JP4874012B2 - レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法 - Google Patents

レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法 Download PDF

Info

Publication number
JP4874012B2
JP4874012B2 JP2006174465A JP2006174465A JP4874012B2 JP 4874012 B2 JP4874012 B2 JP 4874012B2 JP 2006174465 A JP2006174465 A JP 2006174465A JP 2006174465 A JP2006174465 A JP 2006174465A JP 4874012 B2 JP4874012 B2 JP 4874012B2
Authority
JP
Japan
Prior art keywords
light
condensing position
laser
laser light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006174465A
Other languages
English (en)
Other versions
JP2007047754A (ja
Inventor
政 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006174465A priority Critical patent/JP4874012B2/ja
Publication of JP2007047754A publication Critical patent/JP2007047754A/ja
Application granted granted Critical
Publication of JP4874012B2 publication Critical patent/JP4874012B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

本発明は、収差を補正可能にするとともに対物レンズの焦点位置を変更可能にしたレーザ走査型顕微鏡に関するものである。
最近、レーザ走査型顕微鏡は、ますます高画質の画像を取得できるものが要求される傾向にあり、このため、光源からの光を標本に集光する対物レンズ等に残存する収差を補正可能にしたものが用いられるようになっている。
対物レンズの収差を補正可能にした光学顕微鏡として、特許文献1に開示されるように顕微鏡の対物レンズ手前に波面変調器としての形状可変ミラーを配置し、この形状可変ミラーの表面を変形させ、光の波面を変調することにより、対物レンズの焦点位置を移動するとともに、収差を補正するようにしたものが知られている。
特開平11−101942号公報
ところで、レーザ走査型顕微鏡においては、特に、蛍光標本を観察するような場合、蛍光標本を保持するカバーガラスの屈折率と蛍光標本自体の屈折率の違い、又は、これら屈折率と空気の屈折率の差等の要因によって収差が発生し、さらに、これらの収差によって、標本に対し照明光を理想的に照射できないことがあり、このため、理想的な蛍光標本の観察像を取得するには、蛍光標本を照明する照明光と蛍光標本からの蛍光のそれぞれに対して収差を効果的に補正する必要がある。
また、レーザ走査型顕微鏡において、形状可変ミラーを用いて対物レンズの焦点位置を移動させるような場合、対物レンズの実質NAが変化し、微小ながらも共焦点ピンホール位置におけるビーム回折径も変化する。このため、Z軸方向の分解能を確保し、高画質の画像を得るためには、共焦点ピンホールを最適に設定することが必要である。さらに、高画質の蛍光標本画像を取得するには、蛍光標本に適した吸収フィルタを最適に設定することも重要なことである。
しかし、特許文献1には、これらの要求に対する解決策は見当たらず、このため、高画質の標本画像を確保するのが難しいという問題がある。
一方、複数波長のレーザ光を切り換えて照射する場合、対物レンズ等の光学系の色収差によって、光軸方向の集光位置がレーザ波長ごとに微妙にずれるという問題がある。例えば励起光を切り換えながら多重染色蛍光標本を観察する場合、励起するレーザ波長によって集光位置、すなわち画像化する断面が微妙に異なってしまうという問題がある。
本発明は上記事情に鑑みてなされたもので、高画質の標本画像を取得することができるレーザ走査型顕微鏡を提供することを目的とする。
本発明にかかるレーザ走査型顕微鏡は、レーザ光を発生する光源と、前記レーザ光を標本上に集光させる対物レンズと、前記レーザ光を前記標本上で2次元走査する光走査手段と、前記レーザ光の光路に設けられ、前記レーザ光の前記標本上の第1集光位置を前記対物レンズの光軸方向に移動させる第1の集光位置制御手段と、前記レーザ光とは波長が異なる光であって前記第1集光位置から発せられる観察光および前記第1集光位置からの反射光の少なくとも一方を前記レーザ光の光路から分岐させる分岐素子と、前記第1集光位置からの光を共焦点検出する共焦点ピンホールを有する共焦点検出手段と、前記分岐素子と前記共焦点ピンホールとの間の光路に設けられ、前記共焦点検出手段に対して集光される前記観察光の第2集光位置を前記共焦点ピンホールに一致させる第2の集光位置制御手段と、前記共焦点検出手段が検出する光を選択する光選択手段と、を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記第1集光位置からの光のうち該第1集光位置からの反射光に対し前記共焦点ピンホールを通る光量が最大になるように前記第1の集光位置制御手段に前記第1集光位置を移動させる制御を行うとともに、前記第1集光位置からの光のうち前記観察光に対し前記共焦点ピンホールを通る光量が最大になるように前記第2の集光位置制御手段に前記第2集光位置を移動させる制御を行う制御手段を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記光選択手段は、前記第1集光位置からの反射光を選択するハーフミラーと、前記観察光として所定波長のみの光を選択するダイクロイックミラーとを切換可能に備えることを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記第1及び第2の集光位置制御手段の少なくとも一方は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記制御手段は、前記波面変調器の反射面形状を記憶したデータベースを備え、該データベースから読み出した前記反射面形状に基づいて前記波面変調器を制御することを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記制御手段は、前記第1の集光位置制御手段による前記第1集光位置の移動に連動して前記共焦点ピンホールの径を変更する制御を行うことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記光選択手段は、さらに、特性の異なる複数の波長選択フィルタを有し、前記制御手段は、前記第2の集光位置制御手段による前記第2集光位置の移動に連動して、複数の前記波長選択フィルタのうち前記標本に適した特性の波長選択フィルタを光路上に配置する制御を行うことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、複数波長を含んだ多波長レーザ光を発生する光源と、前記多波長レーザ光の中から1以上の波長のレーザ光を抽出する波長抽出手段と、前記レーザ光を標本上に集光させる対物レンズと、前記レーザ光を前記標本上で2次元走査する光走査手段と、前記レーザ光の光路に設けられ、前記レーザ光の前記標本上の集光位置を前記対物レンズの光軸方向に移動させ、基準波長の前記レーザ光の前記集光位置に対する各波長の前記レーザ光の前記集光位置の前記光軸方向のずれを解消する第1の集光位置制御手段と、前記レーザ光とは波長が異なる光であって前記集光位置から発せられる観察光を前記レーザ光の光路から分岐させる分岐素子と、前記集光位置からの光を共焦点検出する共焦点ピンホールを有する共焦点検出手段と、前記共焦点検出手段が検出する光を選択する光選択手段と、を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記分岐素子と前記共焦点ピンホールとの間の光路に設けられ、前記共焦点検出手段に対して集光される前記観察光の検出集光位置を前記共焦点ピンホールに一致させる第2の集光位置制御手段を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記波長抽出手段に複数の波長の前記レーザを波長ごとに順次抽出させるとともに、この抽出した前記レーザ光の波長に応じて、前記第1集光位置制御手段に前記集光位置の前記光軸方向のずれを解消させる制御を行う制御手段を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記制御手段は、前記光走査手段が前記レーザ光を1ライン走査するごとに、前記波長抽出手段が抽出する前記レーザ光の波長を切り換える制御を行うことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記第1及び第2の集光位置制御手段の少なくとも一方は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記波面変調器の反射面形状を記憶したデータベースを有し、該データベースから読み出した前記反射面形状に基づいて前記波面変調器を制御する制御手段を備えたことを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡は、上記の発明において、前記データベースは、前記レーザ光の波長および集光位置に応じた複数の反射面形状を記憶することを特徴とする。
また、本発明にかかるレーザ走査型顕微鏡の画像取得方法は、光源が発したレーザ光を対物レンズを介して標本上に集光させるレーザ光照射ステップと、前記レーザ光の前記標本上の第1集光位置を2次元走査させるとともに、該第1集光位置からの光を共焦点ピンホールを介して共焦点検出する共焦点検出ステップと、前記第1集光位置からの光のうち該第1集光位置で反射した前記レーザ光に対し、前記共焦点ピンホールを通過する光量が最大となるように前記第1集光位置を前記対物レンズの光軸方向に移動させる第1集光位置移動ステップと、前記第1集光位置からの光のうち前記レーザ光とは波長が異なる光であって該第1集光位置から発せられる観察光に対し、前記共焦点ピンホールを通過する光量が最大となるように、前記共焦点検出ステップによって集光される前記観察光の第2集光位置を該観察光の光路方向に移動させる第2集光位置移動ステップと、を含むことを特徴とする。
本発明によれば、高画質の標本画像を取得することができるレーザ走査型顕微鏡を提供できる。
以下、本発明の実施の形態を図面に従い説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態にかかる走査型レーザ顕微鏡の概略構成を示している。図1において、符号10は光源としてのレーザ光源を示す。このレーザ光源10は、後述する標本20の蛍光色素を励起する波長のレーザ光を発生するものである。レーザ光源10からのレーザ光の光路上には、コリメート光学系11が配置されている。コリメート光学系11は、レーザ光源10が発したレーザ光を完全な平行光にするとともに、そのビーム径を変更するものである。
コリメート光学系11からの平行光の光路上には、光選択手段としての光学素子切換え手段101が配置されている。この光学素子切換え手段101は、ハーフミラー12及びダイクロイックミラー13を有するもので、これらハーフミラー12及びダイクロイックミラー13を選択的に光路上に切換え可能にしている。この場合、光学素子切換え手段101は、後述する対物レンズ19の焦点位置の移動や収差補正を行なうときは、ハーフミラー12を光路上に配置し、標本20の蛍光に対する収差補正を行なうときは、ダイクロイックミラー13を光路上に配置するようになっている。ここで、ハーフミラー12は、波長にかかわらず約50%の透過率を有し、レーザ光源10からのレーザ光を反射し、標本20からの光を透過するような特性を有し、ダイクロイックミラー13は、レーザ光源10からのレーザ光を反射し、標本20からの光のうち、所定波長の光、ここでは標本20から発せられる蛍光波長の光を透過するような特性を有している。なお、図示例では、ハーフミラー12が光路上に配置された状態を示している。
ハーフミラー12(ダイクロイックミラー13)のレーザ光源10側から見た反射光路には、反射ミラー14及び第1の集光位置制御手段としての波面変調器、ここでは第1の形状可変ミラー15が配置されている。第1の形状可変ミラー15は、対物レンズ19の標本20上での焦点位置を対物レンズ19の光軸方向に可変制御するもので、反射面が平坦になっている場合は、光学的なパワーがなく、反射面を反射した光を平行光のまま出射し、不図示の電極に電圧が印加されると、反射面を変形(湾曲)し、反射面を反射した光を発散光もしくは収束光として出射するようになっている。
第1の形状可変ミラー15の反射光路には、光走査手段として走査光学ユニット16が配置されている。この走査光学ユニット16は、例えば直交する2方向に光を偏向するための2枚のミラーを有し、これらのミラーにより標本20上に集光されるレーザ光を2次元方向に走査するようになっている。
走査光学ユニット16により2次元走査されたレーザ光の光路上には、瞳投影レンズ17、中間結像レンズ18、対物レンズ19が配置されている。瞳投影レンズ17と中間結像レンズ18により対物レンズ19の瞳が走査光学ユニット16へ投影される。これにより、走査光学ユニット16で2次元走査されたレーザ光は、瞳投影レンズ17、中間結像レンズ18、対物レンズ19を介して不図示のステージに載置された標本20の焦点位置に集光され、標本20からの光は、上述したと逆の光路をたどって対物レンズ19、中間結像レンズ18、瞳投影レンズ17、走査光学ユニット16、第1の形状可変ミラー15及び反射ミラー14を介してハーフミラー12(ダイクロイックミラー13)まで戻るようになっている。
ハーフミラー12(ダイクロイックミラー13)の標本20側から見た透過光路上には、第2の集光位置制御手段としての波面変調器、ここでは第2の形状可変ミラー21が配置されている。また、第2の形状可変ミラー21の反射光路には、結像レンズ22、吸収フィルタ23、共焦点ピンホール24、光検出手段としてフォトマル25が配置されている。共焦点ピンホール24とフォトマル25は、共焦点検出手段を構成する。
第2の形状可変ミラー21は、結像レンズ22の共焦点ピンホール24上での焦点位置を結像レンズ22の光軸方向に可変制御するもので、第1の形状可変ミラー15と同様に、反射面が平坦になっている場合は、光学的なパワーがなく、反射面を反射した光を平行光のまま出射し、不図示の電極に電圧が印加されると、反射面を変形(湾曲)し、反射面を反射した光を発散光もしくは収束光として出射するようになっている。吸収フィルタ23は、標本20からの光から検出したい波長を選択するものである。共焦点ピンホール24は、対物レンズ19の焦点と光学的に共役な位置に配置され、標本20からの光のうち合焦の成分を通過させ、非合焦の成分を遮断して高い空間分解能を得るためのものである。フォトマル25は、共焦点ピンホール24を通過した光の強度を検出し、電気信号に変換して出力するようにしている。
第1の形状可変ミラー15、第2の形状可変ミラー21及びフォトマル25には、制御手段としての制御部26が接続されている。制御部26は、フォトマル25からの電気信号を取り込み、このときの信号が最大、つまり共焦点ピンホール24を通る光量が最大になるように第1の形状可変ミラー15および第2の形状可変ミラー21の表面形状を制御するようにしている。この場合、制御部26は、第1の形状可変ミラー15および第2の形状可変ミラー21の不図示の電極に対し電圧を印加することで、第1の形状可変ミラー15および第2の形状可変ミラー21の反射面を微小に変化させるようにしている。
次に、このように構成した走査型レーザ顕微鏡の作用を、図2−1および図2−2を参照して説明する。図2−1および図2−2は、この第1の実施の形態にかかる走査型レーザ顕微鏡の操作手順を示すフローチャートである。
まず、第1のステップとして、対物レンズ19の焦点位置の移動や収差補正を行なう場合を説明する。この場合、光学素子切換え手段101によりハーフミラー12を光路上に配置し、吸収フィルタ23を光路から退避させた後、レーザ光源10からレーザ光を照射させる(ステップS1)。このとき、第2の形状可変ミラー21は、変形制御されることなく、通常の反射ミラーとして用いられる。
レーザ光源10から発せられたレーザ光は、ハーフミラー12で反射し、反射ミラー14、第1の形状可変ミラー15で反射して走査光学ユニット16に入射し、2個のミラーで2次元方向に走査され、瞳投影レンズ17、中間結像レンズ18を介して対物レンズ19に入射し、標本20上に集光される。このとき、第1の形状可変ミラー15の不図示の電極に対して電圧を印加し、その反射面を所望の曲率の曲面に変形させることによって、標本20に対する集光位置を光軸方向の所望位置へ移動させる(ステップS2)。ただし、この集光位置の移動を必要としない場合には、ステップS2を省略することができる。
標本20からの反射光は、先の光とは逆に、対物レンズ19を透過し、中間結像レンズ18、瞳投影レンズ17、走査光学ユニット16、第1の形状可変ミラー15及び反射ミラー14を介してハーフミラー12に入射する。そして、ハーフミラー12を透過し、第2の形状可変ミラー21で反射し、結像レンズ22を介して共焦点ピンホール24に結像される。さらに、フォトマル25により共焦点ピンホール24を通過した光の強度が検出され電気信号として出力される(ステップS3)。
この状態で、制御部26は、第1の形状可変ミラー15の不図示の電極に対し電圧を印加し、反射面を微小に変化させてその形状を微調整する(ステップS4)。
フォトマル25から出力される電気信号は、制御部26に入力される。制御部26は、フォトマル25からの電気信号が最大、つまり共焦点ピンホール24を通る光量が最大になるように第1の形状可変ミラー15の不図示の電極に対する電圧を制御し、表面形状を変化させる。すなわち、制御部26は、フォトマル25の検出信号が最大値であるか否かを判断し(ステップS5)、最大値となっていない場合(ステップS5:No)、ステップS4からの処理を繰り返す。一方、フォトマル25の検出信号が最大値となった場合(ステップS5:Yes)、第1の形状可変ミラー15の表面形状を確定させる(ステップS6)。これにより、蛍光標本を保持するカバーガラスの屈折率と蛍光標本自体の屈折率の違いや、これら屈折率と空気の屈折率の差によって発生する収差や、レーザ光の集光位置を第1の形状可変ミラー15を用いて光軸方向に変位させた場合に生じる収差が補正できるようになり、標本20に対し照明光を理想的に照射することができる。
次に、第2のステップとして、標本20の蛍光に対する収差補正を行なう場合を説明する。この場合、光学素子切換え手段101によりハーフミラー12に代えてダイクロイックミラー13を光路上に配置し、吸収フィルタ23を光路上に配置させた後、レーザ光源10からレーザ光を照射させる(ステップS7)。このとき、第1の形状可変ミラー15は、ステップS6で確定した表面形状のまま用いられる。
この場合も、レーザ光源10から発せられたレーザ光は、上述と同様に対物レンズ19に入射し、標本20上に集光される。また、標本20からの光は、ダイクロイックミラー13に入射する。ダイクロイックミラー13は、標本20からの光のうち、所定波長の光、ここでは標本20から発せられる蛍光波長の光のみを透過する。ダイクロイックミラー13を透過した光は、第2の形状可変ミラー21で反射し、結像レンズ22、吸収フィルタ23を介して共焦点ピンホール24に結像される。そして、フォトマル25により共焦点ピンホール24を通過した光の強度が検出され電気信号として出力される(ステップS8)。
この場合も、フォトマル25から出力される電気信号は、制御部26に入力される。制御部26は、フォトマル25からの電気信号が最大、つまり共焦点ピンホール24を通る光量が最大になるように、今度は、第2の形状可変ミラー21の不図示の電極に対する電圧を制御し、表面形状を変化させる。すなわち、制御部26は、第2の形状可変ミラー21の表面形状を微調整した後(ステップS9)、フォトマル25の検出信号が最大値であるか否かを判断し(ステップS10)、最大値となっていない場合(ステップS10:No)、ステップS9からの処理を繰り返す。一方、フォトマル25の検出信号が最大値となった場合(ステップS10:Yes)、第2の形状可変ミラー21の表面形状を確定させる(ステップS11)。これにより、標本20からの蛍光に対する色収差を補正することができる。
したがって、このようにすれば、ハーフミラー12及びダイクロイックミラー13を選択的に光路上に配置可能とし、第1のステップとして、ハーフミラー12を光路上に配置し、レーザ光源10からのレーザ光をハーフミラー12、第1の形状可変ミラー15、対物レンズ19より標本20に照射するとともに、標本20からの光をハーフミラー12を介して共焦点ピンホール24に集光し、この共焦点ピンホール24を通る光量が最大になるように第1の形状可変ミラー15の表面形状を変化させ、対物レンズ19の標本20上での焦点位置を移動させるとともに収差を補正することで、標本20を保持するカバーガラスの屈折率と蛍光標本自体の屈折率の違いや、これら屈折率と空気の屈折率の差などによって発生する収差を補正でき、標本20に対して照明光を理想的に照射することができる。また、第2のステップとして、ダイクロイックミラー13を光路上に配置し、標本20からの光のうち、標本20から発せられる蛍光波長の光のみをダイクロイックミラー13、第2の形状可変ミラー21を介して共焦点ピンホール24に集光し、この共焦点ピンホール24を通る光量が最大になるように第2の形状可変ミラー21の表面形状を変化させ、共焦点ピンホール24上の集光位置を移動させることで、標本20からの蛍光に対する色収差を補正することもできる。これにより、これら第1及び第2のステップを通じて、第1の形状可変ミラー15と第2の形状可変ミラー21の表面形状をそれぞれ標本20の照明光と標本20からの蛍光に対して最適に設定することにより、対物レンズの焦点位置を移動できるとともに、屈折率による収差や色収差を補正でき、高画質の標本画像を取得することができる。
形状可変ミラーの表面形状は、特定の波長に対して最適化される。よって、レーザ光(照明光)を標本に正しく集光させるための可変形状ミラーを、照明光と検出光の両方が通過する共通光路に配置すると、蛍光観察のようにレーザ光とは異なる波長の光を検出する場合、検出光は形状可変ミラーの影響を受けて共焦点ピンホールに正しく集光できなくなる。しかしながら、この第1の実施の形態によれば、検出光(蛍光)のみに作用する第2の形状可変ミラー21を設けたので、蛍光の収差を補正して正しく集光させることができる。
(変形例)
第1の実施の形態では、制御部26によりフォトマル25からの電気信号が最大、つまり共焦点ピンホール24を通る光量が最大になるように、第1の形状可変ミラー15及び第2の形状可変ミラー21の表面形状を制御するようにしたが、例えば、上述した第1のステップと第2のステップで取得された第1の形状可変ミラー15と第2の形状可変ミラー21のそれぞれの表面形状の情報をデータベース化して制御部26に記憶しておき、その後、このデータベースの情報に基づいて第1の形状可変ミラー15と第2の形状可変ミラー21の表面形状を制御するようにしてもよい。この場合、データベースに記憶される内容は、例えば、対物レンズ19の焦点位置、標本20の種類、標本20から発せられる蛍光波長域とともに、これらに対し最適状態に制御された第1の形状可変ミラー15と第2の形状可変ミラー21の表面形状の情報である。
このようにすれば、データベースに基づいて第1の形状可変ミラー15と第2の形状可変ミラー21の表面形状を最適に制御できるので、ダイクロイックミラー13を光路上に配置したままで、連続的に対物レンズ19の焦点位置を移動するとともに収差を補正することができるようになる。
なお、形状可変ミラー15,21の表面形状の制御として、ステップS5,S10では共焦点ピンホール24を通過する光量を最大化するように説明したが、フォトマル25からの出力信号に対して所定の基準値を設定して、その基準値を超えた時点で表面形状を確定するようにしてもよい。
また、第1のステップにおいて、ステップS1では標本から反射したレーザ光を共焦点検出手段に導くために、光学素子切り換え手段101でハーフミラー12を選択するようにした。しかし、蛍光検出用のダイクロイックミラー13は、レーザ光を完全に遮断せずにわずかに透過させるような透過率特性をもつ場合が多い。その場合には、蛍光検出用のダイクロイックミラー13を選択していても、吸収フィルタ23を光路から外せば、検出器であるフォトマル25は感度が非常に高いので、第1のステップ(ステップS1〜S6)の処理を実行できる。
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。図3は、本発明の第2の実施の形態の概略構成を示すもので、図1と同一部分には、同符号を付している。
この場合、共焦点ピンホール24は、制御部26により、ピンホール径を第1の形状可変ミラー15の表面形状と連動して変えられるようになっている。つまり、第1の形状可変ミラー15の表面形状を変化させて対物レンズ19の焦点位置を移動させた場合、中間結像レンズ18から対物レンズ19に入射される光が平行光でないため、対物レンズ19のNAが変化し、微小ながらも共焦点ピンホール24の位置におけるビーム回折径が変わることが知られている。この場合、理論計算により、対物レンズ19の焦点位置から実質の対物レンズ19のNAを計算でき、さらに、このときのNAから共焦点ピンホール24の位置におけるビーム回折径を計算で求めることができる。
そこで、第1の形状可変ミラー15の表面形状が変化され、対物レンズ19の焦点位置が移動したような場合、制御部26により、このときの対物レンズ19の焦点位置から理想な共焦点ピンホール24の大きさを演算により求め、この結果に基づいて共焦点ピンホール24の径を調整するようにする。
このようにすれば、第1の形状可変ミラー15による対物レンズ19の焦点位置に対応して、常に最適な共焦点ピンホール24の径を設定できるので、対物レンズ19の焦点に合った光のみ共焦点ピンホール24を通過させることができ、対物レンズ19の光軸方向、つまりZ軸方向の分解能を確保し、高画質の標本画像を取得することができる。
一方、吸収フィルタ23は、異なる波長域の光に対応する特性の異なるものが複数個用意されている。これら複数の吸収フィルタ23は、ターレット102に搭載され、選択的に光路上に配置可能になっている。この場合、ターレット102は、制御部26の指示により第2の形状可変ミラー21の表面形状の変化と連動して、標本20に適した特性の吸収フィルタ23を光路上に配置するようになっている。
このようにすれば、標本20に最適な吸収フィルタ23が光路上に配置できるようになるので、第2の形状可変ミラー21によって色収差が補正された所望波長域の光のみを共焦点ピンホール24に導くことができるようになり、さらに高画質の標本画像を取得することができる。
なお、第2の実施の形態では、共焦点ピンホール24の径の設定と、最適な吸収フィルタ23の光路上への配置をそれぞれ実行するようにしているが、少なくとも一方のみを用意し、これを実行することもできる。
また、例えば、第1の形状可変ミラー15により対物レンズ19の焦点位置を積極的に移動させることにより、Z軸方向に観察位置が異なる複数枚の標本画像を取得することができるが、このような場合も、対物レンズ19の焦点位置に対応させて、最適な共焦点ピンホール24の径を設定するようにすれば、対物レンズ19の焦点に合った光をのみ共焦点ピンホール24を通過させることができ、Z軸方向の分解能を確保し、高画質の標本画像を取得することができる。
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。図4は、この第3の実施の形態にかかる走査型レーザ顕微鏡の概略構成を示す図である。第1の実施の形態と同一の構成部分には同一符号を付して示している。
図4において、符号30は、複数波長のレーザ光を発生する多波長レーザ光源を示している。なお、多波長レーザ光源としては、波長の異なる単一波長のレーザ光源を複数台配置して、それぞれのレーザ光をミラー等でひとつの光軸に合成するような構成であってもよい。多波長レーザ光源30からの多波長レーザ光は、コリメート光学系11を透過した後、例えば音響光学素子フィルタ(AOTF:Acousto-optical tunable filter)のような波長選択手段31に入射するようになっている。波長選択手段31により所望波長のレーザ光のみが選択されて出射する。選択されたレーザ光は、ハーフミラー12またはダイクロイックミラー13、集光位置制御手段である形状可変ミラー15、走査光学ユニット16を順に経由して対物レンズ19に導入され、標本20を照射するようになっている。
また、形状可変ミラー15の面形状がデータベース26aとして制御部26に記憶され、制御できるようになっている。データベース26aは、多波長レーザ光源30からの各波長のレーザ光が標本20上で光軸方向の同じ位置に集光するように、レーザ波長ごとに最適に設定された形状可変ミラー15の面形状を記憶している。したがって、制御部26は、波長選択手段31において選択したレーザ光の波長に対応する形状可変ミラー15の面形状を、このデータベース26aから読み出して、形状可変ミラー15に設定する制御ができる。
また、検出手段において、共焦点ピンホール24を通過した光を平行光に変換するコリメータレンズ27と、平行光となった光を波長に応じて分岐させるダイクロイックミラー28とを備えている。ダイクロイックミラー28の透過光路と反射光路には、それぞれ吸収フィルタ23a,23bおよびフォトマル25a,25bが配置されている。ダイクロイックミラー28、吸収フィルタ23a,23bの波長特性を適宜設定することにより、2種類の異なる波長の観察光を同時に検出できる。
例えば、多重染色された蛍光標本などの観察において、2種類のレーザ波長λ1,λ2を励起光として選択して光走査手段による走査を行い、各励起波長に対応して発生するそれぞれの蛍光を検出して画像生成することが行われる。この場合、ラスタースキャンの1ラインごとにレーザ波長を切り換えてシーケンシャルに異なる蛍光波長を取得したい場合、まずレーザ波長λ1のみを選択してX方向に1ライン走査して蛍光を検出し、つぎにレーザ波長λ2のみを選択して同じ1ラインを走査して蛍光検出する。つぎに、Y方向に1画素分移動して、つぎのX方向ラインを同じようにレーザ波長λ1,λ2を順に切り換えて2回走査する、という手順を繰り返して、レーザ波長λ1,λ2のそれぞれに対して1画面分の画像を生成する。この場合には、レーザ走査に同期してレーザ光波長を速く切り換えることが要求される。一般的に形状可変ミラーではミラーの形状切換をミリ秒(msec)レベルでできるので、この第3の実施の形態の構成によれば速い波長切換に追従して第1の形状可変ミラー15も切換動作を行い、各波長のレーザ光を標本20上で光軸方向の同じ位置に集光させることが可能となる。
このように、この第3の実施の形態にかかるレーザ走査型顕微鏡を用いれば、多波長のレーザ光を使用しても、各波長のレーザ光が光軸方向の同じ位置で標本20を走査できるようになる。つまり、シーケンシャルに異なるレーザ波長の光を照射して、それぞれに対応する蛍光を同一の観察断面に対して取得できるようになる。
また、この第3の実施の形態において、図5に示すように色収差を補正する第2の形状可変ミラー21を検出光路に設けることによって、蛍光標本を走査する場合、検出する蛍光波長の色収差を補正できるので、検出精度を向上できる。この場合も形状可変ミラー21の各蛍光波長ごとの最適形状をデータベース26aとして制御部26に記憶させておき、波長切換と同期して形状可変ミラー21の形状の切換制御を行うこととなる。
その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、光学素子切換え手段101は、ハーフミラー12とダイクロイックミラー13の光路への切換えを手動で行なうようにしたが、制御部26により不図示のモータを駆動してハーフミラー12とダイクロイックミラー13の光路への切換えを自動的に行なうようにもできる。
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
本発明の第1の実施の形態にかかる走査型レーザ顕微鏡の概略構成を示す図である。 図1に示した走査型レーザ顕微鏡の操作手順を示すフローチャートである。 図1に示した走査型レーザ顕微鏡の操作手順を示すフローチャートである。 本発明の第2の実施の形態にかかる走査型レーザ顕微鏡の概略構成を示す図である。 本発明の第3の実施の形態にかかる走査型レーザ顕微鏡の概略構成を示す図である。 本発明の第3の実施の形態にかかる走査型レーザ顕微鏡の変形例の概略構成を示す図である。
符号の説明
10 レーザ光原
11 コリメート光学系
12 ハーフミラー
13 ダイクロイックミラー
14 反射ミラー
15 形状可変ミラー
16 走査光学ユニット
17 瞳投影レンズ
18 中間結像レンズ
19 対物レンズ
20 標本
21 形状可変ミラー
22 結像レンズ
23,23a,23b 吸収フィルタ
24 共焦点ピンホール
25,25a,25b フォトマル
26 制御部
26a データベース
27 コリメータレンズ
28 ダイクロイックミラー
30 多波長レーザ光原
31 波長選択手段
102 ターレット

Claims (17)

  1. レーザ光を発生する光源と、
    前記レーザ光を標本上に集光させる対物レンズと、
    前記レーザ光を前記標本上で2次元走査する光走査手段と、
    前記レーザ光の光路に設けられ、前記レーザ光の前記標本上の第1集光位置を前記対物レンズの光軸方向に移動させる第1の集光位置制御手段と、
    前記レーザ光とは波長が異なる光であって前記第1集光位置から発せられる観察光および前記第1集光位置からの反射光の少なくとも一方を前記レーザ光の光路から分岐させる分岐素子と、
    前記第1集光位置からの光を共焦点検出する共焦点ピンホールを有する共焦点検出手段と、
    前記分岐素子と前記共焦点ピンホールとの間の光路に設けられ、前記共焦点検出手段に対して集光される前記観察光の第2集光位置を前記共焦点ピンホールに一致させる第2の集光位置制御手段と、
    前記共焦点検出手段が検出する光を選択する光選択手段と、
    を備えたことを特徴とするレーザ走査型顕微鏡。
  2. 前記分岐素子は、前記光源と前記第1の集光位置制御手段との間の光路に設けられ、前記光源から出射した前記レーザ光を前記第1の集光位置制御手段に導くと共に、前記第1集光位置から前記第1の集光位置制御手段を経由して入射した光を、前記光路から分岐させて前記第2の集光位置制御手段へ向かう光路に導くことを特徴とする請求項1に記載のレーザ走査型顕微鏡。
  3. 前記第1集光位置からの光のうち該第1集光位置からの反射光に対し前記共焦点ピンホールを通る光量が最大になるように前記第1の集光位置制御手段に前記第1集光位置を移動させる制御を行うとともに、前記第1集光位置からの光のうち前記観察光に対し前記共焦点ピンホールを通る光量が最大になるように前記第2の集光位置制御手段に前記第2集光位置を移動させる制御を行う制御手段を備えたことを特徴とする請求項1または2に記載のレーザ走査型顕微鏡。
  4. 前記光選択手段は、前記第1集光位置からの反射光を選択するハーフミラーと、前記観察光として所定波長のみの光を選択するダイクロイックミラーとを切換可能に備えることを特徴とする請求項1〜3のいずれか一つに記載のレーザ走査型顕微鏡。
  5. 前記第1及び第2の集光位置制御手段の少なくとも一方は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とする請求項1〜4のいずれか一つに記載のレーザ走査型顕微鏡。
  6. 前記制御手段は、前記波面変調器の反射面形状を記憶したデータベースを備え、該データベースから読み出した前記反射面形状に基づいて前記波面変調器を制御することを特徴とする請求項5に記載のレーザ走査型顕微鏡。
  7. 前記制御手段は、前記第1の集光位置制御手段による前記第1集光位置の移動に連動して前記共焦点ピンホールの径を変更する制御を行うことを特徴とする請求項3〜6のいずれか一つに記載のレーザ走査型顕微鏡。
  8. 前記光選択手段は、さらに、特性の異なる複数の波長選択フィルタを有し、
    前記制御手段は、前記第2の集光位置制御手段による前記第2集光位置の移動に連動して、複数の前記波長選択フィルタのうち前記標本に適した特性の波長選択フィルタを光路上に配置する制御を行うことを特徴とする請求項3〜7のいずれか一つに記載のレーザ走査型顕微鏡。
  9. 複数波長を含んだ多波長レーザ光を発生する光源と、
    前記多波長レーザ光の中から1以上の波長のレーザ光を抽出する波長抽出手段と、
    前記レーザ光を標本上に集光させる対物レンズと、
    前記レーザ光を前記標本上で2次元走査する光走査手段と、
    前記レーザ光の光路に設けられ、前記レーザ光の前記標本上の集光位置を前記対物レンズの光軸方向に移動させ、基準波長の前記レーザ光の前記集光位置に対する各波長の前記レーザ光の前記集光位置の前記光軸方向のずれを解消する第1の集光位置制御手段と、
    前記レーザ光とは波長が異なる光であって前記集光位置から発せられる観察光を前記レーザ光の光路から分岐させる分岐素子と、
    前記集光位置からの光を共焦点検出する共焦点ピンホールを有する共焦点検出手段と、
    前記共焦点検出手段が検出する光を選択する光選択手段と、
    前記波長抽出手段に複数の波長の前記レーザ光を波長ごとに順次抽出させるとともに、この抽出した前記レーザ光の波長に応じて、前記第1の集光位置制御手段に前記集光位置の前記光軸方向のずれを解消させる制御を行う制御手段と、
    を備え、
    前記制御手段は、前記光走査手段が前記レーザ光を1ライン走査するごとに、前記波長抽出手段が抽出する前記レーザ光の波長を切り換える制御を行い、
    前記第1の集光位置制御手段は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とするレーザ走査型顕微鏡。
  10. 前記分岐素子と前記共焦点ピンホールとの間の光路に設けられ、前記共焦点検出手段に対して集光される前記観察光の検出集光位置を前記共焦点ピンホールに一致させる第2の集光位置制御手段を備えたことを特徴とする請求項9に記載のレーザ走査型顕微鏡。
  11. 複数波長を含んだ多波長レーザ光を発生する光源と、
    前記多波長レーザ光の中から1以上の波長のレーザ光を抽出する波長抽出手段と、
    前記レーザ光を標本上に集光させる対物レンズと、
    前記レーザ光を前記標本上で2次元走査する光走査手段と、
    前記レーザ光の光路に設けられ、前記レーザ光の前記標本上の集光位置を前記対物レンズの光軸方向に移動させ、基準波長の前記レーザ光の前記集光位置に対する各波長の前記レーザ光の前記集光位置の前記光軸方向のずれを解消する第1の集光位置制御手段と、
    前記レーザ光とは波長が異なる光であって前記集光位置から発せられる観察光を前記レーザ光の光路から分岐させる分岐素子と、
    前記集光位置からの光を共焦点検出する共焦点ピンホールを有する共焦点検出手段と、
    前記共焦点検出手段が検出する光を選択する光選択手段と、
    前記分岐素子と前記共焦点ピンホールとの間の光路に設けられ、前記共焦点検出手段に対して集光される前記観察光の検出集光位置を前記共焦点ピンホールに一致させる第2の集光位置制御手段と、
    を備えたことを特徴とするレーザ走査型顕微鏡。
  12. 前記分岐素子は、前記光源と前記第1の集光位置制御手段との間の光路に設けられ、前記光源から出射した前記レーザ光を前記第1の集光位置制御手段に導くと共に、前記集光位置から前記第1の集光位置制御手段を経由して入射した光を、前記光路から分岐させて前記第2の集光位置制御手段へ向かう光路に導くことを特徴とする請求項10又は11に記載のレーザ走査型顕微鏡。
  13. 前記第1の集光位置制御手段は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とする請求項11に記載のレーザ走査型顕微鏡。
  14. 記第2の集光位置制御手段は、印加電圧に応じて反射面を変形する波面変調器からなることを特徴とする請求項1012のいずれか一つに記載のレーザ走査型顕微鏡。
  15. 前記波面変調器の反射面形状を記憶したデータベースを有し、該データベースから読み出した前記反射面形状に基づいて前記波面変調器を制御する制御手段を備えたことを特徴とする請求項9、13、及び14のいずれか一つに記載のレーザ走査型顕微鏡。
  16. 前記データベースは、前記レーザ光の波長および集光位置に応じた複数の反射面形状を記憶することを特徴とする請求項6または15に記載のレーザ走査型顕微鏡。
  17. 光源が発したレーザ光を対物レンズを介して標本上に集光させるレーザ光照射ステップと、
    前記レーザ光の前記標本上の第1集光位置を2次元走査させるとともに、該第1集光位置からの光を共焦点ピンホールを介して共焦点検出する共焦点検出ステップと、
    前記第1集光位置からの光のうち該第1集光位置で反射した前記レーザ光に対し、前記共焦点ピンホールを通過する光量が最大となるように前記第1集光位置を前記対物レンズの光軸方向に移動させる第1集光位置移動ステップと、
    前記第1集光位置からの光のうち前記レーザ光とは波長が異なる光であって該第1集光位置から発せられる観察光に対し、前記共焦点ピンホールを通過する光量が最大となるように、前記共焦点検出ステップによって集光される前記観察光の第2集光位置を該観察光の光路方向に移動させる第2集光位置移動ステップと、
    を含むことを特徴とするレーザ走査型顕微鏡の画像取得方法。
JP2006174465A 2005-07-11 2006-06-23 レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法 Expired - Fee Related JP4874012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174465A JP4874012B2 (ja) 2005-07-11 2006-06-23 レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005202004 2005-07-11
JP2005202004 2005-07-11
JP2006174465A JP4874012B2 (ja) 2005-07-11 2006-06-23 レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法

Publications (2)

Publication Number Publication Date
JP2007047754A JP2007047754A (ja) 2007-02-22
JP4874012B2 true JP4874012B2 (ja) 2012-02-08

Family

ID=37850582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174465A Expired - Fee Related JP4874012B2 (ja) 2005-07-11 2006-06-23 レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法

Country Status (1)

Country Link
JP (1) JP4874012B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928351B2 (ja) * 2007-05-25 2012-05-09 オリンパス株式会社 顕微鏡
JP6116142B2 (ja) * 2012-06-21 2017-04-19 オリンパス株式会社 走査型共焦点レーザ顕微鏡
JP6196825B2 (ja) * 2013-07-09 2017-09-13 オリンパス株式会社 顕微鏡システム、及び、試料の屈折率測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183806A (ja) * 1997-12-18 1999-07-09 Nikon Corp コンフォーカル顕微鏡
JP2002148521A (ja) * 2000-11-14 2002-05-22 Nikon Corp 顕微鏡
JP2002277746A (ja) * 2001-03-22 2002-09-25 Olympus Optical Co Ltd 走査型光学顕微鏡および該走査型光学顕微鏡の共焦点ピンホール調整方法
JP4391806B2 (ja) * 2003-11-27 2009-12-24 オリンパス株式会社 光学顕微鏡
JP4468684B2 (ja) * 2003-12-05 2010-05-26 オリンパス株式会社 走査型共焦点顕微鏡装置

Also Published As

Publication number Publication date
JP2007047754A (ja) 2007-02-22

Similar Documents

Publication Publication Date Title
EP1744194B1 (en) Laser scanning microscope and image acquiring method of laser scanning microscope
EP2316048B1 (en) Optical arrangement for oblique plane microscopy
US9030734B2 (en) Scanning microscope, and method for light microscopy imaging of a specimen
EP2317363B2 (en) Microscope connecting unit and microscope system
EP1857853B1 (en) Illuminating device
US7554664B2 (en) Laser scanning microscope
JP5006694B2 (ja) 照明装置
US10514533B2 (en) Method for creating a microscope image, microscopy device, and deflecting device
US7480046B2 (en) Scanning microscope with evanescent wave illumination
JP4820759B2 (ja) 走査型顕微鏡
US6924490B2 (en) Microscope system
JP6178656B2 (ja) 補償光学素子の設定方法及び顕微鏡
US20170192217A1 (en) Optical-axis-direction scanning microscope apparatus
JP5058625B2 (ja) レーザ顕微鏡
JP4818634B2 (ja) 走査型蛍光観察装置
JP5495740B2 (ja) 共焦点走査型顕微鏡
JP4874012B2 (ja) レーザ走査型顕微鏡およびレーザ走査型顕微鏡の画像取得方法
US20090296209A1 (en) Microscope
JP6127818B2 (ja) 補償光学素子の設定方法及び顕微鏡
JP4792230B2 (ja) 蛍光顕微鏡装置
JP2008026643A (ja) レーザ走査型顕微鏡
JP4869562B2 (ja) 走査型共焦点顕微鏡
US11366301B2 (en) Method and apparatus for imaging samples by means of manipulated excitation radiation
JP2018194634A (ja) ライトフィールド顕微鏡
JP4700334B2 (ja) 全反射蛍光顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4874012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees