JP4870770B2 - 内燃機関の運転方法及び装置 - Google Patents

内燃機関の運転方法及び装置 Download PDF

Info

Publication number
JP4870770B2
JP4870770B2 JP2008532802A JP2008532802A JP4870770B2 JP 4870770 B2 JP4870770 B2 JP 4870770B2 JP 2008532802 A JP2008532802 A JP 2008532802A JP 2008532802 A JP2008532802 A JP 2008532802A JP 4870770 B2 JP4870770 B2 JP 4870770B2
Authority
JP
Japan
Prior art keywords
intake
crank angle
intake pipe
predetermined
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008532802A
Other languages
English (en)
Other versions
JP2009510316A (ja
Inventor
ハルトマン,ディルク
ロート,アンドレアス
ロイシェンバハ,ルッツ
マルレブライン,ゲオルク
ドルング,ミハエル
シラー,フランク
イデ,ニコラス
デイスラー,マルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009510316A publication Critical patent/JP2009510316A/ja
Application granted granted Critical
Publication of JP4870770B2 publication Critical patent/JP4870770B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の運転のための方法及び装置に関する。
DE 10064651 A1 から既に、可変弁制御装置を備えた内燃機関において複数のシリンダのガス充填の制御のための方法及び装置が知られており、それ等の方法及び装置では、充填センサの測定信号が或る走査レートで走査される。更に、シリンダに対する測定間隔が定められる。この測定間隔の間に、走査値が走査値の和を求めるために積算される。更に、第一の測定間隔の中にある幾つかの走査値が、第一のカウント値の測定のためにカウントされる。第一のシリンダの中へ充填されたエアマスが、次いで、走査値の和とカウント値とから得られる商の形成によって求められる。周囲圧力に対する吸気管圧力の比が0.8よりも大きい場合には、シリンダ間のガス充填差が、好ましくはホットフィルム・エアマスセンサを用いて測定される。絞りがもっと強く絞られた場合、即ち周囲圧力に対する吸気管圧力の比が0.8よりも小さい場合には、好ましくは、シリンダ間のガス充填差の測定のために吸気管圧力センサの測定信号が用いられるものとする。
独立の諸請求項のメルクマールを持つ、内燃機関の運転のための本発明に基づく方法及び本発明に基づく装置は、それに対して、吸気能力に関する特性値が、シリンダの吸気段階の間に、内燃機関の吸気管へ流入する質量流量と吸気管圧力の変化に応じて求められる。
この様にすることによって、シリンダの吸気能力に関する特性値の測定のために、内燃機関のすべての可能なスロットルバルブ位置と全ての負荷及びエンジン回転数の時の吸気能力に関する特性値を可能にする、単一のモデルが実現される。その際吸気能力に関する特性値が、正確に給気ダクトの物理的モデルと吸気管からシリンダの中へのガス流の流入の物理的モデルに基づいて、既存の充填センサ装置を用いて確定される。
従属請求項に記載されている諸措置によって、本発明の有利な拡張及び改良が可能である。
吸気管圧力が、長さと位置を予め定められた第一の時間間隔又はクランク角度間隔の間に予め定められた第一の走査レートによる走査によって求められると、とりわけ有利である。この様にすることによって、予め定められた第一の時間間隔又はクランク角度間隔の長さと位置を適切に選択すれば、その時々の吸気シリンダに対応する吸気管圧力が簡単に求められる。
更に、予め定められた第一の時間間隔又はクランク角度間隔の吸気管圧力に関する複数の値が、とりわけ加重されて、平均されると有利である。この様にすることによって、予め定められた第一の時間間隔又はクランク角度間隔から吸気管圧力のサンプルを取り出し、このサンプルから予め定められた第一の時間間隔又はクランク角度間隔の間の吸気管圧力に関する代表的値を形成すれば良いということになり、その際サンプルに加重すれば、予め定められた第一の時間間隔又はクランク角度間隔の間における、吸気管圧力の変化に関するサンプルの様々な意味をとりわけ簡単に考慮することができる。
もう一つの利点は、給気ダクトへ流入する質量流量が、とりわけ、長さと位置を予め定められた第二の時間間隔又はクランク角度間隔の間に、予め定められた第二の走査レートによる走査によって求められる時に生じる。この様にすることによって、給気ダクトへ流入する質量流量が、予め定められた第二の時間間隔又はクランク角度間隔の長さと位置を適切に選択すれば、とりわけ簡単に且つ信頼性をもって、その時々に丁度吸気行程にあるシリンダに対応して求められる。
給気ダクトへ流入する質量流量が、予め定められた計算ラスターの中で予め長さと位置を定められた第二の時間間隔又はクランク角度間隔の間に、内燃機関の運転特性値からモデル化され或いは計算されるという場合にも同じことが当てはまる。
更に、予め定められた第二の時間間隔又はクランク角度間隔の質量流量に関する値が、とりわけ加重されて、平均されると有利である。この様にすることによって、予め定められた第二の時間間隔又はクランク角度間隔から、予め定められた第二の時間間隔又はクランク角度間隔の中における質量流量の動きを代表している、質量流量に関する個々のサンプルを取り出せば良いということになる。予め定められた第二の時間間隔又はクランク角度間隔の間における質量流量の動きに関する個々のサンプルの意味が異なっている場合には、それ等のサンプルも又加重平均されることができる。
もう一つの利点は、第二の時間間隔又はクランク角度間隔が、第一の時間間隔又はクランク角度間隔に対して、予め定められた時間間隔又はクランク角度間隔だけ、とりわけ内燃機関の直接互いに連続して点火される二つのシリンダの点火間隔の半分だけ、ずらして配置されるときに、とりわけ時間的に少なくとも部分的に第一の時間間隔或いはクランク角度間隔の前に、ずらして配置されるときに、生じる。この様にすることによって、その時々に丁度吸気行程にあるシリンダに関する、給気ダクトへ流入する質量流量と、そこで形成される吸気管圧力との間の物理的関係が、そのシリンダの気能力に関する特性値の測定のために最適に考慮される。
もう一つの利点は、特性値として得られた値が目標値と比較されるときに、又その比較の結果に応じてシリンダの吸気の機能が診断されるときに生じる。この様にすることによって、シリンダの吸気能力に関する特性値によって、シリンダの吸気が完璧であるか否かということが簡単にチェックされる。
もう一つの利点は、気能力に関する特性値が、とりわけシリンダの少なくとも一つのガス交換弁の制御によって、目標値に合わせて追従調整される時に生まれる。この様にすることによって、とりわけ簡単に個々のシリンダについての充填制御が実現される。
もう一つの利点は、複数のシリンダについての吸気能力に関する特性値が求められたときに、又複数のシリンダの特性値として生成された値が互いに比較されたときに、又この比較の結果に応じてシリンダの吸気の機能が診断されるときに生じる。この様にすることによって、内燃機関の異なるシリンダの吸気能力の違いも検知することができ、又その原因となっている弁作動機構の機能を診断することができる。
吸気能力に関する特性値の簡単な測定は、吸気能力に関する第一の特性値としてシリンダの中へ流れ込む充填が選ばれ、この充填が、予め定められた最後の第二の時間間隔又はクランク角度間隔の給気ダクトへ流入する充填と、最後の二つの予め定められた第一の時間間隔又はクランク角度間隔の吸気管圧力の差と定数から得られる商と、の和として求められるときに得られる。この様にすることによって、気能力に関する第一の特性値が既存の充填センサ装置によって簡単に且つ信頼性をもって求められる。
