JP5127837B2 - Dielectric porcelain and multilayer ceramic capacitor - Google Patents

Dielectric porcelain and multilayer ceramic capacitor Download PDF

Info

Publication number
JP5127837B2
JP5127837B2 JP2009538968A JP2009538968A JP5127837B2 JP 5127837 B2 JP5127837 B2 JP 5127837B2 JP 2009538968 A JP2009538968 A JP 2009538968A JP 2009538968 A JP2009538968 A JP 2009538968A JP 5127837 B2 JP5127837 B2 JP 5127837B2
Authority
JP
Japan
Prior art keywords
mol
crystal
dielectric
barium titanate
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009538968A
Other languages
Japanese (ja)
Other versions
JPWO2009057373A1 (en
Inventor
勇介 東
洋一 山崎
雅昭 名古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009538968A priority Critical patent/JP5127837B2/en
Publication of JPWO2009057373A1 publication Critical patent/JPWO2009057373A1/en
Application granted granted Critical
Publication of JP5127837B2 publication Critical patent/JP5127837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。   The present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.

近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。それに伴い、積層セラミックコンデンサにおける1層あたりの誘電体層の薄層化が進み、薄層化してもコンデンサとしての信頼性を維持できる誘電体磁器が求められている。特に、高い定格電圧で使用される中耐圧用コンデンサの小型化、大容量化には、誘電体磁器に対して非常に高い信頼性が要求される。   In recent years, there has been a high demand for downsizing of electronic components accompanying the increase in the density of electronic circuits, and the downsizing and increase in capacity of multilayer ceramic capacitors are rapidly progressing. Along with this, thinning of dielectric layers per layer in multilayer ceramic capacitors has progressed, and there is a demand for dielectric ceramics that can maintain the reliability as capacitors even when the thickness is reduced. In particular, very high reliability is required for dielectric ceramics in order to reduce the size and increase the capacity of a medium voltage capacitor used at a high rated voltage.

従来、内部電極層を構成する材料として卑金属を用いることができ、しかも静電容量の温度変化がEIA規格のX7R特性(−55〜125℃、ΔC=±15%以内)を満足する技術として、本出願人は、特許文献1に開示されている誘電体磁器を提案した。   Conventionally, a base metal can be used as a material constituting the internal electrode layer, and the temperature change of the capacitance satisfies the EIA standard X7R characteristic (−55 to 125 ° C., ΔC = ± 15% or less), The present applicant has proposed a dielectric ceramic disclosed in Patent Document 1.

この技術は、誘電体磁器をカルシウム濃度の異なる2種のチタン酸バリウムを主体とする結晶粒子によって形成し、これにマグネシウム、希土類元素およびマンガンなどを含有させることにより、比誘電率を向上させ、かつ絶縁抵抗(IR)の高温負荷試験での寿命特性を改善しようとしたものであった。しかし、急速に小型化、大容量化が進むなか、さらなる信頼性の向上が求められている。   In this technology, a dielectric ceramic is formed by crystal grains mainly composed of two kinds of barium titanates having different calcium concentrations, and by adding magnesium, a rare earth element, manganese, and the like thereto, the relative dielectric constant is improved, Moreover, it was intended to improve the life characteristics of the insulation resistance (IR) in a high temperature load test. However, as miniaturization and capacity increase rapidly, further improvement in reliability is required.

また、積層セラミックコンデンサを構成する誘電体層用の誘電体磁器として、上記特許文献1と同様に、EIA規格のX7R特性を満足させ、しかも絶縁抵抗の高温負荷試験での寿命特性の向上を図ろうとする誘電体磁器として、さらに、特許文献2、3に開示されるようなものが知られている。   In addition, as a dielectric ceramic for a dielectric layer constituting a multilayer ceramic capacitor, the X7R characteristic of the EIA standard is satisfied as in Patent Document 1, and the life characteristic is improved in a high-temperature load test of insulation resistance. As dielectric ceramics intended to be used, those disclosed in Patent Documents 2 and 3 are further known.

特許文献2に開示された誘電体磁器は、当該誘電体磁器を構成する結晶粒子の主成分であるチタン酸バリウムにマグネシウム、希土類元素およびバナジウムなどを含有させ、X線回折チャートにおいて、(200)面の回折線と(002)面の回折線とが一部重なって幅広の回折線となる結晶構造(いわゆるコアシェル構造)とすることで、絶縁破壊電圧や絶縁抵抗の高温負荷試験での寿命特性の改善を図ったものである。   The dielectric ceramic disclosed in Patent Document 2 contains barium titanate, which is a main component of crystal particles constituting the dielectric ceramic, containing magnesium, rare earth elements, vanadium, and the like. (200) Life-time characteristics of dielectric breakdown voltage and insulation resistance in a high-temperature load test by forming a crystal structure (so-called core-shell structure) in which the diffraction line of the plane and the diffraction line of the (002) plane partially overlap to form a wide diffraction line This is an improvement.

また、特許文献3に開示された誘電体磁器は、チタン酸バリウムに固溶させるバナジウムの価数を4価に近い範囲になるように調整することで、結晶粒子中に存在する電子の移動を抑制しつつ、チタン酸バリウムへのバナジウムの過剰な拡散やバナジウム化合物の析出を抑え、結晶粒子中にバナジウムの適度な濃度勾配があるシェル相を持ったコアシェル構造を形成することにより、高温負荷試験での寿命特性の向上を図ったものである。
特開2006−156450号公報 特開平8−124785号公報 特開2006−347799号公報
Moreover, the dielectric ceramic disclosed in Patent Document 3 adjusts the valence of vanadium to be dissolved in barium titanate so as to be in a range close to tetravalent, thereby moving electrons existing in the crystal grains. High-temperature load test by suppressing excessive diffusion of vanadium and barium compound precipitation to barium titanate while forming a core-shell structure with a shell phase with an appropriate concentration gradient of vanadium. This is intended to improve life characteristics at
JP 2006-156450 A JP-A-8-124785 JP 2006-347799 A

しかしながら、上述した特許文献1〜3に開示された誘電体磁器は、高誘電率で比誘電率の温度変化がEIA規格のX7R特性(−55〜125℃、比誘電率の変化率が±15%以内)を満足するものの、誘電損失が大きいという問題があり、また、印加する電圧が低い場合には高い絶縁抵抗が得られるものの、印加する電圧を増加させたときに絶縁抵抗の低下が大きくなるという問題があった。   However, the dielectric ceramics disclosed in Patent Documents 1 to 3 described above have a high dielectric constant and a temperature change in relative permittivity of EIA standard X7R characteristics (−55 to 125 ° C., relative permittivity change rate is ± 15. %)), But there is a problem that the dielectric loss is large, and when the applied voltage is low, a high insulation resistance can be obtained, but when the applied voltage is increased, the insulation resistance greatly decreases. There was a problem of becoming.

また、これらの誘電体磁器を誘電体層として備える積層セラミックコンデンサでは、誘電体磁器の絶縁抵抗の低下に起因して、誘電体層が薄層化された場合に高温負荷試験での寿命特性を満足させることが困難であった。   In addition, in a multilayer ceramic capacitor having these dielectric ceramics as a dielectric layer, when the dielectric layer is thinned due to a decrease in the insulation resistance of the dielectric ceramic, the life characteristics in the high temperature load test are improved. It was difficult to satisfy.

従って、本発明の課題は、高誘電率かつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足し、印加する電圧が低い場合にも高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下が小さい誘電体磁器を提供することである。さらに、本発明の他の課題は、このような誘電体磁器を誘電体層として備え、高温負荷試験での寿命特性に優れる積層セラミックコンデンサを提供することである。   Accordingly, an object of the present invention is to provide a high dielectric resistance and a small dielectric loss, a temperature change of the dielectric constant satisfies the X7R characteristic of the EIA standard, and a high insulation resistance can be obtained even when an applied voltage is low. It is an object of the present invention to provide a dielectric porcelain with a small decrease in insulation resistance when increasing. Furthermore, another object of the present invention is to provide a multilayer ceramic capacitor having such a dielectric ceramic as a dielectric layer and having excellent life characteristics in a high temperature load test.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、該チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、さらにカルシウムを含む。また、本発明の誘電体磁器は、結晶粒子として、前記チタン酸バリウムを主体とし、前記カルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、前記チタン酸バリウムを主体とし、前記カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とを有する。The dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 moles of vanadium in terms of V 2 O 5 and MgO as MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in an amount of 0.5 to 0.5 in terms of RE 2 O 3 Contains 1.5 moles and also contains calcium. Further, the dielectric ceramic according to the present invention comprises, as crystal particles, a first crystal group mainly composed of the barium titanate and having a calcium concentration of 0.2 atomic% or less, and the barium titanate. And a second crystal group composed of crystal grains having a calcium concentration of 0.4 atomic% or more.

さらに本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、かつ前記誘電体磁器の研磨面に見られる前記第1の結晶群を構成する結晶粒子の面積をa、前記第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)が0.4〜0.7であるとともに、前記第1の結晶群を構成する結晶粒子および前記第2の結晶群を構成する結晶粒子の平均粒径が0.21〜0.28μmである。   Furthermore, in the dielectric ceramic of the present invention, in the X-ray diffraction chart, the diffraction intensity of the (004) plane showing tetragonal barium titanate is higher than the diffraction intensity of the (004) plane showing cubic barium titanate. And the area of the crystal grains constituting the first crystal group seen on the polished surface of the dielectric ceramic is a, and the area of the crystal grains constituting the second crystal group is b, b / (a + b) is 0.4 to 0.7, and the average grain size of the crystal grains constituting the first crystal group and the crystal grains constituting the second crystal group is 0.21 to 0. .28 μm.

また、本発明の積層セラミックコンデンサは、上記誘電体磁器からなる誘電体層と内部電極層とを交互に積層した積層体と、該積層体の両端面に設けられ前記内部電極層に接続された外部電極とから構成されている。   The multilayer ceramic capacitor of the present invention is a laminate in which dielectric layers made of the above dielectric ceramics and internal electrode layers are alternately laminated, and is provided on both end faces of the laminate and connected to the internal electrode layers. And an external electrode.

なお、希土類元素をREとしたのは、希土類元素の英文表記(Rare earth)に基づくものである。また、本発明では、イットリウムは希土類元素に含まれるものとする。   The rare earth element RE is based on the rare earth element in English (Rare earth). In the present invention, yttrium is included in the rare earth element.

本発明の誘電体磁器によれば、高誘電率かつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足するものにできる。また、印加する電圧が低い場合にも高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下を小さくできる(絶縁抵抗の電圧依存性が小さい)。   According to the dielectric ceramic of the present invention, the high dielectric constant and the dielectric loss are small, and the temperature change of the relative dielectric constant can satisfy the X7R characteristic of the EIA standard. In addition, a high insulation resistance can be obtained even when the applied voltage is low, and a decrease in the insulation resistance when the voltage is increased can be reduced (the voltage dependency of the insulation resistance is small).

本発明の積層セラミックコンデンサは、誘電体層として、上述の誘電体磁器を適用することにより、高誘電率かつ低誘電損失で、比誘電率の温度変化がEIA規格のX7R特性を満足するものにでき、誘電体層を薄層化しても高い絶縁性を確保できることから高温負荷試験における寿命特性に優れる。   In the multilayer ceramic capacitor of the present invention, by applying the above-described dielectric ceramic as a dielectric layer, the dielectric constant has a high dielectric constant and low dielectric loss, and the temperature change of the relative dielectric constant satisfies the X7R characteristic of the EIA standard. In addition, even if the dielectric layer is made thin, high insulating properties can be secured, so that it has excellent life characteristics in a high temperature load test.

本発明の誘電体磁器の微構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the microstructure of the dielectric material ceramic of this invention. (a)は、実施例における本発明の誘電体磁器である試料No.4のX線回折チャートを示すものであり、(b)は、実施例における比較例の誘電体磁器である試料No.32のX線回折チャートである。(A) is a sample No. which is a dielectric ceramic of the present invention in Examples. 4 shows an X-ray diffraction chart of No. 4 and (b) shows a sample No. 4 which is a dielectric ceramic of a comparative example in Examples. 32 is an X-ray diffraction chart of 32. 本発明の積層セラミックコンデンサの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the multilayer ceramic capacitor of this invention.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、該チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、さらにカルシウムを含むとともに、結晶粒子として、チタン酸バリウムを主体とし、カルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、チタン酸バリウムを主体とし、カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群とを有する誘電体磁器であって、その誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、かつ誘電体磁器の研磨面に見られる第1の結晶群を構成する結晶粒子の面積をa、第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)が0.4〜0.7であるとともに、第1の結晶群を構成する結晶粒子および第2の結晶群を構成する結晶粒子の平均粒径が0.21〜0.28μmであることを特徴とするものである。The dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 moles of vanadium in terms of V 2 O 5 and MgO as MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in an amount of 0.5 to 0.5 in terms of RE 2 O 3 The first crystal group consisting of crystal particles containing 1.5 mol, further containing calcium, and mainly containing barium titanate as a crystal particle and having a calcium concentration of 0.2 atomic% or less, and mainly containing barium titanate A dielectric ceramic having a second crystal group composed of crystal grains having a calcium concentration of 0.4 atomic% or more, and an X-ray diffraction chip of the dielectric ceramic. The diffraction intensity of the (004) plane showing tetragonal barium titanate is greater than the diffraction intensity of the (004) plane showing cubic barium titanate and the surface of the dielectric ceramic is polished. B / (a + b) is 0.4 to 0.7, where a is the area of the crystal grains constituting the first crystal group and b is the area of the crystal grains constituting the second crystal group. In addition, the average grain size of the crystal grains constituting the first crystal group and the crystal grains constituting the second crystal group is 0.21 to 0.28 μm.

これにより、比誘電率が3600以上、誘電損失が13%以下であり、比誘電率の温度変化がEIA規格のX7R特性を満足するとともに、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmから12.5V/μmまで変化させたときの絶縁抵抗が5×10Ω以上であり、かつ3.15V/μmでの絶縁抵抗と12.5V/μmでの絶縁抵抗の差が0.2×10Ω以下と小さい誘電体磁器を得ることができる。As a result, the relative permittivity is 3600 or more, the dielectric loss is 13% or less, the temperature change of the relative permittivity satisfies the X7R characteristic of the EIA standard, and the value of the DC voltage applied per unit thickness (1 μm) is 3. The insulation resistance when changing from 15 V / μm to 12.5 V / μm is 5 × 10 8 Ω or more, and the insulation resistance at 3.15 V / μm and the insulation resistance at 12.5 V / μm A dielectric ceramic having a small difference of 0.2 × 10 8 Ω or less can be obtained.

図1は、本発明の誘電体磁器の微構造を示す断面模式図である。本発明の誘電体磁器は、Ca濃度が0.2原子%以下のチタン酸バリウムを主体とする第1の結晶群を構成する結晶粒子1aと、Ca濃度が0.4原子%以上のチタン酸バリウムを主体とする第2の結晶群を構成する結晶粒子1bと、粒界相2とから構成されている。   FIG. 1 is a schematic cross-sectional view showing the microstructure of a dielectric ceramic according to the present invention. The dielectric ceramic of the present invention includes crystal particles 1a constituting the first crystal group mainly composed of barium titanate having a Ca concentration of 0.2 atomic% or less, and titanic acid having a Ca concentration of 0.4 atomic% or more. It is composed of crystal grains 1b constituting a second crystal group mainly composed of barium and a grain boundary phase 2.

本発明の誘電体磁器では、第1の結晶群の結晶粒子1aおよび第2の結晶群の結晶粒子1bからなる結晶粒子1の平均粒径は0.21〜0.28μmである。   In the dielectric ceramic according to the present invention, the average particle size of the crystal particles 1 composed of the crystal particles 1a of the first crystal group and the crystal particles 1b of the second crystal group is 0.21 to 0.28 μm.

即ち、第1の結晶群の結晶粒子1aおよび第2の結晶群の結晶粒子1bからなる結晶粒子1の平均粒径が0.21μmよりも小さい場合には比誘電率が3600よりも低いものとなるおそれがあり、第1の結晶群の結晶粒子1aおよび第2の結晶群の結晶粒子1bからなる結晶粒子1の平均粒径が0.28μmよりも大きい場合には比誘電率は高くなるものの誘電損失が13%よりも大きくなるおそれがある。   That is, when the average particle diameter of the crystal particles 1 composed of the crystal particles 1a of the first crystal group and the crystal particles 1b of the second crystal group is smaller than 0.21 μm, the relative dielectric constant is lower than 3600. Although the relative dielectric constant increases when the average particle diameter of the crystal particles 1 consisting of the crystal particles 1a of the first crystal group and the crystal particles 1b of the second crystal group is larger than 0.28 μm, The dielectric loss may be larger than 13%.

ここで、第1の結晶群を構成する結晶粒子1aおよび第2の結晶群を構成する結晶粒子1bからなる結晶粒子1の平均粒径は、誘電体磁器の断面を研磨(イオンミリング)した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求めて、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値より求める。   Here, the average particle size of the crystal particles 1 composed of the crystal particles 1a constituting the first crystal group and the crystal particles 1b constituting the second crystal group is determined by polishing (ion milling) the cross section of the dielectric ceramic. For the surface, capture the image projected by the transmission electron microscope into the computer, draw a diagonal line on the screen, image processing the outline of the crystal particles present on the diagonal line, find the area of each particle, The diameter when replaced with a circle having the same area is calculated and obtained from an average value of about 50 calculated crystal grains.

また、結晶粒子中のCa濃度については、誘電体磁器の断面を研磨した研磨面に存在する約30個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行う。このとき電子線のスポットサイズは5nmとし、分析する箇所は結晶粒子の粒界付近から中央部の中心の位置までの範囲で、その中心へ向けて引いた直線上のほぼ等間隔に位置する点とし、分析値は粒界付近と中心との間で4〜5点ほど分析した値の平均値とし、結晶粒子の各測定点から検出されるBa、Ti、Ca、V、Mg、希土類元素およびMnの全量を100%として、そのときのCaの濃度を求める。但し、選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、求めた結晶粒子の直径が平均粒径の±60%の範囲にある結晶粒子とする。   As for the Ca concentration in the crystal particles, the elemental analysis was performed on about 30 crystal particles existing on the polished surface obtained by polishing the cross section of the dielectric ceramic using a transmission electron microscope provided with an element analysis device. Do. At this time, the spot size of the electron beam is 5 nm, and the location to be analyzed is in the range from the vicinity of the grain boundary of the crystal grain to the center position of the central portion, and is located at substantially equal intervals on a straight line drawn toward the center. The analysis value is an average value of 4 to 5 points analyzed between the vicinity of the grain boundary and the center, and Ba, Ti, Ca, V, Mg, rare earth elements detected from each measurement point of the crystal grains, and Taking the total amount of Mn as 100%, the Ca concentration at that time is determined. However, as for the crystal particles to be selected, the area of each particle is obtained from the contour by image processing, and the diameter when replaced with a circle having the same area is calculated. The diameter of the obtained crystal particles is ± 60 of the average particle diameter. Crystal grains in the range of%.

なお、結晶粒子の中央部とは、当該結晶粒子の内接円の中心から当該内接円の半径の1/3の長さを半径とする円で囲まれる範囲をいい、また、結晶粒子の粒界付近とは、当該結晶粒子の粒界から5nm内側までの領域のことである。そして、結晶粒子の内接円は、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で結晶粒子に対して内接円を描き、結晶粒子の中央部を決定する。   The center part of the crystal grain means a range surrounded by a circle whose radius is 1/3 of the radius of the inscribed circle from the center of the inscribed circle of the crystal grain. The vicinity of the grain boundary refers to a region from the grain boundary of the crystal grain to 5 nm inside. For the inscribed circle of the crystal particle, an image projected by a transmission electron microscope is taken into a computer, and an inscribed circle is drawn on the crystal particle on the screen to determine the central portion of the crystal particle.

また、本発明の誘電体磁器は、上述のように、結晶粒子1として、第1の結晶群を構成する結晶粒子1aと第2の結晶群を構成する結晶粒子1bとを有するものであるが、その割合は、第1の結晶群を構成する結晶粒子1aの面積をa、第2の結晶群を構成する結晶粒子1bの面積をbとしたときに、b/(a+b)が0.4〜0.7であることが重要である。   In addition, as described above, the dielectric ceramic of the present invention has the crystal particles 1a constituting the first crystal group and the crystal particles 1b constituting the second crystal group as the crystal particles 1. The ratio is such that b / (a + b) is 0.4, where a is the area of the crystal grains 1a constituting the first crystal group and b is the area of the crystal grains 1b constituting the second crystal group. It is important to be ~ 0.7.

即ち、第1の結晶群を構成する結晶粒子1aの面積と第2の結晶群を構成する結晶粒子1bの面積との割合であるb/(a+b)が0.4よりも小さい場合には、比誘電率が3600よりも小さくなるおそれがあり、b/(a+b)が0.7よりも大きい場合には比誘電率は3600以上となるものの誘電損失が13%よりも大きくなるおそれがある。   That is, when b / (a + b), which is the ratio of the area of the crystal grains 1a constituting the first crystal group and the area of the crystal grains 1b constituting the second crystal group, is smaller than 0.4, The relative dielectric constant may be smaller than 3600. When b / (a + b) is larger than 0.7, the relative dielectric constant may be 3600 or more, but the dielectric loss may be larger than 13%.

誘電体磁器を構成する第1の結晶群を構成する結晶粒子1aおよび第2の結晶群を構成する結晶粒子1bの面積割合は、上記平均粒径を求める際に用いた面積のデータを使って算出する。   The area ratio of the crystal grains 1a constituting the first crystal group constituting the dielectric ceramic and the crystal grains 1b constituting the second crystal group is determined by using the area data used for obtaining the average grain size. calculate.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含む。The dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 moles of vanadium in terms of V 2 O 5 and MgO as MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in an amount of 0.5 to 0.5 in terms of RE 2 O 3 Contains 1.5 moles.

即ち、チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.05モルよりも少ない場合には、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmから12.5V/μmまで変化させたときの絶縁抵抗の低下が大きくなり、このような誘電体磁器を誘電体層とした積層セラミックコンデンサにおいては高温負荷寿命が低下するおそれがある。That is, when the vanadium content with respect to 100 mol of barium constituting barium titanate is less than 0.05 mol in terms of V 2 O 5 , the value of the DC voltage applied per unit thickness (1 μm) is 3. When the voltage is changed from 15 V / μm to 12.5 V / μm, the insulation resistance is greatly reduced. In such a multilayer ceramic capacitor having such a dielectric ceramic as a dielectric layer, the high temperature load life may be reduced.

また、チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.3モルよりも多くなると、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗がいずれも10Ωよりも低くなってしまうおそれがある。When the vanadium content with respect to 100 mol of barium constituting barium titanate is more than 0.3 mol in terms of V 2 O 5 , the value of the DC voltage applied per unit thickness (1 μm) is 3.15 V / There is a possibility that the insulation resistance when both μm and 12.5 V / μm are set lower than 10 8 Ω.

また、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる1種の希土類元素がRE換算で0.5モルよりも少ない場合には、単位厚み(1μm)当たりに印加する直流電圧の値を12.5V/μmとしたときの絶縁抵抗が1.5×10Ω以下となり、直流電圧の値を3.15V/μmとしたときの絶縁抵抗の値に比較して絶縁抵抗の低下が大きくなるおそれがある。When one kind of rare earth element selected from yttrium, dysprosium, holmium and erbium is less than 0.5 mol in terms of RE 2 O 3 , the value of the DC voltage applied per unit thickness (1 μm) is 12 The insulation resistance at 1.5 V / μm is 1.5 × 10 8 Ω or less, and the decrease in insulation resistance is larger than the value of insulation resistance when the DC voltage is 3.15 V / μm. There is a fear.

また、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素の含有量がRE換算で1.5モルよりも多いか、または、マンガンの含有量がMnO換算で0.5モルよりも多い場合には、いずれも比誘電率が3600よりも低くなってしまうおそれがある。The rare earth element content selected from yttrium, dysprosium, holmium and erbium is more than 1.5 mol in terms of RE 2 O 3 , or the manganese content is more than 0.5 mol in terms of MnO. In some cases, the relative dielectric constant may be lower than 3600.

さらに、マグネシウムの含有量がMgO換算で0.1モルよりも多い場合には、比誘電率の温度変化がEIA規格のX7R特性を満足しなくなるおそれがあり、また、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗の低下が大きくなり、高温負荷試験での寿命特性が低下するおそれがある。   Furthermore, when the magnesium content is more than 0.1 mol in terms of MgO, the temperature change of the dielectric constant may not satisfy the X7R characteristic of the EIA standard, and per unit thickness (1 μm). When the value of the DC voltage to be applied is 3.15 V / μm and 12.5 V / μm, the insulation resistance decreases greatly, and the life characteristics in the high temperature load test may be deteriorated.

これに対し、本発明の誘電体磁器は、上述のように、その比誘電率を3600以上かつ誘電損失を13%以下にでき、また、比誘電率の温度変化がEIA規格のX7R特性を満足し、さらに、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗がいずれも10Ω以上となり、かつ絶縁抵抗の低下のほとんど無い誘電体磁器を得ることができる。In contrast, the dielectric ceramic of the present invention can have a relative dielectric constant of 3600 or more and a dielectric loss of 13% or less as described above, and the temperature change of the dielectric constant satisfies the X7R characteristic of EIA standard. Furthermore, when the value of the DC voltage applied per unit thickness (1 μm) is 3.15 V / μm and 12.5 V / μm, the insulation resistance is 10 8 Ω or more, and the insulation resistance is reduced. Almost no dielectric ceramic can be obtained.

本発明の誘電体磁器では、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マンガンをMnO換算で0.5モル以下、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5〜1.5モル含む場合に、マグネシウムがMgO換算で0モルであることが望ましい。In the dielectric ceramic of the present invention, barium titanate is the main component, and with respect to 100 moles of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mole in terms of V 2 O 5 and manganese is MnO. 0.5 mol or less in terms of conversion, when a rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium is included in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , magnesium is 0 mol in terms of MgO. It is desirable to be.

誘電体磁器をこのような組成にすることにより、高誘電率かつ誘電損失が小さく、比誘電率の温度変化がEIA規格のX7R特性を満足するものにできるとともに、印加する電圧が低い場合にもさらに高い絶縁抵抗が得られ、かつ絶縁抵抗の電圧依存性のさらに小さい誘電体磁器を得ることができる。より詳しくは、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15V/μmと12.5V/μmとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性でかつ誘電損失の小さい誘電体磁器を得ることができる。   With such a composition of the dielectric porcelain, the high dielectric constant and the dielectric loss are small, the temperature change of the relative dielectric constant can satisfy the X7R characteristic of the EIA standard, and even when the applied voltage is low A dielectric ceramic having a higher insulation resistance and a smaller voltage dependency of the insulation resistance can be obtained. More specifically, high insulation in which the applied DC voltage tends to increase the insulation resistance (positive change) between 3.15 V / μm and 12.5 V / μm per unit thickness (1 μm) of the dielectric layer. And a dielectric ceramic with low dielectric loss can be obtained.

また、本発明の誘電体磁器では、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5〜1.5モル含む場合に、マグネシウムがMgO換算で0モルであるとともに、マンガンがMnO換算で0モルであることが望ましい。Further, in the dielectric ceramic according to the present invention, barium titanate is the main component, and with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 mole of vanadium in terms of V 2 O 5 , yttrium. , Dysprosium, holmium, and erbium containing a rare earth element in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , magnesium is 0 mol in terms of MgO and manganese is 0 mol in terms of MnO It is desirable.

上記組成とすることにより、絶縁抵抗の電圧依存性の小さい誘電体磁器を得ることができるとともに、誘電損失をさらに低減させることができる。ここで、マグネシウムがMgO換算で0モルまたはマンガンがMnO換算で0モルとは、マグネシウムやマンガンを実質的に含有していないことをいい、例えば、誘電体磁器のICP分析において、各成分が検出限界以下(0.5μg/g以下)である場合をいう。   By setting it as the said composition, while being able to obtain the dielectric ceramic with small voltage dependency of an insulation resistance, a dielectric loss can be reduced further. Here, 0 mol of magnesium in terms of MgO or 0 mol of manganese in terms of MnO means that magnesium or manganese is not substantially contained. For example, each component is detected in ICP analysis of a dielectric ceramic. The case where it is below the limit (0.5 μg / g or less).

なお、希土類元素のなかでイットリウム,ジスプロシウム,ホルミウムおよびエルビウムを含む場合は、チタン酸バリウムに固溶したときに異相が生成し難く、高い絶縁性を得ることができる。誘電体磁器の比誘電率を高められるという理由からイットリウムがより好ましい。   In the case where yttrium, dysprosium, holmium, and erbium are included among the rare earth elements, a heterogeneous phase is hardly generated when solid solution is formed in barium titanate, and high insulation can be obtained. Yttrium is more preferable because the relative dielectric constant of the dielectric ceramic can be increased.

本発明では、上述した本発明の誘電体磁器において、チタン酸バリウムを構成するバリウム100モルに対して、さらに、テルビウムをTb換算で0.3モル以下の範囲で含有することが望ましい。これにより、誘電体磁器の絶縁抵抗を高めることができ、上述の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性をさらに向上させることが可能になる。テルビウムの含有量がTb換算で0.3モルよりも多くなると、誘電体磁器の比誘電率の低下がおこるおそれがある。また、テルビウムを含有することによる十分な効果を得るためには0.05モル以上含有させることがよい。In the present invention, in the dielectric ceramic according to the present invention described above, it is desirable to further contain terbium in a range of 0.3 mol or less in terms of Tb 4 O 7 with respect to 100 mol of barium constituting barium titanate. . As a result, the insulation resistance of the dielectric ceramic can be increased, and the life characteristics in the high temperature load test can be further improved when the above-mentioned dielectric ceramic is applied to the dielectric layer of the multilayer ceramic capacitor. If the terbium content is more than 0.3 mol in terms of Tb 4 O 7 , the dielectric constant of the dielectric ceramic may be lowered. Moreover, in order to acquire the sufficient effect by containing terbium, it is good to contain 0.05 mol or more.

また、本発明では、上述した本発明の誘電体磁器において、チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3〜0.7モルの範囲で含有することが望ましい。これにより、X7R特性に要求される125℃における絶縁抵抗を2×10Ω以上に高めることができるとともに、焼成温度が変化(例えば約20℃変化)しても比誘電率の変化を抑えることが可能となり、炉内温度のばらつきのある大型の焼成炉を用いても、比誘電率のばらつきを低減して歩留まりを向上させることができる。0.7モルよりも多いと高温負荷試験での寿命特性の低下がおこるおそれがある。In the present invention, in the dielectric ceramic of the present invention described above, ytterbium is further contained in a range of 0.3 to 0.7 mol in terms of Yb 2 O 3 with respect to 100 mol of barium constituting barium titanate. It is desirable to do. As a result, the insulation resistance at 125 ° C. required for X7R characteristics can be increased to 2 × 10 7 Ω or more, and the change in relative dielectric constant can be suppressed even when the firing temperature changes (for example, about 20 ° C.). Therefore, even if a large firing furnace having a variation in furnace temperature is used, the variation in relative dielectric constant can be reduced and the yield can be improved. When the amount is more than 0.7 mol, the life characteristics in the high temperature load test may be deteriorated.

さらに、本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きいのがよい。   Furthermore, in the dielectric ceramic of the present invention, in the X-ray diffraction chart, the diffraction intensity of the (004) plane indicating tetragonal barium titanate is the diffraction intensity of the (004) plane indicating cubic barium titanate. Greater than.

ここで、本発明の誘電体磁器の結晶構造についてさらに詳細に説明すると、本発明の誘電体磁器は、結晶粒子中にバナジウムが固溶しても、ほとんど正方晶系を示す単相に近い結晶相により占められている。   Here, the crystal structure of the dielectric ceramic according to the present invention will be described in more detail. The dielectric ceramic according to the present invention is a single-phase crystal almost exhibiting a tetragonal system even when vanadium is dissolved in crystal grains. Occupied by a phase.

図2(a)は、後述の実施例の表1〜3における本発明の誘電体磁器である試料No.4のX線回折チャートを示すものであり、図2(b)は、同表1〜3における比較例の誘電体磁器である試料No.32のX線回折チャートである。   2A shows a sample No. 1 which is a dielectric ceramic according to the present invention in Tables 1 to 3 of Examples described later. 4 shows an X-ray diffraction chart of No. 4, and FIG. 32 is an X-ray diffraction chart of 32.

ここで、特許文献2および特許文献3にそれぞれ記載される従来の誘電体磁器は、その結晶構造がコアシェル構造であり、図2(b)のX線回折チャートに相当するものとなっている。   Here, in the conventional dielectric ceramics described in Patent Document 2 and Patent Document 3, the crystal structure is a core-shell structure, which corresponds to the X-ray diffraction chart of FIG.

即ち、チタン酸バリウムを主成分とし、コアシェル構造を有する結晶粒子により構成される誘電体磁器では、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも大きくなっている。   That is, in a dielectric ceramic composed of crystal grains having a barium titanate as a main component and having a core-shell structure, barium titanate appearing between the (004) plane and the (400) plane showing the tetragonal system of barium titanate. The diffraction intensity of the (004) plane (the (040) plane and (400) plane overlap) of the cubic system is greater than the diffraction intensity of the (004) plane representing the tetragonal system of barium titanate. It has become.

また、コアシェル構造を示す結晶粒子により構成される誘電体磁器は、X線回折チャートで見る限り、正方晶系の結晶相に対して立方晶系の結晶相の割合が多いために結晶の異方性が小さくなる。そのために、X線回折チャートは(400)面の回折線が低角度側にシフトするとともに(004)面の回折線が高角度側にシフトし、両回折線は互いに少なくとも一部が重なるようになり幅広の回折線となる。   In addition, dielectric porcelain composed of crystal grains having a core-shell structure has a higher proportion of cubic crystal phases than tetragonal crystal phases, as seen from the X-ray diffraction chart. The sex becomes smaller. Therefore, in the X-ray diffraction chart, the (400) plane diffraction lines are shifted to the low angle side and the (004) plane diffraction lines are shifted to the high angle side, so that both diffraction lines overlap each other at least partially. It becomes a wide diffraction line.

このような誘電体磁器は、通常、チタン酸バリウムを主成分とする粉末に、マグネシウムや希土類元素などの酸化物粉末を添加混合したものを成形した後、還元焼成することによって形成されるものである。この場合、コアシェル構造を有する結晶粒子は、コア部におけるマグネシウムや希土類元素などの成分の固溶量が少ないことから、結晶粒子の内部において、酸素空孔などの欠陥を多く含んだ状態である。このため直流電圧を印加した場合に、結晶粒子の内部において酸素空孔などが電荷を運ぶキャリアになりやすく誘電体磁器の絶縁性を低下させると考えられる。   Such dielectric porcelain is usually formed by forming a powder containing barium titanate as a main component and adding an oxide powder such as magnesium or a rare earth element, followed by reduction firing. is there. In this case, since the crystal particles having a core-shell structure have a small amount of solid solution of components such as magnesium and rare earth elements in the core portion, they are in a state containing many defects such as oxygen vacancies inside the crystal particles. For this reason, when a DC voltage is applied, oxygen vacancies and the like are likely to be carriers that carry electric charges inside the crystal grains, and it is considered that the insulation of the dielectric ceramic is lowered.

これに対して、本発明の誘電体磁器は、図2(a)に例示するように、誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(004)面の回折強度よりも大きいのがよい。   In contrast, the dielectric ceramic of the present invention, as illustrated in FIG. 2 (a), has a (004) plane diffraction intensity indicating the tetragonal system of barium titanate in the X-ray diffraction chart of the dielectric ceramic. However, the diffraction intensity of the (004) plane showing the cubic system of barium titanate is preferably larger.

即ち、本発明の誘電体磁器は、図2(a)に示されるように、チタン酸バリウムの正方晶系を示す(004)面(2θ=100°付近)と(400)面(2θ=101°付近)のX線回折ピークが明確に現れるものであり、チタン酸バリウムの正方晶系を示すこれら(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(004)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも小さくなっている。   That is, as shown in FIG. 2A, the dielectric ceramic of the present invention has a (004) plane (around 2θ = 100 °) and a (400) plane (2θ = 101) indicating the tetragonal system of barium titanate. The X-ray diffraction peak at around (°) appears clearly, and shows the cubic system of barium titanate appearing between these (004) plane and (400) plane showing the tetragonal system of barium titanate (004). ) Plane (the (040) plane and (400) plane overlap) is smaller than the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate.

本発明の誘電体磁器では、チタン酸バリウムの正方晶系を示す(004)面の回折強度をIxt、チタン酸バリウムの立方晶系を示す(004)面の回折強度をIxcとしたときに、Ixt/Ixc比が1.4以上であるのがよい。Ixt/Ixc比が1.4以上であると、正方晶系の結晶相の割合が多くなり、比誘電率が高まり、また絶縁抵抗の変化率をより小さくでき高温負荷試験での寿命特性を高めることが可能になる。   In the dielectric ceramic of the present invention, when the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate is Ixt and the diffraction intensity of the (004) plane showing the cubic system of barium titanate is Ixc, The Ixt / Ixc ratio is preferably 1.4 or more. When the Ixt / Ixc ratio is 1.4 or more, the ratio of the tetragonal crystal phase increases, the relative dielectric constant increases, the change rate of the insulation resistance can be further reduced, and the life characteristics in the high temperature load test are improved. It becomes possible.

このような本発明の誘電体磁器は、バナジウムを含有しても、正方晶系のほぼ均一な結晶相となっていることから、そのような結晶粒子は全体にわたってバナジウムや他の添加成分が固溶していると考えられる。そのため結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され電荷を運ぶキャリアが少ないことから、直流電圧を印加した際の誘電体磁器の絶縁性の低下を抑えることが可能になると考えられる。   Such a dielectric ceramic of the present invention has a substantially uniform crystal phase of tetragonal system even if it contains vanadium. Therefore, such crystal particles are solidly composed of vanadium and other additive components throughout. It is thought that it is melted. For this reason, the generation of defects such as oxygen vacancies is suppressed inside the crystal grains and the number of carriers that carry charges is small, so it is considered possible to suppress the decrease in the insulation of the dielectric ceramic when a DC voltage is applied. .

つまり、本発明の誘電体磁器における酸素空孔は、チタンサイトに置換固溶したバナジウム原子が、酸素空孔と電荷的に結合し、欠陥対を生成することで電気的に中和される。そのため電場印加による伝導への寄与が低減されるため、酸素空孔が存在していても、その移動度が低下するため、高温負荷試験における絶縁抵抗の低下が妨げられているものと思われる。   In other words, the oxygen vacancies in the dielectric ceramic according to the present invention are electrically neutralized by the vanadium atoms substituted and dissolved in the titanium sites being electrically coupled with the oxygen vacancies to form defect pairs. For this reason, the contribution to conduction by the application of an electric field is reduced, and even if oxygen vacancies are present, the mobility is lowered, so that it is considered that the reduction of the insulation resistance in the high temperature load test is hindered.

なお、本発明の誘電体磁器では所望の誘電特性を維持できる範囲であれば、前記した成分以外に他の成分を含んでいてもよく、例えば、焼結性を高めるための助剤としてガラス成分や他の添加成分を誘電体磁器中に0.5〜2質量%の割合で含有させることができる。   The dielectric ceramic according to the present invention may contain other components in addition to the above-described components as long as desired dielectric characteristics can be maintained. For example, a glass component as an auxiliary agent for enhancing sinterability. And other additive components can be contained in the dielectric ceramic in a proportion of 0.5 to 2% by mass.

次に、本発明の誘電体磁器を製造する方法について説明するが、以下に記載する製造方法は一例であり、この方法のみに限定されるものではない。まず、原料粉末として、純度が99%以上のチタン酸バリウム粉末(以下、BT粉末という。)およびチタン酸バリウムにカルシウムが固溶した粉末(以下、BCT粉末という。)と、添加成分として、V粉末とMgO粉末、さらに、Y粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素の酸化物粉末およびMnCO粉末とを準備する。なお、誘電体磁器に希土類元素としてテルビウムを含有させる場合には、希土類元素の酸化物としてTb粉末を用いるのがよい。また、誘電体磁器に第3の希土類元素としてイッテルビウムを含有させる場合には、希土類元素の酸化物としてYb粉末を用いるのがよい。Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. However, the manufacturing method described below is an example, and the method is not limited to this method. First, barium titanate powder (hereinafter referred to as BT powder) having a purity of 99% or more as a raw material powder, powder in which calcium is dissolved in barium titanate (hereinafter referred to as BCT powder), and V 2 O 5 powder and MgO powder, and also Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder, oxide powder of at least one rare earth element and MnCO 3 powder Prepare. When the dielectric ceramic contains terbium as a rare earth element, it is preferable to use Tb 4 O 7 powder as an oxide of the rare earth element. In addition, when ytterbium is contained as the third rare earth element in the dielectric ceramic, it is preferable to use Yb 2 O 3 powder as the oxide of the rare earth element.

BCT粉末はAサイトの一部がCaで置換されたチタン酸バリウムを主成分とする固溶体であり、(Ba1−xCa)TiOで表される。Aサイト中のCa置換量は、X=0.01〜0.2であることが好ましい。Ca置換量がこの範囲内であれば、第1の結晶粒子1aとの共存構造により、粒成長が抑制された結晶組織を形成することができる。これによりコンデンサとして使用する場合には使用温度範囲において優れた温度特性を得ることができる。なお、第2の結晶粒子1b中に含まれるCaは第2の結晶粒子1bに分散した状態で固溶している。The BCT powder is a solid solution mainly composed of barium titanate in which a part of the A site is substituted with Ca, and is represented by (Ba 1-x Ca x ) TiO 3 . The amount of Ca substitution in the A site is preferably X = 0.01 to 0.2. If the amount of Ca substitution is within this range, a crystal structure in which grain growth is suppressed can be formed by the coexistence structure with the first crystal grains 1a. Thus, when used as a capacitor, excellent temperature characteristics can be obtained in the operating temperature range. Note that Ca contained in the second crystal particles 1b is solid-dissolved in a state of being dispersed in the second crystal particles 1b.

また、BT粉末およびBCT粉末の平均粒径は0.13〜0.17μm、特に0.15〜0.17μmが好ましい。BT粉末およびBCT粉末の平均粒径が0.13μm以上であると、第1の結晶粒子1aおよび第2の結晶粒子1bが高結晶性になるとともに、焼結時の粒成長を抑制できるために比誘電率の向上とともに誘電損失の低下が図れるという利点がある。   Moreover, the average particle diameter of BT powder and BCT powder is 0.13-0.17 micrometer, Especially 0.15-0.17 micrometer is preferable. When the average particle size of the BT powder and the BCT powder is 0.13 μm or more, the first crystal particle 1a and the second crystal particle 1b become highly crystalline and can suppress grain growth during sintering. There is an advantage that the dielectric loss can be reduced as the relative dielectric constant is improved.

一方、BT粉末およびBCT粉末の平均粒径が0.17μm以下であると、マグネシウム、希土類元素およびマンガンなどの添加剤を第1の結晶粒子1aおよび第2の結晶粒子1bの内部にまで固溶させることが容易となる。また、後述するように、焼成前後における、BT粉末およびBCT粉末から、それぞれ第1の結晶群を構成する結晶粒子1aおよび第2の結晶群を構成する結晶粒子1bへの粒成長の比率を所定の範囲まで高められるという利点もある。   On the other hand, when the average particle size of the BT powder and the BCT powder is 0.17 μm or less, additives such as magnesium, rare earth elements, and manganese are dissolved in the first crystal particles 1a and the second crystal particles 1b. It becomes easy to make. Further, as will be described later, the ratio of grain growth from the BT powder and the BCT powder to the crystal particles 1a constituting the first crystal group and the crystal particles 1b constituting the second crystal group, respectively, before and after firing is predetermined. There is also an advantage that it can be increased to the range of.

添加剤であるY粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素の酸化物粉末、Tb粉末、Yb粉末,V粉末、MgO粉末、およびMnCO粉末についても、平均粒径はBT粉末およびBCT粉末などの誘電体粉末と同等、もしくはそれ以下のものを用いることが好ましい。Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder as additives, oxide powder of at least one rare earth element, Tb 4 O 7 powder, Yb 2 O 3 As for the powder, V 2 O 5 powder, MgO powder, and MnCO 3 powder, it is preferable to use those having an average particle diameter equivalent to or less than that of dielectric powder such as BT powder and BCT powder.

次いで、これらの原料粉末を、BT粉末およびBCT粉末を構成するバリウム100モルに対してV粉末を0.05〜0.3モル、MgO粉末を0〜0.1モル、MnCO粉末を0〜0.5モル、Y粉末、Dy粉末、Ho粉末およびEr粉末から選ばれる希土類元素(RE)をRE換算で0.5〜1.5モルの割合で配合し、さらに、必要に応じて、Tb粉末を0〜0.3モル、Yb粉末を0.3〜0.7モルの割合で添加して成形体を作製する。次いで、この成形体を脱脂した後、還元雰囲気中にて焼成する。Subsequently, 0.05 to 0.3 mol of V 2 O 5 powder, 0 to 0.1 mol of MgO powder, and MnCO 3 powder with respect to 100 mol of barium constituting the BT powder and BCT powder. 0 to 0.5 mol, a rare earth element (RE) selected from Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder is 0.5 to 0.5 in terms of RE 2 O 3. in proportions of 1.5 mole, further, if necessary with the addition of Tb 4 O 7 powder 0 to 0.3 mol, the Yb 2 O 3 powder at a ratio of 0.3 to 0.7 molar A molded body is produced. Next, the molded body is degreased and then fired in a reducing atmosphere.

なお、本発明の誘電体磁器を製造するに際しては、所望の誘電特性を維持できる範囲であれば焼結助剤としてガラス粉末を添加しても良く、その添加量は、主な原料粉末であるBT粉末およびBCT粉末の合計量を100質量部としたときに0.5〜2質量部がであるのがよい。   In the production of the dielectric ceramic of the present invention, glass powder may be added as a sintering aid so long as the desired dielectric properties can be maintained, and the addition amount is the main raw material powder. When the total amount of BT powder and BCT powder is 100 parts by mass, 0.5 to 2 parts by mass is preferable.

焼成温度は、ガラス粉末等の焼結助剤を用いる場合には、BT粉末およびBCT粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1050〜1135℃が好適である。一方、ガラス粉末等の焼結助剤を用いないで、ホットプレス法等の加圧焼成による場合には1050℃未満の温度での焼結が可能になる。   When a sintering aid such as glass powder is used, the firing temperature is preferably 1050 to 1135 ° C. for the purpose of controlling the solid solution of the additive in the BT powder and the BCT powder and the grain growth of the crystal particles. . On the other hand, without using a sintering aid such as glass powder, sintering at a temperature lower than 1050 ° C. is possible in the case of pressure firing such as a hot press method.

本発明の誘電体磁器を得るために、微粒のBT粉末およびBCT粉末を用い、これに上述の添加剤を所定量添加し、上記焼成温度で、各種の添加剤を含ませたBT粉末やBCT粉末の平均粒径が焼成後に1.4〜2.1倍程度に増大するように焼成するのがよい。焼成後における結晶粒子の平均粒径が、BT粉末およびBCT粉末の平均粒径の1.4〜2.1倍になるように焼成することで、第1の結晶粒子1aおよび第2の結晶粒子1bは全体にわたってバナジウムや他の添加成分が固溶し、その結果、結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され、電荷を運ぶキャリアが少ない状態が形成されていると考えられる。   In order to obtain the dielectric ceramic according to the present invention, fine BT powder and BCT powder are used, a predetermined amount of the above-mentioned additives are added thereto, and BT powder and BCT containing various additives at the above-mentioned firing temperature. It is preferable to fire the powder so that the average particle size of the powder increases to about 1.4 to 2.1 times after firing. By firing so that the average particle size of the crystal particles after firing is 1.4 to 2.1 times the average particle size of the BT powder and BCT powder, the first crystal particles 1a and the second crystal particles As for 1b, vanadium and other additive components are dissolved in the whole, and as a result, the generation of defects such as oxygen vacancies is suppressed inside the crystal particles, and it is considered that a state is formed in which there are few carriers that carry charge .

また、本発明では、焼成後に、再度、窒素雰囲気にて熱処理を行う。この熱処理は還元雰囲気中での焼成において還元された誘電体磁器を再酸化し、焼成時に還元されて低下した絶縁抵抗を回復するために行うものである。その熱処理温度は、第1の結晶群を構成する結晶粒子1aおよび第2の結晶群を構成する結晶粒子1bの更なる粒成長を抑えつつ再酸化量を高めるという理由から900〜1100℃が好ましい。   In the present invention, after firing, heat treatment is performed again in a nitrogen atmosphere. This heat treatment is performed to reoxidize the dielectric ceramic reduced in firing in a reducing atmosphere and recover the insulation resistance reduced and reduced during firing. The heat treatment temperature is preferably 900 to 1100 ° C. for the purpose of increasing the amount of reoxidation while suppressing further grain growth of the crystal grains 1a constituting the first crystal group and the crystal grains 1b constituting the second crystal group. .

図3は、本発明の積層セラミックコンデンサの一例を示す断面模式図である。コンデンサ本体10の両端部に外部電極4が設けられている。コンデンサ本体10は誘電体層5と内部電極層7とが交互に積層された積層体10Aから構成されている。誘電体層5は上述した本発明の誘電体磁器によって形成されるのがよい。   FIG. 3 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention. External electrodes 4 are provided at both ends of the capacitor body 10. The capacitor body 10 is composed of a laminated body 10A in which dielectric layers 5 and internal electrode layers 7 are alternately laminated. The dielectric layer 5 is preferably formed by the dielectric ceramic of the present invention described above.

なお、図3では、誘電体層5と内部電極層7との積層状態を単純化して示しているが、本発明の積層セラミックコンデンサでは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体10Aを形成している。   In FIG. 3, the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner. However, in the multilayer ceramic capacitor of the present invention, the dielectric layer 5 and the internal electrode layer 7 are several hundred layers. A laminated body 10 </ b> A is formed.

このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、高誘電率かつ低誘電損失であり、また比誘電率の温度変化がEIA規格のX7R特性を満足するものとなり、誘電体層5を薄層化しても高い絶縁性を確保でき、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを得ることができる。本発明の誘電体磁器によれば、高誘電率かつ低誘電損失を実現できることから、例えば、バイパスコンデンサとして用いた時のエネルギー損失を低減でき、これにより高容量の電荷を入出力できるコンデンサとして機能を高められるという利点がある。   According to the multilayer ceramic capacitor of the present invention, by applying the above dielectric ceramic as the dielectric layer 5, the dielectric constant is low and the dielectric constant is high, and the temperature change of the relative dielectric constant is EIA standard. X7R characteristics are satisfied, and even if the dielectric layer 5 is thinned, high insulation can be ensured, and a multilayer ceramic capacitor having excellent life characteristics in a high temperature load test can be obtained. According to the dielectric ceramic of the present invention, since a high dielectric constant and a low dielectric loss can be realized, for example, energy loss when used as a bypass capacitor can be reduced, thereby functioning as a capacitor capable of inputting and outputting a high-capacity charge. There is an advantage that can be increased.

ここで、誘電体層5の厚みは3μm以下、特に2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましい。静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることが望ましい。   Here, the thickness of the dielectric layer 5 is preferably 3 μm or less, and particularly preferably 2.5 μm or less in order to reduce the size and capacity of the multilayer ceramic capacitor. The thickness of the dielectric layer 5 is desirably 1 μm or more in order to stabilize the capacitance variation and capacitance temperature characteristics.

内部電極層7は、高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、本発明における誘電体層15との同時焼成が図れるという点でニッケル(Ni)がより望ましい。   The internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) in that the manufacturing cost can be suppressed even when the number of layers is increased, and in particular, simultaneous firing with the dielectric layer 15 in the present invention can be achieved. In this respect, nickel (Ni) is more desirable.

外部電極4は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。   The external electrode 4 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.

次に、積層セラミックコンデンサの製造方法の一例を説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層5の高容量化のための薄層化、高絶縁性を維持するという点で1〜4μmが好ましい。   Next, an example of a method for manufacturing a multilayer ceramic capacitor will be described. A ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method. In this case, the thickness of the ceramic green sheet is preferably 1 to 4 μm from the viewpoint of reducing the thickness of the dielectric layer 5 to increase the capacity and maintaining high insulation.

得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。   A rectangular internal electrode pattern is printed on the main surface of the obtained ceramic green sheet. Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.

内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。   Stack a desired number of ceramic green sheets with internal electrode patterns, and stack a plurality of ceramic green sheets without internal electrode patterns on the top and bottom so that the upper and lower layers are the same number. To do. In this case, the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.

次に、シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, the sheet laminate is cut into a lattice shape to form a capacitor body molded body so that the end of the internal electrode pattern is exposed. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.

得られたコンデンサ本体成形体を脱脂したのち、上記した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。   After degreasing the obtained capacitor body molded body, the capacitor body is fabricated by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above dielectric ceramic.

最後に、コンデンサ本体の両端部に、外部電極ペーストを塗布して焼付けを行い外部電極4を形成する。また、この外部電極4の表面には実装性を高めるためにメッキ膜を形成しても構わない。   Finally, the external electrode paste is applied to both ends of the capacitor body and baked to form the external electrode 4. Further, a plating film may be formed on the surface of the external electrode 4 in order to improve mountability.

以下、実施例を挙げて本発明の誘電体磁器および積層セラミックコンデンサを詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and the dielectric material ceramic and multilayer ceramic capacitor of this invention are demonstrated in detail, this invention is not limited to a following example.

[実施例1]
<積層セラミックコンデンサの作製>
まず、原料粉末として、BT粉末、BCT粉末(組成は(Ba1−xCa)TiO、 X=0.05)、MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末(第2希土類元素)、MnCO粉末およびV粉末を準備し、これらの各種粉末を表1に示す割合で混合した。これらの原料粉末は純度が99.9%のものを用いた。
[Example 1]
<Production of multilayer ceramic capacitor>
First, as the raw material powder, BT powder, BCT powder (composition (Ba 1-x Ca x) TiO 3, X = 0.05), MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder (second rare earth element), MnCO 3 powder and V 2 O 5 powder were prepared, and these various powders were mixed in the proportions shown in Table 1. These raw material powders having a purity of 99.9% were used.

使用したBT粉末およびBCT粉末の平均粒径は表1に示した。MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末は平均粒径が0.1μmのものを用いた。BT粉末のBa/Ti比は1とした。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末100質量部に対して1質量部とした。The average particle size of the BT powder and BCT powder used is shown in Table 1. MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder, MnCO 3 powder and V 2 O 5 powder have an average particle size of 0.1 μm. The thing of was used. The Ba / Ti ratio of the BT powder was 1. As the sintering aid, glass powder having a composition of SiO 2 = 55, BaO = 20, CaO = 15, and Li 2 O = 10 (mol%) was used. The addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the BT powder.

次に、これらの原料粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。湿式混合した粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み2.5μmのセラミックグリーンシートを作製した。   Next, these raw material powders were wet mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm. A polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and a ceramic slurry is prepared by wet-mixing using a zirconia ball having the same diameter of 5 mm. A ceramic green sheet having a thickness of 2.5 μm is prepared by a doctor blade method. Produced.

このセラミックグリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターンに用いた導体ペーストは、Ni粉末は平均粒径0.3μmのものを、共材としてグリーンシートに用いたBT粉末をNi粉末100質量部に対して30質量部添加した。   A plurality of rectangular internal electrode patterns mainly containing Ni were formed on the upper surface of the ceramic green sheet. The conductor paste used for the internal electrode pattern was Ni powder having an average particle size of 0.3 μm, and 30 parts by mass of BT powder used for a green sheet as a co-material with respect to 100 parts by mass of Ni powder.

次に、内部電極パターンを印刷したセラミックグリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断して積層成形体を形成した。Next, 360 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, using a press machine at a temperature of 60 ° C. and pressure Lamination was performed under the conditions of 10 7 Pa and time 10 minutes, and cut into predetermined dimensions to form a laminated molded body.

得られた積層成形体を10℃/hの昇温速度で大気中300℃まで加熱し、当該温度にて脱バインダ処理を行った。次いで、同じ昇温速度で500℃まで加熱した後、500℃からの昇温速度を300℃/hとし、水素−窒素中、1115〜1160℃で2時間焼成した。次いで、300℃/hの降温速度で1000℃まで冷却した後、窒素雰囲気中1000℃で4時間の加熱処理(再酸化処理)を施し、300℃/hの降温速度で冷却してコンデンサ本体を作製した。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは2μm、内部電極層の1層の面積は0.3mmであった。The obtained laminated molded body was heated to 300 ° C. in the air at a temperature rising rate of 10 ° C./h, and the binder removal treatment was performed at the temperature. Subsequently, after heating to 500 degreeC with the same temperature increase rate, the temperature increase rate from 500 degreeC was 300 degreeC / h, and it baked at 1115-1160 degreeC for 2 hours in hydrogen-nitrogen. Next, after cooling to 1000 ° C. at a rate of temperature decrease of 300 ° C./h, heat treatment (reoxidation treatment) is performed at 1000 ° C. for 4 hours in a nitrogen atmosphere, and cooling is performed at a rate of temperature decrease of 300 ° C./h. Produced. The size of this capacitor body was 0.95 × 0.48 × 0.48 mm 3 , the thickness of the dielectric layer was 2 μm, and the area of one internal electrode layer was 0.3 mm 2 .

次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。
<評価>
得られた積層セラミックコンデンサについて以下の評価を行った。評価はいずれも試料数10個とし、その平均値を求めた。
(1)比誘電率
静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、得られた静電容量から誘電体層の厚み、内部電極層の全面積および真空の誘電率をもとに換算して求めた。
(2)誘電損失
静電容量と同条件で測定した。
(3)比誘電率の温度特性
静電容量を温度−55〜125℃の範囲で測定して求めた。
(4)絶縁抵抗
直流電圧3.15V/μmおよび12.5V/μmの条件にて評価した。絶縁抵抗は直流電圧を印加1分後の値を読み取った
(5)高温負荷試験
温度170℃において、印加電圧30V(15V/μm)の条件で行った。高温負荷試験での試料数は各試料20個とした。
(6)第1の結晶群を構成する結晶粒子および第2の結晶群を構成する結晶粒子からなる結晶粒子の平均粒径
誘電体磁器の断面を透過電子顕微鏡にて観察可能となる状態まで研磨(イオンミリング)した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値として求めた。また、誘電体粉末からの粒成長の割合を{(結晶粒子の平均粒径)/(誘電体粉末の平均粒径)}×100(%)として評価した。
(7)b/(a+b)の測定
結晶粒子中のCa濃度について、積層セラミックコンデンサの積層方向の断面を研磨した誘電体層の研磨面に存在する約30個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行った。このとき電子線のスポットサイズは5nmとし、分析する箇所は、結晶粒子の粒界付近から中央部へ向けて引いた直線上のほぼ等間隔に位置する点とした。分析する箇所は結晶粒子の粒界付近から中央部の中心の位置までの範囲で、その中心へ向けて引いた直線上のほぼ等間隔に位置する点とし、分析値は粒界付近と中心との間で4〜5点ほど分析した値の平均値とし、結晶粒子の各測定点から検出されるBa、Ti、Ca、V、Mg、希土類元素およびMnの全量を100%として、そのときのCaの濃度を求めた。
Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.
<Evaluation>
The obtained multilayer ceramic capacitor was evaluated as follows. In each evaluation, the number of samples was 10 and the average value was obtained.
(1) Relative permittivity The capacitance is measured under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. From the obtained capacitance, the thickness of the dielectric layer, the total area of the internal electrode layer, and the vacuum It was calculated based on the dielectric constant of
(2) Dielectric loss Measured under the same conditions as the capacitance.
(3) Temperature characteristics of relative permittivity The capacitance was determined by measuring the capacitance in the temperature range of −55 to 125 ° C.
(4) Insulation resistance Evaluation was made under the conditions of a DC voltage of 3.15 V / μm and 12.5 V / μm. The insulation resistance was read 1 minute after application of a DC voltage. (5) High-temperature load test The test was performed at a temperature of 170 ° C. under an applied voltage of 30 V (15 V / μm). The number of samples in the high temperature load test was 20 samples.
(6) Average particle diameter of crystal grains comprising the crystal grains constituting the first crystal group and the crystal grains constituting the second crystal group Polishing to a state where the cross section of the dielectric ceramic can be observed with a transmission electron microscope For the polished surface (ion milling), an image displayed by a transmission electron microscope is taken into a computer, a diagonal line is drawn on the screen, and the contours of crystal particles existing on the diagonal line are image-processed. The diameter when the area was replaced with a circle having the same area was calculated, and the average value of about 50 calculated crystal grains was determined. Further, the rate of grain growth from the dielectric powder was evaluated as {(average particle diameter of crystal particles) / (average particle diameter of dielectric powder)} × 100 (%).
(7) Measurement of b / (a + b) Elemental analysis was performed on approximately 30 crystal particles present on the polished surface of the dielectric layer obtained by polishing the cross section in the stacking direction of the multilayer ceramic capacitor with respect to the Ca concentration in the crystal particles. Elemental analysis was performed using a transmission electron microscope equipped with an instrument. At this time, the spot size of the electron beam was 5 nm, and the locations to be analyzed were points located at substantially equal intervals on a straight line drawn from the vicinity of the grain boundary of the crystal grains toward the center. The area to be analyzed is a range from the vicinity of the grain boundary of the crystal grain to the center position of the central part, and the points are located at almost equal intervals on the straight line drawn toward the center, and the analysis values are the vicinity of the grain boundary and the center. The average value of the values analyzed between 4 and 5 points is taken as 100%, and the total amount of Ba, Ti, Ca, V, Mg, rare earth elements and Mn detected from each measurement point of the crystal particles is taken as 100%. The concentration of Ca was determined.

このような分析において、カルシウム濃度が0.2原子%以下を示した結晶粒子を「第1の結晶群を構成する結晶粒子」とし、カルシウム濃度が0.4原子%以上を示した結晶粒子を「第2の結晶群を構成する結晶粒子」とした。また、この場合、選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、このようにして直径を求めた結晶粒子の直径が平均粒径の±60%の範囲にある結晶粒子とした。   In such an analysis, a crystal particle having a calcium concentration of 0.2 atomic% or less is referred to as a “crystal particle constituting the first crystal group”, and a crystal particle having a calcium concentration of 0.4 atomic% or more is used. “Crystal grains constituting the second crystal group”. Further, in this case, the crystal particles to be selected are obtained by calculating the area of each particle by image processing from the outline, and calculating the diameter when replaced with a circle having the same area, and thus the crystal particle for which the diameter has been obtained Crystal grains having a diameter of ± 60% of the average particle diameter.

この測定で結晶粒子の中央部は当該結晶粒子の内接円の中心から半径の1/3の長さの範囲とし、一方、結晶粒子の粒界付近は当該結晶粒子の粒界から5nm内側の領域とした。なお、結晶粒子の内接円は透過電子顕微鏡にて映し出されている画像をコンピュータの画面上で内接円を描き、その画面上の画像から結晶粒子の中央部を決定した。   In this measurement, the central part of the crystal grain is in the range of 1/3 of the radius from the center of the inscribed circle of the crystal grain, while the vicinity of the grain boundary of the crystal grain is 5 nm inside from the grain boundary of the crystal grain. The area. The inscribed circle of the crystal grains was drawn on the screen of a computer from the image projected by the transmission electron microscope, and the center of the crystal grains was determined from the image on the screen.

誘電体磁器において第1の結晶群を構成する結晶粒子および第2の結晶群を構成する結晶粒子の面積割合、b/(a+b)(但し、aは第1の結晶群を構成する結晶粒子1aの面積を示し、bは第2の結晶群を構成する結晶粒子1bの面積を示す)は、上記約50個について結晶粒子1a、1bの平均粒径を求めた面積のデータから算出した。
(8)試料の組成分析
得られた焼結体である試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。
Area ratio of crystal grains constituting the first crystal group and the second crystal group in the dielectric ceramic, b / (a + b) (where a is the crystal grain 1a constituting the first crystal group (B represents the area of the crystal particles 1b constituting the second crystal group) was calculated from the area data obtained by calculating the average particle diameter of the crystal particles 1a and 1b for the above-mentioned 50 particles.
(8) Composition analysis of sample The composition analysis of the sample which is the obtained sintered body was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

調合組成と焼成温度を表1に、焼結体中の各元素の酸化物換算での組成を表2に、特性の結果を表3にそれぞれ示した。ここで、誘電体磁器のICP分析において、各成分が検出限界以下(0.5μg/g以下)である場合を0モルとした。

Figure 0005127837
Figure 0005127837
Figure 0005127837
表1〜3の結果から明らかなように、本発明の試料No.1−4〜7、9〜13、15、16、19〜22、25、26、28〜31および33〜35では、比誘電率が3600以上、誘電損失13%以下、比誘電率の温度変化がEIA規格のX7R特性を満足するものとなり、単位厚み(1μm)当たりに印加する直流電圧の値を3.15V/μmおよび12.5V/μmとしたときの絶縁抵抗の低下が小さく、絶縁抵抗の電圧依存性のさらに小さい誘電体磁器を得ることができた。表3では、仮数部と指数部の間にEを入れる指数表記で示しており、例えば「5.2E+08」とは5.2×10を意味している(後述する表6も同じである)。また、高温負荷試験での寿命特性が170℃、15V/μmの条件で60時間以上であった。Table 1 shows the preparation composition and the firing temperature, Table 2 shows the composition of each element in the sintered body in terms of oxide, and Table 3 shows the results of the characteristics. Here, in the ICP analysis of the dielectric ceramic, the case where each component was below the detection limit (0.5 μg / g or less) was defined as 0 mol.
Figure 0005127837
Figure 0005127837
Figure 0005127837
As is apparent from the results in Tables 1 to 3, the sample No. In 1-4-7, 9-13, 15, 16, 19-22, 25, 26, 28-31 and 33-35, the relative permittivity is 3600 or more, the dielectric loss is 13% or less, and the temperature change of the relative permittivity Satisfies the X7R characteristics of the EIA standard, and when the DC voltage applied per unit thickness (1 μm) is 3.15 V / μm and 12.5 V / μm, the decrease in insulation resistance is small, and the insulation resistance It was possible to obtain a dielectric ceramic having a smaller voltage dependency. Table 3 shows an exponent notation in which E is inserted between the mantissa part and the exponent part. For example, “5.2E + 08” means 5.2 × 10 8 (the same applies to Table 6 described later). ). Moreover, the lifetime characteristic in the high temperature load test was 60 hours or more under the conditions of 170 ° C. and 15 V / μm.

また、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マンガンをMnO換算で0〜0.5モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5〜1.5モル含ませて、イッテルビウムをYb換算で0モル、マグネシウムをMgO換算で0モルとした試料No.1−4〜7、9、10、15、16、19〜22、25、26、28〜31および33〜35では、誘電損失を12.7%以下にでき、また、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15V/μmと12.5V/μmとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができた。Further, barium titanate is the main component, and with respect to 100 moles of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mole in terms of V 2 O 5 and manganese is 0 to 0.00 in terms of MnO. 5 mol, a rare earth element selected from yttrium, dysprosium, holmium and erbium is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , ytterbium in terms of Yb 2 O 3 and 0 mol in terms of magnesium. Sample no. In 1-4-7, 9, 10, 15, 16, 19-22, 25, 26, 28-31 and 33-35, the dielectric loss can be reduced to 12.7% or less, and the applied DC voltage is dielectric A highly insulating dielectric ceramic exhibiting a tendency (positive change) in the insulation resistance to increase between 3.15 V / μm and 12.5 V / μm per unit thickness (1 μm) of the body layer can be obtained. It was.

また、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素をRE換算で0.5〜1.5モル含ませて、イッテルビウムをYb換算で0モル、マグネシウムをMgO換算で0モルおよびマンガンをMnO換算で0モルとした試料No.1−4〜7、9、10、15、16、19〜22、25、26、28〜31および33〜35では、さらに誘電損失を低減することができた。Further, the main component is barium titanate, and the vanadium is selected from 0.05 to 0.3 mol in terms of V 2 O 5 and yttrium, dysprosium, holmium and erbium with respect to 100 mol of barium constituting the barium titanate. The rare earth element contained is 0.5 to 1.5 mol in terms of RE 2 O 3 , ytterbium is 0 mol in terms of Yb 2 O 3 , magnesium is 0 mol in terms of MgO, and manganese is 0 mol in terms of MnO. Sample No. In 1-4-7, 9, 10, 15, 16, 19-22, 25, 26, 28-31 and 33-35, the dielectric loss could be further reduced.

また、チタン酸バリウムを構成するバリウム100モルに対して、バナジウム、希土類元素、マグネシウムおよびマンガンを本発明で規定する量だけ含有させてイッテルビウムをYb換算で0モル、テルビウムをTb換算で0.05〜0.3モル含有させた試料No.1−4〜7、9〜13、15、16、19〜22、25、26、29〜30および33〜35では、テルビウムを含有しない試料No.28に比較して誘電体磁器の絶縁抵抗を高めることができ、上記の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性がさらに向上した。Further, vanadium, rare earth element, magnesium and manganese are contained in an amount specified in the present invention with respect to 100 mol of barium constituting barium titanate, and 0 mol in terms of Yb 2 O 3 and terbium in Tb 4 O. Sample No. 7 containing 0.05 to 0.3 mol in terms of 7 In 1-4-7, 9-13, 15, 16, 19-22, 25, 26, 29-30 and 33-35, sample No. which does not contain terbium. The insulation resistance of the dielectric ceramic can be increased as compared with 28, and when the above dielectric ceramic is applied to the dielectric layer of the multilayer ceramic capacitor, the life characteristics in the high temperature load test are further improved.

これに対して、本発明の範囲外の試料では、比誘電率が3600より低いか、誘電損失が13%より大きいか、比誘電率の温度変化がEIA規格のX7R特性を満足しないか、または、絶縁抵抗が単位厚み(1μm)当たりに印加する直流電圧の値を12.5V/μmとして測定したときに10Ωよりも低いか、高温負荷試験の寿命特性が8時間以下であった。
[実施例2]
実施例1に示した本発明の試料である各組成に、さらにイッテルビウムをYb換算で0.35モル添加して、実施例1と同様の方法で試料を作製し評価した(試料No.2−1〜24)。
On the other hand, in a sample outside the scope of the present invention, the relative permittivity is lower than 3600, the dielectric loss is greater than 13%, the temperature change of the relative permittivity does not satisfy the X7R characteristic of the EIA standard, or When the value of the DC voltage applied per unit thickness (1 μm) was measured as 12.5 V / μm, the insulation resistance was lower than 10 8 Ω or the life characteristics of the high temperature load test were 8 hours or less.
[Example 2]
A sample was prepared and evaluated in the same manner as in Example 1 by adding 0.35 mol of ytterbium in terms of Yb 2 O 3 to each composition of the sample of the present invention shown in Example 1 (Sample No.). .2-1 to 24).

また、実施例1の試料No.1−6に対して、イッテルビウムをYb換算で0〜0.9モル添加し、焼成温度を1135℃として実施例1と同様の方法で試料を作製し評価した(試料No.2−25〜31)。In addition, sample No. With respect to 1-6, 0 to 0.9 mol of ytterbium was added in terms of Yb 2 O 3 , the sample was prepared and evaluated in the same manner as in Example 1 at a firing temperature of 1135 ° C. (Sample No. 2- 25-31).

調合組成と焼成温度を表4に、焼結体中の各元素の酸化物換算での組成を表5に、特性の結果を表6にそれぞれ示した。

Figure 0005127837
Figure 0005127837
Figure 0005127837
表4〜6の結果から明らかなように、実施例1に示した本発明の試料である各組成に、さらにイッテルビウムをYb換算で0.35モル含有させた試料No.2−1〜24は、いずれの組成についてもイッテルビウムを含有しない組成の試料と同等の特性が得られた。The composition and firing temperature are shown in Table 4, the composition of each element in the sintered body in terms of oxide is shown in Table 5, and the results of the characteristics are shown in Table 6, respectively.
Figure 0005127837
Figure 0005127837
Figure 0005127837
As is apparent from the results of Tables 4 to 6, sample No. 1 was obtained by further adding 0.35 mol of ytterbium in terms of Yb 2 O 3 to each of the compositions of the present invention shown in Example 1. In 2-1 to 24, the same characteristics as those of the sample having a composition not containing ytterbium were obtained for any composition.

また、実施例1の試料No.1−6に対して、さらに、イッテルビウムをYb換算で0〜0.9モル添加して、1135℃の温度で焼成して作製した試料No.2−25〜31のうち、イッテルビウムをYb換算で0.3〜0.7モル含有する試料No.2−27〜30は、試料No.1−6との比誘電率の差が100以下と小さく、イッテルビウムの含有量が0.2モル以下の試料(試料No.2−25,26)に比較して、焼成温度に対する比誘電率の変化が小さかった。また、イッテルビウムをYb換算で0.9モル含有する試料No.2−31に比較して、高温負荷試験での寿命特性が45時間以上と高かった。なお、イッテルビウムをYb換算で0.3〜0.7モル含有させた試料は125℃における絶縁抵抗が2.1×10Ω以上であった。In addition, sample No. Sample No. 1 prepared by adding 0 to 0.9 mol of ytterbium in terms of Yb 2 O 3 and firing at 1135 ° C. with respect to 1-6. Sample Nos. 2-25 to 31 which contain 0.3 to 0.7 mol of ytterbium in terms of Yb 2 O 3 . 2-27 to 30 are sample Nos. Compared with the samples (sample Nos. 2-25 and 26) in which the difference in relative dielectric constant from 1-6 is as small as 100 or less and the ytterbium content is 0.2 mol or less, The change was small. Sample No. 1 containing 0.9 mol of ytterbium in terms of Yb 2 O 3 was used. Compared with 2-31, the life characteristics in the high temperature load test were as high as 45 hours or more. A sample containing 0.3 to 0.7 mol of ytterbium in terms of Yb 2 O 3 had an insulation resistance of at least 2.1 × 10 7 Ω at 125 ° C.

Claims (7)

チタン酸バリウムを主成分とし、
該チタン酸バリウムを構成するバリウム100モルに対して、
バナジウムをV換算で0.05〜0.3モル、
マグネシウムをMgO換算で0〜0.1モル、
マンガンをMnO換算で0〜0.5モル、
イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、
さらにカルシウムを含むとともに、
結晶粒子として、
前記チタン酸バリウムを主体とし、前記カルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群と、
前記チタン酸バリウムを主体とし、前記カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群と
を有する誘電体磁器であって、
該誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(004)面の回折強度よりも大きく、
かつ前記誘電体磁器の研磨面に見られる前記第1の結晶群を構成する結晶粒子の面積をa、前記第2の結晶群を構成する結晶粒子の面積をbとしたときに、b/(a+b)が0.4〜0.7であるとともに、
前記第1の結晶群を構成する結晶粒子および前記第2の結晶群を構成する結晶粒子の平均粒径が0.21〜0.28μmであることを特徴とする誘電体磁器。
Mainly composed of barium titanate,
With respect to 100 moles of barium constituting the barium titanate,
0.05-0.3 mol of vanadium in terms of V 2 O 5 ,
0 to 0.1 mol of magnesium in terms of MgO,
0 to 0.5 mol of manganese in terms of MnO,
0.5 to 1.5 mol of one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in terms of RE 2 O 3 ,
In addition to containing calcium,
As crystal particles,
A first crystal group consisting mainly of the barium titanate and having a calcium concentration of 0.2 atomic% or less;
A dielectric ceramic having a second crystal group mainly composed of the barium titanate and having a calcium concentration of 0.4 atomic% or more;
In the X-ray diffraction chart of the dielectric ceramic, the diffraction intensity of the (004) plane showing tetragonal barium titanate is larger than the diffraction intensity of the (004) plane showing cubic barium titanate,
When the area of the crystal grains constituting the first crystal group and the area of the crystal grains constituting the second crystal group seen on the polished surface of the dielectric ceramic is b and b / ( a + b) is 0.4 to 0.7,
The dielectric ceramic according to claim 1, wherein an average particle diameter of crystal grains constituting the first crystal group and crystal grains constituting the second crystal group is 0.21 to 0.28 μm.
前記マグネシウムがMgO換算で0モルであることを特徴とする請求項1に記載の誘電体磁器。  The dielectric ceramic according to claim 1, wherein the magnesium is 0 mol in terms of MgO. 前記マンガンがMnO換算で0モルであることを特徴とする請求項2に記載の誘電体磁器。  The dielectric ceramic according to claim 2, wherein the manganese is 0 mol in terms of MnO. 前記チタン酸バリウムを構成するバリウム100モルに対して、さらにテルビウムをTb換算で0.3モル以下含有することを特徴とする請求項1乃至3のうちいずれかに記載の誘電体磁器。The dielectric ceramic according to any one of claims 1 to 3, further comprising 0.3 mol or less of terbium in terms of Tb 4 O 7 with respect to 100 mol of barium constituting the barium titanate. . 前記チタン酸バリウムを構成するバリウム100モルに対して、さらにイッテルビウムをYb換算で0.3〜0.7モル含有することを特徴とする請求項1乃至4のうちいずれかに記載の誘電体磁器。The ytterbium is further contained in an amount of 0.3 to 0.7 mol in terms of Yb 2 O 3 with respect to 100 mol of barium constituting the barium titanate, according to any one of claims 1 to 4. Dielectric porcelain. 前記正方晶系のチタン酸バリウムを示す(004)面の回折強度をIxt、前記立方晶系のチタン酸バリウムを示す(004)面の回折強度をIxcとしたときに、Ixt/Ixc比が1.4以上であることを特徴とする請求項1乃至5のうちいずれかに記載の誘電体磁器。  When the diffraction intensity of the (004) plane showing the tetragonal barium titanate is Ixt and the diffraction intensity of the (004) plane showing the cubic barium titanate is Ixc, the Ixt / Ixc ratio is 1. The dielectric ceramic according to any one of claims 1 to 5, wherein the dielectric ceramic is at least .4. 請求項1乃至6のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層とを交互に積層した積層体と、該積層体の両端面に設けられ、前記内部電極層に接続された外部電極とから構成されていることを特徴とする積層セラミックコンデンサ。  A laminate in which dielectric layers comprising the dielectric ceramic according to any one of claims 1 to 6 and an internal electrode layer are alternately laminated, and provided on both end faces of the laminate, and connected to the internal electrode layer And a laminated ceramic capacitor, characterized in that the multilayer ceramic capacitor is composed of an external electrode.
JP2009538968A 2007-10-29 2008-08-26 Dielectric porcelain and multilayer ceramic capacitor Active JP5127837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009538968A JP5127837B2 (en) 2007-10-29 2008-08-26 Dielectric porcelain and multilayer ceramic capacitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007279858 2007-10-29
JP2007279858 2007-10-29
JP2008022305 2008-02-01
JP2008022305 2008-02-01
JP2009538968A JP5127837B2 (en) 2007-10-29 2008-08-26 Dielectric porcelain and multilayer ceramic capacitor
PCT/JP2008/065169 WO2009057373A1 (en) 2007-10-29 2008-08-26 Dielectric ceramic and laminated ceramic capacitor

Publications (2)

Publication Number Publication Date
JPWO2009057373A1 JPWO2009057373A1 (en) 2011-03-10
JP5127837B2 true JP5127837B2 (en) 2013-01-23

Family

ID=40590775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538968A Active JP5127837B2 (en) 2007-10-29 2008-08-26 Dielectric porcelain and multilayer ceramic capacitor

Country Status (4)

Country Link
JP (1) JP5127837B2 (en)
CN (1) CN101868432B (en)
TW (1) TWI406310B (en)
WO (1) WO2009057373A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701013B2 (en) * 2010-10-28 2015-04-15 京セラ株式会社 Multilayer ceramic capacitor
KR101435398B1 (en) * 2011-03-04 2014-08-28 다이요 유덴 가부시키가이샤 Laminated ceramic capacitor
CN103262190B (en) * 2011-12-17 2016-08-03 京瓷株式会社 Capacitor
JP5999030B2 (en) * 2013-06-05 2016-09-28 信越化学工業株式会社 Degreasing method for ceramic moldings
CN114014649B (en) * 2021-12-13 2023-07-25 深圳先进电子材料国际创新研究院 Co-doped barium titanate ceramic dielectric material, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156450A (en) * 2004-11-25 2006-06-15 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2007197233A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Dielectric ceramic and manufacturing method of dielectric ceramic, as well as laminated ceramic capacitor
JP2007258661A (en) * 2005-09-28 2007-10-04 Kyocera Corp Laminated ceramic capacitor and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065349A (en) * 1991-03-27 1992-10-14 天津大学 The manufacture method of high-voltage ceramic condenser medium
US7433173B2 (en) * 2004-11-25 2008-10-07 Kyocera Corporation Multilayer ceramic capacitor and method for manufacturing the same
KR20080048458A (en) * 2005-08-29 2008-06-02 쿄세라 코포레이션 Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
CN101030478B (en) * 2007-03-27 2010-11-17 天津大学 High-dielectric metal-electric medium composite ceramic capacitance and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156450A (en) * 2004-11-25 2006-06-15 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2007258661A (en) * 2005-09-28 2007-10-04 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2007197233A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Dielectric ceramic and manufacturing method of dielectric ceramic, as well as laminated ceramic capacitor

Also Published As

Publication number Publication date
CN101868432B (en) 2013-05-29
JPWO2009057373A1 (en) 2011-03-10
TW200921726A (en) 2009-05-16
CN101868432A (en) 2010-10-20
WO2009057373A1 (en) 2009-05-07
TWI406310B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5210300B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
JP2009143735A (en) Dielectric porcelain composition and electronic component
JP5685931B2 (en) Multilayer ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP5094283B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2012094696A (en) Laminated ceramic capacitor
JP5127837B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP2012028683A (en) Multilayer ceramic capacitor
JP2013211398A (en) Multilayer ceramic capacitor
WO2009157232A1 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP5159682B2 (en) Multilayer ceramic capacitor
JP5100592B2 (en) Multilayer ceramic capacitor
JP2005263508A (en) Dielectric ceramic composition, laminated porcelain capacitor, and method for producing the capacitor
JP5241328B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5164687B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
JP4784172B2 (en) Sintering aid, dielectric ceramic composition manufacturing method and electronic component manufacturing method
JP5701013B2 (en) Multilayer ceramic capacitor
JP5197432B2 (en) Multilayer ceramic capacitor
JP5534976B2 (en) Multilayer ceramic capacitor
JP5322723B2 (en) Multilayer ceramic capacitor
JP5084657B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5127837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3