JP4876348B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP4876348B2
JP4876348B2 JP2001259565A JP2001259565A JP4876348B2 JP 4876348 B2 JP4876348 B2 JP 4876348B2 JP 2001259565 A JP2001259565 A JP 2001259565A JP 2001259565 A JP2001259565 A JP 2001259565A JP 4876348 B2 JP4876348 B2 JP 4876348B2
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
carbon atoms
crystal material
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001259565A
Other languages
Japanese (ja)
Other versions
JP2003064367A (en
Inventor
邦彦 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001259565A priority Critical patent/JP4876348B2/en
Publication of JP2003064367A publication Critical patent/JP2003064367A/en
Application granted granted Critical
Publication of JP4876348B2 publication Critical patent/JP4876348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気光学素子として有用なツイストネマチック(TN)液晶表示素子に関する。
【0002】
【従来の技術】
液晶表示素子(LCD)は、電卓のディスプレイとして登場して以来、コンピューターの開発と歩みを同じくして、TN-LCDから、STN-LCDへと表示容量の拡大に対応してきた。STN-LCDは、シェファー(Scheffer)等[SID '85 Digest, 120頁(1985年)]、あるいは衣川等[SID '86 Digest, 122頁(1986年)]によって開発され、ワードプロセッサ、パーソナルコンピュータなどの高情報処理用の表示に広く普及しはじめている。
【0003】
LCDは、急速な用途拡大に伴い、コンピューターの携帯端末ディスプレイなどのように室内で使用されるだけでなく、携帯電話や車載用計器、屋外使用計測機などのように、温度条件の過酷な屋外で使用されることが増加してきた。そのため、LCDが置かれる環境の温度変化による表示コントラストの低下や、低温での応答速度の低下が原因である表示品位の低下が問題になってきている。車載用LCDに対しては、低温から高温までの広い温度範囲での良好な表示品位が要求されている。
【0004】
周囲の温度変化によるLCDの表示品位の低下の原因には、次のような要因が上げられる。すなわち、液晶材料の弾性定数や誘電率などの温度変化、カイラル物質の添加によって誘起された固有ピッチの温度変化、複屈折異方性△nの温度変化である。STN-LCDでは、△nの温度変化によってパネルの背景色が大きく変化するため、周囲の温度変化が大きい用途には、TN-LCDが有用である。TN-LCDはSTN-LCD程の高密度表示はできないが、簡単な漢字表示などには適している。
【0005】
TN-LCDやSTN-LCDは電圧平均化法を用いた時分割駆動により動作される。電圧平均化法による時分割駆動では、表示部の印加電圧VONと非表示部の印加電圧VOFFの最適値が時分割数により決まり、VOFF/VONの値は時分割数が高くなるほど小さくなる。1/4DUTY程度の時分割数では、簡単な漢字表示が可能であるが、複雑な表示を行うには1/8DUTY程度の時分割数での駆動が要求される。ノーマリーブラック方式では、表示OFFの電圧をVOFF、表示がONの電圧をVONとすると、各時分割駆動(最適BIAS駆動)でのVOFF/VON値は、次のように決まる。1/2DUTY、1/2BIASではVOFF/VON=2.236。1/3DUTY、1/3BIASではVOFF/VON=1.915。1/4DUTY、1/3BIASではVOFF/VON=1.732。1/8DUTY、1/4BIASではVOFF/VON=1.446。したがってそれぞれの時分割駆動において良好な表示品位で駆動させるためには、LCDの輝度90%での印加電圧(Vsat)と輝度10%での印加電圧(Vth)の比である急峻性γ=Vsat/Vthを上記VOFF/VONより小さくすることが必要である。
この急峻性γを小さくするには、液晶組材料の弾性定数比K33/K11を小さくすることが有用であることが知られている。また、液晶組成物の誘電率異方性△εを小さくすることが有用であることも知られている。しかし、△εを小さくすると駆動電圧が高くなるため、その適用には限界がある。
【0006】
特開昭54-83694号公報には、液晶材料の組成およびその組成比を変化させて急峻性を小さくしようとする提案が知られている。しかしこの方法では、液晶組成物の粘度が高くなり、応答速度が遅くなるという大きな欠点があった。このため、車載用計器や屋外使用計測機のディスプレイのように、低温域での速い応答速度が求められている用途では、急峻性が小さく、低温での応答速度が速く、かつ使用温度範囲が広い、1/4DUTY以上の時分割駆動良好な表示特性を有するTN-LCDが依然として求められていた。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、1/4DUTY以上の時分割数においても良好なコントラストを有し、低温域において応答速度の速く、使用温度範囲の広いTN-LCDを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、次に述べるTN-LCDを提供する。
すなわち、液晶配向制御層と透明電極を有する一対の基板と、該基板に狭持された液晶材料と、少なくとも一方の前記基板に設けた偏光板とから構成される液晶表示素子において、
(1)前記液晶材料が第一成分として一般式(I)
【0009】
【化5】

Figure 0004876348
【0010】
(式中、R1は炭素原子数1〜16のアルキル基を表す。)で表される化合物を5〜20質量%含有し、第二成分として一般式(II)
【0011】
【化6】
Figure 0004876348
【0012】
(式中、R2は炭素数1〜16のアルキル基を表し、R3は炭素原子数1〜16のアルコキシル基を表す。)で表される化合物を10〜30質量%含有し、第三成分として一般式(III)
【0013】
【化7】
Figure 0004876348
【0014】
(式中、R4は炭素原子数2〜16のアルケニル基を表し、R5は炭素原子数1〜16のアルキル基を表す。)で表される化合物を10〜40質量%含有し、第四成分として一般式(IV)
【0015】
【化8】
Figure 0004876348
【0016】
(式中、R6、R7は炭素原子数1〜16のアルキル基を表す。)で表される化合物を5〜20質量%含有し、
(2)液晶材料のネマチック相−等方性液体相転移温度が95〜130℃であり、スメクチック相または固体相-ネマチック相転移温度が-60〜-20℃であり、25℃における屈折率の異方性(Δn)が0.07〜0.12であり、20℃における粘度が30mPa・s以下であることを特徴とするツイスト角が80〜110°のツイストネマチック液晶表示素子である。
一般式(I)で表される化合物(以下、化合物(I)という)5〜20質量%と一般式(II)で表される化合物(以下、化合物(II)という)10〜30質量%とを混合した液晶材料は、弾性定数比K33/K11が小さく、急峻性が小さい。これに一般式(III)で表される化合物(以下、化合物(III)という)10〜40質量%と、一般式(IV)で表される化合物(以下、化合物(IV)という)5〜20質量%をさらに加えることにより、液晶温度範囲を広くし、応答速度(特に低温における応答速度)を改善することが出来る。
【0017】
【発明の実施の形態】
以下に本発明を具体的に説明する。
化合物(I)は、含有量が多いとスメクチック相または固体相-ネマチック相転移温度が高くなり液晶温度範囲が狭くなる。これを抑制するためには式中のR1は、炭素原子数1〜10が好ましく、2〜7がより好ましい。また化合物(I)の液晶材料中の含有率は、7〜15質量%が好ましい。
【0018】
化合物(II)のR2は炭素原子数1〜10のアルキル基が好ましく、さらには、2〜7のアルケニルが好ましい。R3は炭素原子数1〜10のアルコキシル基が好ましく、さらには2〜7が好ましい。また化合物(II)の液晶材料中の含有率は20〜30質量%がさらに好ましい。これ以上含有すると、粘度が高くなり応答速度が遅くなる。また、含有率が10質量%以下では急峻性を改善する効果が薄い。
【0019】
化合物(III)のR4は、アルケニル基が好ましく、更に式(a)〜(e)で表されるアルケニル基が特に好ましい。
【0020】
【化9】
Figure 0004876348
【0021】
(構造式は右端で環に連結しているものとする。)
これらの中でも(c)(n=1,r=1)および(d)(n=0,r=1)で表されるアルケニル基が特に好ましい。R4がアルケニル基である化合物(III)は、R4がアルキル基である化合物(III)と比較し、粘度が低くなり応答速度の改善に効果的である。R5は炭素原子数1〜10のアルキル基が好ましく、さらには炭素原子数1〜5が好ましい。また化合物(III)の含有率は15〜30質量%がさらに好ましい。
【0022】
ネマチック-等方性液体相転移温度を上げるためには、3〜4個のシクロヘキサン環またはフェニル環で構成される長分子化合物が使用される。しかし、これらの化合物は、固体相又はスメクチック相−ネマチック相転移温度を上げてしまい、ネマチック液晶温度範囲を狭めることが多い。化合物(IV)は、化合物(I)、化合物(II)および化合物(III)に加えることにより、ネマチック-等方性液体相転移温度を上げるが、固体相又はスメクチック相−ネマチック相転移温度を上げず、結晶析出もしにくいため、車載用等のTN液晶材料には極めて有用である。化合物(IV)のR6およびR7は炭素原子数が1〜10のアルキル基が好ましく、さらに好ましくは炭素原子数が2〜7のアルキル基である。また、R6とR7の炭素原子数の和は、8以下であることが望ましい。また化合物(IV)の液晶材料中の含有率は7〜18質量%がさらに好ましい。
また化合物(I)、(II)、(III)及び(IV)の合計は、50質量%から100質量%が好ましい。
本発明のTN-LCDの液晶使用温度範囲は、-20℃〜80℃がこの好ましい。より好ましくは、-30℃〜85℃である。
本発明のTN-LCDの25℃における急峻性γ
【0023】
【数2】
Figure 0004876348
(但し、Vsatは輝度90%における印加電圧であり、Vthは輝度10%における印加電圧を表す)は1.44以下であり、かつ-30℃での応答速度τ-30 が4000ms以下であることが好ましい。急峻性γが1.44以下であると、1/4DUTY以上の時分割駆動においても良好なコントラストを得ることができ、-30℃での応答速度が4000msec以下であれば、車載用計器や屋外使用計測機のディスプレイとして好ましい。
【0024】
【実施例】
以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
【0025】
実施例中、測定した特性は以下の通りである。
TNI :ネマチック相−等方性液体相転移温度(℃)
T-N :固体相又はスメクチック相−ネマチック相転移温度(℃)
Vth :90°ツイストセル中に液晶材料を注入し、25℃で1kHz矩形波の電圧を印加したときの、輝度90%での印加電圧(V)
Vsat :90°ツイストセル中に液晶材料を注入し、25℃で1kHz矩形波の電圧を印加したときの、輝度10%での印加電圧(V)
γ :VsatとVthの比
Δn :25℃における複屈折率
η :20℃での液晶材料の粘度(mPa・s)
τ25 :25℃におけるレスポンス(msec)
(1/4Duty,1/3Biasで駆動した時の立ち上がり時間と立ち下がり時間を足した値)
τ-30 :-30℃におけるレスポンス(msec)
(1/4duty 1/3baisで駆動したときの立ち上がり時間と立下り時間を足した値)
TN-LCD表示素子の作成は以下のように行った。ネマチック液晶組成物にカイラル物質「S-811」(メルク社製)を添加して混合液晶を調製し、対向する平面透明電極上に有機膜をラビングして配向膜を形成したツイスト角90°のTN-LCDに注入した。なお、カイラル物質はカイラル物質の添加による混合液晶の固有らせんピッチが10〜50μmになるように添加した。
【0026】
化合物の記載に下記の略号を使用する。
Figure 0004876348
【0027】
【化10】
Figure 0004876348
【0028】
例えば、以下に表すように略号を用いる。
【0029】
【化11】
Figure 0004876348
【0030】
(実施例1、比較例1〜3)
液晶材料(1)(実施例1)、液晶材料A(比較例1)、液晶材料B(比較例2)、液晶材料C(比較例3)を調整した。また、これらの液晶材料を使用したTN-LCDを作製した。これらの液晶材料の組成と組成比を、TN-LCDの特性測定値と合わせて表1に示す。
【0031】
【表1】
Figure 0004876348
【0032】
液晶材料(1):化合物(I)+化合物(II)+化合物(III)+化合物(IV)
液晶材料A : 化合物(II) +化合物(IV)
液晶材料B : 化合物(IV)
液晶材料C :化合物(I) +化合物(IV)
比較例1に記載の液晶材料Aは、化合物(II)と化合物(IV)を含有した液晶材料である。これを使用したTN-LCDの急峻性γは1.420と良好であるが、粘度が高いため応答速度が遅い。特に-30℃での応答速度は著しく遅い。
【0033】
比較例2に記載の液晶材料Bは、化合物(I)、化合物(II)および化合物(III)を含有せず、化合物(IV)を含有した液晶材料である。これを使用したTN-LCDの急峻性γは1.478と悪く、時分割数を上げて1/4DUTY駆動を行うと、コントラストが低下し、表示品位が著しく低下した。
【0034】
比較例3に記載の液晶材料Cは、化合物(I)と化合物(IV)を含有した液晶材料である。化合物(I)は弾性定数の小さな液晶化合物として知られている。しかし化合物(II)を同時に含有しないため、この液晶材料を使用したTN-LCDの急峻性γ=1.449であり、一応の改善はみられるものの、1/4DUTY以上の時分割数では、十分な値は得られなかった。
【0035】
実施例は、化合物(I)、化合物(II)、化合物(III)、化合物(IV)を特定の組成範囲内で使用したことにより、-49℃から106℃までの非常に幅広いネマチック温度範囲を有する。このため、この液晶材料を使用したTN-LCDは広い温度範囲で使用でき、かつ-30℃においても3410msの応答を有し、かつ急峻性γが1.414と驚くほど小さい値を示した。このため、得られたTN-LCDは、1/4DUTY駆動や1/8DUTY駆動でも、良好なコントラストを有した。
【0036】
【発明の効果】
本発明は、急峻性γが小さく、低温での応答速度の速い、広い使用温度範囲を有するTN-LCDを提供する。従って、本発明のTN-LCDは、1/4DUTY以上に時分割数を上げても、高いコントラストを有し、低温域において応答速度の速く使用温度範囲で高いコントラストを有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a twisted nematic (TN) liquid crystal display element useful as an electro-optical element.
[0002]
[Prior art]
Since the advent of liquid crystal display elements (LCDs) as calculator displays, the development of computers has been the same as the development of computers, and the display capacity has been expanded from TN-LCDs to STN-LCDs. STN-LCD was developed by Scheffer et al. [SID '85 Digest, 120 (1985)] or Kinugawa et al. [SID '86 Digest, 122 (1986)]. Widely used in displays for high information processing.
[0003]
With the rapid expansion of applications, LCDs are not only used indoors, such as computer portable terminal displays, but are also used outdoors such as mobile phones, in-vehicle instruments, outdoor measuring instruments, etc. It has been increasingly used in. For this reason, a decrease in display contrast due to a change in temperature of the environment in which the LCD is placed and a decrease in display quality due to a decrease in response speed at low temperatures are becoming problems. In-vehicle LCDs are required to have good display quality in a wide temperature range from low temperature to high temperature.
[0004]
The following factors can be cited as the causes of LCD display quality degradation due to ambient temperature changes. That is, a temperature change such as an elastic constant and a dielectric constant of the liquid crystal material, a temperature change of the natural pitch induced by the addition of a chiral substance, and a temperature change of the birefringence anisotropy Δn. In STN-LCD, the background color of the panel changes greatly due to the temperature change of Δn, so TN-LCD is useful for applications where the ambient temperature change is large. TN-LCD cannot display as high density as STN-LCD, but is suitable for simple Kanji display.
[0005]
TN-LCD and STN-LCD are operated by time-division drive using voltage averaging. In time-division driving by the voltage averaging method, the optimum value of the applied voltage V ON for the display area and the applied voltage V OFF for the non-display area is determined by the number of time divisions, and the value of V OFF / V ON increases as the number of time divisions increases. Get smaller. A simple kanji display is possible with a time division number of about 1/4 DUTY, but driving with a time division number of about 1/8 DUTY is required to perform complex display. In the normally black method, when the display OFF voltage is V OFF and the display ON voltage is V ON , the V OFF / V ON value in each time division drive (optimum BIAS drive) is determined as follows. For 1 / 2DUTY and 1 / 2BIAS, V OFF / V ON = 2.236. For 1 / 3DUTY and 1 / 3BIAS, V OFF / V ON = 1.915. For 1 / 4DUTY and 1 / 3BIAS, V OFF / V ON = 1.732. For 8DUTY and 1 / 4BIAS, V OFF / V ON = 1.446. Therefore, in order to drive with good display quality in each time-division drive, the steepness γ = Vsat, which is the ratio of the applied voltage (Vsat) at 90% luminance and the applied voltage (Vth) at 10% luminance It is necessary to make / Vth smaller than V OFF / V ON .
In order to reduce the steepness γ, it is known that it is useful to reduce the elastic constant ratio K33 / K11 of the liquid crystal assembly material. It is also known that it is useful to reduce the dielectric anisotropy Δε of the liquid crystal composition. However, if Δε is reduced, the drive voltage increases, so that its application is limited.
[0006]
JP-A-54-83694 discloses a proposal for reducing the steepness by changing the composition of the liquid crystal material and its composition ratio. However, this method has a great disadvantage that the viscosity of the liquid crystal composition becomes high and the response speed becomes slow. For this reason, in applications that require a fast response speed in the low temperature range, such as displays for in-vehicle instruments and outdoor-use measuring instruments, the steepness is small, the response speed at low temperatures is high, and the operating temperature range is low. There was still a need for a wide TN-LCD with good display characteristics of time-division driving over 1/4 DUTY.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a TN-LCD having a good contrast even in a time division number of 1/4 DUTY or more, a fast response speed in a low temperature range, and a wide use temperature range.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a TN-LCD described below.
That is, in a liquid crystal display element comprising a pair of substrates having a liquid crystal alignment control layer and a transparent electrode, a liquid crystal material sandwiched between the substrates, and a polarizing plate provided on at least one of the substrates,
(1) The liquid crystal material has the general formula (I) as the first component
[0009]
[Chemical formula 5]
Figure 0004876348
[0010]
(In the formula, R 1 represents an alkyl group having 1 to 16 carbon atoms.) The compound represented by the formula (II) is contained as a second component in an amount of 5 to 20% by mass.
[0011]
[Chemical 6]
Figure 0004876348
[0012]
(Wherein R 2 represents an alkyl group having 1 to 16 carbon atoms, and R 3 represents an alkoxyl group having 1 to 16 carbon atoms). General formula (III) as an ingredient
[0013]
[Chemical 7]
Figure 0004876348
[0014]
(Wherein R 4 represents an alkenyl group having 2 to 16 carbon atoms, and R 5 represents an alkyl group having 1 to 16 carbon atoms). General formula (IV) as four components
[0015]
[Chemical 8]
Figure 0004876348
[0016]
(Wherein R 6 and R 7 each represents an alkyl group having 1 to 16 carbon atoms), containing 5 to 20% by mass of a compound represented by
(2) The nematic phase-isotropic liquid phase transition temperature of the liquid crystal material is 95-130 ° C, the smectic phase or solid phase-nematic phase transition temperature is -60-20 ° C, and the refractive index at 25 ° C A twisted nematic liquid crystal display device having a twist angle of 80 to 110 °, characterized by anisotropy (Δn) of 0.07 to 0.12 and a viscosity at 20 ° C. of 30 mPa · s or less.
5 to 20% by mass of a compound represented by general formula (I) (hereinafter referred to as compound (I)) and 10 to 30% by mass of a compound represented by general formula (II) (hereinafter referred to as compound (II)) The liquid crystal material mixed with has a small elastic constant ratio K33 / K11 and a small steepness. The compound represented by general formula (III) (hereinafter referred to as compound (III)) 10 to 40% by mass, the compound represented by general formula (IV) (hereinafter referred to as compound (IV)) 5 to 20 By further adding mass%, it is possible to widen the liquid crystal temperature range and improve the response speed (especially the response speed at a low temperature).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
When the content of compound (I) is large, the smectic phase or solid phase-nematic phase transition temperature becomes high and the liquid crystal temperature range becomes narrow. In order to suppress this, R 1 in the formula preferably has 1 to 10 carbon atoms, and more preferably 2 to 7 carbon atoms. The content of the compound (I) in the liquid crystal material is preferably 7 to 15% by mass.
[0018]
R 2 of the compound (II) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably 2 to 7 alkenyl. R 3 is preferably an alkoxyl group having 1 to 10 carbon atoms, more preferably 2 to 7. Further, the content of the compound (II) in the liquid crystal material is more preferably 20 to 30% by mass. When it contains more than this, a viscosity will become high and a response speed will become slow. Further, when the content is 10% by mass or less, the effect of improving the steepness is small.
[0019]
R 4 of the compound (III) is preferably an alkenyl group, more preferably an alkenyl group represented by formulas (a) to (e).
[0020]
[Chemical 9]
Figure 0004876348
[0021]
(The structural formula shall be connected to the ring at the right end.)
Among these, alkenyl groups represented by (c) (n = 1, r = 1) and (d) (n = 0, r = 1) are particularly preferable. The compound (III) in which R 4 is an alkenyl group has a lower viscosity and is effective in improving the response speed than the compound (III) in which R 4 is an alkyl group. R 5 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. The content of compound (III) is more preferably 15 to 30% by mass.
[0022]
In order to increase the nematic-isotropic liquid phase transition temperature, a long molecular compound composed of 3 to 4 cyclohexane rings or phenyl rings is used. However, these compounds often increase the solid phase or smectic phase-nematic phase transition temperature and narrow the nematic liquid crystal temperature range. Compound (IV) increases the nematic-isotropic liquid phase transition temperature by adding to compound (I), compound (II) and compound (III), but increases the solid phase or smectic phase-nematic phase transition temperature. In addition, since it is difficult to precipitate crystals, it is extremely useful for TN liquid crystal materials for in-vehicle use. R 6 and R 7 of the compound (IV) are preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 2 to 7 carbon atoms. Further, the sum of the number of carbon atoms of R 6 and R 7 is preferably 8 or less. Further, the content of the compound (IV) in the liquid crystal material is more preferably 7 to 18% by mass.
The total of the compounds (I), (II), (III) and (IV) is preferably 50% by mass to 100% by mass.
The liquid crystal operating temperature range of the TN-LCD of the present invention is preferably -20 ° C to 80 ° C. More preferably, it is −30 ° C. to 85 ° C.
Steepness γ at 25 ° C of the TN-LCD of the present invention
[0023]
[Expression 2]
Figure 0004876348
(Where Vsat is an applied voltage at 90% luminance, Vth represents an applied voltage at 10% luminance) is 1.44 or less, and the response speed τ -30 ° C at -30 ° C is 4000 ms or less. preferable. If the steepness γ is 1.44 or less, good contrast can be obtained even in time-division driving of 1/4 DUTY or more, and if the response speed at -30 ° C is 4000 msec or less, it can be used for in-vehicle instrumentation and outdoor use measurement. Preferred as a machine display.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. Further, “%” in the compositions of the following examples and comparative examples means “mass%”.
[0025]
In the examples, the measured characteristics are as follows.
T NI : Nematic phase-isotropic liquid phase transition temperature (° C)
T -N : Solid phase or smectic phase-nematic phase transition temperature (° C)
Vth: Applied voltage (V) at 90% luminance when liquid crystal material is injected into 90 ° twist cell and 1kHz rectangular wave voltage is applied at 25 ° C
Vsat: Applied voltage (V) at 10% brightness when liquid crystal material is injected into 90 ° twist cell and 1kHz rectangular wave voltage is applied at 25 ° C
γ: Vsat to Vth ratio Δn: Birefringence η at 25 ° C η: Viscosity of liquid crystal material at 20 ° C (mPa · s)
τ 25 ° C : Response at 25 ° C (msec)
(The value of the rise time and fall time when driving with 1 / 4Duty, 1 / 3Bias)
τ -30 ° C : Response at -30 ° C (msec)
(The value of the rise time and fall time when driving at 1 / 4duty 1 / 3bais)
The TN-LCD display element was produced as follows. A chiral substance “S-811” (manufactured by Merck) was added to a nematic liquid crystal composition to prepare a mixed liquid crystal, and an organic film was rubbed on an opposing flat transparent electrode to form an alignment film with a twist angle of 90 ° Injected into TN-LCD. The chiral substance was added so that the inherent helical pitch of the mixed liquid crystal was 10 to 50 μm by adding the chiral substance.
[0026]
The following abbreviations are used in the description of compounds.
Figure 0004876348
[0027]
[Chemical Formula 10]
Figure 0004876348
[0028]
For example, abbreviations are used as shown below.
[0029]
Embedded image
Figure 0004876348
[0030]
(Example 1, Comparative Examples 1-3)
Liquid crystal material (1) (Example 1), liquid crystal material A (Comparative Example 1), liquid crystal material B (Comparative Example 2), and liquid crystal material C (Comparative Example 3) were prepared. In addition, TN-LCDs using these liquid crystal materials were fabricated. Table 1 shows the compositions and composition ratios of these liquid crystal materials, together with the measured values of the TN-LCD characteristics.
[0031]
[Table 1]
Figure 0004876348
[0032]
Liquid crystal material (1): Compound (I) + Compound (II) + Compound (III) + Compound (IV)
Liquid crystal material A: Compound (II) + Compound (IV)
Liquid crystal material B: Compound (IV)
Liquid crystal material C: Compound (I) + Compound (IV)
The liquid crystal material A described in Comparative Example 1 is a liquid crystal material containing the compound (II) and the compound (IV). The steepness γ of the TN-LCD using this is as good as 1.420, but the response speed is slow due to the high viscosity. In particular, the response speed at -30 ° C is extremely slow.
[0033]
The liquid crystal material B described in Comparative Example 2 is a liquid crystal material that does not contain the compound (I), the compound (II), and the compound (III) but contains the compound (IV). The steepness γ of the TN-LCD using this is as bad as 1.478, and when the duty ratio is increased and 1/4 duty driving is performed, the contrast is lowered and the display quality is remarkably lowered.
[0034]
The liquid crystal material C described in Comparative Example 3 is a liquid crystal material containing the compound (I) and the compound (IV). Compound (I) is known as a liquid crystal compound having a small elastic constant. However, since it does not contain compound (II) at the same time, the steepness of TN-LCD using this liquid crystal material is γ = 1.449. Was not obtained.
[0035]
The examples show that a very wide nematic temperature range from −49 ° C. to 106 ° C. is obtained by using Compound (I), Compound (II), Compound (III), and Compound (IV) within a specific composition range. Have. Therefore, a TN-LCD using this liquid crystal material can be used in a wide temperature range, has a response of 3410 ms even at −30 ° C., and has a steepness γ of 1.414, which is a surprisingly small value. For this reason, the obtained TN-LCD had good contrast even with 1/4 DUTY drive or 1/8 DUTY drive.
[0036]
【Effect of the invention】
The present invention provides a TN-LCD that has a wide operating temperature range with a small steepness γ and a high response speed at low temperatures. Therefore, the TN-LCD of the present invention has high contrast even when the number of time divisions is increased to 1/4 DUTY or more, and has high contrast in the operating temperature range with a fast response speed in a low temperature range.

Claims (2)

液晶配向制御層と透明電極を有する一対の基板と、該基板に狭持された液晶材料と、少なくとも一方の前記基板に設けた偏光板とから構成され、ツイスト角が80〜110°のツイストネマチック液晶表示素子において、
(1)前記液晶材料が第一成分として一般式(I)
Figure 0004876348
(式中、R1は炭素原子数2〜7のアルキル基を表す。)で表わされる化合物を7〜15質量%含有し、第二成分として一般式(II)
Figure 0004876348
(式中、R2は炭素数1〜10のアルキル基を表し、R3は炭素原子数2〜7のアルコキシル基を表す。)で表わされる化合物を20〜30質量%含有し、第三成分として一般式(III)
Figure 0004876348
(式中、R4CH 2 =CH- 又はCH 2 =CH-CH 2 -CH 2 - を表し、R5は炭素原子数1のアルキル基を表す。)で表わされる化合物を15〜30質量%含有し、第四成分として一般式(IV)
Figure 0004876348
(式中、R6、R7は炭素原子数2〜7のアルキル基を表す。)で表される化合物を7〜18質量%含有することを特徴とする液晶表示素子。
A twist nematic having a twist angle of 80 to 110 °, comprising a pair of substrates having a liquid crystal alignment control layer and a transparent electrode, a liquid crystal material sandwiched between the substrates, and a polarizing plate provided on at least one of the substrates. In liquid crystal display elements,
(1) The liquid crystal material has the general formula (I) as the first component
Figure 0004876348
(Wherein R 1 represents an alkyl group having 2 to 7 carbon atoms.) Containing 7 to 15 % by mass of the compound represented by the general formula (II) as the second component
Figure 0004876348
(Wherein, R 2 represents an alkyl group having 1 to 10 carbon atoms, R 3 represents. An alkoxyl group having 2 to 7 carbon atoms) containing 20 to 30 wt% of the compound represented by the third component As general formula (III)
Figure 0004876348
(Wherein, R 4 is CH 2 = CH- or CH 2 = CH-CH 2 -CH 2 - represents, R 5 represents an alkyl group having 1 carbon atom.) 15 to 30 mass a compound represented by Contained in general formula (IV) as the fourth component
Figure 0004876348
A liquid crystal display device comprising 7 to 18 % by mass of a compound represented by the formula (wherein R 6 and R 7 represent an alkyl group having 2 to 7 carbon atoms).
液晶表示素子の25℃における急峻性γ
Figure 0004876348
(但し、Vsatは輝度90%における印加電圧であり、Vthは輝度10%における印加電圧を表す)が1.44以下であり、かつ-30℃での応答速度τ-30℃が4000ms以下であることを特徴とする請求項1記載のツイストネマチック液晶表示素子。
Steepness γ at 25 ° C of liquid crystal display element
Figure 0004876348
(Where Vsat is the applied voltage at 90% luminance, Vth represents the applied voltage at 10% luminance) is 1.44 or less, and the response speed τ- 30 ° C at -30 ° C is 4000 ms or less. The twisted nematic liquid crystal display element according to claim 1.
JP2001259565A 2001-08-29 2001-08-29 Liquid crystal display element Expired - Lifetime JP4876348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259565A JP4876348B2 (en) 2001-08-29 2001-08-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259565A JP4876348B2 (en) 2001-08-29 2001-08-29 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2003064367A JP2003064367A (en) 2003-03-05
JP4876348B2 true JP4876348B2 (en) 2012-02-15

Family

ID=19086919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259565A Expired - Lifetime JP4876348B2 (en) 2001-08-29 2001-08-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4876348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1620527B1 (en) * 2003-05-08 2007-09-26 MERCK PATENT GmbH Liquid crystal composition for use in bistable liquid crystal devices
JP3974093B2 (en) * 2003-08-21 2007-09-12 シャープ株式会社 Display device
JP4514507B2 (en) * 2003-10-27 2010-07-28 株式会社Adeka Liquid crystal composition and TN type liquid crystal device
JP2015152745A (en) * 2014-02-13 2015-08-24 大日本印刷株式会社 Thermosetting composition having photo-aligning property, alignment layer, substrate with alignment layer, retardation plate, and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222381A (en) * 1988-07-11 1990-01-25 Seiko Epson Corp Liquid crystal composition
JPH04235939A (en) * 1991-01-18 1992-08-25 Seiko Epson Corp Acetylene derivative, liquid crystal composition containing the same and liquid crystal display element produced by using the composition
JP3744940B2 (en) * 1995-04-25 2006-02-15 チッソ株式会社 Liquid crystal composition and liquid crystal display element
CN1245483A (en) * 1996-12-19 2000-02-23 智索公司 Cyclohexane derivatives, liquid-crystal composition, and liquid-crystal display element
JPH1192763A (en) * 1997-09-18 1999-04-06 Dainippon Ink & Chem Inc Nematic liquid crystal composition and liquid crystal display prepared therefrom
WO2000039063A1 (en) * 1998-12-25 2000-07-06 Chisso Corporation Liquid crystal compounds exhibiting negative anisotropy of permittivity
JP2001226673A (en) * 2000-02-18 2001-08-21 Asahi Denka Kogyo Kk Liquid crystal composition

Also Published As

Publication number Publication date
JP2003064367A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP3904094B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4872147B2 (en) Liquid crystal composition and liquid crystal display element
JP3864442B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
EP1438371A1 (en) Nematic liquid crystal compound, and liquid crystal composition having high speed and high temperature comprising the same
JP4876348B2 (en) Liquid crystal display element
JPH06108053A (en) Nematic liquid crystal composition and liquid crystal display containing the same
JP4984342B2 (en) Liquid crystal composition
JP3561921B2 (en) Nematic liquid crystal composition
JP3453781B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4013084B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP3228781B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP3858283B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4815671B2 (en) Liquid crystal composition
KR950005347B1 (en) Liquid crystal compositions and liquid crystal display element
JPH0931460A (en) Liquid crystal composition and liquid crystal display element
JP3233684B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4655317B2 (en) Liquid crystal composition and liquid crystal display element
JP3674715B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP4000494B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP5082171B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP3506261B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JPH07242874A (en) Nematic liquid crystal composition and liquid crystal display using the same
JP3673875B2 (en) Nematic liquid crystal composition
JP4984105B2 (en) Liquid crystal composition and liquid crystal display element
JP3503751B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term