上であると、誘電体層5において高い絶縁性の得られる所望の厚みを確保できるという利点がある。   FIG. 1 is a schematic cross-sectional view showing a multilayer ceramic capacitor of the present invention. The multilayer ceramic capacitor of the present invention is provided with an external electrode 2 at the end of a capacitor body 1. The external electrode 2 is formed by baking, for example, Cu or an alloy paste of Cu and Ni. The capacitor body 1 is configured by alternately laminating dielectric layers 3 and internal electrode layers 4. The thickness of the dielectric layer 3 is desirably 1.5 μm or less, particularly 1.2 μm or less. If the thickness of the dielectric layer 3 is 1.5 μm or less, there is an advantage that the capacitance of the multilayer ceramic capacitor can be increased by making the dielectric layer 3 thinner. The thickness of the dielectric layer 3 is preferably 0.5 μm or more. When the thickness of the dielectric layer 5 is 0.5 μm or more, there is an advantage that a desired thickness capable of obtaining high insulation can be secured in the dielectric layer 5.

内部電極層4は高積層化しても製造コストを抑制できるという点でNiやCuなどの卑金属が望ましく、特に、本発明の積層セラミックコンデンサを構成する誘電体層3との同時焼成を図るという点でNiがより望ましい。この内部電極層4の厚みは平均で1μm以下が好ましい。   The internal electrode layer 4 is preferably a base metal such as Ni or Cu in that the manufacturing cost can be suppressed even if the internal electrode layer 4 is highly laminated. In particular, simultaneous firing with the dielectric layer 3 constituting the multilayer ceramic capacitor of the present invention is intended. Ni is more desirable. The thickness of the internal electrode layer 4 is preferably 1 μm or less on average.

図2は、本発明の積層セラミックコンデンサを構成する誘電体層の微構造を示す模式図である。誘電体層3を形成する誘電体磁器は、元素として、少なくともチタン酸バリウム(BaTiO)を主成分とする結晶粒子5と粒界6とから構成されており、また、結晶粒子5は第1結晶粒子5Aと第2結晶粒子5Bによって構成されている。結晶粒子5の平均粒径は0.5μm以下、特に0.4μm以下であることが望ましい。結晶粒子5の平均粒径が0.5μm以下であると積層セラミックコンデンサにおいて誘電体層3を薄層化したときに高い絶縁性を得ることができるという利点がある。なお、本発明の誘電体層3を構成する結晶粒子5の平均粒径は0.1μm以上であることが望ましい。結晶粒子5の平均粒径が0.1μm以上であると結晶粒子5の結晶性を高められることに起因して高誘電率化を図ることができるという利点がある。 FIG. 2 is a schematic diagram showing a microstructure of a dielectric layer constituting the multilayer ceramic capacitor of the present invention. The dielectric ceramic forming the dielectric layer 3 is composed of crystal grains 5 and grain boundaries 6 mainly composed of at least barium titanate (BaTiO 3 ) as elements. The crystal grains 5A and the second crystal grains 5B are configured. The average particle size of the crystal particles 5 is preferably 0.5 μm or less, particularly 0.4 μm or less. When the average grain size of the crystal grains 5 is 0.5 μm or less, there is an advantage that high insulation can be obtained when the dielectric layer 3 is thinned in the multilayer ceramic capacitor. The average particle size of the crystal particles 5 constituting the dielectric layer 3 of the present invention is preferably 0.1 μm or more. If the average particle size of the crystal particles 5 is 0.1 μm or more, there is an advantage that the crystallinity of the crystal particles 5 can be increased, and thus a high dielectric constant can be achieved.

図3は、本発明の積層セラミックコンデンサを構成する誘電体層におけるコア、シェル比の異なる結晶粒子5A、5Bの模式図である。また、図4は、本発明に係る第1結晶粒子5Aおよび第2結晶粒子5Bにおける添加物の粒界から粒内への固溶量の変化を示した模式図である。図4において示した破線と5A、5Bの曲線の交わる点がシェル部5bの厚みである。
FIG. 3 is a schematic diagram of crystal particles 5A and 5B having different core and shell ratios in the dielectric layer 3 constituting the multilayer ceramic capacitor of the present invention. FIG. 4 is a schematic diagram showing a change in the amount of solid solution from the grain boundary of the additive in the first crystal particle 5A and the second crystal particle 5B according to the present invention. The point where the broken line shown in FIG. 4 and the curves 5A and 5B intersect is the thickness of the shell portion 5b.

つまり、本発明の積層セラミックコンデンサにおける誘電体層3を構成する結晶粒子5は、その内部に正方晶を示すコア部5aと、コア部5aの周囲に立方晶を示すシェル部5bとから構成される。また、このシェル部5bには添加物であるマグネシウム(Mg)、マンガン(Mn)および希土類元素(Y、Dy、Ho、TbおよびYbから選ばれる少なくとも1種)の酸化物が固溶している。   That is, the crystal particles 5 constituting the dielectric layer 3 in the multilayer ceramic capacitor of the present invention are composed of a core part 5a showing tetragonal crystal inside and a shell part 5b showing cubic crystal around the core part 5a. The In addition, the shell portion 5b is solid-dissolved with oxides of magnesium (Mg), manganese (Mn) and rare earth elements (at least one selected from Y, Dy, Ho, Tb and Yb) as additives. .

本発明の積層セラミックコンデンサを構成する誘電体層は上記マグネシウム、マンガンおよび希土類元素(Y、Dy、Ho、TbおよびYbから選ばれる少なくとも1種)の酸化物の固溶量の合計が異なる第1結晶粒子5Aおよび第2結晶粒子5Bの2種の結晶粒子から構成されていることを特徴とするものであり、図4に示すようにこれら第1結晶粒子5Aおよび第2結晶粒子5Bは添加物であるマグネシウム、マンガンおよび希土類元素(Y、Dy、Ho、TbおよびYbから選ばれる少なくとも1種)の酸化物の固溶量が結晶粒子5の粒界から内部にかけて変化しているものである。
The dielectric layer 3 constituting the multilayer ceramic capacitor of the present invention has different total solid solution amounts of oxides of magnesium, manganese and rare earth elements (at least one selected from Y, Dy, Ho, Tb and Yb). The first crystal particle 5A and the second crystal particle 5B are composed of two kinds of crystal particles, that is, a first crystal particle 5A and a second crystal particle 5B. magnesium those in which, but manganese and rare earth element dissolved amount of oxides of (Y, Dy, Ho, at least one selected from Tb and Yb) are turned into variable over inside the grain boundaries of crystal grains 5 is there.

そして、本発明では粒界からの深さ20nmにおける上記マグネシウム、マンガンおよび希土類元素の合計の固溶量がBa、Ti、マグネシウム、マンガン、希土類元素の全量に対して0.05〜0.15原子%である第1の結晶粒子5Aと、0.2〜0.4原子%である第2の結晶粒子5Bとから構成されることが重要であり、特に、第1結晶粒子5Aにおける上記マグネシウム、マンガンおよび希土類元素の合計の固溶量が0.1〜0.15原子%の範囲であり、かつ第2の結晶粒子5Bにおける上記マグネシウム、マンガンおよび希土類元素の合計の固溶量が0.22〜0.38原子%の範囲であることがさらに望ましい。また、第1結晶粒子5Aの平均粒径が0.271〜0.316μmであり、かつ第2結晶粒子5Bの平均粒径が0.331〜0.39μmの範囲であることが望ましい。
In the present invention, the total solid solution amount of the magnesium, manganese, and rare earth element at a depth of 20 nm from the grain boundary is 0.05 to 0.15 atom relative to the total amount of Ba, Ti, magnesium, manganese, and rare earth element. % First crystal grains 5A , 0 . It is important to be composed of 2 to 0.4 atomic% of the second crystal particles 5B. In particular, the total solid solution amount of the magnesium, manganese and rare earth elements in the first crystal particles 5A is 0.00. Further, the total solid solution amount of the magnesium, manganese and rare earth elements in the second crystal particle 5B is in the range of 0.22 to 0.38 atomic%. desirable. In addition, it is desirable that the average particle diameter of the first crystal particles 5A is 0.271 to 0.316 μm and the average particle diameter of the second crystal particles 5B is in the range of 0.331 to 0.39 μm.

第1の結晶粒子5Aおよび第2の結晶粒子5Bが上記固溶量および平均粒径の範囲を満足する場合には比誘電率を3610以上、かつ絶縁抵抗を1×10Ω以上に高められるという利点がある。 When the first crystal particles 5A and the second crystal particles 5B satisfy the above solid solution amount and average particle size ranges, the relative dielectric constant can be increased to 3610 or higher and the insulation resistance can be increased to 1 × 10 9 Ω or higher. There is an advantage.

これに対して、誘電体層3を構成する結晶粒子5が上記本発明のように上記酸化物の固溶量が2つの範囲に分かれた固溶量を有してなく、ほぼ1つの固溶量を示す結晶粒子5からしか構成されない場合、例えば、絶縁抵抗が1×10Ω以上であっても比誘電率が3000以下であるか、または、比誘電率が3960以上であっても絶縁抵抗が1×10Ω以下となる。 On the other hand, the crystal particles 5 constituting the dielectric layer 3 do not have a solid solution amount in which the solid solution amount of the oxide is divided into two ranges as in the present invention. In the case where it is composed only of crystal grains 5 indicating the amount, for example, even if the insulation resistance is 1 × 10 8 Ω or more, the relative dielectric constant is 3000 or less, or the relative dielectric constant is 3960 or more. Resistance becomes 1 × 10 7 Ω or less.

本発明の積層セラミックコンデンサにおける誘電体層3を構成する結晶粒子5はマグネシウム、マンガン、および希土類元素などの成分によってコアシェル構造を構成するものであり、チタン酸バリウムを主成分とする結晶粒子5の耐還元性を高めることができるという利点がある。なお、コアシェル構造をとる結晶粒子5では、上記マグネシウム、マンガン、および希土類元素などの成分は結晶粒子5の表面側のシェル部5b側に主として偏在し、コア部5aはシェル部5bよりも上記成分の含有量が少ないものであることが望ましい。コア部5aにマグネシウム、マンガン、および希土類元素などの成分の含有量が少ないとコア部11aを構成するペロブスカイト型構造を有するチタン酸バリウムの正方晶の割合を高められるという利点がある。この場合、結晶粒子5の正方晶性を示す指標として格子定数比c/aが1.005以上であることが望ましい。   The crystal particles 5 constituting the dielectric layer 3 in the multilayer ceramic capacitor of the present invention constitute a core-shell structure with components such as magnesium, manganese, and rare earth elements, and the crystal particles 5 mainly composed of barium titanate. There is an advantage that the reduction resistance can be enhanced. In the crystal particles 5 having a core-shell structure, the components such as magnesium, manganese, and rare earth elements are mainly unevenly distributed on the shell portion 5b side on the surface side of the crystal particles 5, and the core portion 5a has the above components than the shell portion 5b. It is desirable that the content of is low. When the core portion 5a has a small content of components such as magnesium, manganese, and rare earth elements, there is an advantage that the tetragonal ratio of barium titanate having a perovskite structure constituting the core portion 11a can be increased. In this case, the lattice constant ratio c / a is desirably 1.005 or more as an index indicating the tetragonal nature of the crystal grains 5.

また、各種添加物は主成分であるチタン酸バリウム100モル部に対してマグネシウムがMgO換算で0.5〜1.2モル部、マンガンがMnO換算で0.04〜0.4モル部および希土類元素がRE換算で0.2〜3モル部の範囲であることが望ましい。本発明における誘電体層3を構成する誘電体磁器の組成が上記の範囲であると、上述のように耐還元性を有し高誘電率かつ高絶縁性を達成できるという利点がある。ここで、本発明における希土類元素としては、Tb、Dy、Ho、YbおよびYのうち少なくとも1種が好ましく、特に誘電体磁器の比誘電率を高めるという点でYがより好ましい。 Moreover, various additives are 0.5 to 1.2 mol parts in terms of MgO, 0.04 to 0.4 mol parts in terms of MnO, and 0.04 to 0.4 mol parts in terms of MnO with respect to 100 mol parts of barium titanate as the main component. It is desirable that the element is in the range of 0.2 to 3 mole parts in terms of RE 2 O 3 . When the composition of the dielectric ceramic constituting the dielectric layer 3 in the present invention is in the above range, there is an advantage that it has reduction resistance and can achieve high dielectric constant and high insulation as described above. Here, the rare earth element in the present invention is preferably at least one of Tb, Dy, Ho, Yb, and Y, and more preferably Y in terms of increasing the dielectric constant of the dielectric ceramic.

なお、誘電体層3中のコア部5aおよびシェル部5bの体積比はEDS(エネルギー分散分析)装置を付設した透過型電子顕微鏡(TEM)を用いて測定することができる。   In addition, the volume ratio of the core part 5a and the shell part 5b in the dielectric material layer 3 can be measured using the transmission electron microscope (TEM) which attached the EDS (energy dispersion analysis) apparatus.

また、上述したように本発明の誘電体層3は、BaTiO100モル部に対して、SiSiO換算で0.6モル部以上2モル部以下含有していることが好ましい。Siの含有量がSiO換算で0.6モル部以上であると誘電体磁器の焼結助剤としての効果が高まり焼成後の密度を高められるという利点がある。Siの含有量がSiO換算で2モル部以下であると結晶粒子5中への添加物の固溶量が減りチタン酸バリウムを主成分とする結晶粒子5の正方晶の割合を維持でき、これにより誘電体層3の比誘電率を高められるという利点がある。
In addition, as described above, the dielectric layer 3 of the present invention preferably contains Si in an amount of 0.6 mol part or more and 2 mol parts or less in terms of SiO 2 with respect to 100 mol parts of BaTiO 3 . When the Si content is 0.6 mol part or more in terms of SiO 2 , there is an advantage that the effect as a sintering aid for the dielectric ceramic increases and the density after firing can be increased. When the content of Si is 2 mol parts or less in terms of SiO 2 , the amount of solid solution of the additive in the crystal particles 5 is reduced, and the ratio of tetragonal crystals of the crystal particles 5 mainly composed of barium titanate can be maintained. This has the advantage that the dielectric constant of the dielectric layer 3 can be increased.

次に、本発明の積層セラミックコンデンサの製法について説明する。本発明の積層セラミックコンデンサの製法では、先ず、素原料としてBaTiO粉末において、Ba/Ti比が1より大きいチタン酸バリウムを主成分とする第1の誘電体粉末と、Ba/Ti比が1以下のチタン酸バリウムを主成分とする第2の誘電体粉末とを混合して用いる。第1の誘電体粉末および第2の誘電体粉末のBa/Ti比は上述のコア部5aおよびシェル部5bの体積比を満足するため、それぞれ1.005〜1.02および0.98〜1が望ましい。Ba/Ti比が1より大きいチタン酸バリウムを主成分とする第1の誘電体粉末は粒成長しにくく添加物が固溶しにくい。逆に、Ba/Ti比が1以下のチタン酸バリウムを主成分とする第2の誘電体粉末は粒成長しやすく添加物が固溶しやすい。そのため、同時焼成において2種類のコア部/シェル部の体積比を有する結晶粒子を形成することが可能となる。Ba/Ti比が1以下のものはマグネシウム、マンガンおよび希土類元素などの添加物の固溶とともに粒成長もしやすいため、粒成長抑制の点から第1の誘電体粉末:第2の誘電体粉末の混合比はモル比で6:4〜8:2が望ましい。
Next, a method for producing the multilayer ceramic capacitor of the present invention will be described. In the production method of the multilayer ceramic capacitor of the present invention, first, in a BaTiO 3 powder as a raw material, a first dielectric powder mainly composed of barium titanate having a Ba / Ti ratio greater than 1, and a Ba / Ti ratio of 1 The following second dielectric powder mainly composed of barium titanate is mixed and used. Since the Ba / Ti ratio of the first dielectric powder and the second dielectric powder satisfies the volume ratio of the core portion 5a and the shell portion 5b described above, 1.005 to 1.02 and 0.98 to 1, respectively. Is desirable. The first dielectric powder mainly composed of barium titanate having a Ba / Ti ratio of greater than 1 is difficult to grow grains and the additive is difficult to dissolve. On the contrary, the second dielectric powder mainly composed of barium titanate having a Ba / Ti ratio of 1 or less is likely to grow grains and the additive is liable to be dissolved. Therefore, it is possible to form crystal grains having two types of core / shell volume ratios in simultaneous firing. When the Ba / Ti ratio is 1 or less, grains are likely to grow together with solid solutions of additives such as magnesium, manganese, and rare earth elements. Therefore, the first dielectric powder: the second dielectric powder mixing ratio by molar ratio of 6: 4-8: 2 is preferred.

用いるBaTiO粉末の平均粒径は第1の誘電体粉末および第2の誘電体粉末いずれも0.05μm以上0.2μm以下が好ましい。BaTiO粉末の平均粒径が0.05μm以上であると結晶性の高いBaTiO粉末を用いることとなり焼成後に得られる誘電体磁器の比誘電率を高められるという利点がある。一方、BaTiO粉末の平均粒径が0.2μm以下であると、誘電体層の薄層化において粒界を増やすことができ高絶縁性にできるという利点がある。
The average particle diameter of the BaTiO 3 powder used is preferably 0.05 μm or more and 0.2 μm or less for both the first dielectric powder and the second dielectric powder . If the average particle size of the BaTiO 3 powder is 0.05 μm or more, the BaTiO 3 powder having high crystallinity is used, and there is an advantage that the dielectric constant of the dielectric ceramic obtained after firing can be increased. On the other hand, when the average particle diameter of the BaTiO 3 powder is 0.2 μm or less, there is an advantage that the grain boundary can be increased in the thinning of the dielectric layer and high insulation can be achieved.

次に、上述した第1の誘電体粉末および第2の誘電体粉末を混合したBaTiO 粉末に添加物と焼結助剤等を加えて、ボールミルを用いて混合し、この混合粉末にポリビニル
ブチラールなどの有機バインダおよびトルエンなどの溶剤を添加してスラリを調製する。
Next, an additive and a sintering aid are added to the BaTiO 3 powder in which the first dielectric powder and the second dielectric powder described above are mixed, and they are mixed using a ball mill, and polyvinyl butyral is added to the mixed powder. A slurry is prepared by adding an organic binder such as toluene and a solvent such as toluene.

次に、このスラリをドクターブレードによりシート状に成形しグリーンシートを形成する。グリーンシートの厚みは0.4μm以上3μm以下が好ましい。グリーンシートの厚みが0.4μm以上であるとピンホールなどの欠陥を低減できることから絶縁性に優れた誘電体層を形成できるという利点がある。グリーンシートの厚みが3μm以下であると誘電体層3の薄層化により高容量化できるという利点がある。   Next, this slurry is formed into a sheet shape by a doctor blade to form a green sheet. The thickness of the green sheet is preferably 0.4 μm or more and 3 μm or less. When the thickness of the green sheet is 0.4 μm or more, defects such as pinholes can be reduced, so that there is an advantage that a dielectric layer having excellent insulation can be formed. If the thickness of the green sheet is 3 μm or less, there is an advantage that the capacity can be increased by thinning the dielectric layer 3.

次に、このグリーンシートの表面に導体ペーストを印刷し、次いで導体ペーストが内部電極パターンとして印刷されたグリーンシートを複数積層して母体の積層体を作製する。内部電極パターンの厚みはグリーンシート上における段差を解消するとともに焼結後においても過度の収縮による有効面積の減少を抑制するという理由から0.3μm以上1.5μm以下とすることが好ましい。次に、この母体の積層体を格子状に切断し、端面に内部電極パターンが露出したコンデンサ本体成形体を作製する。次に、コンデンサ本体成形体を焼成してコンデンサ本体作製し、この端面に外部電極ペーストを塗布し焼き付けした後に本発明の積層セラミックコンデンサが得られる。
Next, a conductor paste is printed on the surface of the green sheet, and then a plurality of green sheets on which the conductor paste is printed as an internal electrode pattern are stacked to produce a base laminate. The thickness of the internal electrode pattern is preferably set to reduce 1.5μm hereinafter more 0.3μm because of suppressing the effective area due to excessive shrinkage after sintering while eliminating a level difference on the green sheet. Next, the matrix laminate is cut into a lattice shape to produce a capacitor body molded body with the internal electrode pattern exposed on the end face. Next, the capacitor body molded body is fired to prepare the capacitor body 1 , and the end face is coated with an external electrode paste and baked to obtain the multilayer ceramic capacitor of the present invention.

本発明の積層セラミックコンデンサを以下のように作製した。まず、予め合成した平均粒径0.2μmのBaTiO粉末を100モル部、添加物粉末としてMgOを1.0モル部、MnOを炭酸マンガンを用いて0.3モル部、Yを1.0モル部をそれぞれ秤量した。 The multilayer ceramic capacitor of the present invention was produced as follows. First, 100 mol parts of BaTiO 3 powder with an average particle diameter of 0.2 μm synthesized in advance, 1.0 mol part of MgO as additive powder, 0.3 mol part of MnO using manganese carbonate, and Y 2 O 3 were added. Each 1.0 mole part was weighed.

試料1〜5については、表1に示すように、従来の工法どおりにBa/Ti比が1種であるBaTiO粉末前記添加物とSiO 粉末とを十分に混合し、有機バインダを加えてスラリを調整した。SiO 粉末量はチタン酸バリウム粉末に添加物粉末を加えた混合粉末中のチタン酸バリウム粉末100モル部に対して1モル部とした。希土類元素を2種用いる場合は添加量を0.5モル部づつ加えた(試料No.18)。
For Samples 1-5, as shown in Table 1, the BaTiO 3 powder with one Ba / Ti ratio, the additive, and the SiO 2 powder were mixed thoroughly as in the conventional method, and an organic binder was added. Adjusted the slurry. The amount of SiO 2 powder was 1 mol part with respect to 100 mol parts of barium titanate powder in the mixed powder obtained by adding the additive powder to the barium titanate powder. When two rare earth elements were used, the addition amount was added in 0.5 mol parts (Sample No. 18).

一方、本発明の試料6〜18については、表2に示すようにBa/Ti比が大きい粉末と小さい粉末とを7:3の割合で混合し、さらに前記添加物とSiO 粉末とを加えて十分に混合し、有機バインダを加えてスラリを調整した。この場合もSiO 粉末量はチタン酸バリウム粉末に添加物粉末を加えた混合粉末中のチタン酸バリウム粉末100モル部に対して1モル部とした。
On the other hand, for Samples 6 to 18 of the present invention, as shown in Table 2, a powder having a large Ba / Ti ratio and a small powder are mixed at a ratio of 7: 3, and the additive and SiO 2 powder are added. Then, the slurry was adjusted by adding an organic binder. Also in this case, the amount of SiO 2 powder was 1 mol part with respect to 100 mol parts of barium titanate powder in the mixed powder obtained by adding additive powder to barium titanate powder.

次に、このスラリを用いてドクターブレードにより厚み1.5μmのグリーンシートを作製した。次に、このグリーンシート上に、Ni金属を含む導体ペーストをスクリーン印刷して内部電極パターンを形成した。次に、内部電極パターンを形成したグリーンシートを330枚積層し、その上下面に、内部電極パターンを形成していない誘電体グリーンシートをそれぞれ20枚積層しプレス機を用いて一体化し母体の積層体を得た。その後、母体の積層体を格子状に切断してコンデンサ本体成形体を作製した。   Next, a green sheet having a thickness of 1.5 μm was produced by using this slurry with a doctor blade. Next, a conductive paste containing Ni metal was screen printed on the green sheet to form an internal electrode pattern. Next, 330 green sheets on which internal electrode patterns are formed are stacked, and 20 dielectric green sheets on which internal electrode patterns are not formed are stacked on the top and bottom surfaces of the green sheets and integrated using a press machine. Got the body. Thereafter, the base laminate was cut into a lattice shape to produce a capacitor body molded body.

次に、このコンデンサ本体成形体を大気中500℃にて脱バインダ処理を行い、1250℃で2時間還元焼成し、大気雰囲気中800℃で4時間再酸化処理をし、コンデンサ本体を作製した。コンデンサ本体の寸法は1.6mm×0.8mm×0.8mmであり。
誘電体層の厚みは1.2μmであった。静電容量に寄与する面積は1.09mmであった。
Next, the molded body of the capacitor body was treated to remove the binder at 500 ° C. in the atmosphere, reduced and fired at 1250 ° C. for 2 hours, and reoxidized at 800 ° C. for 4 hours in the air atmosphere to produce a capacitor body. . Dimensions of the capacitor Body is an 1.6mm × 0.8mm × 0.8mm.
The thickness of the dielectric layer was 1.2 μm. The area contributing to the capacitance was 1.09 mm 2 .

次に、焼成したコンデンサ本体をバレル研磨した後、その両端部に外部電極ペーストを塗布し、850℃で焼き付けを行い、外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste was applied to both ends thereof and baked at 850 ° C. to form external electrodes. Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

作製した積層セラミックコンデンサであるこれらの試料をLCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0Vにて静電容量を測定し、内部電極の面積と誘電体厚みから比誘電率を算出した。試料数は各10個とした。また、絶縁抵抗(IR)についてはDC10V、室温下で測定した。   The capacitances of these samples, which are the multilayer ceramic capacitors, were measured using an LCR meter 4284A at a frequency of 1.0 kHz and an input signal level of 1.0 V, and the relative dielectric constant was calculated from the area of the internal electrode and the dielectric thickness. Calculated. The number of samples was 10 each. Moreover, about insulation resistance (IR), it measured DC10V and room temperature.

結晶粒子の平均粒径は得られた積層セラミックコンデンサの破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、次いで、その写真に映し出されている結晶粒子の輪郭を画像処理し、各粒子を円と見立ててその直径を求め平均化して求めた。   After polishing the fracture surface of the obtained multilayer ceramic capacitor, the average grain size of the crystal grains is taken by taking a picture of the internal structure using a scanning electron microscope and then imaging the outline of the crystal grains shown in the photograph Each particle was treated as a circle, and its diameter was obtained and averaged.

粒界から20nmでの添加物固溶量の測定には、元素分析機器(EDS)を付設した透過電子顕微鏡装置(TEM)を用いた。積層セラミックコンデンサを断面カットし薄片化したものをFIB加工して透過電子顕微鏡において誘電体層を構成する結晶粒子全体が明確に見えるものを測定用の結晶粒子として選択した。そのようなチタン酸バリウムを主成分とする結晶粒子50個について粒界から中心部にけて約20nm位置でEDS装置により元素分析を行った。EDSはBa、Ti、マグネシウム、マンガン、希土類元素の成分を定してその全量に対してマグネシウム、マンガン、希土類元素の合計量を固溶量とした。

Figure 0004884101
A transmission electron microscope apparatus (TEM) provided with an elemental analysis instrument (EDS) was used to measure the additive solid solution amount at 20 nm from the grain boundary. The multilayer ceramic capacitor was cross-cut, those thinned by FIB processing, the entire crystal grains forming the dielectric layers in the transmission electron microscope were selected as crystal grains for measuring what appears clearly. Elemental analyzes were performed by EDS device at the location of such approximately 20nm in countercurrent Ke in the center of the grain boundary for the crystal grains 50 composed mainly of titanium barium. EDS was Ba, Ti, magnesium, manganese, magnesium for the total amount to measure the components of the rare earth elements, manganese, and the solid solution amount total amount of rare earth elements.
Figure 0004884101

Figure 0004884101
Figure 0004884101

表1、2の結果から明らかなように、従来の工法どおりにBa/Ti比が1種であるBaTiO粉末を用いた場合の例として、Ba/Ti比を1より大きいものだけ用いた試料No.1〜3では、粒界から20nmの位置における固溶量が0.06〜0.16原子%と少なく平均粒径が0.311〜0.371μmとなり、比誘電率が2330〜2914、絶縁抵抗が1×10〜3×10Ωであった。 As is apparent from the results of Tables 1 and 2, as an example of using BaTiO 3 powder having a Ba / Ti ratio of one kind as in the conventional method, a sample using only a Ba / Ti ratio greater than 1 No. 1 to 3, the solid solution amount at a position 20 nm from the grain boundary is as small as 0.06 to 0.16 atomic%, the average particle size is 0.311 to 0.371 μm, the relative dielectric constant is 2330 to 2914, and the insulation resistance Was 1 × 10 8 to 3 × 10 9 Ω.

一方、Ba/Ti比が1以下のチタン酸バリウムだけ用いた試料No.4、5では、粒界から20nmの位置における固溶量が0.32〜0.36原子%と多くなり、平均粒径が0.426〜1.23μmと大きくなり、比誘電率が3960〜5630であったが、絶縁抵抗が1×10以下であった。 On the other hand, sample No. using only barium titanate having a Ba / Ti ratio of 1 or less. 4 and 5, the solid solution amount at a position 20 nm from the grain boundary increases as 0.32 to 0.36 atomic%, the average particle diameter increases as 0.426 to 1.23 μm, and the relative dielectric constant is 3960 to Although it was 5630, the insulation resistance was 1 × 10 7 or less.

これに対して、Ba/Ti比1より大きいチタン酸バリウムとBa/Ti比が1以下のチタン酸バリウムとを用いた試料No.7〜18では、粒界から20nmの位置における固溶量が0.06〜0.17原子%の範囲であり、平均粒径が0.21〜0.32μmの第1結晶粒子と、粒界から20nmの位置における固溶量が0.13〜0.41原子%の範囲であり、平均粒径が0.22〜0.4μmの範囲の第2結晶粒子とが混在するものとなり、比誘電率が2930以上かつ絶縁抵抗が8×10Ω以上であり、高誘電率かつ高絶縁性が得られた。 In contrast, Sample No. of Ba / Ti ratio is greater than 1 barium titanate and Ba / Ti ratio was used and 1 less barium titanate 7 to 18, the amount of solid solution at a position 20 nm from the grain boundary is in the range of 0.06 to 0.17 atomic%, the first crystal grain having an average grain size of 0.21 to 0.32 μm, and the grain boundary To 20 nm, the solid solution amount is in the range of 0.13 to 0.41 atomic%, and the second crystal particles having an average particle diameter in the range of 0.22 to 0.4 μm coexist. The dielectric constant was 2930 or higher and the insulation resistance was 8 × 10 8 Ω or higher, and a high dielectric constant and high insulation were obtained.

特に、第1結晶粒子における上記酸化物の固溶量が0.1〜0.15原子%の範囲であるとともに平均粒径が0.271〜0.316μmであり、かつ第2結晶粒子における上記酸化物の固溶量が0.24〜0.38原子%の範囲であるとともに平均粒径が0.33〜0.39μmの範囲を満足する場合には比誘電率を3610以上、かつ絶縁抵抗が1×10Ω以上であった。 In particular, the solid solution amount of the oxide in the first crystal particles is in the range of 0.1 to 0.15 atomic%, the average particle size is 0.271 to 0.316 μm, and the above in the second crystal particles. In the case where the solid solution amount of the oxide is in the range of 0.24 to 0.38 atomic% and the average particle size satisfies the range of 0.33 to 0.39 μm, the relative dielectric constant is 3610 or more and the insulation resistance Was 1 × 10 9 Ω or more.

本発明の積層セラミックコンデンサを示す断面模式図である。It is a cross-sectional schematic diagram which shows the multilayer ceramic capacitor of this invention. 本発明の積層セラミックコンデンサを構成する誘電体層の微構造を示す模式図である。It is a schematic diagram which shows the microstructure of the dielectric material layer which comprises the multilayer ceramic capacitor of this invention. 本発明の積層セラミックコンデンサを構成する誘電体層におけるコア、シェル比の異なる結晶粒子内に固溶した添加物量の模式図である。It is a schematic diagram of the amount of additive dissolved in crystal grains having different core and shell ratios in the dielectric layer constituting the multilayer ceramic capacitor of the present invention. 本発明に係る結晶粒子における添加物の粒界から粒内への固溶量の変化を示した模式図である。It is the schematic diagram which showed the change of the solid solution amount from the grain boundary of the additive in the crystal grain which concerns on this invention to a grain.

符号の説明Explanation of symbols

1 コンデンサ本体
3 誘電体層
5 結晶粒子
5a コア部
5b シェル部
5A 第1結晶粒子
5B 第2結晶粒子
DESCRIPTION OF SYMBOLS 1 Capacitor body 3 Dielectric layer 5 Crystal particle 5a Core part 5b Shell part 5A 1st crystal particle 5B 2nd crystal particle

Claims (2)

チタン酸バリウムを主成分とし、マグネシウム、マンガンおよび希土類元素が酸化物として固溶した複数の結晶粒子により形成された誘電体層と内部電極層とが交互に積層されている積層セラミックコンデンサであって、前記結晶粒子は粒界からの深さ20nmにおける前記マグネシウム、マンガンおよび希土類元素の合計の固溶量がBa、Ti、マグネシウム、マンガン、希土類元素の全量に対して0.05〜0.15原子%である第1結晶粒子と、粒界からの深さ20nmにおける前記マグネシウム、マンガンおよび希土類元素の合計の固溶量がBa、Ti、マグネシウム、マンガン、希土類元素の全量に対して0.2〜0.4原子%である第2結晶粒子とを有し、前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径よりも小さいことを特徴とする積層セラミックコンデンサ。   A multilayer ceramic capacitor in which dielectric layers and internal electrode layers formed of a plurality of crystal particles mainly composed of barium titanate and solid-dissolved as an oxide of magnesium, manganese and rare earth elements are alternately laminated. The crystal grains have a total solid solution amount of the magnesium, manganese, and rare earth elements at a depth of 20 nm from the grain boundary of 0.05 to 0.15 atoms relative to the total amount of Ba, Ti, magnesium, manganese, and rare earth elements. %, And the total solid solution amount of magnesium, manganese, and rare earth element at a depth of 20 nm from the grain boundary is 0.2 to about the total amount of Ba, Ti, magnesium, manganese, and rare earth element. Second crystal particles that are 0.4 atomic%, and the average particle size of the first crystal particles is smaller than the average particle size of the second crystal particles Multilayer ceramic capacitor, characterized in that. 前記第1結晶粒子の平均粒径が0.271〜0.316μmの範囲であり、かつ前記第2結晶粒子の平均粒径が0.33〜0.39μmの範囲であることを特徴とする請求項1に記載の積層セラミックコンデンサ。   The average particle size of the first crystal particles is in a range of 0.271 to 0.316 μm, and the average particle size of the second crystal particles is in a range of 0.33 to 0.39 μm. Item 2. The multilayer ceramic capacitor according to Item 1.
JP2006177680A 2006-06-28 2006-06-28 Multilayer ceramic capacitor Active JP4884101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177680A JP4884101B2 (en) 2006-06-28 2006-06-28 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177680A JP4884101B2 (en) 2006-06-28 2006-06-28 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2008010530A JP2008010530A (en) 2008-01-17
JP4884101B2 true JP4884101B2 (en) 2012-02-29

Family

ID=39068495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177680A Active JP4884101B2 (en) 2006-06-28 2006-06-28 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4884101B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462482B2 (en) 2009-01-30 2013-06-11 Headway Technologies, Inc. Ceramic capacitor and method of manufacturing same
US8432662B2 (en) 2009-01-30 2013-04-30 Headway Technologies, Inc. Ceramic capacitor and method of manufacturing same
US8171607B2 (en) 2009-01-30 2012-05-08 Headway Technologies, Inc. Method of manufacturing ceramic capacitor
JP5197432B2 (en) * 2009-02-25 2013-05-15 京セラ株式会社 Multilayer ceramic capacitor
JP5159682B2 (en) * 2009-03-26 2013-03-06 京セラ株式会社 Multilayer ceramic capacitor
JP5246185B2 (en) * 2010-03-11 2013-07-24 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
KR101491449B1 (en) 2011-01-12 2015-02-10 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic capacitor
CN103262190B (en) * 2011-12-17 2016-08-03 京瓷株式会社 Capacitor
KR102449359B1 (en) * 2017-08-28 2022-09-30 삼성전기주식회사 Dielectric powder and multilayered ceramic electronic components using the same
JP7142875B2 (en) * 2018-06-20 2022-09-28 キヤノン株式会社 Oriented piezoelectric film, manufacturing method thereof, and liquid ejection head
JP7040384B2 (en) 2018-09-27 2022-03-23 株式会社村田製作所 Multilayer ceramic capacitors
WO2021059993A1 (en) * 2019-09-26 2021-04-01 京セラ株式会社 Capacitor
KR20220092995A (en) 2019-12-23 2022-07-04 교세라 가부시키가이샤 Condenser
KR20220121886A (en) * 2020-02-27 2022-09-01 교세라 가부시키가이샤 Condenser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153721A (en) * 2005-12-08 2007-06-21 Tdk Corp Ceramic powder, ceramic electronic component and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008010530A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4884101B2 (en) Multilayer ceramic capacitor
KR100822178B1 (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4776913B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4782598B2 (en) Multilayer ceramic capacitor
EP1583114A1 (en) Multilayer ceramic capacitor
JP5078307B2 (en) Dielectric porcelain and manufacturing method thereof, and capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
EP1536438A2 (en) Multilayer ceramic capacitor
JP2009035431A (en) Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
WO2013022064A1 (en) Dielectric ceramic, layered ceramic electronic part, layered ceramic capacitor, and method for producing layered ceramic capacitor
JP2006111466A (en) Dielectric ceramic composition and electronic component
JP5838968B2 (en) Dielectric ceramic, multilayer ceramic electronic component, and manufacturing method thereof
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP5903989B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP4771818B2 (en) Multilayer ceramic capacitor
KR100859058B1 (en) Laminated electronic component and method for manufacturing the same
JP2008135638A (en) Multilayer ceramic capacitor
JP5127837B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5159682B2 (en) Multilayer ceramic capacitor
WO2009157232A1 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP5100592B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150