それに基づいて、吸気能力に関する第二の特性値が、第一の特性値と、吸気管圧力とシリンダの中の残留ガスに依存する最後の第一の時間間隔又はクランク角度間隔の分圧との差と、から得られる商として求めることができる。この様にすることによって、吸気能力に関する第二の特性値が吸気管圧力に依存しなくなる。また、それと共に内燃機関のシリンダについて、吸気管能力を特徴付ける倍数値が生じる。
もう一つの利点は、吸気能力に関する第三の特性値が、第二の特性値と期待値とから得られる商として形成されるときに生じる。この様にすることによって再び、シリンダの吸気能力を特徴付ける倍数値が生じ、しかもこの倍数値は、吸気の温度とインテークカムシャフトの位置に依存していない。
もう一つの利点は、吸気管圧力が、吸気管内へ流入する充填とシリンダへ流れ込む充填との差の積分によってモデル化されるときに、その様にしてモデル化された吸気管圧力が、測定された吸気管圧力と比較されるときに、又充填サイクルのモデルによってシリンダへ流れ込む充填の確定のために用いられた吸気能力に関する特性値が、モデル化された吸気管圧力に応じて、モデル化された吸気管圧力が測定された吸気管圧力に適応されるように選ばれるときに、生じる。この様にすることによって、シリンダの吸気能力に対する特性値の適応が実現される。
本発明の一つの実施例が図面に示され、以下の記述の中で詳しく説明される。
図1には、内燃機関が参照符号1によって指示されているが、この内燃機関は、例えば火花点火機関として作られている。内燃機関1は、例えば自動車を駆動する。この内燃機関1は、図1の例によれば、四つのシリンダ5、10、15、20を含んでいるが、その中の第一のシリンダ5が代表として示されている。第一のシリンダ5には、給気ダクト45内のスロットルバルブ50の下流で吸気管(インテークマニホルド)25へ移行している給気ダクト45を通して、また吸気弁60を通して、空気が供給される。更に、燃料が、図示されていない手法で吸気管25へ或いは直接シリンダ5へ噴射される。シリンダ内にある空気/燃料混合気は、同じく図1に示されていない点火プラグを通じて点火される。それによって行われる燃焼過程によって、図1に示されていない第一のシリンダ5のピストンが駆動され、このピストンが更に内燃機関1のクランクシャフトを駆動する。空気/燃料混合気の燃焼の際に生じる排気ガスは、第一のシリンダ5の排気弁65を通して内燃機関1の排気ガスライン75へ押し出される。吸気弁60及び排気弁65の開閉ポイントは、共通のカムシャフトを通して、或いは別々の吸気カムシャフトと別々の排気カムシャフトとを通して、或いは図1に示されているように可変弁制御機構を用いて、直接エンジン制御装置35によって制御される。シリンダ5、10、15、20の領域内に配置されているクランク角度センサ70は、内燃機関1の実際のクランク角度を測定して、これをエンジン制御装置35へ伝える。スロットルバルブ50の下流側の吸気管25内には吸気管の圧力センサ55が配置されており、この圧力センサは、吸気管圧力の実際値を測定して、エンジン制御装置35へ伝える。スロットルバルブ50は、その位置を、例えばドライバーの意志或いは、例えばトラクションコントロール、アンチブロックシステム、クルーズコントロール、ビークルダイナミクスコントロール等の外部システムに応じて、当業者には既に知られている手法でエンジン制御装置35によって制御され、エンジン制御装置35に対してスロットルバルブ50の実際位置についての位置フィードバック信号を、例えばポテンシオメータによって送り返す。給気ダクト45の中には、例えばホットフィルム・エアマスセンサの形をしたエアマス計80が配置されており、このエアマス計は、吸気管25に流入するエアマス流mszuを測定して、その測定値をエンジン制御装置35へ伝える。スロットルバルブ50からフィードバックされる位置の値は、例えばスロットルバルブ角度αの形で送られる。吸気管の圧力センサ55によって求められた吸気管圧力は図1には記号psで指示されている。クランク角度センサ70から送り出されたクランク角度値は、図1には記号kWで指示されており、このクランク角度値kWから微分によって導き出されるエンジン回転数は、記号nmotで表されている。その他のシリンダ10、15、20の機能態様も、第一のシリンダ5について説明された態様と同様の手法で行われる。
以下に説明される方法と以下に説明される装置は、共通の吸気管に接続された個々のシリンダ5、10、15、20の吸気能力に関する特性値の測定を可能にする。気能力という用語は、ここでは充填サイクルに関する基本的な値であり、それぞれのシリンダ5、10、15、20の吸気行程の際に吸入されるフレッシュガスの質量或いは空気の質量に関して特徴的な値であると理解されるものとする。その際、吸気能力は次の値によって影響される。
− それぞれのシリンダ5、10、15、20の行程容積
− それぞれのシリンダ5、10、15、20へ流入するガスの温度、
− それぞれのシリンダ5、10、15、20の吸気弁のバルブリフト曲線の位相位置及びストローク、及び
− それぞれのシリンダ5、10、15、20の燃焼室の、とりわけ吸気弁と排気弁並びにピストンリングに関する、気密性。
それぞれのシリンダ5、10、15、20の中にある、例えば残留ガスの分圧pbrintによって特徴付けられる残留ガス質量も吸気性能に影響を与える。しかしながら、個々のシリンダ5、10、15、20について一つの係数だけを、そして更にオフセットを加えること無しに、検出すれば良いようにするために、本例では残留ガス質量が又それに伴って共に残留ガスの分圧pbrintが、前もって固定値として与えられた。
二つ以上のシリンダを備えた内燃機関の場合には、とりわけ個々のシリンダによって異なる吸気能力を測定することに関心が持たれる。個々のシリンダによって異なる吸気能力の測定は、とりわけ吸気弁のリフトを切換え或いは更にシリンダ全体を遮断しさえする弁制御システムの診断のためにも必要である。内燃機関1に、個々のシリンダ別の吸気能力に影響を与えるための、とりわけ個々のシリンダ別の吸排気弁を制御するための、適切な常時調節機構を備えられていれば、それぞれのシリンダ5、10、15、20の吸気能力に関する特性値の測定によって個々のシリンダ別の充填制御を実現することもできる。
そのために、本発明によれば、それぞれのシリンダ5、10、15、20の吸気能力に関する特性値は、吸気管25へ流入するガス質量流量と、共通の吸気管25の中の吸気管圧力の変化とに応じて測定される。その際に、吸気能力について求められた特性値に対して個々のシリンダ5、10、15、20を割り当てることができるようにすべきである。
本発明によれば、既に述べられた既存の充填センサ装置、即ちエアマス計80及び吸気管の圧力センサ55を利用した吸気能力に関する特性値、又とりわけ個々のシリンダ別のその違いを確定するために、吸気管モデルと充填サイクルモデルが用いられる。本発明に基づく方法と本発明に基づく装置のためには、吸気管の圧力センサ55の使用が前提とされている。エアマス計80も備えられていることが好ましいけれども、エアマス計の存在は不可欠ではない。吸気管25に流入するエアマス流の形によるエアマス計80の主負荷信号mszuの代わりとして、本例の場合には、図1に参照符号51で指示されている、ポテンシオメータとして作られているスロットルバルブの角度センサの信号αを、副負荷信号として評価することもできる。その際には、吸気管25に送り込まれるエアマス流mszuは、スロットルバルブ角度αと、内燃機関1のその他の運転パラメータ、例えばスロットルバルブ50の温度及びスロットルバルブ50の前後の圧力比から、当業者には既に知られている手法で算出される。その際、スロットルバルブ50の前後の圧力比は、ps/puとして計算され、puは周囲圧力を意味している。対応する運転パラメータT、puは、適当なセンサ装置によって図1には示されていない手法で測定されるか或いは当業者には既に知られている手法で、内燃機関1の他の運転パラメータからモデル化されることができる。
この様にして、例えば吸気温度センサを、給気ダクト45のスロットルバルブ50の上流側に、スロットルバルブ50の上流側のガス温度の測定のために備えることができる。更に、例えば周囲圧力センサもまた、スロットルバルブ50の上流側に給気ダクト45内の周囲圧力の測定のために備えることができる。
その際、測定された吸気温度はエンジン制御装置35へ送り込まれる。測定された周囲圧力もまた、エンジン制御装置35へ送り込まれる。次いで、エンジン制御装置35は、スロットルバルブ角度α、スロットルバルブ50の前後の圧力比ps/pu、及びスロットルバルブ50の上流側のガス温度Tから、当業者には既に知られている手法で、また既に説明された手法で、吸気管25に送り込まれる空気マス流或いはガスマス流mszuを求める。
吸気管圧力は、吸気管の圧力センサ55によって、予め定められた第一の走査レートで、長さと位置を予め定められた第一の時間間隔或いはクランク角度間隔の間に走査される。次いで、走査された吸気管圧力値の回転数同期された演算ラスターへの変換が行われる。この変換は、走査された吸気管圧力値が相対的位置と長さを予め定められた時間間隔或いはクランク角度間隔にわたって平均化されることによって行われる。この平均値計算は、好ましくは、走査された吸気管圧力値を時間的に予め定められたラスター、例えば1ミリ秒の中で積算することによって、またその様にして形成された和を、予め定められた第一の時間間隔或いはクランク角度間隔当たりのラスター数によって割ることによって、行われる。時間間隔とそれに割り当てられたクランク角度間隔との間の関係は、実際のエンジン回転数nmotについて当業者には既に知られている手法で定められる。前記の平均計算は、代わりの手法として、予め定められた第一の時間間隔或いはクランク角度間隔の任意の位置における複数の個別サンプル積算し、得られた和を用いられたサンプルの数で割ることによって行われる。その際のサンプルは、予め定められた第一の時間間隔或いはクランク角度間隔の間の、予め定められた第一の時間間隔或いはクランク角度間隔の中における、吸気管圧力の時間的変化について、とりわけ代表的と見なされる位置で、採取することができる。平均計算の際に、個々のサンプルの持っている、異なる意味を考慮するために、それ等のサンプルに重みを付けて、予め定められた、割り当てられた第一の時間間隔或いはクランク角度間隔の吸気管圧力について形成されるべき平均値に採り入れることもできる。
同様にして、吸気管25へ送り込まれる質量流量mszuも、エアマス計80によって、長さと位置が予め定められた第二の時間間隔或いはクランク角度間隔の間に、予め定められた第二の走査レートで走査することによって求めることができる。その際には、この予め定められた第二の走査レートは、好ましくは、予め定められた第一の走査レートに対応して選ばれる。しかしながら、予め定められた第一の走査レートは、予め定められた第二の走査レートとは異なるように選ぶこともできる。代わりの手法として、吸気管25へ流入する質量流量は、予め定められた演算ラスターの中で、例えば予め長さと位置が定められた第二の時間間隔或いはクランク角度間隔の間の1ミリ秒のラスターの中で、スロットルバルブ角度α、スロットルバルブ50の上流側の温度T、及びスロットルバルブ50の前後の圧力比ps/puの運転パラメータから、既に説明された手法でモデル化され或いは計算される。その場合、吸気管25へ流入する質量流量mszuを、主負荷信号或いは副負荷信号から確定する手法とは独立に、回転同期の演算ラスターへの、吸気管25内へ流入する質量流量mszuに関する走査値或いは計算値の変換は、既に説明されたように、エアマス流mszuに関する走査値或いは計算値を、予め定められた第二の時間間隔或いはクランク角度間隔にわたって平均することによって行われる。この平均計算もまた、例えば1ミリ秒の、上述の演算ラスターの中の測定値を積算し且つ形成された和を、予め与えられた第二の時間間隔或いはクランク角度間隔当たりの演算ラスターの数によって割ることによって行われる。代わりの手法として、吸気管25へ流入する質量流量mszuについて予め定められた第二の時間間隔或いはクランク角度間隔の任意の位置で個々のサンプルを求めて積算し、次いでサンプルの数で割ることによって平均値を作ることもできる。その際には、それ等のサンプルは、好ましくは、予め定められた第二の時間間隔或いはクランク角度間隔の中で、エアマス流mszuの変化についてより大きな意味を持っている、予め定められた第二の時間間隔或いはクランク角度間隔の間の位置で採取され、その際、サンプルの採取のために選ばれた位置の持っている意味に応じて、サンプルに異なる重みを付けて平均値に取り入れることができる。
四サイクル機関の場合には、予め定められた第一の或いは第二のクランク角度間隔の長さに関する基準値として、次の式によって表すことのできる値が選ばれる。
Figure 0004870770
但し、ψLaengeは、予め定められた第一の或いは第二のクランク角度間隔の長さ、KWはクランク角度を意味し、シリンダ数は内燃機関1のシリンダ数であり、本例では例えばシリンダ数=4である。
しかしながら、予め定められた第一の或いは第二のクランク角度間隔はまた、もっと短い或いはもっと長い長さを選ぶこともできる。
式(1)によれば、予め定められた第一の或いは第二のクランク角度間隔は、シリンダ数が増えるに従って小さくなる。予め定められた第一の或いは第二のクランク角度間隔は、吸気能力に関する特性値の測定のための対象となっているシリンダの吸気段階に割り当てることができるということが重要である。
吸気管圧力の測定のためには、予め定められた第一のクランク角度間隔の位相位置を、吸気管25の中の吸気管の圧力センサ55の組込み位置に応じて、又とりわけエンジン回転数nmotや、例えば吸気管圧力psの平均値等の他のパラメータに応じて適応させることができる、ということが当てはまる。その際、予め定められた第一のクランク角度間隔が、対応するシリンダの“吸気閉止”時点のほゞ中央にある時には、吸気管圧力psの平均を求めるために有利な値であるということが実証されている。この事情が、図2a)と図2b)に示されている。図2a)は、クランク角度KWに対する内燃機関1のシリンダ5、10、15、20の中の一つのシリンダの吸気弁の弁リフトVHの動きを示している。その際、弁リフトの動きが一点鎖線で示されており、対応するシリンダへのエアマス流の変化が比較のために重ね合わせて実線で示されている。弁リフトVHが、またそれに伴って、対応するシリンダに流れ込むマス流が最大値から始まって再びゼロに戻るクランク角度KWのあたりに、予め定められた第一のクランク角度間隔300の中心が置かれている。この間隔は、“吸気閉止”前の第一のクランク角度ψに始まり、“吸気閉止”の後の第二のクランク角度ψで終わっている。図2b)に示されているクランク角度KWに対する吸気管圧力psの変化によれば、予め定められた第一のクランク角度間隔の中心に置ける吸気管圧力psの値は、予め定められた第一のクランク角度間隔の間のクランク角度KWに対する吸気管圧力psの変化の平均値にほゞ対応している。
予め定められた第一のクランク角度間隔300の間の吸気管圧力psの平均値は、図2b)では参照符号305で指示されている。
質量流量の測定のためには、エアマス流mszuの平均値計算のための予め定められた第二のクランクシャフト角度間隔の長さと位相が吸気管圧力psの平均値計算のための予め定められた第一のクランク角度間隔と異なっていることができるということが当てはまる。予め定められた第一のクランク角度間隔の間には、吸気管25からのガスの吸引が測定されるので、エアマス流mszuの平均値計算は、理想的には、予め定められた第一のクランク角度間隔に対して定められたクランク角度間隔だけずらして配置された、予め定められた第二のクランク角度間隔の間に行われるべきであろう。その際、有利な手法によれば、予め定められた第二のクランク角度間隔は、予め定められた第一のクランク角度間隔に対して前の方へ、好ましくは、直接連続して点火される二つのシリンダの点火間隔の半分だけずらされる。その際には、予め定められた第一のクランク角度間隔と予め定められた第二のクランク角度間隔は、互いに重なり合うこともできれば、互いに何らの共通の交差部分を持たないこともできる。
吸気管圧力psとエアマス流mszuに関する平均値計算のための予め定められたクランク角度間隔のその様な位相移動によって、予め定められた第二のクランクシャフト間隔の間の吸気管25の中へのエアマス流mszuが、予め定められた第一のクランクシャフト間隔の間に求められ又とりわけ平均された吸気管圧力の最終値として生成されるということが考慮される。対応するシリンダの吸気段階の間に、対応するクランクシャフト間隔にわたって前記の様にして平均された吸気管圧力psとエアマス流mszuの信号は、明らかにそのシリンダに割り当てられている。
図2c)には、気管へ流れ込むエアマス流mszuとクランク角度KWとの関係が示されている。その際、第三のクランク角度ψから第四のクランク角度ψまでの予め定められた第二のクランク間隔310は、上述の点火間隔の半分だけ予め定められた第一のクランク角度間隔300に対して早期方向へずらされ、予め定められた第一のクランク角度間隔300と重ね合わされている。これによって予め定められた第二のクランク角度間隔310は、割り当てられている吸気シリンダの最大吸気能力が発生される最大弁リフトの際の弁リフトVHの変化をカバーしているので、予め定められた第二のクランク角度間隔310の間は、クランク角度KWに対してエアマス流mszuのより強い上昇が記録され、予め定められた第二のクランク角度間隔310の間のその平均値が参照符号315によって指示されている。
図2c)によれば、予め定められた第二のクランク角度間隔310は、第四のクランク角度ψが予め定められた第一のクランク角度間隔300のほぼ中央に来るように選ばれている。予め定められた二つのクランク角度間隔300、310の選択の際には、第三のクランク角度ψと第二のクランク角度ψとの間は、図2a)に示されている弁ストローク曲線に割り当てられているシリンダだけが吸気を行ない、内燃機関のその他のシリンダは吸気をしていない、ということが前提とされている。
ここで、吸気管25の微分方程式は、次式で与えられる。
Figure 0004870770
これによって、式(2)は吸気管モデルを示している。この積分方程式(2)をエンジン制御装置35で実行するために、この方程式は、簡単な計算規則によって同期計算ラスターの中で実現することができる。同期計算ラスターの中での計算、即ちシリンダの吸気当たり一回の計算は、質量流量を用いてではなく、充填を用いて計算されるということが条件となる。rlabは、エアマス流msabが問題のシリンダの燃焼室へ流入する、シリンダの吸気段階の間に生成される、問題のシリンダの燃焼室の中における新気充填を意味している。従って、式(2)のmsabは、シリンダの吸気段階の間にこのシリンダの燃焼室内へ流入するエアマス流である。VolumenSaugrohrは、吸気管25の容積であり、DichteGasは、吸気管内にあるフレッシュガスの密度である。rlzuは又、エアマス流mszuが吸気管25に流れ込む、問題のシリンダの吸気段階の間に吸気管25へ送り込まれる新気充填である。rlzuは、0から100%までの間の値を取る標準化された充填であり、次式によって与えられる。
Figure 0004870770
式(3)のKUMSRLは、質量流量と充填との間の換算のためのシリンダ数と行程容積とに依存した定数であり、当業者には既に知られている手法、例えば試験台の上で学習適応(Adaption)によって求められるか、或いはエンジンの行程容積とシリンダ数から算出される。
ここで、吸気管25の積分方程式(2)は、充填を用いた合計式として同期計算ラスターに書き換えることができる。
Figure 0004870770
式(4)により、計算ラスターnについて求められる吸気管圧力ps(n)は、計算ラスターn−1について求められた吸気管圧力ps(n−1)に、計算ラスターnの中で吸気管25の中へ流入する充填rlzu(n)と計算ラスター1の中で吸気管25から問題のシリンダの中へ流入する充填rlab(n)との差に定数Ksaugを掛けたもの、を加えることによって得られる、ということが示されている。定数Ksaugは、気管の容積と給気管の温度とに依存しており、当業者には既に知られている手法で、例えば試験台の上で求めるか或いは気管の寸法から得ることができる。計算ラスターn−1は、その際、問題のシリンダにとって計算ラスターnよりも正確に同期計算ラスター一つだけ前にあり、従って、隣接するシリンダの計算ラスターnに割り当てられた吸気段階の中で、このシリンダの直前の吸気段階の中にある。rlab(n)による式(4)の分解能は、次式によって得られる。
Figure 0004870770
但し、式(5)で、ps(n−1)とps(n)は、それぞれ予め定められた第一のクランク角度間隔にわたって平均された吸気管圧力の測定値である。rlzuは、式(3)を用いて、測定された或いはモデル化されたエアマス信号mszuから得られた充填信号であり、予め定められた第二のクランク角度間隔の間の平均値を表している。
エアマス流mszuの測定、従って充填rlzuの測定は、とりわけスロットルバルブ50の前後の圧力比ps/puが、<0.8のときには、既に説明されたように、副負荷信号によって、即ちスロットルバルブモデルから計算され、その際には既に説明された手法で、スロットルバルブ位置α、吸気管圧力ps、周囲圧力pu、及びスロットルバルブ50の上流側の温度Tが、既に説明されたのと同様に考慮される。
式(5)に基づいて、問題のシリンダへ吸入される充填rlab(n)は、問題のシリンダの吸気能力に関する第一の特性値を示している。一般に、その様にして計算された値rlabは、しかしながら、まだ望ましい目標値ではない。問題のシリンダの吸気能力は、むしろ原則として、吸気管圧力とは独立の、又最も好ましくは、温度やカムシャフトの基準位置からも独立の値が計算されるべきである。従って、式(2)による吸気管モデルに加えて充填サイクルモデルも必要となる。充填サイクルモデルは、吸気管圧力psに応じて問題のシリンダへ吸入される新気充填rlabを記述するモデルである。既に説明された様に、充填サイクルモデルには加算成分も含まれている。この成分は、残留ガスの分圧pbrintによって一括して測定されている。しかしながら、この加算成分は計算によって得られたものではなく、前もって固定的に与えられているものである。従って、各々のシリンダ5、10、15、20について、乗算値、即ちそれぞれのシリンダの吸気能力を表す係数が、唯一定められるべきである。充填サイクルモデルの充填サイクル方程式を圧力から充填へ換算するための係数によって解くと次の通りとなる。
Figure 0004870770
その際、式(6)に示されている値も、それぞれ同期計算ラスターn或いはそれに対応する第一の或いは第二のクランク角度間隔の間の平均値である。また、圧力から充填への換算のための係数fupsrl(n)は、問題のシリンダの吸気能力に関する第二の特性値を表している。
吸気の温度Tからの独立性を保持するために、圧力を充填へ換算するための係数fupsrl(n)自身が、再び期待値fupsrlsoll(n)と次の様に関係付けられる。
Figure 0004870770
ここで、式(7)の吸気管圧力及び温度からの独立性の係数faktorfupsrlは、問題のシリンダの吸気能力に関する第三の特性値を示している。式(5)から式(7)までに示されている事情は、本発明の次の様な中心的思想を表している。
個々のシリンダの吸気能力に関する特性値は、予め定められた第一のクランク角度間隔にわたって平均された実際の吸気管圧力とその前の同期計算ラスターの中の吸気管圧力の平均値から、並びに予め定められた第二のクランク角度間隔にわたって平均された吸気管25の中へのエアマス流から、それ故実際の吸気段階の中で内燃機関の吸気管25へ流れ込むエアマス流と問題のシリンダの互いに連続する最後の二つの吸気段階の中での吸気管圧力の変化に応じて、得ることができる。本発明に基づく方法が、図4に例として流れ図の形で示されている。プログラムのスタートの後エンジン制御装置35は、プログラムポイント200で、予め定められた第一のクランク角度間隔の間に、吸気管の圧力センサ55の走査値を又予め定められた第二のクランク角度間隔の間に、エアマス計80の走査値を測定する。副負荷信号からエアマス流mszuが測定される場合には、エンジン制御装置35が、プログラムポイント200で、予め定められた第二のクランク角度間隔の間にエアマス流mszuに関する対応する計算値を既に説明された手法で求める。次いで、プログラムポイント205へ進められる。
プログラムポイント205では、エンジン制御装置35が、予め定められた第一のクランク角度間隔の間の吸気管圧力に関する走査値或いは吸気管圧力について得られたサンプリング値の平均値を形成する。この平均値は、値ps(n)によって与えられる。更にエンジン制御装置35は、プログラムポイント205で、予め定められた第二のクランク角度間隔の間に測定された或いは計算されたエアマス流mszuに関する値、或いはこの予め定められた第二のクランク角度間隔の間に形成されたエアマス流mszuに関するサンプリング値を求め、その結果、予め定められた第二のクランク角度間隔の間のエンジン回転数nmotに関する平均値と求められた定数KUMSRLを利用して、式(3)によって、吸気管25に送り込まれる充填に関する値rlzu(n)が生成される。更に、エンジン制御装置35は、プログラムポイント205で、同じく問題のシリンダの前の吸気段階の間に形成された、予め定められた第一のクランク角度間隔の間の吸気管圧力の平均値としての前の計算ラスターから、上述の手法で、値ps(n−1)を求める。次いで、プログラムポイント210へ進められる。
プログラムポイント210では、エンジン制御装置35が、式(5)によって、問題のシリンダによって実際に吸入された充填rlab(n)を平均値として、既に説明された手法で計算する。次いで、問題のシリンダの吸気能力に関する第一の特性値が得られるので、プログラムはここで終了される。しかしながら、プログラムポイント210の後、オプションとして更にプログラムポイント215へ進められる。
プログラムポイント215では、式(6)によって圧力から充填への換算のための係数fupsrl(n)が再び平均値の形で計算され、問題のシリンダの吸気能力に関する第二の特性値となる。次いで、プログラムは終了される。しかしながら、代わりの手法として、プログラムポイント215からプログラムポイント220へ進められる。プログラムポイント220では、式(7)によって係数faktorfupsrlが、平均値として、又問題のシリンダの吸気能力に関する第三の特性値として計算される。次いで、プログラムは終了される。
式(5)〜式(7)によって、問題のシリンダの吸気能力に関するその時々の特性値を計算する代わりに、個々のシリンダについての吸気能力に関する特性値を学習適応によって求めることもできる。この場合には、図3に示されている吸気管モデル及び充填サイクルモデルが、エンジン制御装置にソフトウェア及び/又はハードウェアとして実装され、シリンダの各々の吸気行程の際に同期計算ラスターの中で計算が行われる。その際、吸気管モデルと充填サイクルモデルは、正確に式(5)〜式(7)に対応しているが、唯一の相違点は、学習適応の場合には個々のシリンダについての吸気能力に関する特性値がモデル化された吸気管圧力を測定された吸気管圧力を用いて調整することによって適応される、ということである。
図3において、図1と同じ参照符号は同じ要素を示している。その際、図3の実施例では、エアマス流mszuがエアマス計80によって測定されるということが仮定されている。クランク角度センサ70によって測定された実際のクランク角度値KWは、微分素子85に送られ、この微分素子がクランク角度センサ70によって測定されたクランク角度の時間的勾配を求めて、エンジン回転数nmotとして第一の乗算素子100へ送り込み、この乗算素子には更に、係数値メモリ95から係数KUMSRLが送り込まれる。第一の乗算素子100の出力端に生じた積nmot*KUMSRL は、除数として除算素子105へ送られ、この除算素子には更にエアマス計80から測定されたエアマス流mszuが被除数として送り込まれる。従って、除算素子105の出力端には、式(3)による商rlzu=mszu/(nmot*KUMSRL)が送り出される。この商から、第一の減算素子110で、問題のシリンダへ流れ込む充填rlab(この充填rlabは充填サイクルモデル30によって形成される)が差し引かれる。従って、第一の減算素子110の出力端には、差rlzu−rlab が送り出される。この差は、入力値として、吸気管モデルとなっている第一の積分器130に送り込まれる。かくして、第一の積分器130の出力端には、吸気管圧力に関するモデル化された値psmodが生成される。次いで、この吸気管圧力に関するモデル化された値psmodから、第二の減算素子115で吸気管の圧力センサ55によって測定された吸気管圧力psが差し引かれる。これによって得られた差psmod−ps は、第一の制御スイッチ140を通じて、スイッチの位置に応じて、第二の積分器150、第三の積分器155、第四の積分器160、或いは第五の積分器165へ送り込まれる。その際、第二の積分器150は、第一のシリンダ5に、第三の積分器155は第二のシリンダ10に、第四の積分器160は第三のシリンダ15に、第五の積分器165は第四のシリンダ20に、割り当てられている。クランク角度センサ70の出力信号は更に、エンジン制御装置35の評価ユニット135に送られ、このユニットが、第一のシリンダ5の吸気段階の間に第一の制御スイッチ140を制御して、第一の減算素子115の出力端を第二の積分器150と接続し、第二のシリンダ10の吸気段階の間に第一の減算素子115の出力端を第三の積分器155と接続し、第三のシリンダ15の吸気段階の間に第二の減算素子115の出力端を第四の積分器160と接続し、第四のシリンダ20の吸気段階の間に第二の減算素子115の出力端を第五の積分器165と接続する。第一の制御スイッチ140と同時に、評価ユニット135によって切換えられる第二の制御スイッチ145を通じて、積分器150、155、160、165の出力端は、それぞれ充填サイクルモデル30の第二の乗算素子125と接続可能である。その際、第二の積分器150の出力端は、第一のシリンダ5の吸気段階の間に第二の乗算素子125と、第三の積分器155の出力端は第二のシリンダ10の吸気段階の間に第二の乗算素子125と、第四の積分器160の出力端は第三のシリンダ15の吸気段階の間に第二の乗算素子125と、第四の積分器165の出力端は第四のシリンダ20の吸気段階の間に第二の乗算素子125と、接続される。その際、積分器150、155、160、165の出力は、圧力から充填への換算のための係数fupsrlとなっている。積分器150、155、160、165によって、差psmod−ps を最小化する方向に学習適応が行われる。第一の積分器130の出力端のモデル化された吸気管圧力から第三の減算素子120で、残留ガス値メモリ90からの残留ガス分圧pbrintが差し引かれる。得られた第三の減算素子120の出力端の差psmod−pbrint は、第二の乗算素子125に送られ、そこで圧力から充填への換算のための係数fupsrlを掛け合わされる。その結果、第二の乗算素子125の出力端には、隣接するシリンダに吸い込まれる充填rlabが生成され、この充填が、既に説明された様に第一の減算素子110に送り込まれる。その際、第三の減算素子120と第二の乗算素子125は、充填サイクルモデル30を形成している。積分器150、155、160、165は、個々のシリンダの吸気能力、それ故圧力から充填に換算するための係数fupsrlの形による個々のシリンダ別の吸気能力に関する特性値の測定のための測定ユニット40を形成している。圧力から充填への換算のための係数fupsrlを学習適応させることによって、問題のシリンダに吸い込まれる充填に関する値rlabも、吸気能力に関する第一の特性値として学習適応される。残留ガスメモリ90と係数値メモリ95並びに微分素子85は、図3においてエンジン制御装置35の外部に配置されているが、オプションとして且つ互いに独立に、エンジン制御装置35の中に実装可能である。
本発明の一つの拡張例によれば、オプションとして、シリンダの吸気能力について使用される第一の、第二の、或いは第三の特性値として生成される値が目標値と比較されること、及びこの比較の結果に応じて問題のシリンダの吸気の機能が診断されることが行われる。これは、図4のプログラムポイント220に続くプログラムポイント225で行われ、その際、プログラムポイント225は、破線で示されている。その際、目標値は、例えば試験台の上で学習適応されることができる。プログラムポイント225で使用される特性値のための値が、目標値と、予め定められた、例えば同じく試験台の上で学習適応される許容差範囲の範囲内で一致していれば、問題のシリンダ吸気の際にエラーが生じていないということが診断され、そうでない場合には、問題のシリンダ吸気の際にエラーが生じているということが診断され、光及び/又は音による警報が出され、場合によっては内燃機関の非常運転或いは最終的結果として内燃機関の作動停止が引き起こされる。本発明のオプションとしてのもう一つの実施態様によれば、問題のシリンダの吸気能力について求められ、使用された特性値によって個々のシリンダ別の充填制御が行われ、その際に、既に説明された手法で求められ、問題のシリンダの吸気能力に関する使用された特性値が、予め定められた目標値に追従される。この場合、目標値は、例えばドライバーの意志或いは、例えばトラクションコントロール、アンチブロックシステム、ビークルダイナミクスコントロール、クルーズコントロール等の外部制御システムの要求に応じて求められるか、或いは試験台の上で固定値として学習適応される。その際、個々のシリンダ別の充填制御は、例えば問題のシリンダの少なくとも一つのガス交換弁、例えば問題のシリンダの一つ又は複数の吸気弁及び一つ又は複数の排気弁の個別制御によって行われる。この様な制御は、とりわけフル可変弁制御の場合に可能となり、その場合にはシリンダ別の吸気能力の変動がその様にして検出され又安定化されることができ或いは意図的にシリンダ別の目標充填に向けて既に述べられた手法で調節可能である。その際、問題のシリンダの実際の吸気段階のための対応する一つの制御ステップが、図4のプログラムポイント225で行われる。図4によるこのプログラムは、問題となっているシリンダの各々の吸気段階に対して実行される。プログラムポイント225の後、プログラムは終了される。
オプションとしてのもう一つの実施態様によれば、吸気能力について求められて使用される特性値が複数のシリンダについて求められること、又吸気能力に関する特性値として生成された複数のシリンダの値が互いに比較されること、及びこの比較の結果に応じてシリンダの吸気の機能が診断されることが行われる。この様にすることによって、個々のシリンダの吸気能力の間の、望ましくない個別シリンダ毎の相違が診断される。その際の一つの代表的な適用に、シリンダカットオフのための弁駆動の診断がある。誤ってカットオフされた或いは誤って作動されたシリンダが直ちに検知される。その際には更に、既に説明された様にして選ばれた第一と第二のクランク角度間隔に基づいて、明確なシリンダ割り当てを行うことができる。別の適用は、リフト切換えによる弁駆動の場合に考えることができる。異なるシリンダで異なるリフト曲線を使用する場合の異なる吸気能力が検知され、診断目的のためにそれ等の目標値と比較される。しかしながら、構造によって個別シリンダ毎の相違をもたらし得る、位相制御による弁制御システムも、この様にして診断可能である。とりわけ、電磁式或いは電気油圧式のフル可変弁制御機構の場合には、異なるシリンダ間の吸気能力の違いが上述の様にして診断される。
複数のシリンダの吸気能力に関する特性値の上述の様な比較の際には、個々のシリンダの吸気能力の違いも、吸気能力についての特性値に関して個々のシリンダを等しくするために、個々のシリンダの吸気能力に関する特性値を共通の目標値に合わせて調節することによって除去可能である。
個別シリンダ毎のシリンダ吸気能力の故障診断は、例えば、ピストンリングが最早十分に密着していないために低負荷且つエンジン低回転数時に問題のシリンダの充填が低下し、それによってクランクケースからのガスが吸気管25からの新気流入を妨げていることによって、影響を受けることがある。その場合には、シリンダ別の吸気能力の診断によって圧縮診断を行い、ピストンリングの十分なシール性をチェックすることによって診断を実現することができる。
上述の様々な診断は、例えば内燃機関或いは車両の製造後の生産ラインの後で、或いはサービス工場への持込みの際に、或いは内燃機関の日常の運転の間に実施できる。その際には、とりわけ生産ラインの後で、弁リフト曲線のあらゆる可能な変化が個々のシリンダの充填に対して与える影響について診断目的のために上述の様にしてチェックできる。
内燃機関のブロック図である。 クランク角度に対する弁リフトの動きを示したグラフである。 クランク角度に対する吸気管圧力の動きを示したグラフである。 クランク角度に対する、給気ダクトの中へ流入する質量流量の動きを示したグラフである。 本発明に基づく装置と本発明に基づく方法の説明のための機能図である。 本発明に基づく方法の流れの一例を示している流れ図である。

Claims (11)

  1. 内燃機関(1)のシリンダ(5、10、15、20)の吸気能力に関する特性値が求められ、その際この吸気能力に関する特性値が、シリンダ(5、10、15、20)の吸気段階の間に、内燃機関(1)の吸気管(25)へ流入する質量流量と吸気管圧力の変化とに応じて求められる、内燃機関(1)の運転方法において、
    前記特性値として生成された値が目標値と比較され、その比較の結果に応じて、シリンダ(5、10、15、20)の吸気の際に、エラーを生じていないか又はエラーを生じているかが診断されること、或いは吸気能力に関する前記特性値が、シリンダ(5、10、15、20)の少なくとも一つのガス交換弁の制御によって、前記目標値に一致するように調整されること、
    前記吸気管圧力が、長さと位相位置を予め定められた第一のクランク角度間隔の間における、予め定められた第一の走査レートによる走査によって求められること、
    吸気管(25)へ流入する質量流量が、長さと位相位置を予め定められた第二のクランク角度間隔の間における、予め定められた第二の走査レートによる走査によって求められること、
    前記第二のクランク角度間隔が、前記第一のクランク角度間隔に対して、予め定められたクランク角度間隔だけ、ずらして配置されること、及び
    前記第二のクランク角度間隔が、少なくとも部分的に前記第一のクランク角度間隔の前に、時間的にずらして配置されること
    を特徴とする内燃機関の運転方法。
  2. 前記予め定められた第一のクランク角度間隔の吸気管圧力について、複数の値が、加重平均されることを特徴とする請求項に記載の運転方法。
  3. 吸気管(25)へ流入する質量流量が、長さと位相位置を予め定められた第二のクランク角度間隔の間における、予め定められた計算ラスターの中で内燃機関(1)の運転パラメータから算出されることを特徴とする請求項1または2に記載の運転方法。
  4. 吸気管(25)へ流入する質量流量が、長さと位相位置を予め定められた第二のクランク角度間隔の間における、予め定められた計算ラスターの中で内燃機関(1)のスロットルバルブ角度(α)、スロットルバルブ(50)の上流側の温度(T)、及びスロットルバルブ(50)の前後の圧力比(ps/pu)から算出されることを特徴とする請求項1または2に記載の運転方法。
  5. 前記予め定められた第二のクランク角度間隔の吸気管圧力について、複数の値が、加重平均されることを特徴とする請求項1ないし4のいずれかに記載の運転方法。
  6. 複数のシリンダ(5、10、15、20)について前記特性値が求められること、及び
    複数のシリンダ(5、10、15、20)の特性値として生成された値が、互いに比較されること、及び
    この比較の結果に応じて、シリンダ(5、10、15、20)の吸気の際に、エラーを生じていないか又はエラーを生じているかが診断されること、
    を特徴とする請求項1ないしのいずれかに記載の運転方法。
  7. 吸気能力に関する第一の特性値としてシリンダ(5、10、15、20)へ流れ込む充填が選ばれ、この充填が、予め定められた最後の前記第二のクランク角度間隔の充填と、最後の二つの予め定められた前記第一のクランク角度間隔の吸気管圧力の差と定数から得られる商と、の和として求められることを特徴とする請求項ないしのいずれかに記載の運転方法。
  8. 吸気能力に関する第二の特性値が、前記第一の特性値と、吸気管圧力とシリンダ(5、10、15、20)の中の残留ガスに依存する最後の前記第一のクランク角度間隔の分圧との差と、から得られる商として求められることを特徴とする請求項に記載の運転方法。
  9. 吸気能力に関する第三の特性値が、前記第二の特性値と期待値とから得られる商として形成されることを特徴とする請求項に記載の運転方法。
  10. 吸気管(25)内へ流れ込む充填とシリンダ(5、10、15、20)へ流れ込む充填との差を積分することによって、前記吸気管圧力がモデル化されること、
    前記モデル化された吸気管圧力が、測定された吸気管圧力と比較されること、及び、
    前記モデル化された吸気管圧力に応じて、シリンダ(5、10、15、20)へ流れ込む充填を確定する充填サイクルモデル(30)によって用いられる吸気能力に関する特性値が、前記モデル化された吸気管圧力を前記測定された吸気管圧力に適応するように選ばれること、
    を特徴とする請求項1ないしのいずれかに記載の運転方法。
  11. 内燃機関(1)のシリンダ(5、10、15、20)の吸気能力に関する特性値を測定するための測定ユニット(40)を備え、測定手段(40)が、吸気能力に関する特性値を、シリンダ(5、10、15、20)の吸気段階の間に内燃機関(1)の吸気管(25)へ流入する質量流量と吸気管圧力の変化に応じて測定する、内燃機関(1)の運転装置(35)において、
    前記特性値として生成された値を目標値と比較し、その比較の結果に応じて、シリンダ(5、10、15、20)の吸気の際に、エラーを生じていないか又はエラーを生じているかを診断し、或いは吸気能力に関する前記特性値を、シリンダ(5、10、15、20)の少なくとも一つのガス交換弁の制御によって、前記目標値に一致するように調整すること、
    前記吸気管圧力が、長さと位相位置を予め定められた第一のクランク角度間隔の間における、予め定められた第一の走査レートによる走査によって求められること、
    吸気管(25)へ流入する質量流量が、長さと位相位置を予め定められた第二のクランク角度間隔の間における、予め定められた第二の走査レートによる走査によって求められること、
    前記第二のクランク角度間隔が、前記第一のクランク角度間隔に対して、予め定められたクランク角度間隔だけ、ずらして配置されること、及び
    前記第二のクランク角度間隔が、少なくとも部分的に前記第一のクランク角度間隔の前に、時間的にずらして配置されること
    を特徴とする内燃機関の運転装置。
JP2008532802A 2005-09-30 2006-09-29 内燃機関の運転方法及び装置 Expired - Fee Related JP4870770B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005047446.2 2005-09-30
DE102005047446A DE102005047446A1 (de) 2005-09-30 2005-09-30 Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
PCT/EP2006/066930 WO2007036576A1 (de) 2005-09-30 2006-09-29 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
JP2009510316A JP2009510316A (ja) 2009-03-12
JP4870770B2 true JP4870770B2 (ja) 2012-02-08

Family

ID=37575117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532802A Expired - Fee Related JP4870770B2 (ja) 2005-09-30 2006-09-29 内燃機関の運転方法及び装置

Country Status (6)

Country Link
US (1) US8209112B2 (ja)
EP (1) EP1934453B1 (ja)
JP (1) JP4870770B2 (ja)
KR (1) KR101131334B1 (ja)
DE (1) DE102005047446A1 (ja)
WO (1) WO2007036576A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013250B4 (de) 2007-03-20 2018-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder
DE102007051873B4 (de) * 2007-10-30 2023-08-10 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008000581A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit einer Massenstromleitung
DE102010003199B4 (de) * 2010-03-24 2024-04-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überprüfen der Funktion eines Motorsystems
GB2485220A (en) 2010-11-05 2012-05-09 Promethean Ltd Tracking touch inputs across a touch sensitive surface
DE102014204492A1 (de) 2014-03-12 2015-10-01 Volkswagen Aktiengesellschaft Kraftfahrzeug, Steuergerät und Verfahren zum Steuern einer Phasenlage einer Nockenwelle
DE102017209525A1 (de) * 2017-06-07 2018-12-13 Robert Bosch Gmbh Verfahren zur Berechnung einer Füllung einer Brennkraftmaschine
KR102064750B1 (ko) 2018-11-19 2020-01-10 현대오트론 주식회사 차량 공기 압력 센서의 고장 진단 장치 및 방법
DE102019114472A1 (de) 2019-05-29 2020-12-03 Volkswagen Aktiengesellschaft Verfahren zur dynamischen Gaspartialdruckkorrektur einer Brennkraftmaschine mit äußerer Gemischbildung
FR3129984A1 (fr) * 2021-12-02 2023-06-09 Psa Automobiles Sa Procédé de diagnostic en temps réel de la casse d’une soupape d’admission dans un moteur à combustion interne

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227666A (ja) * 2000-12-22 2002-08-14 Robert Bosch Gmbh シリンダの充填を制御する方法
JP2004036610A (ja) * 2002-07-01 2004-02-05 Crf Soc Consortile Per Azioni 別々のシリンダでの吸気量を均等にするための手段を有する内燃エンジンおよびその方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69010991T2 (de) 1989-05-25 1994-11-17 Honda Motor Co Ltd Verfahren zur Fehlererkennung bei einem Ventilzeitsteuerungssystem für eine innere Verbrennungskraftmaschine.
FR2659114B1 (fr) * 1990-03-02 1994-07-08 Siemens Automotive Sa Procede et dispositif de commande de la richesse du melange air/carburant d'alimentation d'un moteur a combustion interne.
DE4325902C2 (de) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Verfahren zur Berechnung der Luftfüllung für eine Brennkraftmaschine mit variabler Gaswechselsteuerung
EP1015747B1 (de) * 1997-09-17 2001-10-24 Robert Bosch Gmbh Verfahren und eine vorrichtung zur steuerung eines gasflusses über ein drosselventil in einem verbrennungsmotor
US6112150A (en) * 1999-04-09 2000-08-29 Cummins Engine Co Inc Fault recognition system and method for an internal combustion engine
DE10031552C2 (de) * 2000-06-28 2002-04-18 Daimler Chrysler Ag Eletronisches Steuergerät zur wahlweisen Steuerung unterschiedlicher Typen und Betriebsmodi von Brennkraftmaschinen
DE10116932A1 (de) 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Verfahren zum Bestimmen des Luftmassenstroms vom Saugrohr in den Zylinder einer Brennkraftmaschine
JP3701592B2 (ja) * 2001-09-14 2005-09-28 本田技研工業株式会社 減速休筒エンジン車両における故障検知装置
DE10222137B3 (de) * 2002-05-17 2004-02-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
US6705276B1 (en) * 2002-10-24 2004-03-16 Ford Global Technologies, Llc Combustion mode control for a direct injection spark ignition (DISI) internal combustion engine
JP4082596B2 (ja) 2003-07-07 2008-04-30 本田技研工業株式会社 制御装置
DE102004041708B4 (de) * 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Verfahren zur modellbasierten Bestimmung der während einer Ansaugphase in die Zylinderbrennkammer einer Brennkraftmaschine einströmenden Frischluftmasse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227666A (ja) * 2000-12-22 2002-08-14 Robert Bosch Gmbh シリンダの充填を制御する方法
JP2004036610A (ja) * 2002-07-01 2004-02-05 Crf Soc Consortile Per Azioni 別々のシリンダでの吸気量を均等にするための手段を有する内燃エンジンおよびその方法

Also Published As

Publication number Publication date
KR20080063464A (ko) 2008-07-04
EP1934453B1 (de) 2012-12-12
WO2007036576A1 (de) 2007-04-05
KR101131334B1 (ko) 2012-04-04
JP2009510316A (ja) 2009-03-12
US8209112B2 (en) 2012-06-26
US20100036580A1 (en) 2010-02-11
EP1934453A1 (de) 2008-06-25
DE102005047446A1 (de) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4870770B2 (ja) 内燃機関の運転方法及び装置
US7661298B2 (en) Method and device for operating an internal combustion engine having at least one cylinder
JP5413506B2 (ja) 内燃機関におけるegr率の特定方法及び内燃機関の制御装置
US20080127938A1 (en) Control device for internal combustion engine
JP2008542776A (ja) センサの信号の補正方法及び装置
US10208638B2 (en) Apparatus and method for diagnosing lubricant degradation in internal combustion engine
JP2006322453A (ja) 内燃機関の運転方法および装置
CN111971464B (zh) 内燃机换气行为的诊断
KR102372257B1 (ko) 내연 기관의 실화를 진단하기 위한 방법
KR101020376B1 (ko) 내연기관을 작동시키기 위한 장치 및 방법
US8095293B2 (en) Method and device for operating an internal combustion engine
CN111315975A (zh) 内燃发动机扫气气流的测量、建模和估算
JP2008540912A (ja) 内燃機関のシリンダ内で燃焼される燃料質量とシリンダに供給される燃料質量との間の比率を求めるための方法及び装置
JP4612039B2 (ja) 燃焼エンジンでの吸気管長設定を検査するための方法及び制御装置
JP3971510B2 (ja) 内燃機関の吸気管切替えのための吸気管弁の機能のモニタリング方法
KR20070096833A (ko) 내연기관 작동 방법 및 장치
CN107849949B (zh) 预测凸轮轴的相位
JP3985746B2 (ja) 内燃機関の制御装置
JP4478487B2 (ja) 内燃機関の作動方法
US20170122240A1 (en) Method And Device For Operating An Internal Combustion Engine
KR20180101368A (ko) 내연 기관의 실린더 내 잔류 가스 질량을 계산하기 위한 방법 및 제어 장치
JP4338475B2 (ja) 燃料壁膜質量の決定方法および装置
JP2008291679A (ja) 内燃機関の燃焼状態判定装置
JP2007309261A (ja) 内燃機関の温度推定装置および制御装置
JP2008274796A (ja) 可変圧縮比エンジンのトルク推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees