JP4871351B2 - 燃料電池車両 - Google Patents

燃料電池車両 Download PDF

Info

Publication number
JP4871351B2
JP4871351B2 JP2008334459A JP2008334459A JP4871351B2 JP 4871351 B2 JP4871351 B2 JP 4871351B2 JP 2008334459 A JP2008334459 A JP 2008334459A JP 2008334459 A JP2008334459 A JP 2008334459A JP 4871351 B2 JP4871351 B2 JP 4871351B2
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
lower limit
direct connection
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008334459A
Other languages
English (en)
Other versions
JP2010158102A (ja
Inventor
彰博 姉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008334459A priority Critical patent/JP4871351B2/ja
Publication of JP2010158102A publication Critical patent/JP2010158102A/ja
Application granted granted Critical
Publication of JP4871351B2 publication Critical patent/JP4871351B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、車輪を駆動するモータの主電源である燃料電池、前記モータに対して前記燃料電池に並列に接続され前記燃料電池の発電電圧よりも低い電圧を常用使用領域電圧として持ち前記燃料電池の出力を補う蓄電装置、及び前記蓄電装置の電圧を昇圧する昇圧制御と前記モータが高負荷状態であるときに電圧変換を行わないで前記燃料電池の最大出力を前記モータに供給する直結制御とを切り替える電圧変換装置を備える燃料電池車両に関する。
バッテリにDC/DCコンバータの一端を接続し、前記DC/DCコンバータの他端に燃料電池を接続し、該燃料電池と前記バッテリとにより並列的にモータを駆動する燃料電池車両が提案されている(特許文献1)。
この燃料電池車両では、前記DC/DCコンバータにより前記バッテリの電圧を燃料電池の電圧まで昇圧し、この昇圧した前記バッテリの電力と前記燃料電池の電力を合成して前記モータを駆動する。また、制動時には、前記モータの回生電力と前記燃料電池の電力に係る電圧を、前記DC/DCコンバータにより降圧して前記バッテリを充電する。
前記燃料電池は、特許文献1の図3にも開示されているように、その出力電流を増加させることで出力電力が略線形に増加するが、出力電圧が出力電流の増加に応じて低下する出力特性(I−V特性という。)を有する。
このI−V特性に鑑み、特許文献2に係る技術では、前記燃料電池から最大限の出力(電力)を得る際に、前記DC/DCコンバータのスイッチング素子の駆動デューティを100[%]にする。このようにすると、スイッチング素子が導通状態に固定され、燃料電池とバッテリとが導通状態のスイッチング素子を介して接続される。導通状態にあるスイッチング素子の端子間電圧は、微小な電圧である。したがって、スイッチング素子の駆動デューティを100[%]にすると燃料電池とバッテリとが導通状態のスイッチング素子を介して接続される、いわゆる直結状態(直結制御)になる。
すなわち、燃料電池の電圧がバッテリの電圧とされる直結状態(直結制御)において、燃料電池から最大限の出力が得られることになる。
特開2002−118979号公報(図3、[0029]〜[0031]) 特開2005−348530号公報([0017])
ところで、燃料電池が劣化してくると、同じ出力電圧(発電電圧)でも燃料電池から得られる出力電流(発電電流)が減少してしまうI−V特性になる(I−V特性が下降する又は低下するという。)。しかしながら、I−V特性が下降したときに上記直結状態としても、燃料電池の劣化(I−V特性の下降)を原因として該燃料電池から最大出力を取り出すことができないという課題がある。
この発明はこのような課題を考慮してなされたものであり、燃料電池が劣化してI−V特性が下降しても、直結制御時において燃料電池から大きな出力を取り出すことを可能とする燃料電池車両を提供することを目的とする。
この発明に係る燃料電池車両は、車輪を駆動するモータの主電源である燃料電池と、前記モータに対して前記燃料電池に並列に接続され、前記燃料電池の発電電圧よりも低い電圧を常用使用領域電圧として持ち、前記燃料電池の出力を補う補助電源である蓄電装置と、前記蓄電装置の電圧を昇圧する昇圧制御と、前記モータが高負荷状態であるときに電圧変換を行わないで、前記燃料電池の最大出力を前記モータに供給する直結制御とを切り替える電圧変換装置と、前記燃料電池の劣化を検出する劣化状態検出部と、前記直結制御時における直結電圧とされる前記蓄電装置の下限電圧を決定する下限電圧決定部と、を備え、前記下限電圧決定部は、前記劣化状態検出部により検出される前記燃料電池の劣化状態が進行するに従い、前記直結制御時における前記直結電圧とされる前記蓄電装置の下限電圧を低くしていくことを特徴とする。
燃料電池の劣化が進行すると、I−V特性が下降し、劣化前と同じ電流を取りだそうとしても出力電圧が低くなってしまい、最終的にモータの高負荷時に直結制御を行ったとしても燃料電池からの出力を十分に得る前に蓄電装置の下限電圧に到達してしまい、燃料電池からは満足に出力できない状態に陥ってしまう。
しかし、この発明によれば、劣化状態が進行するに従い、直結制御時における蓄電装置の下限電圧を低くするようにするため、劣化進行後も燃料電池から十分な出力を得ることができる。
この場合、前記下限電圧決定部は、前記直結制御が行われているとき又は行われると予測されるときに前記蓄電装置の下限電圧を低くすることが好ましい。このように制御すれば、直結制御以外の場面で不用意に下限電圧を低下させてしまい蓄電装置が過放電で劣化してしまうことを防止することができる。
また、当該燃料電池車両の走行状態を検出する走行状態検出部と、検出した走行状態から当該燃料電池車両の停止までに得られることが予測される前記モータの回生電力量を算出する回生電力算出部と、をさらに備え、前記下限電圧決定部は、前記回生電力算出部が算出した回生電力量分、前記下限電圧を低くすることが好ましい。このように制御すれば、蓄電装置の下限電圧を低下させた分の蓄電装置の電力の放出を車両停止までには回復することができる。そのため、車両が再度走行する場合に蓄電装置からの放電可能電力が不足することが無い。
この発明によれば、劣化状態が進行するに従い、直結制御時における蓄電装置の下限電圧を低くするようにするため、劣化進行後も燃料電池から十分な出力を得ることができる。
以下、この発明に係る燃料電池車両の一実施形態について図面を参照して説明する。
1.燃料電池車両20の構成
(1)全体構成
図1は、この実施形態に係るDC/DCコンバータ装置23を搭載した燃料電池車両20の回路図である。燃料電池車両20は、基本的には、燃料電池22とエネルギストレージである蓄電装置(バッテリという。)24とから構成されるハイブリッド型の電力装置と、このハイブリッド型の電力装置から電流(電力)がインバータ34を通じて供給される走行用のモータ26と、バッテリ24が接続される1次側1Sと、燃料電池22とモータ26(インバータ34)とが接続される2次側2Sとの間で電圧変換を行う電圧変換装置であるDC/DCコンバータ装置{以下、「VCU」(Voltage Control Unit)という。}23とから構成される。
モータ26の回転は、減速機12、シャフト14を通じて車輪16に伝達される。なお、モータ26には、回転数センサ51等が取り付けられ、回転数センサ51により検出されたモータ回転数Nmが、モータ制御部52及び通信線70を通じて統括制御部56等に送出される。
(2)燃料電池22
燃料電池22は、例えば固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成されたセルを積層したスタック構造にされている。燃料電池22には、水素タンク28とエアコンプレッサ30が配管により接続されている。水素タンク28内の加圧水素は、燃料電池22のアノードに供給される。また、エアコンプレッサ30により空気が燃料電池22のカソードに供給される。燃料電池22内で反応ガスである水素(燃料ガス)と空気(酸化剤ガス)の電気化学反応により発電電流Ifが生成される。発電電流Ifは、電流センサ32及びダイオード(ディスコネクトダイオードともいう。)33を介して、インバータ34及び(又は)VCU23のDC/DCコンバータ36に供給される。
(3)バッテリ24
1次側1Sに接続されるバッテリ24は、例えばリチウムイオン2次電池やニッケル水素2次電池又はキャパシタを利用することができる。この実施形態ではリチウムイオン2次電池を利用している。
バッテリ24には、バッテリ温度Tbatを検出する温度センサ53が組み込まれ、バッテリ温度Tbatは、バッテリ制御部25に送出される。
バッテリ24は、流れ出すバッテリ電流Ibatを、VCU23のDC/DCコンバータ36を通じてインバータ34にモータ電流Imとして供給する。
(4)インバータ34
インバータ34は、直流/交流変換を行い、モータ電流Imをモータ26に供給する一方、回生動作に伴う交流/直流変換後のモータ電流Imを2次側2SからDC/DCコンバータ36を通じて1次側1Sに供給する。
この場合、回生電圧又は燃料電池22の発電電圧Vfである2次電圧V2がDC/DCコンバータ36により低電圧に変換された1次電圧V1は、バッテリ電流Ibatとしてバッテリ24を充電する。
(5)VCU23
VCU23は、DC/DCコンバータ36と、これを駆動制御するコンバータ制御部54とから構成される。
(6)各種制御部(FC制御部50、モータ制御部52、バッテリ制御部53、コンバータ制御部54、統括制御部56)
燃料電池22、水素タンク28及びエアコンプレッサ30を含むシステムはFC制御部50により制御される。インバータ34とモータ26を含むシステムはインバータ駆動部(図示せず)を含むモータ制御部52により制御される。上述の通り、DC/DCコンバータ36を含むシステムはコンバータ制御部54により制御される。
バッテリ24のバッテリ状態は、バッテリ制御部25により管理される。バッテリ制御部25は、バッテリ温度Tbat、電圧センサ61により検出されるバッテリ電圧Vbat、及び現在のバッテリ容量SOC[%]を統括制御部56に送出する。バッテリ制御部25は、バッテリ温度TbatをパラメータとしたSOC特性を格納するEEPROMであるSOC特性格納部27を備える。
SOC特性は、図2に示すように、バッテリ容量SOC[%](単位は、電力量[kWh])を一方の軸、例えば横軸、バッテリ電圧Vbatを他方の軸、この場合縦軸にとった場合に、バッテリ容量SOCに対してバッテリ電圧Vbatが略線形で増加する特性200を備えている。バッテリ温度Tbatが低いときには特性200l側に、バッテリ温度Tbatが高いときには特性200h側に変化する。なお、バッテリ容量SOCを規定するのは、実際には、バッテリ開放電圧、いわゆるOCV(Open Circuit voltage)である。
そして、これらFC制御部50、モータ制御部52、バッテリ制御部25及びコンバータ制御部54は、上位の制御部であり燃料電池22の総負荷量Lt等の値を決定する統括制御部56により制御される。
統括制御部56は、燃料電池22の状態、バッテリ24の状態、モータ26の状態、及び補機44の状態の他、各種スイッチ及び各種センサからの入力(負荷要求)に基づき決定した燃料電池車両20の総負荷要求量Ltから、燃料電池22が負担すべき燃料電池分担負荷量(要求出力)Lfと、バッテリ24が負担すべきバッテリ分担負荷量(要求出力)Lbと、回生電源が負担すべき回生電源分担負荷量Lrの配分(分担)を調停しながら決定し、FC制御部50、モータ制御部52及びコンバータ制御部54に指令を送出する。
また、統括制御部56は、燃料電池22の劣化を検出する劣化状態検出部58と、直結時における下限電圧Vlowを決定する下限電圧決定部60とを機能として有する。劣化状態検出部58には、回生電力算出部59が含まれる。また、統括制御部56内のEEPROMであるI−V特性格納部57には、燃料電池22のI−V特性91(図3)が格納される。I−V特性格納部57には、燃料電池22のI−V特性91が経時的に格納される。
統括制御部56、FC制御部50、モータ制御部52、及びコンバータ制御部54は、それぞれCPU、ROM、RAM、タイマの他、A/D変換器、D/A変換器等の入出力インタフェース、並びに、必要に応じてDSP(Digital Signal Processor)等を有している。
統括制御部56、FC制御部50、モータ制御部52、バッテリ制御部25及びコンバータ制御部54は、車内LANであるCAN(Controller Area Network)等の通信線70を通じて相互に接続され、各種スイッチ及び各種センサからの入出力情報を共有し、これら各種スイッチ及び各種センサからの入出力情報を入力として各CPUが各ROMに格納されたプログラムを実行することにより各種機能を実現する。
(7)各種スイッチ、各種センサ
車両状態を検出する各種スイッチ及び各種センサとしては、発電電流Ifを検出する電流センサ32の他、1次電圧V1(基本的にバッテリ電圧Vbatに等しい。)を検出する電圧センサ61、1次電流I1を検出する電流センサ62、2次電圧V2(ディスコネクトダイオード33が導通しているとき、略燃料電池22の発電電圧Vfに等しい。)を検出する電圧センサ63、2次電流I2を検出する電流センサ64、通信線70に接続されるイグニッションスイッチ65、アクセル開度θapを検出するアクセルセンサ66、ブレーキセンサ67、車速センサ68、モータ回転数Nmを検出する回転数センサ51及びバッテリ温度Tbatを検出する温度センサ53等がある。アクセルセンサ66は、検出したアクセル開度θapを統括制御部56等に送出する。
2.各種制御/処理
(1)VCU23における基本的な電圧制御
図4には、コンバータ制御部54により駆動制御されるDC/DCコンバータ36の基本動作のフローチャートが示されている。
上述したように、統括制御部56は、燃料電池22の状態、バッテリ24の状態、モータ26の状態、及び補機44の状態の他、各種スイッチ及び各種センサからの入力(負荷要求)に基づき決定した燃料電池車両20の総負荷要求量Ltから、燃料電池22が負担すべき燃料電池分担負荷量(要求出力)Lfと、バッテリ24が負担すべきバッテリ分担負荷量(要求出力)Lbと、回生電源が負担すべき回生電源分担負荷量Lrの配分(分担)を調停しながら決定し、FC制御部50、モータ制御部52、バッテリ制御部25及びコンバータ制御部54に指令を送出する。
ステップS1において、統括制御部56により、それぞれが負荷要求であるモータ26の電力要求と補機44の電力要求とエアコンプレッサ30の電力要求から総負荷要求量Ltが決定(算出)されると、ステップS2において、統括制御部56は、決定した総負荷要求量Ltを出力するための燃料電池分担負荷量Lfと、バッテリ分担負荷量Lbと、回生電源分担負荷量Lrの配分を決定する。ここで、燃料電池分担負荷量Lfを決定する場合、燃料電池22の効率η(図3)が考慮される。
次いで、ステップS3において、コンバータ制御部54により、燃料電池分担負荷量Lfに応じて燃料電池22の発電電圧Vf、ここでは、2次電圧V2が決定される。
2次電圧V2が決定されると、ステップS4において、コンバータ制御部54は、決定した2次電圧V2となるようにDC/DCコンバータ36を駆動制御する。そして、DC/DCコンバータ36は、昇圧動作、降圧動作等を行う。
2次電圧V2及び1次電圧V1は、コンバータ制御部54によりDC/DCコンバータ36をフィードフォワード制御とフィードバック制御とを組み合わせたPID制御により制御される。
(2)燃料電池22の出力制御
次に、VCU23による燃料電池22の出力制御について説明する。
水素タンク28からの燃料ガス及びエアコンプレッサ30からの圧縮空気が供給されている発電時に、燃料電池22の発電電流Ifは、図3に示したI−V特性91{関数F(Vf)という。}上で2次電圧V2、すなわち発電電圧Vfをコンバータ制御部54によりDC/DCコンバータ36を通じて設定することにより決定される。つまり、発電電流Ifは、発電電圧Vfの関数F(Vf)値として決定される。If=F(Vf)であり、例えば発電電圧VfをVf=Vfa=V2と設定すれば、その発電電圧Vfa(V2)の関数値としての発電電流Ifaが決定される。{Ifa=F(Vfa)=F(V2)}。
このように燃料電池22は二次電圧V2(発電電圧Vf)を決定することにより発電電流Ifが決定されるので、燃料電池車両20を駆動制御する際には、2次電圧V2(発電電圧Vf)が目標電圧(目標値)に設定される。
燃料電池車両20等燃料電池22を含むシステムでは、基本的に、DC/DCコンバータ36の2次側2Sの2次電圧V2が目標電圧となるようにVCU23が制御され、このVCU23により燃料電池22の出力(発電電流If)が制御される。
上述の通り、本実施形態では、降圧チョッパ制御及び昇圧チョッパ制御のいずれも行わずに(電圧変換を行わずに)、DC/DCコンバータ36に電流を流す直結制御を利用する場合がある。
直結制御には、1次側1S(バッテリ24)から2次側2S(モータ26)に電流を流す場合と(「力行直結制御」という。)、2次側2S(モータ26、燃料電池22)から1次側1S(バッテリ24)に電流を流す場合と(「回生直結制御」という。)がある。
力行直結制御は、例えば、高負荷時において、モータ26に高出力を供給するために用いられ、バッテリ24から流れ出すバッテリ電流Ibatが1次電流I1としてDC/DCコンバータ36の1次側1Sから2次側2Sを通じて2次電流I2としてインバータ34に供給される。図3に示すように、燃料電池出力特性(I−V特性)91は、発電電圧Vfが、燃料電池22の発電電圧Vfの最低電圧Vfminに近づくに連れて大量の電流を供給可能となる。一方、1次電圧V1であるバッテリ電圧Vbatは、燃料電池22の発電電圧Vfの最低電圧Vfminより高い電圧に設定されている。
このため、1次側1Sと2次側2Sを直結状態としたときに、燃料電池22の発電電流Ifを最大化し、その結果、モータ26に高出力を供給することができる。図3例では、直結状態において、バッテリ24の下限電圧Vlowが直結電圧Vdaに設定され、燃料電池22の発電電圧Vfが直結電圧Vda(下限電圧Vlow)とされ、大きな直結時電流Ifdが燃料電池22から流れ出すことが理解される。
回生直結制御は、例えば、モータ26による回生処理のとき、燃料電池22によるモータ26の駆動及びバッテリ24の充電のとき、燃料電池22がアイドル停止処理のときに用いられる。モータ26による回生処理のときには、モータ26が発生させた回生電力がDC/DCコンバータ36を介してバッテリ24に供給され、これによりバッテリ24が充電される。燃料電池22によるモータ26の駆動及びバッテリ24の充電のときには、燃料電池22からの電力によりモータ26が駆動されると共に、バッテリ24が充電される。
アイドル停止処理は、アイドル停止時に、燃料電池22の発電電圧Vf(発電電流If)によるバッテリ24への充電への電力供給を介して燃料電池22をディスチャージする処理である。なお、アイドル停止は、イグニッションスイッチ65(図1)がオンの状態においてエアコンプレッサ30の駆動や、水素タンク28からの燃料ガスの供給を停止することを示す。
以下、モータ26の高負荷時における直結制御(力行直結制御・回生直結制御)に係るバッテリ24の下限電圧Vlowの変更制御方法の第1実施例(直結後に下限電圧を低下させる変更制御)及び第2実施例(直結状態が予測されるときに下限電圧を低下させる変更制御)について説明する。
なお、燃料電池車両20において、燃料電池22の新品時には、バッテリ24の下限電圧Vlowは、燃料電池22が劣化していないときに設定された直結電圧Vdaに設定されているものとする。
第1実施例(直結後、直ちに下限電圧Vlowを低下させる変更制御)について、図5のフローチャートを参照して説明する。
ステップS11において、イグニッションスイッチ65の状態及び車速センサ68により検出される車速により燃料電池車両20が走行中であるかどうかが検出される。
走行中である場合には、ステップS12において、発電電流Ifと発電電圧Vfが、電流センサ32及び電圧センサ63により所定時間毎に測定され、燃料電池22のI−V特性91が適時更新される。更新されたI−V特性91´は、更新前のI−V特性91とともに、統括制御部56内のI−V特性格納部57に格納される。
次いで、ステップS13において、更新されたI−V特性91´が劣化(変化)しているかどうかが劣化状態検出部58で確認される。
図6のI−V特性91´に示すように、直結時電流Ifdを流せる直結時電圧Vdaが、直結時電圧Vda(図3も参照)から直結時電圧Vdcとなるように下がっていた場合には燃料電池22が劣化していると判断される。一般的には、図3に示した適当に設定した発電電圧Vfaにおける発電電流Ifaが所定電流閾値以上小さい値になっていることを検出したときに燃料電池22が劣化していると判断することができる。
I−V特性91´の全体的なカーブは、検出した発電電流Ifと発電電圧Vfとの関係をプロットし、補間することにより得ることができる。
次いで、燃料電池22がI−V特性91´のように劣化した場合、ステップS14において、変更前の現在の直結電圧Vdaで燃料電池22とバッテリ24とが直結されたかどうかが判断される。この場合、直結状態における発電電流Ifが直結時電流Ifdから直結時電流Ifdaに大幅に減少する。
そこで、燃料電池22が劣化した後に、以前に設定された直結電圧Vdaがバッテリ24の下限電圧Vlowとされて直結状態となった場合には、燃料電池22からさらなる発電電流Ifを取り出す制御を行うことが好ましい。
発電電流Ifの取り出し量の適正値を決定するために、ステップS15において、モータ26の停止時までの回生電力量Prが、回生電力算出部59により算出される。
回生電力量Prを算出する際には、例えば、まず、回転数センサ51により検出されたモータ回転数Nmと、アクセルセンサ66により検出されたアクセル開度θap等から予め設定されているトルクマップに基づいてトルク指令値(Qtrqとする。)が算出される。
次に、算出されたトルク指令値Qtrqとモータ回転数Nmとを乗算して回生によりモータ26から取り出し可能な目標電力量を回生電力量Pr[kWh]として算出する。
次いで、ステップS16において、この回生電力量Pr[kWh]に対応する分のバッテリ24のバッテリ容量SOC(SOCrとする。)[kWh]分を下げるために、図7に示すように、設定点Aを設定点Bに移す。これにより、新たな下限電圧Vlowが直結電圧Vdaから直結電圧Vdbに変更され決定される。
ステップS17において、統括制御部56は、この下限電圧Vdbに対応する下限電圧指令値Vdbcomをコンバータ制御部54に送る。
以降、コンバータ制御部54は、ステップS18において、直結時には(ステップS14:YES)、変更後の下限電圧Vlowである直結電圧VdbとなるようにDC/DCコンバータ36を制御する。燃料電池車両20は、変更後の下限電圧Vlowである直結電圧Vdbで直結制御される。この変更により、図6に示すように、燃料電池22が劣化しても、燃料電池22から比較的に大きな値の直結電流Ifdb(Ifda<<Ifdb≒Ifd)を取り出すことができる。
以上説明したように、上述した実施形態に係る燃料電池車両20は、車輪15を駆動するモータ26の主電源である燃料電池22と、モータ26に対して燃料電池22に並列に接続され、燃料電池22の発電電圧Vfよりも低い電圧を常用使用領域電圧、例えば直結電圧Vdaとして持ち、燃料電池22の出力を補う補助電源であるバッテリ24と、バッテリ24のバッテリ電圧Vbatを昇圧する昇圧制御と、モータ26が高負荷状態であるときに電圧変換を行わないで、燃料電池22の最大出力をモータ26に供給する直結制御とを切り替えるVCU23と、燃料電池22の劣化を検出する劣化状態検出部58と、バッテリ24の下限電圧Vlowを決定する下限電圧決定部60と、を備え、下限電圧決定部60は、劣化状態検出部58により検出される燃料電池22の劣化状態が進行するに従い、直結制御時におけるバッテリ24の下限電圧Vlowを低くしていくようにしている。
燃料電池22の劣化が進行すると、I−V特性が、I−V特性91からI−V特性91´に示したように下降し、劣化前と同じ直結電流Ifdを取りだそうとしても出力電圧である燃料電池電圧Vfが低くなってしまい、最終的にモータ26の高負荷時に直結制御を行ったとしても燃料電池22からの出力を十分に得る前にバッテリ24の下限電圧Vlowである直結電圧Vdaに到達してしまい、燃料電池22からは満足に出力できない状態に陥ってしまう。
しかし、この実施形態によれば、劣化状態が進行するに従い、直結制御時におけるバッテリ24の下限電圧Vlowを、例えば直結電圧Vdbと低くするようにするため、劣化進行後も燃料電池22から十分な出力、例えば、発電電流Ifdbを得ることができる。
この場合、当該燃料電池車両20の走行状態を検出する走行状態検出部(上記した実施形態では、回転数センサ51とアクセルセンサ66)と、検出した走行状態(上記した実施形態では、モータ回転数Nmとアクセル開度θap)から当該燃料電池車両20の停止までに得られることが予測されるモータ26の回生電力量Prを算出する回生電力算出部59を備えているので、下限電圧決定部60は、回生電力算出部59が算出した回生電力量Pr分、下限電圧Vlowを低くすることができる。このように制御すれば、バッテリ24の下限電圧Vlowを低下させた分のバッテリ24の電力の放出を車両停止までには回復することができる。そのため、車両が再度走行する場合にバッテリ24からの放電可能電力が不足することが無い。
なお、上述の第1実施例では、下限電圧決定部60は、直結制御が行われているときに下限電圧Vlowを低くするように制御しているが、これに限らず、直結制御が行われると予測されるときに下限電圧Vlowを低くするように制御してもよい。これを第2実施例として以下に説明する。
第2実施例(直結が予測されるときに、下限電圧Vlowを低下させる変更制御)について、図8のフローチャートを参照して説明する。
なお、図8のフローチャートにおいて、ステップS11〜S12、及びステップS15〜S18の処理は、図5のフローチャートの処理と同様であるので説明を省略する。
ステップS13においてI−V特性の劣化を検出したとき、ステップS21において、燃料電池22の発電電圧Vfとバッテリ電圧Vbatとの差分ΔVが計算される。次いで、ステップS22において、差分ΔVが、燃料電池22とバッテリ24とが直結しそうなほど小さい電圧であるかどうかを、差分ΔVが所定電圧閾値ΔVthを下回る電圧になっているかどうかにより判断する。
ステップS22の判断が成立(ΔV<ΔVth)したとき、上述したステップS15の回生電力算出処理以降の処理を行う。この実施形態では、ステップS18で、変更後の下限電圧Vlowである直結電圧Vdbでの走行がなされる。
上述したように、下限電圧決定部60は、直結制御が行われているとき(第1実施例、図5のステップS14:YES)又は行われると予測されるときに(第2実施例、図8のステップS22:YES)下限電圧Vlowを低くするようにしているので、直結制御以外の場面で不用意に下限電圧Vlowを低下させてしまいバッテリ24が力行電力等による過放電で劣化してしまうことを防止することができる。
なお、この発明は、上述した実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採りうることができる。
この発明の一実施形態に係る燃料電池車両のブロック図である。 バッテリ容量SOCの特性図である。 燃料電池のI−V特性の説明図である。 燃料電池車両に搭載されたDC/DCコンバータの基本制御のフローチャートである。 バッテリの下限電圧の変更制御方法の第1実施例の説明に供されるフローチャートである。 燃料電池のI−V特性の劣化状態等の説明図である。 下限電圧の低下例の説明図である。 バッテリの下限電圧の変更制御方法の第2実施例の説明に供されるフローチャートである。
符号の説明
20…燃料電池車両 22…燃料電池
24…バッテリ(蓄電装置) 26…モータ
36…DC/DCコンバータ 58…劣化状態検出部
59…回生電力算出部 60…下限電圧決定部

Claims (3)

  1. 車輪を駆動するモータの主電源である燃料電池と、
    前記モータに対して前記燃料電池に並列に接続され、前記燃料電池の発電電圧よりも低い電圧を常用使用領域電圧として持ち、前記燃料電池の出力を補う補助電源である蓄電装置と、
    前記蓄電装置の電圧を昇圧する昇圧制御と、前記モータが高負荷状態であるときに電圧変換を行わないで、前記燃料電池の最大出力を前記モータに供給する直結制御とを切り替える電圧変換装置と、
    前記燃料電池の劣化を検出する劣化状態検出部と、
    前記直結制御時における直結電圧とされる前記蓄電装置の下限電圧を決定する下限電圧決定部と、を備え、
    前記下限電圧決定部は、前記劣化状態検出部により検出される前記燃料電池の劣化状態が進行するに従い、前記直結制御時における前記直結電圧とされる前記蓄電装置の下限電圧を低くしていく
    ことを特徴とする燃料電池車両。
  2. 請求項1記載の燃料電池車両において、
    前記下限電圧決定部は、前記直結制御が行われているとき又は行われると予測されるときに前記蓄電装置の下限電圧を低くする
    ことを特徴とする燃料電池車両。
  3. 請求項1又は2記載の燃料電池車両において、
    当該燃料電池車両の走行状態を検出する走行状態検出部と、
    検出した走行状態から当該燃料電池車両の停止までに得られることが予測される前記モータの回生電力量を算出する回生電力算出部と、をさらに備え、
    前記下限電圧決定部は、前記下限電圧を低くする分を、前記回生電力算出部が算出した回生電力量分に対応させる
    ことを特徴とする燃料電池車両。
JP2008334459A 2008-12-26 2008-12-26 燃料電池車両 Expired - Fee Related JP4871351B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334459A JP4871351B2 (ja) 2008-12-26 2008-12-26 燃料電池車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334459A JP4871351B2 (ja) 2008-12-26 2008-12-26 燃料電池車両

Publications (2)

Publication Number Publication Date
JP2010158102A JP2010158102A (ja) 2010-07-15
JP4871351B2 true JP4871351B2 (ja) 2012-02-08

Family

ID=42575565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334459A Expired - Fee Related JP4871351B2 (ja) 2008-12-26 2008-12-26 燃料電池車両

Country Status (1)

Country Link
JP (1) JP4871351B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427832B2 (ja) 2011-05-18 2014-02-26 本田技研工業株式会社 燃料電池車両
CN102991368B (zh) * 2011-09-09 2015-02-18 本田技研工业株式会社 燃料电池车辆
KR101620222B1 (ko) 2014-11-20 2016-05-13 현대자동차주식회사 연료전지 하이브리드 차량의 전력분배 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178965A (ja) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd 車両の制御装置
JP4151405B2 (ja) * 2002-12-25 2008-09-17 日産自動車株式会社 燃料電池の発電量制御装置
JP4397739B2 (ja) * 2004-06-03 2010-01-13 本田技研工業株式会社 燃料電池車両の電圧状態設定方法

Also Published As

Publication number Publication date
JP2010158102A (ja) 2010-07-15

Similar Documents

Publication Publication Date Title
JP6621264B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP5317806B2 (ja) 電源システム
JP5101583B2 (ja) 燃料電池車両
CN102487145B (zh) 控制燃料电池混合系统的操作的系统和方法
KR101033900B1 (ko) 연료전지 수퍼캡 직결형 하이브리드 차량의 동력분배장치 및 방법
JP5434196B2 (ja) 燃料電池システム及びこれを備えた車両
JP4774430B2 (ja) 電気自動車及び蓄電装置の制御方法
JP2009142098A (ja) 車両用電源装置
JP2013059219A (ja) 燃料電池システム
CN105599614A (zh) 安装燃料电池的车辆的外部电力供应系统的控制方法和外部电力供应系统
JP2008271775A (ja) 燃料電池電源装置
US9849805B2 (en) Fuel cell vehicle
US10122177B2 (en) Power supply method and power supply system
JP4871351B2 (ja) 燃料電池車両
JP6926547B2 (ja) 電動車両の電源装置
JP6104637B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP6133623B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP5504306B2 (ja) 燃料電池システムの制御方法
JP7226299B2 (ja) 燃料電池車両
JP5017192B2 (ja) 燃料電池システム
JP4556989B2 (ja) 燃料電池電源装置
JP6054918B2 (ja) 2電源負荷駆動燃料電池システム及び燃料電池自動車
JP2003187816A (ja) 電源装置
WO2013150619A1 (ja) 燃料電池システム
CN104272511A (zh) 燃料电池系统

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4871351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees