JP5903989B2 - Dielectric ceramic composition and multilayer ceramic capacitor - Google Patents
Dielectric ceramic composition and multilayer ceramic capacitor Download PDFInfo
- Publication number
- JP5903989B2 JP5903989B2 JP2012080247A JP2012080247A JP5903989B2 JP 5903989 B2 JP5903989 B2 JP 5903989B2 JP 2012080247 A JP2012080247 A JP 2012080247A JP 2012080247 A JP2012080247 A JP 2012080247A JP 5903989 B2 JP5903989 B2 JP 5903989B2
- Authority
- JP
- Japan
- Prior art keywords
- subcomponent
- dielectric
- temperature
- batio
- ceramic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
Description
本発明は、耐還元性を有する誘電体磁器組成物、およびこの誘電体磁器組成物を誘電体層に有する電子部品に係り、さらに詳しくは、容量温度特性がX8R特性(−55℃〜150℃の温度範囲で、基準温度である25℃の容量に対する変化率が−15%〜+15%)を満たす誘電体磁器組成物および積層セラミックコンデンサに関する。 The present invention relates to a dielectric ceramic composition having resistance to reduction and an electronic component having the dielectric ceramic composition in a dielectric layer. More specifically, the capacitance-temperature characteristic is an X8R characteristic (−55 ° C. to 150 ° C. The dielectric ceramic composition and the multilayer ceramic capacitor satisfying a change rate of -15% to + 15% with respect to a capacity of 25 ° C. which is a reference temperature in a temperature range of
電子部品の一例である積層セラミックコンデンサは、たとえば、所定の誘電体磁器組成物からなるセラミックグリーンシートと、所定パターンの内部電極層とを交互に重ね、その後一体化して得られるグリーンチップを、同時焼成して製造される。積層セラミックコンデンサの内部電極層は、焼成によりセラミック誘電体と一体化されるために、セラミック誘電体と反応しないような材料を選択する必要があった。このため、内部電極層を構成する材料として、従来では白金やパラジウムなどの高価な貴金属を用いることを余儀なくされていた。 A multilayer ceramic capacitor, which is an example of an electronic component, includes, for example, a ceramic green sheet made of a predetermined dielectric ceramic composition and an internal electrode layer having a predetermined pattern alternately stacked, and then integrated into a green chip obtained simultaneously. Manufactured by firing. Since the internal electrode layer of the multilayer ceramic capacitor is integrated with the ceramic dielectric by firing, it is necessary to select a material that does not react with the ceramic dielectric. For this reason, as a material constituting the internal electrode layer, conventionally, an expensive noble metal such as platinum or palladium has been inevitably used.
しかしながら、近年ではニッケルや銅などの安価な卑金属を用いることができる誘電体磁器組成物が開発され、大幅なコストダウンが実現した。 However, in recent years, dielectric ceramic compositions that can use inexpensive base metals such as nickel and copper have been developed, and a significant cost reduction has been realized.
一方、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型・大容量化が急速に進んでいる。それに伴い、積層セラミックコンデンサにおける1層あたりの誘電体層の薄層化が進み、薄層化しても容量温度特性を維持できる誘電体磁器組成物が求められている。特に、車載用として、信頼性が高く、室温の誘電率からの変化率が−55℃から150℃の範囲において、−15%〜+15%であるX8R品の開発が望まれている。 On the other hand, there is a high demand for miniaturization of electronic components accompanying the increase in density of electronic circuits, and miniaturization and large capacity of multilayer ceramic capacitors are rapidly progressing. Accordingly, the dielectric ceramic composition per layer in the multilayer ceramic capacitor has been reduced, and a dielectric ceramic composition capable of maintaining the capacitance-temperature characteristics even when the thickness is reduced is demanded. In particular, it is desired to develop an X8R product that has high reliability and has a change rate from a dielectric constant at room temperature in the range of −55 ° C. to 150 ° C., which is −15% to + 15%.
これに対して、たとえば、特許文献1には、−55℃〜125℃の範囲で容量変化率が−15%〜+15%に収まるX7R特性を有する誘電体セラミックとして、BaTiO3と、M成分(ただし、Mはマンガン酸化物、鉄酸化物、コバルト酸化物およびニッケル酸化物の群から選択される少なくとも1種類以上の成分)とを主成分とし、強誘電体相領域を有する誘電体磁器組成物であって、前記強誘電体相領域における前記M成分の濃度が、外側から中心に向けて変化していることを特徴とする誘電体磁器組成物が開示されている。 On the other hand, for example, in Patent Document 1, BaTiO 3 and an M component (as a dielectric ceramic having an X7R characteristic in which the capacity change rate falls within the range of −15% to + 15% in the range of −55 ° C. to 125 ° C. M is a dielectric ceramic composition having a ferroelectric phase region, the main component being at least one component selected from the group consisting of manganese oxide, iron oxide, cobalt oxide and nickel oxide. A dielectric ceramic composition is disclosed in which the concentration of the M component in the ferroelectric phase region changes from the outside toward the center.
また、積層セラミックコンデンサの小型大容量化のためには、誘電体層を薄層化させ、誘電体層の積層数を増加させる必要がある。このことに伴い、1層当たりの電界強度が大きくなり、内部電極間で絶縁破壊が生じ易くなる。その結果、積層セラミックコンデンサの寿命が短くなり、電気的特性に対する信頼性が低下してしまう。このことに対し特許文献2では、複数の誘電体層と複数の内部電極とを一体的に積層してなり、該誘電体層がセラミック粒子の焼結体からなり、該セラミック粒子は、コア部と、該コア部を囲繞するシェル部とからなる積層セラミックコンデンサにおいて、該シェル部にMn,V,Cr,Co,Fe,Ni,Cu及びMoから選択された1種又は2種以上のアクセプタ型元素、Mg及び希土類元素(Ho,Sc,Y,Gd,Dy,Er,Yb,Tb,Tm,Lu)が含まれ、該シェル部に含まれている該アクセプタ型元素の濃度をコア・シェル境界から粒界側に向かって高くなるよう設計された誘電体磁器組成物により構成される積層セラミックスコンデンサが開示されている。 In addition, in order to increase the size and capacity of the multilayer ceramic capacitor, it is necessary to reduce the thickness of the dielectric layer and increase the number of stacked dielectric layers. Along with this, the electric field strength per layer increases, and dielectric breakdown tends to occur between the internal electrodes. As a result, the life of the multilayer ceramic capacitor is shortened, and the reliability with respect to the electrical characteristics is lowered. On the other hand, in Patent Document 2, a plurality of dielectric layers and a plurality of internal electrodes are integrally laminated, and the dielectric layers are made of a sintered body of ceramic particles. And a multilayer ceramic capacitor comprising a shell portion surrounding the core portion, wherein the shell portion is one or more acceptor types selected from Mn, V, Cr, Co, Fe, Ni, Cu and Mo. Element, Mg and rare earth elements (Ho, Sc, Y, Gd, Dy, Er, Yb, Tb, Tm, Lu) are contained, and the concentration of the acceptor element contained in the shell portion is determined as a core-shell boundary. A multilayer ceramic capacitor is disclosed that is composed of a dielectric ceramic composition designed so as to become higher toward the grain boundary side.
さらに、粒子内の濃度分布については、特許文献3中でも述べられている。特許文献3では、積層セラミックコンデンサの誘電体セラミック層が薄層化されても、良好なバイアス特性を与えることができる、誘電体セラミック層を構成するための誘電体セラミックを提供することを目的とし、ABO3(Aは、Ba等であり、Bは、Ti等である。)を主成分とし、さらに副成分として希土類元素を含み、結晶粒子と結晶粒界とを備える、誘電体セラミックであり、90%以上の結晶粒子において、希土類元素/Tiモル比が0.03〜0.10である表層部と希土類元素/Tiモル比が0.01以下である内部とを有し、表層部の平均厚みの、結晶粒子の直径に対する比が0.01〜0.10である誘電体磁器組成物が比較的平坦な誘電率温度依存性を実現することが開示されている。 Further, the concentration distribution in the particles is described in Patent Document 3. Patent Document 3 aims to provide a dielectric ceramic for forming a dielectric ceramic layer, which can provide good bias characteristics even when the dielectric ceramic layer of the multilayer ceramic capacitor is thinned. , ABO3 (A is Ba or the like, B is Ti or the like) as a main component, and further includes a rare earth element as a subcomponent, and includes dielectric grains and crystal grains, and is a dielectric ceramic. 90% or more of the crystal grains have a surface layer portion with a rare earth element / Ti molar ratio of 0.03 to 0.10 and an interior with a rare earth element / Ti molar ratio of 0.01 or less, and an average of the surface layer portion It is disclosed that a dielectric ceramic composition having a thickness to crystal particle diameter of 0.01 to 0.10 achieves a relatively flat dielectric constant temperature dependency.
しかしながら、特許文献1では、静電容量の温度特性を示すX7R特性(EIA規格)およびB特性(EIAJ規格)をいずれも満足することができ、且つ、静電容量および絶縁抵抗の電圧依存性が小さく、絶縁破壊耐力に優れ、内部電極層としてNiまたはNi合金が使用可能な積層セラミックコンデンサなどの電子部品と、その電子部品の誘電体層として用いて好適な誘電体磁器組成物およびその製造方法を提供することを目的としている。このため、150℃での容量変化率が−15%を下回ってしまい、X8R規格を満足することはできない。特に近年、搭載箇所がエンジン部へと集中しつつある車載用の積層セラミックコンデンサでは150℃での保証が求められる傾向が顕著である。 However, Patent Document 1 can satisfy both the X7R characteristic (EIA standard) and the B characteristic (EIAJ standard) indicating the temperature characteristics of the capacitance, and the voltage dependency of the capacitance and the insulation resistance. An electronic component such as a multilayer ceramic capacitor that is small and excellent in dielectric breakdown strength and can use Ni or Ni alloy as an internal electrode layer, a dielectric ceramic composition suitable for use as a dielectric layer of the electronic component, and a method for producing the same The purpose is to provide. For this reason, the capacity change rate at 150 ° C. falls below −15%, and the X8R standard cannot be satisfied. Particularly in recent years, in-vehicle multilayer ceramic capacitors whose mounting locations are concentrating on the engine part tend to require a guarantee at 150 ° C.
また、特許文献2では、BaTiO3粒子中における、副成分濃度の分布が記述されており、粒子中心部から粒界に向けて副成分濃度が高くなるように調整された誘電体磁器組成物が採用されている。しかしながら、この誘電体磁器組成物においても、容量温度特性はX8R特性を満たさず、改善が望まれていた。 Patent Document 2 describes the distribution of subcomponent concentration in BaTiO 3 particles, and a dielectric ceramic composition adjusted so that the subcomponent concentration increases from the particle center toward the grain boundary. It has been adopted. However, even in this dielectric ceramic composition, the capacity-temperature characteristic does not satisfy the X8R characteristic, and improvement has been desired.
また、特許文献3においては比較的平坦な誘電特性が得られているが、150度の高温下の場合には、良好な温度特性は得られておらず、改善の必要がある。 Further, in Patent Document 3, a relatively flat dielectric characteristic is obtained. However, when the temperature is high at 150 degrees, a good temperature characteristic is not obtained and needs to be improved.
本発明は、このような実状に鑑みてなされ、容量温度特性X8Rを満たし、かつ加速寿命の向上が可能な誘電体磁器組成物、およびこの誘電体磁器組成物を誘電体層として有する電子部品を提供することを目的とする。 The present invention has been made in view of such a situation, and includes a dielectric ceramic composition that satisfies the capacitance-temperature characteristic X8R and that can improve the accelerated lifetime, and an electronic component that includes this dielectric ceramic composition as a dielectric layer. The purpose is to provide.
上記目的を達成するために、本発明によれば、
セラミック粒子の焼結体からなり、前記セラミック粒子は、コア部と、
前記コア部を覆うシェル部を有する焼結体より構成される誘電体磁器組成物であって、
前記コア部は、実質的に主成分であるBaTiO3から構成され、
前記シェル部がBaTiO3および第一副成分であるMg、Ba、Ca、Srより選ばれる少なくとも一つの元素と、第二副成分であるSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1つの元素と、第三副成分であるMn、V、Fe、Co、Ni、Crより選ばれる少なくとも一つの元素と、第四副成分であるAl、Si、B、Geより選ばれる少なくとも一つの元素と、第五副成分であるZr、Hf、Nb、Taより選ばれる少なくとも一つの元素と、を有し、
当該誘電体磁器組成物中のTiに対する副成分の濃度を、それぞれ、第一副成分:CP1(at%)、第二副成分:CP2(at%)、第三副成分:CP3(at%)、第四副成分:CP4(at%)、第五副成分:CP5(at%)とした場合に、
0(at%)<CP1<5(at%)、
0(at%)<CP2<15(at%)、
0(at%)<CP3<1(at%)、
2(at%)<CP4<5(at%)、
0(at%)<CP5<1.5(at%)、
であり、前記シェル部における、Tiに対する第二副成分の濃度をCS2(at%)とした場合に、
CS2>10(at%)、CS2/ CP2>2.122
の関係式を満たすことを特徴とする誘電体磁器組成物が提供される。
ここで、「コア部は、実質的に主成分であるBaTiO3より構成される」とは、コア部には第一〜第五副成分を含んでも良いということである。
In order to achieve the above object, according to the present invention,
The ceramic particles are made of a sintered body of ceramic particles.
A dielectric ceramic composition composed of a sintered body having a shell portion covering the core portion,
The core part is composed of BaTiO 3 that is substantially the main component,
The shell part is BaTiO 3 and at least one element selected from Mg, Ba, Ca and Sr as the first subcomponent, and Sc, Y, La, Ce, Pr, Nd, Pm and Sm as the second subcomponent. , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and at least one element selected from Mn, V, Fe, Co, Ni, Cr as the third subcomponent An element, at least one element selected from Al, Si, B, and Ge as the fourth subcomponent, and at least one element selected from Zr, Hf, Nb, and Ta as the fifth subcomponent ,
The concentrations of subcomponents with respect to Ti in the dielectric ceramic composition are as follows: first subcomponent: CP1 (at%), second subcomponent: CP2 (at%), and third subcomponent: CP3 (at%). , The fourth subcomponent: CP4 (at%), the fifth subcomponent: CP5 (at%),
0 (at%) <CP1 <5 (at%),
0 (at%) <CP2 <15 (at%),
0 (at%) <CP3 <1 (at%),
2 (at%) <CP4 <5 (at%),
0 (at%) <CP5 <1.5 (at%),
When the concentration of the second subcomponent with respect to Ti in the shell portion is CS2 (at%),
CS2> 10 (at%), CS2 / CP2> 2.122
A dielectric ceramic composition characterized by satisfying the following relational expression is provided.
Here, “the core part is substantially composed of BaTiO 3 as a main component” means that the core part may contain first to fifth subcomponents.
このような特徴を持つ誘電体磁器組成物は、従来の誘電体磁器組成物に比べ、シェル部が大幅に高濃度化されており、より明確なコア・シェル構造を有している。そのため、静電容量温度変化が小さく、信頼性の高い電気特性が得られる。 The dielectric ceramic composition having such characteristics has a shell portion that is significantly higher in concentration than the conventional dielectric ceramic composition, and has a clearer core-shell structure. Therefore, the capacitance temperature change is small, and highly reliable electrical characteristics can be obtained.
さらに、前記誘電体磁器組成物の作製に用いる、BaTiO3原料における、結晶格子のc軸長とa軸長の比であるc/a値は、c/a<1.007という関係式を満たすことが望ましい。 Furthermore, the c / a value, which is the ratio of the c-axis length to the a-axis length of the crystal lattice in the BaTiO 3 raw material used for the production of the dielectric ceramic composition, satisfies the relational expression c / a <1.007. It is desirable.
この条件を満たすBaTiO3を原料として用いることによって、シェル部が効率的に高濃度化され、容量温度特性および高温加速寿命がさらに良好となる。 By using BaTiO 3 satisfying this condition as a raw material, the shell portion is efficiently concentrated, and the capacity-temperature characteristics and the high temperature accelerated life are further improved.
また、本発明によれば、誘電体層と内部電極層とを有する電子部品であって、前記誘電体層が、上記誘電体磁器組成物で構成された電子部品が提供される。本発明に係る電子部品としては、特に限定されないが、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品が例示される。 According to the present invention, there is provided an electronic component having a dielectric layer and an internal electrode layer, wherein the dielectric layer is composed of the dielectric ceramic composition. The electronic component according to the present invention is not particularly limited, and examples thereof include a multilayer ceramic capacitor, a piezoelectric element, a chip inductor, a chip varistor, a chip thermistor, a chip resistor, and other surface mount (SMD) chip type electronic components.
本発明の誘電体磁器組成物は、BaTiO3を含む主成分に対し、上記特定の第1〜第5副成分を含有し、かつ、誘電体磁器組成物を構成する誘電体粒子が、主成分で実質的に構成されるコア部と前記コア部の周囲にシェル部とを有し、前記シェル部における、Tiに対する第二副成分の濃度をCS2(at%)としたとき、
CS2>10(at%)、CS2/ CP2>2.122
のような関係式を満たすように制限されている。
The dielectric ceramic composition of the present invention contains the above-mentioned specific first to fifth subcomponents with respect to the main component containing BaTiO 3 , and the dielectric particles constituting the dielectric ceramic composition are the main components. Having a core portion substantially constituted by and a shell portion around the core portion, and when the concentration of the second subcomponent with respect to Ti in the shell portion is CS2 (at%),
CS2> 10 (at%), CS2 / CP2> 2.122
It is limited to satisfy the following relational expression.
このことにより、シェル部における希土類濃度が大幅に高くなり、より明確なコア・シェル構造が構成される。そのため、容量温度特性および高温加速寿命を優れたものとすることができる。 As a result, the rare earth concentration in the shell portion is significantly increased, and a clearer core / shell structure is formed. Therefore, the capacity-temperature characteristics and the high temperature accelerated life can be improved.
そして、本発明の誘電体磁器組成物は上記特性を有するため、積層セラミックコンデンサなどの電子部品の誘電体層に、このような本発明の誘電体磁器組成物を適用することにより、たとえば、誘電体層を3μm程度と薄層化し、定格電圧の高い(たとえば50V以上)条件で用いた場合においても、高い信頼性とX8Rに該当する容量温度特性を実現することができる。 Since the dielectric ceramic composition of the present invention has the above characteristics, by applying the dielectric ceramic composition of the present invention to a dielectric layer of an electronic component such as a multilayer ceramic capacitor, for example, dielectric Even when the body layer is thinned to about 3 μm and used under conditions of a high rated voltage (for example, 50 V or more), high reliability and capacity-temperature characteristics corresponding to X8R can be realized.
すなわち、小型・大容量化対応で、しかも高い信頼性およびX8Rに該当する容量温度特性を有する電子部品を提供することができる。 That is, it is possible to provide an electronic component that is small and has a large capacity, and has high reliability and a capacity-temperature characteristic corresponding to X8R.
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。 DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
積層セラミックコンデンサ
図1に示すように、本発明の一実施形態に係る積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。
このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はない。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。
Multilayer Ceramic Capacitor As shown in FIG. 1, a multilayer ceramic capacitor 1 according to an embodiment of the present invention includes a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked.
At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the element body 10. There is no particular limitation on the shape of the capacitor element body 10. Moreover, there is no restriction | limiting in particular also in the dimension, What is necessary is just to set it as a suitable dimension according to a use.
内部電極層3は、各端面がコンデンサ素子本体10の対向する2端部の表面に交互に露出するように積層してある。また、一対の外部電極4は、コンデンサ素子本体10の両端部に形成され、交互に配置された内部電極層3の露出端面に接続されて、コンデンサ回路を構成する。 The internal electrode layers 3 are laminated so that the end faces are alternately exposed on the surfaces of the two opposite ends of the capacitor element body 10. The pair of external electrodes 4 are formed at both ends of the capacitor element body 10 and connected to the exposed end surfaces of the alternately arranged internal electrode layers 3 to constitute a capacitor circuit.
誘電体層
誘電体層2は、本実施形態の誘電体磁器組成物を含有する。本実施形態の誘電体磁器組成物は、BaTiO3を含む主成分と、
第一副成分であるMg、Ba、Ca、Srより選ばれる少なくとも一つの元素と、
第二副成分であるSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1つの元素、
第三副成分であるMn、V、Fe、Co、Ni、Crより選ばれる少なくとも一つの元素、
第四副成分であるAl、Si、B、Geより選ばれる少なくとも一つの元素、
第五副成分であるZr、Hf、Nb、Taより選ばれる少なくとも一つの元素と、を有する。
The dielectric layer dielectric layer 2 contains the dielectric ceramic composition of the present embodiment. The dielectric ceramic composition of the present embodiment includes a main component containing BaTiO 3 ,
At least one element selected from Mg, Ba, Ca, and Sr as the first subcomponent;
At least one element selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, which are the second subcomponents,
At least one element selected from Mn, V, Fe, Co, Ni, and Cr as the third subcomponent;
At least one element selected from Al, Si, B, and Ge as the fourth subcomponent;
And at least one element selected from Zr, Hf, Nb, and Ta as the fifth subcomponent.
主成分として含有されるBaTiO3としては、たとえば、組成式Bam TiO2+m で表され、前記組成式中のmが、0.990<m<1.010であり、BaとTiとの比が0.990<Ba/Ti<1.010であるものなどを用いることができる。 The BaTiO 3 contained as the main component is represented by, for example, the composition formula Ba m TiO 2 + m , m in the composition formula is 0.990 <m <1.010, and the ratio of Ba and Ti is Those having 0.990 <Ba / Ti <1.010 can be used.
第一副成分であるMg、Ba、Ca、Srより選ばれる少なくとも一つの元素の含有量は、主成分100モルに対して、元素換算で、0〜5モルであり、好ましくは2.7〜4.5モルである。第一副成分は、主に、主成分であるBaTiO3の強誘電性を抑制する効果を有する。第一副成分の含有量がこの範囲内であることにより、加速寿命が向上する傾向となる。 The content of at least one element selected from Mg, Ba, Ca, and Sr as the first subcomponent is 0 to 5 mol in terms of element with respect to 100 mol of the main component, preferably 2.7 to 4.5 moles. The first subcomponent mainly has an effect of suppressing the ferroelectricity of BaTiO 3 as the main component. When the content of the first subcomponent is within this range, the accelerated life tends to be improved.
第二副成分であるSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1つの元素の含有量は、主成分100モルに対して、元素換算で、0〜15モルであり、好ましくは8〜10モルである。第二副成分は、主に、主成分であるBaTiO3の強誘電性を抑制する効果を有する。
第二副成分の含有量がこの範囲内であることにより、絶縁抵抗、加速寿命、および温度特性が向上する傾向となる。
The content of at least one element selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, which are the second subcomponents, The amount is 0 to 15 mol, preferably 8 to 10 mol, in terms of element with respect to 100 mol of the main component. The second subcomponent mainly has an effect of suppressing the ferroelectricity of BaTiO 3 as the main component.
When the content of the second subcomponent is within this range, the insulation resistance, the accelerated life, and the temperature characteristics tend to be improved.
なお、上記代に副成分は、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuから選択されるが、Yb,Tbが特に好ましい。 In addition to the above, subcomponents are selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. , Tb are particularly preferred.
第三副成分であるMn、V、Fe、Co、Ni、Crより選ばれる少なくとも一つの元素の含有量は、主成分100モルに対して、元素換算で、0〜1モルであり、好ましくは0.12〜0.32モルである。第三副成分の含有量がこの範囲内であることにより、絶縁抵抗、加速寿命、および比誘電率が向上する傾向となる。 The content of at least one element selected from Mn, V, Fe, Co, Ni, and Cr as the third subcomponent is 0 to 1 mol in terms of element with respect to 100 mol of the main component, preferably 0.12 to 0.32 mol. When the content of the third subcomponent is within this range, the insulation resistance, the accelerated life, and the relative dielectric constant tend to be improved.
第四副成分であるAl、Si、B、Geより選ばれる少なくとも一つの元素の含有量は、主成分100モルに対して、元素換算で、2〜5モルであり、好ましくは3.2〜4.0モルである。第四副成分の含有量がこの範囲内であることにより、絶縁抵抗、および加速寿命が向上する傾向となる。 The content of at least one element selected from Al, Si, B, and Ge as the fourth subcomponent is 2 to 5 mol in terms of element with respect to 100 mol of the main component, preferably 3.2 to 4.0 moles. When the content of the fourth subcomponent is within this range, the insulation resistance and the accelerated life tend to be improved.
なお、第四副成分としては、上記各酸化物のなかでも特性の改善効果が大きいという点より、Siの酸化物を用いることが好ましい。 As the fourth subcomponent, it is preferable to use an oxide of Si from the viewpoint that the effect of improving the characteristics is large among the above oxides.
第五副成分であるZr、Hf、Nb、Taより選ばれる少なくとも一つの元素の含有量は、主成分100モルに対して、元素換算で、0〜1.5モルである。
第五副成分の含有量がこの範囲内であることにより、容量温度特性および比誘電率が向上する傾向となる。
The content of at least one element selected from Zr, Hf, Nb, and Ta as the fifth subcomponent is 0 to 1.5 mol in terms of element with respect to 100 mol of the main component.
When the content of the fifth subcomponent is within this range, the capacity-temperature characteristic and the relative dielectric constant tend to be improved.
なお、第五副成分であるZrは、Zrのうち一部が、Hfにより置換されたものであっても良い。 Note that Zr as the fifth subcomponent may be a part of Zr substituted with Hf.
なお、本実施形態においては、必要に応じて、上記第一〜第五副成分に加えて、その他の副成分を添加しても良い。 In addition, in this embodiment, you may add another subcomponent in addition to the said 1st-5th subcomponent as needed.
誘電体層2の厚みは、特に限定されず、積層セラミックコンデンサ1の用途に応じて適宜決定すれば良い。 The thickness of the dielectric layer 2 is not particularly limited, and may be appropriately determined according to the use of the multilayer ceramic capacitor 1.
誘電体層の微細構造
図2に示すように、本誘電体層は、主成分であるBaTiO3で実質的に構成されるコア部11と、前記コア部11の周囲に、第一副成分であるMg、Ba、Ca、Srより選ばれる少なくとも一つの元素と、第二副成分であるSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1つの元素と、第三副成分であるMn、V、Fe、Co、Ni、Crより選ばれる少なくとも一つの元素と、第四副成分であるAl、Si、B、Geより選ばれる少なくとも一つの元素と、第五副成分であるZr、Hf、Nb、Taより選ばれる少なくとも一つの元素が拡散したシェル部12とを有する。
As shown in FIG. 2, the dielectric layer is composed of a core part 11 substantially composed of BaTiO 3 as a main component, and a first subcomponent around the core part 11. At least one element selected from certain Mg, Ba, Ca, Sr, and Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, which are second subcomponents , Tm, Yb, Lu, at least one element selected from Mn, V, Fe, Co, Ni, Cr as the third subcomponent, and Al, Si as the fourth subcomponent , B, and Ge, and a shell portion 12 in which at least one element selected from Zr, Hf, Nb, and Ta as the fifth subcomponent is diffused.
本発明では、前記シェル部12における第二副成分の濃度をCS2(at%)と定義する。CS2(at%)は、図2中のEDS観察点13における定量分析によって算出する。シェル部は、拡散成分がほぼ均一に拡散した単一の相であっても良く、あるいは、異なる拡散成分から形成される複数の相であっても良く、さらには、拡散成分の含有割合が粒子内部に向かって除々に変化する態様であっても良い。 In the present invention, the concentration of the second subcomponent in the shell portion 12 is defined as CS2 (at%). CS2 (at%) is calculated by quantitative analysis at the EDS observation point 13 in FIG. The shell portion may be a single phase in which the diffusion component is diffused substantially uniformly, or may be a plurality of phases formed from different diffusion components. It may be an aspect that gradually changes toward the inside.
本実施形態におけるコア部とシェル部の境界は、図3に示すような誘電体粒子のTEM写真によって判断する。例えば図3および図4に見られる、シェル部である明部14とコア部である暗部15の境界により判断する。また、図3および図4中の黒点16は、BaTiO3内部に存在するポアである。 The boundary between the core portion and the shell portion in this embodiment is determined by a TEM photograph of dielectric particles as shown in FIG. For example, the determination is made based on the boundary between the bright portion 14 that is the shell portion and the dark portion 15 that is the core portion, as shown in FIGS. Further, black dots 16 in FIGS. 3 and 4 are pores existing in the BaTiO 3 .
本実施形態では、図2における斜線部と定義した、誘電体粒子のシェル部のTiに対する第二副成分の濃度CS2(at%)が10(at%)を上回るように制御されている。ここで、第二副成分の濃度CS2(at%)が10(at%)を下回る場合では、室温での静電容量が過度に増加し、容量温度特性が悪化する。つまり、X8R特性を満足しなくなる。 In the present embodiment, the concentration CS2 (at%) of the second subcomponent with respect to Ti in the shell part of the dielectric particles, which is defined as the hatched part in FIG. 2, is controlled to exceed 10 (at%). Here, when the concentration CS2 (at%) of the second subcomponent is less than 10 (at%), the capacitance at room temperature increases excessively, and the capacity-temperature characteristics deteriorate. That is, the X8R characteristic is not satisfied.
容量温度特性は、下式で定義される。
容量温度特性 =
{(目的の温度における静電容量−25℃における静電容量)/
(25℃における静電容量)}
×100(%)
The capacity-temperature characteristic is defined by the following equation.
Capacity-temperature characteristics =
{(Capacitance at target temperature−Capacitance at 25 ° C.) /
(Capacitance at 25 ° C.)}
× 100 (%)
また、当該誘電体磁器組成物中のTiに対する第二副成分の濃度CP2と、上記誘電体粒子のシェル部におけるTiに対する第二副成分の濃度CS2(at%)は、CS2/ CP2>2.122の関係式を満たすように制御されている。これらの関係式を満たすのは、図5における、直線CS2=2.122×CP2を上回る領域である。ここで、前記CS2およびCP2が、CS2/CP2≦2.122である場合には、シェル部とコア部の差異が少なくなってしまい、明確なコア・シェル構造が形成されない。このため、容量温度特性または、高温加速寿命が悪化する。 The concentration CP2 of the second subcomponent with respect to Ti in the dielectric ceramic composition and the concentration CS2 (at%) of the second subcomponent with respect to Ti in the shell portion of the dielectric particle are CS2 / CP2> 2. It is controlled to satisfy the relational expression 122. The region satisfying these relational expressions is a region exceeding the straight line CS2 = 2.122 × CP2 in FIG. Here, when CS2 and CP2 satisfy CS2 / CP2 ≦ 2.122, the difference between the shell portion and the core portion is reduced, and a clear core-shell structure is not formed. For this reason, the capacity-temperature characteristic or the high temperature accelerated life is deteriorated.
また、本実施形態においては、原料としてc/a値が1.007を下まわるBaTiO3を用いることが好ましい。 In this embodiment, it is preferable to use BaTiO 3 having a c / a value lower than 1.007 as a raw material.
上記のような、BaTiO3を用いることによって、希土類のシェル部における濃度が高まり、より明確なコア・シェル構造が形成される。 By using BaTiO 3 as described above, the concentration of the rare earth shell is increased, and a clearer core / shell structure is formed.
上記のような、明確なコア・シェル構造を形成することによって、容量温度特性および高温加速寿命が向上する傾向となる。 By forming a clear core / shell structure as described above, the capacity-temperature characteristics and the high temperature accelerated life tend to be improved.
内部電極層
内部電極層3に含有される導電材は特に限定されないが、誘電体層2の構成材料が耐還元性を有するため、比較的安価な卑金属を用いることができる。導電材として用いる卑金属としては、NiまたはNi合金が好ましい。Ni合金としては、Mn,Cr,CoおよびAlから選択される1種以上の元素とNiとの合金が好ましく、合金中のNi含有量は95重量%以上であることが好ましい。なお、NiまたはNi合金中には、P等の各種微量成分が0.1重量%程度以下含まれていてもよい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。
The conductive material contained in the internal electrode layer 3 is not particularly limited, but a relatively inexpensive base metal can be used because the constituent material of the dielectric layer 2 has reduction resistance. As the base metal used as the conductive material, Ni or Ni alloy is preferable. The Ni alloy is preferably an alloy of Ni and one or more elements selected from Mn, Cr, Co and Al, and the Ni content in the alloy is preferably 95% by weight or more. In addition, in Ni or Ni alloy, various trace components, such as P, may be contained about 0.1 wt% or less. The internal electrode layer 3 may be formed using a commercially available electrode paste. What is necessary is just to determine the thickness of the internal electrode layer 3 suitably according to a use etc.
外部電極
外部電極4に含有される導電材は特に限定されないが、本発明では安価なNi,Cuや、これらの合金を用いることができる。外部電極4の厚さは用途等に応じて適宜決定すればよい。
The conductive material contained in the external electrode external electrode 4 is not particularly limited, but in the present invention, inexpensive Ni, Cu, and alloys thereof can be used. What is necessary is just to determine the thickness of the external electrode 4 suitably according to a use etc.
積層セラミックコンデンサの製造方法
本実施形態の積層セラミックコンデンサは、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷または転写して焼成することにより製造される。以下、製造方法について具体的に説明する。
Manufacturing Method of Multilayer Ceramic Capacitor The multilayer ceramic capacitor of the present embodiment is the same as the conventional multilayer ceramic capacitor. After producing a green chip by a normal printing method or sheet method using a paste and firing it, the external electrode It is manufactured by printing or transferring and baking. Hereinafter, the manufacturing method will be specifically described.
まず、誘電体層用ペーストに含まれる誘電体原料(誘電体磁器組成物粉末)を準備し、これを塗料化して、誘電体層用ペーストを調製する。主成分の原料として結晶格子のc軸長とa軸長の比であるc/aが、それぞれc/a=1.006,1.002,1.007,1.011のBaTiO3粉末を用意した。 First, a dielectric material (dielectric ceramic composition powder) contained in the dielectric layer paste is prepared, and this is made into a paint to prepare a dielectric layer paste. BaTiO 3 powders having c / a = 1.006, 1.002, 1.007, and 1.011 as the ratio of the c-axis length to the a-axis length of the crystal lattice are prepared as the main component raw materials. did.
本発明の効果を得るための主成分の原料としてのBaTiO3粉末は、いわゆる固相法の他、各種液相法(たとえば、シュウ酸塩法、水熱合成法、アルコキシド法、ゾルゲル法など)により製造されたものなど、種々の方法で製造されたものを用いることができ、それぞれの結晶性が低くなる条件を用いて製造する。 In addition to the so-called solid phase method, BaTiO 3 powder as a main component material for obtaining the effects of the present invention can be obtained by various liquid phase methods (for example, oxalate method, hydrothermal synthesis method, alkoxide method, sol-gel method, etc.) What was manufactured by various methods, such as what was manufactured by this, can be used, and it manufactures using the conditions from which each crystallinity becomes low.
上記のBaTiO3粉末基材を用意した後、副成分の原料として、MgO、Tb2O3.5、Yb2O3、MnO、SiO2、ZrO2を最終製品の副成分濃度が表1または、表2になるように混合し、誘電体磁器組成粉末を得た。 After preparing the above BaTiO 3 powder base material, MgO, Tb 2 O 3.5 , Yb 2 O 3 , MnO, SiO 2 , ZrO 2 are used as auxiliary component raw materials. The mixture was mixed as shown in Table 2 to obtain a dielectric ceramic composition powder.
なお、表1および表2中の試料番号1、5、6、12、13、16、17、20、21、24、27、28、31、32,35、36、39、40は、本発明の範囲外である。 Sample numbers 1, 5, 6, 12, 13, 16, 17, 20, 21, 24, 27, 28, 31, 32, 35, 36, 39, and 40 in Tables 1 and 2 are the present invention. Is out of range.
誘電体層用ペーストの調製は、誘電体原料と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。 The dielectric layer paste may be prepared using an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be a water-based paint.
有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。 An organic vehicle is obtained by dissolving a binder in an organic solvent. The binder used for the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose and polyvinyl butyral. The organic solvent to be used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, toluene, and the like according to a method to be used such as a printing method or a sheet method.
本実施形態では、有機系の塗料を用いて、誘電体層用ペーストを調整した。
すなわち、前記誘電体磁器組成物粉末と、溶媒としてのアルコール:100重量部、バインダとしてのポリビニルブチラール樹脂:10重量部と、可塑剤としてのジブチルフタレート(DOP):5重量部と、を混合し、それぞれ誘電体ペーストを得た。
In the present embodiment, the dielectric layer paste is adjusted using an organic paint.
That is, the dielectric ceramic composition powder, 100 parts by weight of alcohol as a solvent, 10 parts by weight of polyvinyl butyral resin as a binder, and 5 parts by weight of dibutyl phthalate (DOP) as a plasticizer are mixed. Each obtained a dielectric paste.
上記で得られた誘電体ペーストを用いて、PETフィルム上に、セラミックグリーンシートを成形する。
本実施形態では、ドクターブレード法によりグリーンシートを成形し、乾燥後の厚み4.0μmの矩形のセラミックグリーンシートをそれぞれ得た。
A ceramic green sheet is formed on a PET film using the dielectric paste obtained above.
In this embodiment, green sheets were formed by the doctor blade method, and rectangular ceramic green sheets having a thickness of 4.0 μm after drying were obtained.
その後、この上に内部電極層用ペーストを印刷した後、これらを積層し、所望の形状に切断してグリーンチップとする。 Then, after printing the internal electrode layer paste on this, they are laminated and cut into a desired shape to obtain a green chip.
内部電極層用ペーストは、銀、ニッケルなどの導電性金属やそれらを含む合金からなる導電材粉末と、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。
本実施形態では、ニッケル導電性ペーストを用い、印刷法にてグリーンシート上に導電性ペースト膜を形成した。
The internal electrode layer paste is a conductive material powder made of a conductive metal such as silver or nickel or an alloy containing them, or various oxides, organometallic compounds, resinates, etc. that become the conductive material described above after firing. Prepare by kneading with organic vehicle.
In this embodiment, a nickel conductive paste was used, and a conductive paste film was formed on the green sheet by a printing method.
前記導電性ペースト膜を印刷したセラミックグリーンシートを、切断後に導電性ペースト膜が端部に交互に引き出されるように11枚重ね、加圧接着することで積層数が10層の積層体を作製した。接着条件は、温度100℃、圧力1MPaの条件で接着した。
また、積層体を所望の形状に切断し、幅1.4mm、長さ2.2mm、厚み1.4mmのグリーンチップを得た。
Eleven ceramic green sheets on which the conductive paste film was printed were stacked so that the conductive paste films were alternately pulled out at the end after cutting, and pressure-bonded to produce a laminate having 10 layers. . The bonding conditions were a temperature of 100 ° C. and a pressure of 1 MPa.
The laminate was cut into a desired shape to obtain a green chip having a width of 1.4 mm, a length of 2.2 mm, and a thickness of 1.4 mm.
得られたグリーンチップについて、脱バインダ処理を施した後に焼成を行う。
脱バインダ条件としては、昇温速度を好ましくは5〜300℃/時間、保持温度を好ましくは180〜400℃、温度保持時間を好ましくは0.5〜24時間とする。
焼成条件としては、昇温速度を好ましくは50〜500℃/時間、温度保持時間を好ましくは0.5〜8時間、冷却速度を好ましくは50〜500℃/時間とする。また、焼成雰囲気は還元性雰囲気とすることが好ましく、雰囲気ガスとしてはたとえば、N2 とH2 との混合ガスを加湿して用いることができる。
The obtained green chip is subjected to a binder removal treatment and then fired.
As binder removal conditions, the temperature rising rate is preferably 5 to 300 ° C./hour, the holding temperature is preferably 180 to 400 ° C., and the temperature holding time is preferably 0.5 to 24 hours.
As firing conditions, the temperature rising rate is preferably 50 to 500 ° C./hour, the temperature holding time is preferably 0.5 to 8 hours, and the cooling rate is preferably 50 to 500 ° C./hour. Further, the firing atmosphere is preferably a reducing atmosphere, and as the atmosphere gas, for example, a mixed gas of N 2 and H 2 can be used by humidification.
還元性雰囲気中で焼成した後、コンデンサ素子本体にはアニールを施すことが好ましい。アニールは、誘電体層を再酸化するための処理であり、これによりIR寿命を著しく長くすることができるので、信頼性が向上する。 After firing in a reducing atmosphere, the capacitor element body is preferably annealed. Annealing is a process for re-oxidizing the dielectric layer, and this can significantly increase the IR lifetime, thereby improving the reliability.
脱バインダ処理、焼成およびアニールは、連続して行なっても、独立に行なってもよい。 The binder removal treatment, firing and annealing may be performed continuously or independently.
本実施形態では、脱バインダ処理条件は、昇温速度:25℃/時間、保持温度:260℃、温度保持時間:8時間、雰囲気:空気中とした。 In the present embodiment, the binder removal treatment conditions were a temperature rising rate: 25 ° C./hour, a holding temperature: 260 ° C., a temperature holding time: 8 hours, and an atmosphere: in the air.
焼成条件は、昇温速度:200℃/時間、保持温度:1200〜1350℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:N2 +H2 +H2 O混合ガス(酸素分圧:10−12MPa)とした。ここで、焼結完了する温度は、使用する基材の大きさおよび副成分の量に依存するため、保持温度は実施例毎にそれぞれの最適温度にて焼成した。 Firing conditions are: temperature rising rate: 200 ° C./hour, holding temperature: 1200 to 1350 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: N 2 + H 2 + H 2 O mixed gas (oxygen) ( Partial pressure: 10 −12 MPa). Here, since the temperature at which the sintering is completed depends on the size of the base material to be used and the amount of subcomponents, the holding temperature was fired at each optimum temperature for each example.
アニール条件は、昇温速度:200℃/時間、保持温度:1050℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:N2 +H2 O混合ガス(酸素分圧:10−7MPa)とした。なお、焼成およびアニールの際の雰囲気ガスの加湿には、ウェッターを用いた。 The annealing conditions are: temperature rising rate: 200 ° C./hour, holding temperature: 1050 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: N 2 + H 2 O mixed gas (oxygen partial pressure: 10 −7 MPa). A wetter was used for humidifying the atmospheric gas during firing and annealing.
上記のようにして得られたコンデンサ素子本体に、たとえばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極4表面に、めっき等により被覆層を形成する。 The capacitor element main body obtained as described above is subjected to end face polishing, for example, by barrel polishing or sand blasting, and the external electrode paste is applied and fired to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.
評価方法
本発明を実施するにあたり、主成分としてのチタン酸バリウム粉末、得られる誘電体磁器組成物の評価方法、及び、それを用いて作製される積層セラミックコンデンサの評価方法について説明する。
Evaluation Method In carrying out the present invention, an evaluation method of barium titanate powder as a main component, a dielectric ceramic composition obtained, and an evaluation method of a multilayer ceramic capacitor produced using the same will be described.
得られた各積層セラミックコンデンサ試料について、誘電体粒子のコア部およびシェル部の有無および、シェル部における第二副成分のTiに対する濃度CS2(at%)、比誘電率εs、絶縁抵抗(IR)、容量温度特性(TC)、高温加速寿命(HALT)を下記に示す方法により測定した。 About each obtained multilayer ceramic capacitor sample, the presence or absence of the core part and the shell part of the dielectric particles, the concentration CS2 (at%) with respect to Ti of the second subcomponent in the shell part, the relative dielectric constant εs, the insulation resistance (IR) The capacity-temperature characteristics (TC) and the high temperature accelerated lifetime (HALT) were measured by the methods shown below.
シェル部の第二副成分(希土類元素)の濃度
シェル部の第二副成分(希土類元素)の濃度は、元素分析機器(EDS)を付設した透過走査型電子顕微鏡(STEM)を用いて調べた。試料は積層セラミックコンデンサを誘電体層に対して垂直な面で切り出し、FIB加工により作製した薄片をTEM試料とした。
Concentration of the second subcomponent (rare earth element) in the shell portion The concentration of the second subcomponent (rare earth element) in the shell portion was examined using a transmission scanning electron microscope (STEM) equipped with an elemental analysis instrument (EDS). . As a sample, a laminated ceramic capacitor was cut out in a plane perpendicular to the dielectric layer, and a thin piece produced by FIB processing was used as a TEM sample.
またTEM観察直前には低加速Arイオン研磨装置を用いてTEM試料表面のアモルファス層を除去した。 Immediately before TEM observation, the amorphous layer on the surface of the TEM sample was removed using a low acceleration Ar ion polishing apparatus.
そのようなTEM試料についてSTEM観察を行い、チタン酸バリウムを主成分とする結晶粒子が、他の結晶粒子と重なることなく明瞭に観察できる粒子で、且つSTEM暗視野で観察したときにシェル部とコア部のコントラストが明瞭に識別できる粒子を選択した。図3に観察例を示す。このような結晶粒子50個について、コア部とシェル部のコントラストが急峻に変化する部分と結晶粒界との中間点(EDS観察点13)でEDS元素分析を行い、これを各結晶粒子で10点ずつ測定した。これらの結果を平均化し、これをシェル部の第二副成分(希土類元素)の濃度CS2とした。 STEM observation is performed on such a TEM sample, and the crystal particles mainly composed of barium titanate are particles that can be clearly observed without overlapping with other crystal particles, and when observed in the STEM dark field, Particles with a clearly distinguishable core contrast were selected. FIG. 3 shows an observation example. About 50 such crystal grains, EDS elemental analysis is performed at an intermediate point (EDS observation point 13) between the portion where the contrast between the core portion and the shell portion changes sharply and the crystal grain boundary, and this is 10 for each crystal particle. Measurements were made point by point. These results were averaged and used as the concentration CS2 of the second subcomponent (rare earth element) in the shell portion.
比誘電率εs
積層セラミックコンデンサ試料に対し、基準温度25℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。
そして、比誘電率εs(単位なし)を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。
比誘電率は、本実施例では900以上を良好とした。
Dielectric constant εs
With respect to the multilayer ceramic capacitor sample, a signal with a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms was input with a digital LCR meter (4284A manufactured by YHP) at a reference temperature of 25 ° C., and the capacitance C was measured.
The relative dielectric constant εs (no unit) was calculated based on the thickness of the dielectric layer, the effective electrode area, and the capacitance C obtained as a result of the measurement.
In this example, the relative dielectric constant was 900 or more.
絶縁抵抗(IR)
IR測定器にて、50V/μmの測定電圧を30秒間印加した後、測定を行った。測定はチップ10個で行い、平均値を求めた。絶縁抵抗は、5.0E+9Ω以上を良好とした。
Insulation resistance (IR)
Measurement was performed after applying a measurement voltage of 50 V / μm for 30 seconds with an IR measuring instrument. Measurement was performed with 10 chips, and an average value was obtained. The insulation resistance was good at 5.0E + 9Ω or more.
容量温度特性(TC)
積層セラミックコンデンサ試料に対し、−55〜160℃における静電容量を測定し、基準温度(25℃)における静電容量に対する変化率を算出した。
本実施例では、150℃での容量変化率が+15%〜−15%(X8R特性)を満足するものを良好とした。
Capacity temperature characteristics (TC)
The capacitance at −55 to 160 ° C. was measured for the multilayer ceramic capacitor sample, and the rate of change relative to the capacitance at the reference temperature (25 ° C.) was calculated.
In this example, a material satisfying a capacity change rate at 150 ° C. of + 15% to −15% (X8R characteristics) was considered good.
高温加速寿命(HALT)
積層セラミックコンデンサ試料に対し、200℃にて、35V/μmの電界下で直流電圧の印加状態に保持し、寿命時間を測定することにより、高温加速寿命(HALT)を評価した。
本実施例においては、印加開始から絶縁抵抗が一桁落ちるまでの時間を寿命と定義した。
また、この高温加速寿命は、20個の積層セラミックコンデンサ試料について行った。
評価基準は、80時間以上を良好とした。
High temperature accelerated life (HALT)
The multilayer ceramic capacitor samples were evaluated for high temperature accelerated life (HALT) by maintaining a DC voltage application state at 200 ° C. under an electric field of 35 V / μm and measuring the life time.
In this example, the time from the start of application until the insulation resistance drops by an order of magnitude was defined as the lifetime.
Further, this high temperature accelerated life was performed for 20 multilayer ceramic capacitor samples.
The evaluation criteria were good for 80 hours or more.
試料番号1〜24
結晶格子のc軸長とa軸長の比であるc/a値がc/a=1.006であるBaTiO3を主成分原料として用いた試料1〜24についてまず説明する。
Sample numbers 1-24
First, samples 1 to 24 using BaTiO 3 having a c / a value of c / a = 1.006 as a ratio of the c-axis length to the a-axis length of the crystal lattice as a main component material will be described first.
主成分であるBaTiO3に対して、第一副成分としてMg、第二副成分としてTbおよびYb、第三副成分としてMn、第四副成分としてSi、第五副成分としてZrをそれぞれについて、酸化物または炭酸化合物を選択する。 For BaTiO 3 as the main component, Mg as the first subcomponent, Tb and Yb as the second subcomponent, Mn as the third subcomponent, Si as the fourth subcomponent, Zr as the fifth subcomponent, An oxide or a carbonate compound is selected.
最終製品におけるBaTiO3と第一から第五副成分の組成比が、BaTiO3が100(at%)、第一副成分であるMgが3.7(at%)、第二副成分であるTbとYbが、それぞれ3.8(at%)、5.3(at%)、第三副成分であるMnが0.23(at%)、第四副成分であるSiが3.2(at%)、第五副成分であるZrが1.2(at%)となるように、ボールミルによる混合粉の作製を行った。 The composition ratio of BaTiO 3 and the first to fifth subcomponents in the final product is as follows: BaTiO 3 is 100 (at%), the first subcomponent Mg is 3.7 (at%), and the second subcomponent is Tb. And Yb are 3.8 (at%) and 5.3 (at%), respectively, the third subcomponent Mn is 0.23 (at%), and the fourth subcomponent Si is 3.2 (at%). %), And the mixed powder was produced by a ball mill so that Zr as the fifth subcomponent was 1.2 (at%).
なお、ここで、前記の最終製品におけるBaTiO3と第一から第五副成分の組成比を基本組成と定義する。 Here, the composition ratio between BaTiO 3 and the first to fifth subcomponents in the final product is defined as the basic composition.
前記ボールミルによって作成した混合粉に、有機バインダを加えてスラリーとした後シート化し、内部電極とともに誘電体シートを交互に積層し、チップ化した後焼成し、所望の積層セラミックコンデンサのサンプルとした。 An organic binder was added to the mixed powder prepared by the ball mill to form a slurry, which was then formed into a sheet. Dielectric sheets were alternately laminated with internal electrodes, formed into chips, and then fired to obtain a desired multilayer ceramic capacitor sample.
試料番号1〜5
表3の試料1〜5では、第一副成分としてMgを取り上げ、Mg元素の添加量を表1のように変え、検討を行った。また、この検討においては、他の副成分濃度を、前記の基本組成に固定した。その結果、0(at%)<CP1(表2および3ではMgの濃度)<5(at%)を満たす試料2〜4で、高温加速寿命は良好な値を示している。
Mg濃度が0(at%)の場合には、酸素欠陥の生成が抑制されず、高温加速寿命が低下する。またMg濃度が5(at%)より高い場合には、粒界部にかかる電圧が、高くなりすぎてしまい、高温加速寿命が低下する。
Sample numbers 1-5
In Samples 1 to 5 in Table 3, Mg was taken up as the first subcomponent, and the amount of Mg element added was changed as shown in Table 1 for investigation. In this study, other subcomponent concentrations were fixed to the basic composition. As a result, Samples 2 to 4 satisfying 0 (at%) <CP1 (Mg concentration in Tables 2 and 3) <5 (at%) show high values of high temperature accelerated lifetimes.
When the Mg concentration is 0 (at%), the generation of oxygen defects is not suppressed, and the high temperature accelerated life is reduced. On the other hand, when the Mg concentration is higher than 5 (at%), the voltage applied to the grain boundary portion becomes too high, and the high temperature accelerated life is reduced.
試料番号6〜12
表3の試料6〜12では、第二副成分としてTbとYbを取り上げ、Tb元素とYb元素の添加量を表1のように変え、検討を行った。また、この検討においては、他の副成分濃度を、前記の基本組成に固定した。その結果、0(at%)<CP2(表2および3ではTbの濃度とYbの濃度の和)<15(at%)を満たす試料7〜11で、絶縁抵抗、高温加速寿命および容量温度特性は良好な値を示している。
Sample number 6-12
In Samples 6 to 12 in Table 3, Tb and Yb were taken up as the second subcomponent, and the addition amount of Tb element and Yb element was changed as shown in Table 1 for investigation. In this study, other subcomponent concentrations were fixed to the basic composition. As a result, in Samples 7 to 11 satisfying 0 (at%) <CP2 (the sum of the Tb concentration and the Yb concentration in Tables 2 and 3) <15 (at%), the insulation resistance, the high temperature accelerated lifetime, and the capacity-temperature characteristic Indicates a good value.
TbまたはYb濃度が低い場合では、焼結が過度に進みすぎ、容量温度特性の悪化と、高温加速寿命の低下が起こる。これに対して、TbまたはYb濃度が高い場合では、ドナー性イオンが増加することによって、絶縁抵抗の低下が起こり、同時に、酸素欠陥の増加によって、高温加速寿命の低下が起こる。 When the Tb or Yb concentration is low, the sintering proceeds excessively, and the capacity-temperature characteristics are deteriorated and the high temperature accelerated life is reduced. On the other hand, when the Tb or Yb concentration is high, the increase in donor ions causes a decrease in insulation resistance, and at the same time, a decrease in high-temperature accelerated lifetime due to an increase in oxygen defects.
試料番号13〜16
表3の試料13〜16では、第三副成分としてMnを取り上げ、Mn元素の添加量を表1のように変え、検討を行った。また、この検討においては、他の副成分濃度を、前記の基本組成に固定した。その結果、0(at%)<CP3(表2および3ではMnの濃度)<1(at%)を満たす試料14〜15で、比誘電率、絶縁抵抗および高温加速寿命は良好な値を示している。
Sample numbers 13-16
In Samples 13 to 16 in Table 3, Mn was taken up as the third subcomponent, and the amount of Mn element added was changed as shown in Table 1 for investigation. In this study, other subcomponent concentrations were fixed to the basic composition. As a result, samples 14 to 15 satisfying 0 (at%) <CP3 (Mn concentration in Tables 2 and 3) <1 (at%), and the dielectric constant, insulation resistance, and high-temperature accelerated life showed good values. ing.
Mn濃度が低い場合では、酸素欠陥の生成が抑制されず、絶縁抵抗および高温加速寿命が低下する。対して、Mn濃度が高い場合では、シェル部の割合が過度に増加し、比誘電率が低下させる。また同時に、粒界にかかる電圧も増加するので、高温加速寿命も低下する。 When the Mn concentration is low, the generation of oxygen defects is not suppressed, and the insulation resistance and the high temperature accelerated life are reduced. On the other hand, when the Mn concentration is high, the ratio of the shell portion is excessively increased and the relative dielectric constant is decreased. At the same time, since the voltage applied to the grain boundary increases, the high temperature accelerated lifetime also decreases.
試料番号17〜20
表3の試料17〜20では、第四副成分としてSiを取り上げ、Si元素の添加量を表1のように変え、検討を行った。また、この検討においては、他の副成分濃度を、前記の基本組成に固定した。その結果、表3の試料17〜20において、2(at%)<CP4(表2および3ではSiの濃度)<5(at%)を満たす試料18〜19で、絶縁抵抗および高温加速寿命は良好な値を示している。
Sample number 17-20
In Samples 17 to 20 in Table 3, Si was taken up as the fourth subcomponent, and the amount of Si element added was changed as shown in Table 1 for investigation. In this study, other subcomponent concentrations were fixed to the basic composition. As a result, in Samples 17 to 20 in Table 3, Samples 18 to 19 satisfying 2 (at%) <CP4 (Si concentration in Tables 2 and 3) <5 (at%). It shows a good value.
Si濃度が低い場合では、十分な焼結状態を得られないため、絶縁抵抗が低下する。これに対して、Si濃度が高い場合では、過度に粒成長が促進し、高温加速寿命が悪化する。 When the Si concentration is low, a sufficient sintered state cannot be obtained, so that the insulation resistance decreases. On the other hand, when the Si concentration is high, the grain growth is excessively promoted and the high temperature accelerated life is deteriorated.
試料番号21〜24
表3の試料17〜20では、第五副成分としてZrを取り上げ、Zr元素の添加量を表1のように変え、検討を行った。また、この検討においては、他の副成分濃度を、前記の基本組成に固定した。その結果、0.0(at%)<CP5(表2および3ではZrの濃度)<1.5(at%)を満たす試料22〜23で、高温加速寿命および容量温度特性は良好な値を示している。
Sample numbers 21-24
In Samples 17 to 20 in Table 3, Zr was taken up as the fifth subcomponent, and the amount of Zr element added was changed as shown in Table 1 for investigation. In this study, other subcomponent concentrations were fixed to the basic composition. As a result, the samples 22 to 23 satisfying 0.0 (at%) <CP5 (Zr concentration in Tables 2 and 3) <1.5 (at%), and the high-temperature accelerated lifetime and capacity-temperature characteristics have good values. Show.
Zr濃度が0.0(at%)の場合では、Tiの3価への価数変化が抑制されず、格子定数が変化する。このことによって、比誘電率の低下および容量温度特性の悪化が起こる。これに対して、Zr濃度が1.5(at%)を上回る場合では、Zrの偏析が生じて、比誘電率の低下および容量温度特性の悪化が起こる。 When the Zr concentration is 0.0 (at%), the change in the valence of Ti to the trivalence is not suppressed, and the lattice constant changes. This causes a decrease in relative dielectric constant and a deterioration in capacitance temperature characteristics. On the other hand, when the Zr concentration exceeds 1.5 (at%), segregation of Zr occurs, resulting in a decrease in relative permittivity and a deterioration in capacitance-temperature characteristics.
試料番号25〜40
次に、結晶格子のc軸長とa軸長の比であるc/a値がc/a=1.002、1.006、1.007、1.011であるBaTiO3を主成分原料として用いた試料25〜40について説明する。
Sample number 25-40
Next, BaTiO 3 whose c / a value, which is the ratio of the c-axis length to the a-axis length of the crystal lattice, is c / a = 1.002, 1.006, 1.007, 1.011 is used as a main component material. The used samples 25 to 40 will be described.
実施例1と同様に、主成分であるBaTiO3に対して、第一副成分としてMg、第二副成分としてTbおよびYb、第三副成分としてMn、第四副成分としてSi、第五副成分としてZrをそれぞれについて、酸化物または炭酸化合物を選択する。 Similar to Example 1, with respect to BaTiO 3 as the main component, Mg as the first subcomponent, Tb and Yb as the second subcomponent, Mn as the third subcomponent, Si as the fourth subcomponent, fifth subcomponent An oxide or a carbonic acid compound is selected for each of Zr as a component.
最終製品におけるBaTiO3と第一から第五副成分の組成比が、BaTiO3が100(at%)、第一副成分であるMgが3.7(at%)、第二副成分であるTbとYbが、それぞれ0.1〜3.8(at%)、0.2〜5.3(at%)、第三副成分であるMnが0.23(at%)、第四副成分であるSiが3.2(at%)、第五副成分であるZrが1.2(at%)となるように、ボールミルによる混合粉の作製を行った。 The composition ratio of BaTiO 3 and the first to fifth subcomponents in the final product is as follows: BaTiO 3 is 100 (at%), the first subcomponent Mg is 3.7 (at%), and the second subcomponent is Tb. And Yb are 0.1 to 3.8 (at%) and 0.2 to 5.3 (at%), respectively, and the third subcomponent Mn is 0.23 (at%), and the fourth subcomponent is A mixed powder was prepared by a ball mill so that a certain Si was 3.2 (at%) and the fifth subcomponent Zr was 1.2 (at%).
なお、第二副成分の濃度は、試料番号25〜28では、Tbが0.1(at%)、Ybが0.2(at%)、試料番号29〜32では、Tbが1.9(at%)、Ybが2.9(at%)、試料番号33〜36では、Tbが2.4(at%)、Ybが3.7(at%)、試料番号37〜40では、Tbが3.8(at%)、Ybが5.3(at%)、とそれぞれなるようにする。 The concentration of the second subcomponent is 0.1 (at%) for Tb in sample numbers 25 to 28, 0.2 (at%) for Yb, and 1.9 (Tb for sample numbers 29 to 32). at%), Yb is 2.9 (at%), sample numbers 33 to 36, Tb is 2.4 (at%), Yb is 3.7 (at%), and sample numbers 37 to 40, Tb is 3.8 (at%) and Yb are set to 5.3 (at%).
なお、用いるBaTiO3のc軸長とa軸長の比であるc/a値は、試料番号25、29、33、37、では、c/a=1.002、試料番号26、30、34、38では、c/a=1.006、試料番号27、31、35、39では、c/a=1.007、試料番号28、32、36、40では、c/a=1.011とする。 The c / a value, which is the ratio of the c-axis length to the a-axis length of BaTiO 3 used, is c / a = 1.002 for sample numbers 25, 29, 33, and 37, and sample numbers 26, 30, and 34. , 38, c / a = 1.006, sample numbers 27, 31, 35, 39, c / a = 1.007, and sample numbers 28, 32, 36, 40, c / a = 1.010 To do.
前記ボールミルによって作成した混合粉に、有機バインダを加えてスラリーとした後シート化し、内部電極とともに誘電体シートを交互に積層し、チップ化した後焼成し、所望の積層セラミックコンデンサのサンプルとした。 An organic binder was added to the mixed powder prepared by the ball mill to form a slurry, which was then formed into a sheet. Dielectric sheets were alternately laminated with internal electrodes, formed into chips, and then fired to obtain a desired multilayer ceramic capacitor sample.
表4より、同一の組成比で誘電体磁器組成物を合成したにもかかわらず、シェル部での第二副成分濃度CS2および、CS2とCP2の比であるCS2/CP2には差異が現れた。なおここでいう同一の組成比とは、試料番号「25〜28」の一組、「29〜32」の一組、「33〜36」の一組、「37〜40」をそれぞれ指す。 From Table 4, although the dielectric ceramic composition was synthesized with the same composition ratio, a difference appeared in the second subcomponent concentration CS2 in the shell part and CS2 / CP2 which is the ratio of CS2 and CP2. . Here, the same composition ratio refers to a set of sample numbers “25 to 28”, a set of “29 to 32”, a set of “33 to 36”, and “37 to 40”, respectively.
BaTiO3を原料のc/a値が減少すると、CS2およびCS2/CP2は増加した。 As the c / a value of the raw material for BaTiO 3 decreased, CS2 and CS2 / CP2 increased.
c/a<1.007を満たすBaTiO3を原料とした試料番号25、26、29、30、33、34、37、38は、CS2>10(at%)、CS2/ CP2>2.122を満足しているため、容量温度特性および高温加速寿命が良好であった。 Sample numbers 25, 26, 29, 30, 33, 34, 37, and 38 using BaTiO 3 satisfying c / a <1.007 as raw materials satisfy CS2> 10 (at%) and CS2 / CP2> 2.122. Since they were satisfied, the capacity-temperature characteristics and the high temperature accelerated life were good.
これに対し、c/a≧1.007を満たすBaTiO3を原料とした、試料番号27,28、31,32,35,36、39、40では、CS2>10(at%)、CS2/ CP2>2.122が満足されず、容量温度特性または加速寿命が、基準値(容量温度特性:+15%〜―15%、高温加速寿命:80時間以上)に達しなかった。 On the other hand, in sample numbers 27, 28, 31, 32, 35, 36, 39, and 40 using BaTiO 3 satisfying c / a ≧ 1.007 as the raw material, CS2> 10 (at%), CS2 / CP2 > 2.122 was not satisfied, and the capacity-temperature characteristic or accelerated life did not reach the standard value (capacitance-temperature characteristic: + 15% to -15%, high-temperature accelerated life: 80 hours or more).
なお、表4のように、試料番号25〜40のサンプルは、比誘電率および絶縁抵抗の基準値を全て満たしている。 As shown in Table 4, the samples of sample numbers 25 to 40 satisfy all the reference values for the relative dielectric constant and the insulation resistance.
以上より、低結晶基材を用いることによって、シェル部における希土類の濃度を高濃度化した焼結体から構成される誘電体磁器について説明した。このように、希土類が高濃度となるシェル部を構成することにより、寿命特性、温度特性が向上する。 As described above, the dielectric ceramic composed of the sintered body in which the concentration of the rare earth in the shell portion is increased by using the low crystal base material has been described. As described above, the life characteristic and the temperature characteristic are improved by configuring the shell part in which the rare earth is highly concentrated.
本発明による誘電体磁器を用いることで、寿命特性、温度特性に優れた積層セラミックコンデンサを製造することができる。また、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 By using the dielectric ceramic according to the present invention, a multilayer ceramic capacitor having excellent life characteristics and temperature characteristics can be manufactured. The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
本発明による誘電体磁器組成物を用いることで、より小型の寿命特性、温度特性に優れた積層セラミックコンデンサを製造することができる。また、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 By using the dielectric ceramic composition according to the present invention, it is possible to manufacture a monolithic ceramic capacitor having smaller life characteristics and temperature characteristics. The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
1・・・積層セラミックコンデンサ
2・・・誘電体層
3・・・内部電極層
4・・・外部電極
10・・・コンデンサ素子本体
11・・・コア部
12・・・シェル部
13・・・EDS観察点
14・・・明部(シェル部)
15・・・暗部(コア部)
16・・・黒点(粒子内ポア)
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 2 ... Dielectric layer 3 ... Internal electrode layer 4 ... External electrode 10 ... Capacitor element main body 11 ... Core part 12 ... Shell part 13 ... EDS observation point 14 ... Bright part (shell part)
15 ... Dark part (core part)
16 ... spot (pore in particle)
Claims (3)
前記コア部を覆うシェル部を有する焼結体より構成される誘電体磁器組成物であって、
前記コア部は、主成分であるBaTiO3から構成され、
前記シェル部がBaTiO3および第一副成分であるMg、Ba、Ca、Srより選ばれる少なくとも一つの元素と、第二副成分である TbおよびYbを含む元素と、第三副成分であるMn 元素と、第四副成分である Si 元素と、第五副成分であるZr 元素と、を有し、当該誘電体磁器組成物中のTiに対する副成分の濃度を、それぞれ、第一副成分:CP1(at%)、第二副成分:CP2(at%)、第三副成分:CP3(at%)、第四副成分:CP4(at%)、第五副成分:CP5(at%)とした場合に、
0(at%)<CP1<5(at%)、
0(at%)<CP2<15(at%)、
0(at%)<CP3<1(at%)、
2(at%)<CP4<5(at%)、
0(at%)<CP5<1.5(at%)、
であり、前記シェル部における、Tiに対する第二副成分の濃度をCS2(at%)とした場合に、
CS2>10(at%)
および
CS2/CP2>2.122
を満たすことを特徴とする誘電体磁器組成物。 The ceramic particles are made of a sintered body of ceramic particles.
A dielectric ceramic composition composed of a sintered body having a shell portion covering the core portion,
The core portion is composed of BaTiO 3 as a main component,
The shell portion is at least one element selected from BaTiO 3 and the first subcomponent Mg, Ba, Ca, Sr and the second subcomponent. Elements containing Tb and Yb, and Mn as the third subcomponent Element and the fourth subcomponent Si Elements and the fifth subcomponent Zr And the concentrations of subcomponents with respect to Ti in the dielectric ceramic composition are as follows: first subcomponent: CP1 (at%), second subcomponent: CP2 (at%), third subcomponent When component: CP3 (at%), fourth subcomponent: CP4 (at%), fifth subcomponent: CP5 (at%),
0 (at%) <CP1 <5 (at%),
0 (at%) <CP2 <15 (at%),
0 (at%) <CP3 <1 (at%),
2 (at%) <CP4 <5 (at%),
0 (at%) <CP5 <1.5 (at%),
When the concentration of the second subcomponent with respect to Ti in the shell portion is CS2 (at%),
CS2> 10 (at%)
And CS2 / CP2> 2.122
A dielectric ceramic composition characterized by satisfying:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080247A JP5903989B2 (en) | 2012-03-30 | 2012-03-30 | Dielectric ceramic composition and multilayer ceramic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080247A JP5903989B2 (en) | 2012-03-30 | 2012-03-30 | Dielectric ceramic composition and multilayer ceramic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013209239A JP2013209239A (en) | 2013-10-10 |
JP5903989B2 true JP5903989B2 (en) | 2016-04-13 |
Family
ID=49527482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012080247A Active JP5903989B2 (en) | 2012-03-30 | 2012-03-30 | Dielectric ceramic composition and multilayer ceramic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5903989B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102449359B1 (en) | 2017-08-28 | 2022-09-30 | 삼성전기주식회사 | Dielectric powder and multilayered ceramic electronic components using the same |
JP2019134098A (en) * | 2018-01-31 | 2019-08-08 | Tdk株式会社 | Multilayer ceramic capacitor |
JP7241943B2 (en) * | 2018-05-09 | 2023-03-17 | 太陽誘電株式会社 | Multilayer ceramic capacitor and manufacturing method thereof |
JP7036430B2 (en) * | 2018-05-09 | 2022-03-15 | 太陽誘電株式会社 | Multilayer ceramic capacitors and their manufacturing methods |
KR102194706B1 (en) * | 2019-02-15 | 2020-12-23 | 삼성전기주식회사 | Multilayered capacitor |
CN115141013A (en) * | 2022-07-28 | 2022-10-04 | 电子科技大学 | BaTiO 3 X8R-based ceramic substrate material and preparation method thereof |
KR20240102406A (en) * | 2022-12-26 | 2024-07-03 | 삼성전기주식회사 | Multilayer electronic component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3391268B2 (en) * | 1998-01-20 | 2003-03-31 | 株式会社村田製作所 | Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method |
JP4275036B2 (en) * | 2004-08-30 | 2009-06-10 | Tdk株式会社 | Dielectric ceramic composition and electronic component |
JP4407497B2 (en) * | 2004-11-30 | 2010-02-03 | Tdk株式会社 | Dielectric ceramic composition and electronic component |
JP2007131476A (en) * | 2005-11-09 | 2007-05-31 | Tdk Corp | Dielectric ceramic composition, electronic component and multilayer ceramic capacitor |
JP5151039B2 (en) * | 2006-02-27 | 2013-02-27 | 株式会社村田製作所 | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor |
-
2012
- 2012-03-30 JP JP2012080247A patent/JP5903989B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013209239A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3908723B2 (en) | Method for producing dielectric ceramic composition | |
KR100979858B1 (en) | Dielectric ceramic composition and electronic device | |
JP5531863B2 (en) | Dielectric ceramic composition and ceramic electronic component | |
KR101052666B1 (en) | Dielectric Magnetic Compositions and Electronic Components | |
JP4299827B2 (en) | Dielectric ceramic composition, electronic component and multilayer ceramic capacitor | |
JP5903989B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
JP4967965B2 (en) | Dielectric porcelain composition and electronic component | |
JP4428187B2 (en) | Dielectric ceramic composition and electronic component | |
US20120075768A1 (en) | Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device | |
US11072564B2 (en) | Dielectric ceramic composition and multilayer ceramic electronic component | |
JP2016195144A (en) | Multilayer ceramic electronic component | |
JP2006151766A (en) | Dielectric ceramic composition and electronic component | |
JP2006199534A (en) | Dielectric ceramic composition and electronic component | |
JP5685931B2 (en) | Multilayer ceramic capacitor | |
JP4561922B2 (en) | DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM | |
JP4710908B2 (en) | Dielectric porcelain composition and electronic component | |
WO2014207900A1 (en) | Dielectric ceramic composition and layered ceramic capacitor | |
JP2008078593A (en) | Multilayer ceramic capacitor and manufacturing method therefor | |
JP2013211398A (en) | Multilayer ceramic capacitor | |
JP4863007B2 (en) | Dielectric porcelain composition and electronic component | |
JP2008247657A (en) | Dielectric porcelain composition and electronic component | |
JP2006310646A (en) | Method for manufacturing multilayer ceramic electronic component | |
JP2008162862A (en) | Dielectric porcelain composition and electronic component | |
JP2006173352A (en) | Ceramic electronic component and its manufacturing method | |
JP5159682B2 (en) | Multilayer ceramic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160229 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5903989 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |