JP4870349B2 - 半導体レーザ装置の製造方法 - Google Patents

半導体レーザ装置の製造方法 Download PDF

Info

Publication number
JP4870349B2
JP4870349B2 JP2004380735A JP2004380735A JP4870349B2 JP 4870349 B2 JP4870349 B2 JP 4870349B2 JP 2004380735 A JP2004380735 A JP 2004380735A JP 2004380735 A JP2004380735 A JP 2004380735A JP 4870349 B2 JP4870349 B2 JP 4870349B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
semiconductor layer
regrowth
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004380735A
Other languages
English (en)
Other versions
JP2005223316A (ja
Inventor
克彦 岸本
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004380735A priority Critical patent/JP4870349B2/ja
Publication of JP2005223316A publication Critical patent/JP2005223316A/ja
Application granted granted Critical
Publication of JP4870349B2 publication Critical patent/JP4870349B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

この発明は、特に光ディスク装置や光伝送システム等に用いられる低消費電力で高信頼性を有する半導体レーザ装置の製造方法に関する。
図17は、従来の化合物半導体装置としての半導体レーザ素子の断面を示す(例えば、特許文献1(特開平6‐132607号公報)参照)。n型のGaAs基板1の上にn型のGaAsバッファ層2が形成されており、その上にn型のGa0.5Al0.5Asクラッド層(以下、単にクラッド層と言う)3,Ga0.85Al0.15As活性層(以下、単に活性層と言う)4,p型のGa0.5Al0.5As第1光ガイド層(以下、単に第1光ガイド層と言う)5およびp型のIn0.5Ga0.5P第2光ガイド層(以下、単に第2光ガイド層と言う)6が形成されている。
さらに、上記p型の第2光ガイド層6上には、電流狭窄のためのn型Ga0.4Al0.6As電流ブロック層(以下、単に電流ブロック層と言う)7およびGa0.8Al0.2As保護層(以下、単に保護層と言う)8が形成されており、この電流ブロック層7および保護層8には電流チャンネルとなるストライプ状の窓7aが形成されている。そして、保護層8上および窓7a内にはp型のGa0.5Al0.5Asクラッド層(以下、単にクラッド層と言う)9が形成され、クラッド層9上にはp型のGaAsコンタクト層(以下、単にコンタクト層と言う)10が形成されている。
上記構造においては、上記コンタクト層10から注入される電流は窓7a内に閉じ込められ、窓7aの下部の活性層4で780nm帯のレーザ発振が生じる。また、電流ブロック層7の禁制帯幅は活性層4の禁制帯幅よりも大きいために電流ブロック層7による光吸収がなく、導波路での損失が小さい低動作電流の半導体レーザ素子を得ることができる。
次に、図17に示す従来の半導体レーザ素子の製造方法について、図面を参照しながら説明する。図18〜図20は、従来の半導体レーザ素子の各製造工程における断面図である。
先ず、図18に示すように、n型のGaAs基板1上に、MOCVD(有機金属化学気相成長)法あるいはMBE(分子線エピタキシー)法によって、n型のGaAsバッファ層2(厚さ、0.5μm)、n型のGa0.5Al0.5Asクラッド層3(厚さ、1μm)、Ga0.85Al0.15As活性層4(厚さ、0.04μm)、p型のGa0.5Al0.5As第1光ガイド層5(厚さ、0.22μm)、p型のIn0.5Ga0.5P第2光ガイド層6(厚さ、0.03μm)、n型のGa0.4Al0.6As電流ブロック層7(厚さ、0.5μm)、および、Ga0.8Al0.2As保護層8(厚さ、0.01μm)を、順次形成する。尚、上記保護層8は、n型のGa0.4Al0.6As電流ブロック層7の上部を表面酸化から守るのに必要である。
次に、図19に示すように、上記Ga0.8Al0.2As保護層8およびGa0.4Al0.6As電流ブロック層7に、フォトリソグラフィ技術を用いたエッチングによってストライプ状の窓7aを形成する。その場合のエッチング方法としては、最初に、酒石酸または硫酸等のAlAs混晶比に対して選択性のあまり無いエッチャントで、Ga0.4Al0.6As電流ブロック層7の途中までエッチングを行う。次に、AlAs混晶比の高いGaAlAs層を選択的にエッチングできるフッ酸系またはリン酸系等のエッチャントを用いて、電流ブロック層7の残りをエッチングして除去する。その際に、p型のIn0.5Ga0.5P第2光ガイド層6はエッチングストップ層としても作用するため、上記エッチング工程でのエッチングばらつきが小さく、高歩留が得られるのである。
次に、図20に示すように、上記MOCVD法またはMBE法によって、p型のGa0.5Al0.5Asクラッド層9およびp型のGaAsコンタクト層10を再成長させる。そして、最後に、n型のGaAs基板1側およびp型のGaAsコンタクト層10側の夫々に電極(図示せず)を形成して、半導体レーザ素子が完成する。
しかしながら、上記従来の半導体レーザ素子においては、以下のような問題がある。すなわち、電流注入が行われる上記窓7aの領域に対して結晶再成長を行っても、再成長された結晶層と下地となる半導体層との界面の抵抗が十分低下されず、得られる化合物半導体装置(この場合には半導体レーザ素子)の直列抵抗が増大してしまうのである。その一つの要因として、上記結晶再成長工程における加熱によって、電流チャンネルとなるストライプ状の窓7aから露出している半導体層(InGaP第2光ガイド層6)を構成している元素やドーパントの再蒸発が起こり、上記半導体層表面が荒れてしまうことがある。このような荒れた半導体層上に再成長を行っても良好な結晶成長ができず、再成長界面および再成長結晶においてその抵抗が増大してしまうのである。
特に、上記p型のIn0.5Ga0.5P第2光ガイド層6のように、Pを含むIII‐V族化合物半導体層に対して再成長を行う場合には、結晶再成長時の昇温過程において「P(リン)抜け」と呼ぶ再成長の下地となる半導体層からのP元素の脱離現象が起きてしまう。このP抜けによって、上記Pを含むIII‐V族化合物半導体層6に格子定数のずれや半導体層表面の荒れが発生し、再成長させる半導体層9の結晶性が劣化して、この場合も、再成長界面付近における電流経路の抵抗が増大してしまうという問題がある。
上記窓7aの領域は、活性層4への電流狭窄を実現するため、電流ブロック層7によってその面積が狭められている。このように、接合面積(上記界面の面積)が小さくなっている箇所の抵抗が増大してしまうと、すなわち、電流経路の幅が狭められた領域の抵抗が増大してしまうと、作製した化合物半導体装置の直列抵抗が大きく悪化してしまうのである。
そして、これらのことによって、上記半導体レーザ素子を動作させる際の消費電力が大きくなるという問題や、上記電流チャンネルでの発熱増加に伴って寿命が低下するという問題が発生することになる。
さらに、上記結晶再成長工程において、単に最初に成長させる半導体層のドーピング濃度を1×1018cm-3以上にすると、再成長界面を越えて当該半導体レーザ素子の主たる動作を行う主動作層であるGaAlAs活性層4へドーパントが拡散してしまい、得られる化合物半導体装置(半導体レーザ素子)の特性や信頼性を低下させてしまうという問題もある。
特開平6‐132607号公報(第6頁,第1図)
そこで、この発明の課題は、局所的に電流経路の幅が狭められた化合物半導体装置に対して、上記MOCVD法による結晶再成長を行った場合において、上記結晶再成長の下地となる半導体層に含まれるドーパントの再蒸発や下地となる半導体層を構成している元素の再蒸発を防止し、上記再成長された半導体層における結晶性の劣化および再成長界面付近における抵抗値の増大を防止することによって、低消費電力での動作を可能にする良好な特性と高信頼性とを有する半導体レーザ装置の製造方法を提供することにある。
上記課題を解決するため、この発明の半導体レーザの製造方法は、
基板上に、少なくとも、第1導電型の第1クラッド層、活性層、第2導電型の第2クラッド層、ストライプ状の電流経路を有する第2導電型の半導体層、上記第2クラッド層上における上記半導体層の両側に位置して上記半導体層を挟んで上記電流経路を狭窄する第1導電型の電流ブロック層、および、上記半導体層上に配置された第2導電型のコンタクト層を、形成する工程を備え、
上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層は、再成長工程によって形成され、
上記再成長工程は、上記第2導電型のドーパントガスの供給開始と同時にまたは上記第2導電型のドーパントガスの供給を開始した後に、少なくともGaとAsとを含むと共にAl組成が0以上且つ0.05以下である上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を、再成長の開始と共に上記基板の温度を上昇させながら成長させることにより、ドーピング濃度が再成長界面となる上記基板側で高く上記基板の反対側に向かって連続的に低下するように成長させる工程を含んでおり、
上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始する際におけるドーピング濃度は、5×1018cm-3以上である
ことを特徴としている。
上記構成によれば、第1導電型の電流ブロック層に挟まれた第2導電型の半導体層の電流経路(電流狭窄された)領域、または上記半導体層上に配置された第2導電型のコンタクト層の再成長を開始する際におけるドーピング濃度を5×1018cm-3以上にすることによって、上記再成長界面での抵抗成分を低減し、高抵抗化することを防止できる。したがって、低消費電力での動作が可能な半導体レーザを提供することができる。
さらに、第2導電型のドーパントガスを供給することによって、成長雰囲気を第2導電型のドーパントガスリッチにした状態で上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を再成長させることができる。したがって、再成長される上記半導体層の両側に位置する上記電流ブロック層の間を介して上記第2導電型の第2クラッド層からドーパントが再蒸発することや、上記第2導電型の半導体層の下地層から構成元素が抜けることを防止でき、再成長界面が荒れるのを防止できる。あるいは、再成長される上記第2導電型のコンタクト層の下地層からドーパントや構成元素が再蒸発することを防止できる。以上のことより、再成長界面の抵抗の悪化を防止でき、且つ、再成長させる上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の結晶性を良好に保つことが可能になり、低消費電力で動作できる半導体レーザの製造方法を提供することができる。
さらに、上記再成長工程において、上記ドーピング濃度が上記基板側から上記基板の反対側に向かって低下するように設定されているため、界面抵抗の低減に際して余分なドーピングを防ぎ、上記再成長工程中における不必要(特性の低下を引き起こすため)なドーパントの拡散を防ぐことができ、且つ、上記界面の抵抗を低減することができる。さらに、上記再成長される上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層は、少なくともGaとAsとを含むと共にAl組成が0以上且つ0.05以下であるので、低温で成長されても酸素が結晶中に取り込まれるのを抑制することができ、半導体レーザの信頼性や効率を改善することができる。
また、1実施の形態の半導体レーザの製造方法では、
上記第2導電型のドーパントガスの供給を開始する際の上記基板の温度が、500℃以上であり且つ550℃以下であり、
上記再成長させる第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始する際の上記基板の温度が、550℃以上であり且つ600℃以下である。
この実施の形態によれば、600℃以下の低成長温度で上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を再成長させている。したがって、上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の下地層がPを含んでいる場合には、上記下地層からのPの再蒸発を防止することが可能になる。また、550℃以上で上記再成長を行っている。したがって、再成長される上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の結晶性をよくすることができる。このように、低温で上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始することにより、再成長を開始する際におけるドーピング濃度を、容易に5×1018cm-3以上にすることができるのである。さらに、500℃以上且つ550℃以下で上記第2導電型のドーパントガスの供給を開始するので、成長雰囲気が第2導電型のドーパントガスリッチになり、上記Pを含む下地層および上記第2導電型の第2クラッド層からの第2導電型のドーパントが蒸発するのを防止することができる。
また、1実施の形態の半導体レーザの製造方法では、
上記第2導電型の第2クラッド層,上記第2導電型の半導体層および上記第2導電型のコンタクト層のドーパントはZnであり、
上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を、MOCVD法を用いて行う。
この実施の形態によれば、上記第2導電型の第2クラッド層および上記第2導電型の半導体層のドーパントとして同じZnを用いることによって、上記第2導電型の半導体層を再成長させる際の雰囲気がZnリッチとなり、下地となる上記第2導電型の第2クラッド層からのZnの再蒸発が防止される。したがって、上記第2クラッド層におけるZnのドーピング濃度の低下に伴う高抵抗化が防止される。それと共に、上記第2クラッド層の結晶性が低下せず、良好な再成長界面が得られる。さらに、上記再成長時において、上記第2導電型の半導体層内の若干のZnドーパントが上記界面を越えて上記第2クラッド層側に拡散するために、高抵抗になろうとする上記界面が低抵抗化される。以上のことは、上記第2導電型のコンタクト層を再成長させる場合において、上記第2導電型の半導体層と上記第2導電型のコンタクト層との間にも言える。
さらに、上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長に、量産性に優れたMOCVD法を用いることによって、上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を再成長させる工程でのスループットが向上し、より安価に半導体レーザを製造することができる。尚、上記成長は、MOCVD法に代わってMBE法を用いて行うことも可能である。
また、1実施の形態の半導体レーザの製造方法では、
上記電流経路が上記電流ブロック層によって狭窄されている上記第2導電型の半導体層は、上記再成長工程によって形成されており、
上記第2導電型の半導体層上に、上記電流ブロック層によって挟まれて、電流経路が上記電流ブロック層で狭窄されているストライプ状の第2導電型の第3クラッド層を形成する工程を備え、
上記活性層と上記第2導電型の半導体層の再成長面との間隔が0.15μm以上である。
この実施の形態によれば、上記電流ブロック層の開口部から露出している上記第2導電型の半導体層の下地層と上記開口部内に形成された上記第2導電型の半導体層との間の界面の抵抗値を低く保つことができる。その結果、従来に比べてより低消費電力で動作できる半導体レーザを提供することが可能になる。さらに、上記第2導電型の半導体層を再成長する際に、上記第2導電型の半導体層からの上記第2導電型のドーパントが上記活性層まで拡散することがなく、静特性や信頼性を高く保つことが可能になる。
また、1実施の形態の半導体レーザの製造方法では、
上記再成長によって形成される上記第2導電型の半導体層の層厚は30Å以上且つ100Å以下である。
この実施の形態によれば、上記第1導電型のドーピング濃度が5×1018cm-3以上である上記第2導電型の半導体層は、その層厚が30Å以上であるため、下地層の表面を完全に被覆して再成長界面の抵抗を効果的に低減できる。さらに、層厚が100Å以下であるため、発振レーザ光の吸収成分となって特性の低下を引き起こすことを防止できる。
また、1実施の形態の半導体レーザの製造方法では、
上記再成長による上記第2導電型の半導体層の形成は、上記基板の温度が600℃に到達するまでに完了する。
この実施の形態によれば、上記第2導電型の半導体層の下地層がPを含んでいる場合は、600℃よりも低い成長温度で上記第2導電型の半導体層を再成長させて、上記下地層を被覆してしまうことによって、その後に成長温度を600℃以上に昇温した場合であっても、上記下地層からPが抜けることを防止できる。また、第2導電型がp型である場合には、基板の温度を600℃に到達する前に上記第2導電型の半導体層層を成長することによって、p型ドーパントを十分にドーピングすることができるようになる。
また、1実施の形態の半導体レーザの製造方法では、
上記第2導電型の第2クラッド層と、上記第1導電型の電流ブロック層および上記第2導電型の半導体層との間に、上記第2導電型の半導体層が再成長される際の下地となるPを含む下地層を形成する工程と、
上記再成長時に、上記第2導電型のドーパントガスの供給を開始するに先立って、上昇する上記基板の温度が400℃に到達する前に成長室内への少なくともPの原料ガスの供給を開始すると共に、上記第2導電型の半導体層を再成長させる直前に上記Pの原料ガスの供給を停止する工程と
を含んでいる。
この実施の形態によれば、再成長される上記第2導電型の半導体層の下地層にPを含むことによって、上部に形成される上記第1導電型の電流ブロック層に対するエッチング選択性が大きくなり、上記第1導電型の電流ブロック層に対する上記開口部の形成が容易になる。
その場合、上記第2導電型の半導体層の再成長時における成長温度を600℃よりも低くすることによって、上記Pを含む下地層との界面からのP抜けを防止できる。そのために、良好な結晶性を維持することが可能となり、上記Pを含む下地層と上記第2導電型の半導体層との界面付近の抵抗を低減できるという大きな効果を奏することができる。
さらに、上記第2導電型の半導体層の再成長を開始する温度よりも十分に低温の400℃に到達する前にPの原料ガスの供給を開始するので、上記再成長前における雰囲気が十分にPがリッチな状態となっている。したがって、上記下地層がPを含んでいる場合に、上記第1導電型の電流ブロック層の開口部からの上記P抜けを防止することができる。
さらに、再成長される上記第2導電型の半導体層の下地層がPおよびAsを含んでいる場合、上記第2導電型の半導体層の再成長を開始する温度よりも十分に低温の400℃に到達する前に、Pの原料ガスに加えてAsの原料ガスの供給を開始することによって、上記再成長前の雰囲気が十分にPおよびAsリッチな状態になるので、上記下地層からの上記P抜けおよびAs抜けを防止することができる。その結果、上記下地層における当初のAs/P比を保つことができるので、上記下地層表面が荒れることが無く、良好な結晶性を有する上記第2導電型の半導体層が再成長可能となる。
ここで、Pの原料ガスとしては、PH3の他に、V族のMO(有機金属)ガスからはTBP(ターシャルブチルフォスフィン)等を使用することができる。また、Asの原料ガスとしては、AsH3の他に、TMAs(トリメチル砒素)等を使用することができる。
また、1実施の形態の半導体レーザの製造方法では、
上記Pを含む下地層はInGaPあるいはInGaAsPからなる。
この実施の形態によれば、上記Pを含む下地層としてInGaPあるいはInGaAsPを用いることによって、他のIII‐V族化合物半導体層に対してエッチング選択性を有することができる。したがって、上記第1導電型の電流ブロック層に対するエッチング選択性がより高まり、製造コストを低減できるという効果を奏することができる。
また、1実施の形態の半導体レーザの製造方法では、
上記第2導電型のコンタクト層は、再成長工程によって形成されており、
上記第2導電型の半導体層は、リッジ状を成す第2導電型の第3クラッド層およびキャップ層である。
この実施の形態によれば、リッジ状を成す第2導電型のキャップ層と再成長によって形成される上記第2導電型のコンタクト層との間の界面の抵抗値を低く保つことができる。その結果、従来に比べてより低消費電力での動作が可能な半導体レーザを提供することができる。さらに、上記第2導電型のコンタクト層における再成長の際には、その再成長開始時または開始前から、成長室内に第2導電型のドーパントガスの供給が行われており、下地となる第1導電型および第2導電型の化合物半導体層からのドーパントや構成元素の再蒸発を防止することができる。以上のことより、再成長界面の抵抗の悪化を防止でき、且つ、再成長させる化合物半導体層の結晶性を良好に保つことが可能になり、低消費電力で動作できる半導体レーザの製造方法を提供することができる。
以上より明らかなように、この発明の半導体レーザの製造方法は、ストライプ状の電流経路を有する第2導電型の半導体層あるいはこの半導体層上に配置された第2導電型のコンタクト層を、再成長工程によって形成し、上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始する際におけるドーピング濃度を、5×1018cm-3以上にしているので、上記再成長界面の抵抗値を低く保つことができ、従来に比べてより低消費電力で動作することができる。したがって、低消費電力での動作が可能な半導体レーザを提供することができる。
さらに、上記再成長工程に、上記第2導電型のドーパントガスの供給開始と同時にまたは上記第2導電型のドーパントガスの供給を開始した後に、上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を成長させるので、成長雰囲気を第2導電型のドーパントガスリッチにした状態で上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を再成長させることができる。したがって、再成長される上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の下地層からドーパントや構成元素が再蒸発することを防止できる。その結果、再成長界面の抵抗の悪化を防止でき、且つ、再成長させる上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の結晶性を良好に保つことが可能になり、低消費電力で動作できる半導体レーザの製造方法を提供することができる。
さらに、上記再成長工程において、上記ドーピング濃度が上記基板側から上記基板の反対側に向かって低下するように設定されているので、界面抵抗の低減に際して余分なドーピングを防いで上記再成長工程中における不必要なドーパントの拡散を防ぐことができ、且つ、上記界面の抵抗を低減することができる。さらに、上記再成長される上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層は、少なくともGaとAsとを含むと共にAl組成が0以上且つ0.05以下であるので、低温で成長されても酸素が結晶中に取り込まれるのを抑制することができ、半導体レーザの信頼性や効率を改善することができる。
以下、この発明を図示の実施の形態により詳細に説明する。
・第1実施の形態
図1は、本実施の形態の半導体レーザ素子における概略構造を示す断面図である。尚、本実施の形態においては、上記第1導電型はp型であり、上記第2導電型はn型である。
この半導体レーザ素子は、n型GaAs基板11上に、n型GaAsバッファ層12、n型Ga0.5Al0.5As第1クラッド層13、n型Ga0.642Al0.358As第1光ガイド層14、多重量子井戸活性層15、p型Ga0.6Al0.4As第2光ガイド層16、p型Ga0.5Al0.5As第2クラッド層17、p型In0.245Ga0.755As0.540.46エッチストップ層18、n型のGa0.4Al0.6As電流ブロック層19、および、n型GaAs保護層20が、順に積層して形成されている。そして、n型GaAs保護層20およびn型GaAlAs電流ブロック層19には、電流狭窄のための電流チャンネルとなるストライプ状の窓19aが設けられている。また、n型GaAs保護層20上および窓19a内にはGaAs基板11から離れる程p型ドーピング濃度が低下するp+型GaAs半導体層21が形成され、p+型GaAs半導体層21上には、p型Ga0.5Al0.5As第3クラッド層22,p型GaAsコンタクト層23およびp型GaAsコンタクト層24が、順次形成されている。
上記n型GaAs基板11の裏面側には、AuGe/Ni/Auが順次積層された多層金属薄膜でなるn型電極25が形成されている。また、p型GaAsコンタクト層24上には、Ti/Pt/Auが順次積層された多層金属薄膜でなるp型電極26が形成されている。
図2〜図4は、図1に示す構成を有する半導体レーザ素子の各製造工程における断面図である。また、図5は、再成長時における成長温度と原料ガスフローとの制御シーケンスを示す。以下、図2〜図5に従って、上記半導体レーザ素子の製造方法について詳細に説明する。
先ず、図2に示すように、(100)面を有するn型GaAs基板11上に、n型GaAsバッファ層12(厚さ:0.5μm,Siドープ:7.2×1017cm-3)、n型Ga0.5Al0.5As第1クラッド層13(厚さ:1.6μm,Siドープ:5.4×1017cm-3)、n型Ga0.642Al0.358As第1光ガイド層14(厚さ:0.1μm,Siドープ:5.4×1017cm-3)、3層のIn0.238Ga0.762As0.54630.4537バリア層(各層の厚さ:基板11側から215Å,79Å,215Å)と2層のIn0.1Ga0.9As量子井戸層(各層の厚さ:46Å)とを交互に積層してなる多重量子井戸活性層15、p型Ga0.6Al0.4As第2光ガイド層16(厚さ:0.1μm,Znドープ:1.35×1018cm-3)、p型Ga0.5Al0.5As第2クラッド層17(厚さ:0.13μm,Znドープ:1.35×1018cm-3)、p型In0.245Ga0.755As0.540.46エッチストップ層18(厚さ:250Å,Znドープ:1.5×1018cm-3)、n型Ga0.4Al0.6As電流ブロック層19(厚さ:0.8μm,Siドープ:3×1018cm-3)、および、n型GaAs保護層20(厚さ:100Å,Siドープ:3×1018cm-3)を、順次MOCVD法によって結晶成長させる。
次に、図3に示すようにして、上記n型GaAs保護層20およびn型GaAlAs電流ブロック層19に、フォトリソグラフィ技術を用いたエッチングによってストライプ状の窓19aを形成する。27は上記フォトリソグラフィ技術によって形成されたレジストマスクである。上記エッチングは、H2SO4系エッチャントを使用し、n型GaAs保護層20およびn型GaAlAs電流ブロック層19をストライプ状にエッチングする。p型InGaAsPエッチストップ層18はH2SO4系エッチャントではエッチングされないので、再現性よくストライプ状の窓19aを形成することが可能である。尚、本実施の形態においては、窓19aの底部の幅を約3μmとしている。また、レジストマスク27は、エッチング後に除去される。
続いて、図4に示すように、MOCVD法によって、上記n型GaAs保護層20上および窓19a内に、p+型GaAs半導体層21(厚さ:50Å,GaAs基板11側のZnドープ:5×1019cm-3,GaAs基板11から最も離れた側のZnドープ:2×1019cm-3)を再成長させる。引き続き、p+型GaAs半導体層21上に、p型Ga0.5Al0.5As第3クラッド層22(厚さ:1.28μm,Znドープ:2.4×1018cm-3)、p型GaAsコンタクト層23(厚さ:4.45μm,Znドープ:3×1018cm-3)、および、p型GaAsコンタクト層24(厚さ:0.3μm,Znドープ:1×1020cm-3)を、順次MOCVD法によって再成長させる。
上記再成長時における成長温度と原料ガスフローとの制御シーケンスを図5に示す。上記ストライプ状の窓19aを形成した後の基板をMOCVD装置の成長室内に搬送した後に、基板加熱を開始し、基板温度が350℃に到達すると、Pの原料ガスの一例としてのPH3およびAsの原料ガスの一例としてのAsH3を成長室内に流しながら基板加熱を続ける。基板温度が550℃に到達した後にPH3の供給を停止し、p型のドーパントガスの一例としてのDEZnおよびGaの原料ガスの一例としてのTMG(トリメチルガリウム)をフローしてp+型GaAs半導体層21の結晶成長を行う。この結晶成長の間においても基板温度の昇温を継続する。こうして、50Åのp+型GaAs半導体層21の成長が終了した時点でTMGフローを停止し、上記DEZnおよびAsH3だけを流しながら685℃まで基板温度の昇温を続ける。
尚、Pの原料ガスとしては、上述したPH3(フォスフィン)の他に、V族のMO(有機金属)ガスであるTBP(ターシャルブチルフォスフィン)等を使用することができる。さらに、Asの原料ガスとしては、上述したAsH(アルシン)の他に、TMAs(トリメチル砒素)等を使用することができる。
また、ここでは、p型のドーパントガスとして、DEZn(ジエチルジンク)を使用したが、勿論、これに限定されるものではない。例えば、DMZn(ジメチルジンク)や、CP2Mg(ビスシクロペンタジエニルマグネシウム)等を使用することができる。ドーパントガスは、下地の半導体層中に含まれるドーパントと同じドーパントが再成長結晶中にドーピングされるよう選択することが好ましい。p型においては、特にZnドーパントの再蒸発の問題が顕著であるから、本実施の形態においては、Znをドーピングした場合に効果が大きい。
また、n型半導体層を再成長する場合にも、勿論同種の効果がある。その場合には、特に下地の半導体層と再成長される半導体層のドーパントとしてSe(セレン)を用いた場合に、本発明の効果が大きくなる。
ここで、上記p+型GaAs半導体層21成長終了時の基板温度は570℃である。さらに、p+型GaAs半導体層21成長時のドーピング濃度は、成長開始時が5×1019cm-3であり、成長終了直前が2×1019cm-3である。また、p+型GaAs半導体層21成長後のDEZn流量は、基板温度が685℃に達するまでp型GaAlAs第3クラッド層22の成長に合わせて徐々に変化させる。
そして、685℃に到達した後に基板温度の昇温を止めて、p型Ga0.5Al0.5As第3クラッド層22の結晶成長を行う。引き続き、p型GaAsコンタクト層23の結晶成長を行い、基板温度を610℃まで下降させた後、1×1019cm-3の濃度でZnがドープされたp型GaAsコンタクト層24を結晶成長させるのである。
こうして、上記再成長が終了した後、上記GaAs基板11の裏面側に、抵抗加熱蒸着法を用いて、n側電極25としてAuGe(厚さ:1500Å)/Ni(厚さ:150Å)/Au(厚さ:3000Å)を順次積層形成し、400℃の窒素雰囲気中で1分間加熱して電極材料の合金化処理を行う。また、p型GaAsコンタクト層24上に、電子ビーム蒸着法を用いて、Ti(厚さ:1500Å)/Pt(厚さ:500Å)/Au(厚さ:3000Å)を順次積層形成させて、p側電極26とする。こうして、本実施の形態における半導体レーザ素子が完成するのである。
こうして得られた半導体レーザ素子を所望の共振器長を有するチップサイズに分割した後、両端面に反射膜(図示せず)をコーティングすることによって、発振波長890nmの半導体レーザ素子として機能することができるのである。
この実施の形態における半導体レーザ素子は、n型電流ブロック層19によって電流狭窄されている電流経路領域(p型GaAs半導体層21およびp型GaAlAs第3クラッド層22)の直下に再成長界面を有し、その再成長界面近傍が5×1018cm-3以上の第1導電型にドーピングされていることを特徴とする。このことによって、局所的に幅が狭められた電流経路領域における抵抗の増大を防いでいる。
さらに詳しくは、本第1実施の形態の半導体レーザ素子は、少なくともPを含む(以下、単にPを含むと言う場合もある)III‐V族化合物半導体層(InGaAsPエッチストップ層18)と、その上に形成された少なくともAlを含む(以下、単にAlを含むと言う場合もある)再成長半導体層(p型GaAlAs第3クラッド層22)との界面に、ドーピング濃度が5×1018cm-3以上である少なくともGaとAsとを含む(以下、単にGaとAsとを含むと言う場合もある)p型の半導体層(p+型GaAs半導体層21)を形成したことを、特徴としている。さらに、上記GaとAsとを含むp型の半導体層と当該半導体レーザ素子の主たる動作を行う主動作層としての多重量子井戸活性層15との間隔が0.15μm以上であることを、特徴としている。
ここで、上記「主動作層」とは、本第1実施の形態の場合のように、化合物半導体装置が半導体レーザ素子である場合には「活性層」を指す。また、化合物半導体装置がFETである場合には「チャンネル層」を指し、HBTである場合には「ベース層」を指す。
本実施の形態における上記p+型GaAs半導体層21のように半導体層中でドーピング濃度が変化する場合においては、最も小さいドーピング濃度を5×1018cm-3以上になるように設定する。このように、ドーピング濃度が5×1018cm-3以上のGaとAsとを含むp型の半導体層を再成長界面に成長することによって、再成長界面付近に高ドープのp型半導体層が形成されるため、再成長された界面の抵抗値を悪化させない効果を奏することができるのである。
さらに、上記不純物が5×1018cm-3以上の濃度でドーピングされたGaとAsとを含むp型の半導体層と上記主動作層との間隔を0.15μm以上に設定することによって、上記GaとAsとを含むp型半導体層のドーパントが再成長時の熱履歴によって上記主動作層まで拡散することを防止することができるのである。特に、本実施の形態の場合のように、上記GaとAsとを含むp型の半導体層(p+型GaAs半導体層21)の下地となる半導体層(p型In0.245Ga0.755As0.540.46エッチストップ層18)において、V族元素中におけるPの混晶比(以下、PのV族混晶比と言う)が40%以上である場合には、上記GaとAsとを含むp型の半導体層と主動作層との間隔を0.2μm以上に設定することによって、上記主動作層である活性層15へのドーパントZnの拡散を防止することができるのである。
また、本実施の形態における半導体レーザ素子は、上記再成長界面に形成される5×1018cm-3以上の濃度でドーピングされたGaとAsとを含む半導体層21の層厚を、30Å以上且つ100Å以下とすることを特徴としている。ここで、上記膜厚が30Åを下回ると、下地となるIII‐V族化合物半導体層18の表面を完全に被覆することができなくなって(つまり、部分的にIII‐V族化合物半導体層18が露出して)、再成長界面の改善効果が小さくなる。また、上記膜厚が100Åを超えると、発振レーザ光の吸収成分となるため半導体レーザ素子の特性を低下させる恐れがあるので好ましくはない。したがって、GaとAsとを含む半導体層21の膜厚としては、30Å以上且つ100Å以下である必要がある。そして、この層厚の範囲において、GaとAsとを含む半導体層21のドーピング濃度は、GaAs基板11側が最も高く、GaAs基板11から最も離れた側が最も低くなっている。このような構成をとることによって、界面抵抗の低減に際して、余分なドーピングを防ぎ、再成長工程中における不必要なp型のドーパント拡散による悪影響を避けることができるのである。
ここで、上記少なくともGaとAsとを含む半導体層としては、本実施の形態の場合のようにGaAs層が好ましい。しかしながら、例えば、III族元素中における混晶比(III族混晶比)が10%以下でAlを含むIII‐V族化合物半導体層であれば上記GaAs層に比して特性値の大きな低下は無く、さらにAlのIII族混晶比が5%以下のIII‐V族化合物半導体層であれば上記GaAs層を成長した場合と略同一の特性値を得ることができる。
また、上記再成長界面の抵抗値を低下させるために上記少なくともGaとAsとを含む半導体層に導入される高濃度のp型ドーパントはZnが望ましい。その場合、Znを用いることによって、Znをp型のドーパントとして用いた上記少なくともGaとAsとを含む半導体層から、再成長界面を越えて、下地となるp型のIII‐V族化合物半導体層側への拡散が生じる。そして、大量の拡散が生じた場合には所望の素子特性に悪影響を与えることになる。しかしながら、ドーパントZnの絶対量を制限し、再成長界面付近にのみ拡散するよう制御してやることによって、界面抵抗だけを低減することが可能となる。その場合、ドーパントZnの絶対量を制限し、且つ、再成長界面の抵抗値を低下させるために、上述したように、GaAs基板11側のドーピング濃度を最も高くし、GaAs基板11から最も離れた側のドーピング濃度を最も低くなるように設定するのである。このようなドーピング濃度構造の製造方法については、後に述べることにする。
さらに、上記GaとAsとを含む半導体層21の下地となるp型のIII‐V族化合物半導体層16,17およびPを含むIII‐V族化合物半導体層18のドーパントもZnであることが望ましい。その場合、下地半導体層のドーパントもZnであることによって、その上に位置するZnがドーピングされた上記GaとAsとを含む半導体層21を成長する際にZn材料の再蒸発が防止されて、界面の抵抗悪化を防ぐ効果が生ずるのである。
上述の効果は、本実施の形態のように、n型の半導体層の一部に窓を設け、この窓部分を電流チャンネルとして、上記n型の半導体層の上下をp型の半導体層で挟んだ構成であって、基板側のp型の半導体層が上記少なくともPを含むIII‐V族化合物半導体層であるような化合物半導体装置において、特に有効である。尚、導電型が逆であっても同様である。その理由は、上述のように、ある領域に電流チャンネルが制限される構造の場合には、この電流チャンネルを形成する半導体層界面の抵抗の影響が、上記電流チャンネルの構造以外の構造に比べて非常に大きく寄与するためである。そして、上記化合物半導体装置を本実施の形態のような半導体レーザ素子とした場合には、上記電流チャンネルの幅は数μm程度であるので、上述したような素子抵抗値の改善効果は特に大きくなるのである。
本実施の形態における半導体レーザ素子の製造方法においては、再成長時に、550℃以上且つ600℃以下の低成長温度でp+型GaAs半導体層21を形成している。その場合には、p+型GaAs層21を成長させるまで成長室中にPH3ガスおよびAsH3ガスをフローしていることと、比較的低い成長温度で成長させることとから、少なくともPを含むIII‐V族化合物半導体層(InGaAsPエッチストップ層18)からのP抜けおよびAs抜けを抑制することができる。さらに、500℃〜550℃の何れかの温度に到達した後に、DEZnのフローをも開始している。このように、550℃以下の成長温度でPH3およびDEZnをフローしておくことによって、成長室内はP,AsおよびZnがリッチな雰囲気となり、下地であるPを含むIII‐V族化合物半導体層18からの上記P抜け,As抜けおよびp型のIII‐V族化合物半導体層16,17およびPを含むIII‐V族化合物半導体層18からのZnの蒸発とを防ぐことが可能になる。さらに、600℃以下でp+型GaAsを成長することにより、Znのドーピング濃度を十分に高めることができる。これらのことにより、再成長界面の荒れを防止し良好な再成長半導体結晶を得ることができると共に、上記再成長界面の抵抗を低減することが可能になる。特に、本実施の形態のように、V族元素としてPとAsの両方を含むInGaAsP半導体層に対しては、P抜けおよびAs抜けが防止されることで、当初所望のAs/P比を維持することができ、再成長界面の荒れ防止の効果が大きい。さらに、本実施の形態のごとく、製造される化合物半導体装置が半導体レーザ素子である場合には、上記再成長界面のラフネス低減によって内部損失が減るため、発振閾値電流値や効率を改善できる効果もある。
また、本実施の形態における半導体レーザ素子の製造方法によれば、上記p+型GaAs層21を、基板温度を昇温させながら成長させるようにしている。この場合、基板温度が高くなる程p型のドーピング濃度が低下するようになる。したがって、p型のドーピング量を自動的に制限することができ、界面抵抗の低減を行うに際して不必要に余分なp型ドーピングを行うことを避けることができるのである。また、次に述べるように、p+型GaAs層21上にAlを含む半導体層(p型GaAlAs第3クラッド層22)を成長させる場合は、p+型GaAs層21の成長温度よりも高温で成長する方が良い。そのためにも、本実施の形態においては、昇温しながらp+型GaAs層21を成長させるようにしている。こうすることによって、次に成長する上記Alを含む半導体層22の成長開始までの時間を短縮でき、MOCVD装置のスループットを向上させることができるのである。
また、本実施の形態における半導体レーザ素子の製造方法によれば、上記成長温度が600℃に到達するまでにp+型GaAs層21の結晶成長を終了するようにしている。このように、600℃よりも低い成長温度で、膜厚が30Å以上且つ100Å以下のp+型GaAs層21を形成することによって、その後に基板温度を600℃以上に昇温させても上記P抜けは発生することはない。逆に、p+型GaAs層21の成長終了時における基板温度が600℃以上の場合には、p+型GaAs層21成長中におけるP抜けの発生が無視できなくなり、p+型GaAs層21自体の結晶性が低下してしまうのである。
本実施の形態によれば、上記p+型GaAs層21を550℃〜600℃で成長した後、DEZnおよびAsH3を流しながら基板加熱を続け、基板温度が685℃となった後に、少なくともAlを含むIII‐V族化合物半導体層22を結晶成長している。このようにAlを含む半導体層を比較的高い成長温度で成長させることによって、上記Alを含む半導体層22への酸素の取り込まれによるAl酸化に起因する半導体レーザ素子の信頼性の低下を防止し、作成される化合物半導体装置の動作時における信頼性を向上させることができるのである。
化合物半導体装置が半導体レーザ素子として用いられる場合には、Alを含む層が酸化されると深い準位が形成されて、その部分で光吸収が起こってしまう。そのために、上述したように半導体レーザ素子の信頼性が低下するばかりではなく、発振閾値電流値や効率等の半導体レーザ素子の静特性をも悪化させてしまうことになる。尚、Alを含む半導体層22の成長温度が650℃以上であれば、酸素の取り込まれによるAlの酸化を十分に防止することができるのである。
上述したように、本実施の形態における半導体レーザ素子の製造方法においては、上記P抜けおよびZnの再蒸発を防止するようにしている。そのために、良好な再成長界面および良好な再成長結晶を得ることが可能である。また、Alを含む半導体層22への酸素の取り込まれによるAl酸化の問題が無くなり、素子抵抗を低く保ちつつ、化合物半導体装置としての信頼性を向上させることができるのである。
尚、本実施の形態においては、この発明を発振波長890nm帯の半導体レーザ素子に適用した場合を例に挙げて説明しているが、これに限られるものではない。例えば、780nm帯や650nm帯等の他の発振波長帯の半導体レーザ素子に適用できることは言うまでも無い。さらに、部分的に露出しているPを含むp型のIII‐V族化合物半導体層上に複数のIII‐V族化合物半導体層を結晶再成長させる工程を含む化合物半導体装置、例えば、上記HBTやFETやLED(発光ダイオード)等とその製造方法にも好適に適用することができる。
尚、上記実施の形態においては、上記n型GaAsバッファ層12からn型GaAs保護層20までの結晶成長、および、p+型GaAs層21からp型GaAsコンタクト層24までの再成長を、MOCVD法によって行っている。しかしながら、この発明はこれに限定されるものではなく、MBE法によって行っても構わない。
・第2実施の形態
図6は、本第2実施の形態の半導体レーザ素子における概略構造を示す断面図である。尚、本実施の形態においては、上記第1導電型はp型であり、上記第2導電型はn型である。
この半導体レーザ素子は、n型GaAs基板31上に、n型GaAsバッファ層32、n型Ga0.5Al0.5As第1クラッド層33、n型Ga0.6Al0.4As第1光ガイド層34、多重量子井戸活性層35、p型Ga0.6Al0.4As第2光ガイド層36、p型Ga0.5Al0.5As第2クラッド層37、p型GaAsエッチストップ層38、p型Ga0.5Al0.5As第3クラッド層39、および、p型GaAsキャップ層40が、順に積層して形成されており、第3クラッド層39およびキャップ層40がストライプ状のリッジに加工されている。また、上記リッジの両側には、n型Ga0.3Al0.7As電流ブロック層41、n型GaAs電流ブロック層42、および、p型GaAsキャップ層43が形成され、上記リッジおよび電流ブロック層42上には、p型GaAsコンタクト層44が形成されている。
上記n型GaAs基板31の裏面側には、AuGe/Ni/Auが順次積層された多層金属薄膜でなるn型電極45が形成されている。また、p型GaAsコンタクト層44上には、Ti/Pt/Auが順次積層された多層金属薄膜でなるp型電極46が形成されている。
図7〜図11は、図6に示す構成を有する半導体レーザ素子の各製造工程における断面図である。また、図12は、p型GaAsコンタクト層44の再成長時における成長温度と原料ガスフローとの制御シーケンスを示す。以下、図7〜図11および図12に従って、上記半導体レーザ素子の製造方法について詳細に説明する。
先ず、図7に示すように、(100)面を有するn型GaAs基板31上に、n型GaAsバッファ層32(厚さ:0.5μm,Siドープ:7.2×1017cm-3)、n型Ga0.5Al0.5As第1クラッド層33(厚さ:1.8μm,Siドープ:5.4×1017cm-3)、n型Ga0.6Al0.4As第1光ガイド層34(厚さ:0.1μm,Siドープ:5.4×1017cm-3)、3層のIn0.2Ga0.8As0.50.5バリア層(各層の厚さ:基板11側から200Å,50Å,200Å)と2層のIn0.065Ga0.935As量子井戸層(各層の厚さ:50Å)とを交互に積層してなる多重量子井戸活性層35、p型Ga0.6Al0.4As第2光ガイド層36(厚さ:0.1μm,Znドープ:1.35×1018cm-3)、p型Ga0.5Al0.5As第2クラッド層37(厚さ:0.15μm,Znドープ:1.35×1018cm-3)、p型GaAsエッチストップ層38(厚さ:40Å,Znドープ:1.5×1018cm-3)、p型Ga0.5Al0.5As第3クラッド層39(厚さ:1.28μm,Znドープ:3×1018cm-3)、および、p型GaAsキャップ層40(厚さ:0.75μm,Znドープ:1×1020cm-3)を、順次MOCVD法によって結晶成長させる。
次に、図8に示すように、上記p型GaAsキャップ層40上に6μm幅のレジストマスク47を通常のフォトリソグラフィ技術により形成し、レジストマスク47以外のp型GaAsキャップ層40およびp型Ga0.5Al0.5As第3クラッド層39をエッチング除去し、ストライプ状のリッジを形成する。このとき、p型Ga0.5Al0.5As第3クラッド層39とp型GaAsエッチストップ層38とで選択性を有するエッチャントを用いて、p型GaAsエッチストップ層38でエッチングが停止するようにし、リッジ高さの形成精度を高めると共に、リッジ幅を制御している。本実施の形態においては、リッジの底部の幅が2.7μmになるように調整している。
上記リッジ上のレジストマスク47を除去した後、図9に示すように、n型Ga0.3Al0.7As電流ブロック層41(厚さ:0.6μm,Siドープ:1×1017cm‐3)、n型GaAs電流ブロック層42(厚さ:0.3μm,Siドープ:1×1018cm−3)、p型GaAsキャップ層43(厚さ:1.05μm,Znドープ:1×1018cm-3)を、順次MOCVD法により第2回目の結晶成長層として形成する。このとき、リッジの両側およびリッジの上部に結晶成長が進み、リッジ上部では山型の突起状に成長膜が形成される。
その上にレジストを全面塗布し、全面露光を行って現像時間を調整することにより、上記リッジ上部の山型の突起部が露出するまでレジストを除去する。その結果、リッジ上のレジストは除去され、リッジ外のレジストは残ったままになっている。この状態でエッチングを行うことによって、リッジ上に形成された第2回目の結晶成長層と第1回目の結晶成長とにより形成されたp型GaAsキャップ層40の上側一部(厚さ:0.05μm程度)を除去する。その後にレジストを除去した状態を図10に示す。
続いて、図11に示すように、p型GaAsコンタクト層44(厚さ:4μm)を第3回目の結晶成長層として、MOCVD法を用いて形成する。成長開始時のp型ドーピング濃度は、後述するような成長温度および原料ガスフローを行うことにより、5×1019cm-3であり、そこから徐々に3×1018cm-3までドーピング濃度を減少させ、トータル3.7μmとなるまで成長を継続する。最上層の厚さ0.3μmの領域は、電極との接触抵抗を低下させるため、再度1×1019cm-3にまでドーピング濃度を高めている。
上記第3回目の結晶成長時における成長温度と原料ガスフローとの制御シーケンスを図12に示す。上記リッジ上に形成された第2回目の結晶成長層および第1回目の結晶成長によって形成されたp型GaAsキャップ層40の上側一部をエッチング除去し、レジストも除去した後の基板をMOCVD装置の成長室内に搬送した後に、基板加熱を開始する。
図12に示すように、基板温度(成長温度)が350℃に到達するとAsの原料ガスの一例としてのAsH3を成長室内に流しながら基板加熱を続ける。基板温度が550℃に到達した後、p型のドーパントガスの一例としてのDEZnおよびGaの原料ガスの一例としてのTMGをフローしてp型GaAsコンタクト層44の結晶成長を開始しつつ、685℃まで基板温度の昇温を続ける。上述したように、結晶成長開始時のp型ドーピング濃度は5×1019cm−3である。
ここでは、成長開始前からAsH3を流しておくことで、基板温度を昇温させる最中で、且つ、再成長開始前の半導体表面からのAsの再蒸発を防止している。
685℃に到達した後に基板温度の昇温は止めるが、成長層厚が3.7μmとなるところまでp型GaAsコンタクト層44の結晶成長は継続する。成長温度685℃におけるp型ドーピング濃度は3×1018cm‐3である。その後、続けて基板温度を595℃まで下降させることによってZnのドーピング濃度を1×1019cm-3に高めて、さらに0.3μmの結晶成長を行うのである。
こうして、上記3回目の再成長が終了した後、上記GaAs基板31の裏面側に、抵抗加熱蒸着法を用いて、n側電極45としてAuGe(厚さ:1500Å)/Ni(厚さ:150Å)/Au(厚さ:3000Å)を順次積層形成し、400℃の窒素雰囲気中で1分間加熱して電極材料の合金化処理を行う。また、p型GaAsコンタクト層44上に、電子ビーム蒸着法を用いて、Ti(厚さ:1500Å)/Pt(厚さ:500Å)/Au(厚さ:3000Å)を順次積層形成させて、p側電極46とする。こうして、本実施の形態における半導体レーザ素子が完成するのである。
本実施の形態における半導体レーザ素子は、p型にドーピングされたリッジの両側に、n型のGa0.3Al0.7As電流ブロック層41およびn型GsAs電流ブロック層42を形成することによって、リッジに対する電流狭窄を実現したリッジ埋め込み型半導体レーザ素子であり、上記リッジが電流経路領域となる。
本実施の形態においては、再成長界面の下地半導体層となるリッジ頂部のp型GaAsキャップ層40を1×1020cm-3にドーピングし、再成長半導体層であるp型GaAsコンタクト層44の再成長界面側を5×1019cm-3にドーピングすることによって、電流経路となる上記電流狭窄部(リッジ)の抵抗を下げることができた。
他方の導電型の化合物半導体層によりその電流経路の幅が狭められた(電流狭窄された)領域は、その領域が高抵抗化した際に、化合物半導体装置全体の直列抵抗を大きく悪化させてしまうが、上述した本実施の形態の半導体レーザ素子の例のように、そのような電流狭窄領域の中の少なくとも一部とその直上領域とのドーピング濃度を5×1018cm-3以上にすることによって、上記直列抵抗の悪化を防止でき、その結果、低消費電力で動作できる化合物半導体装置を得ることができた。
電流狭窄された領域の抵抗を低下させ、化合物半導体装置全体の直列抵抗を改善するためには、上述のように、電流経路領域または上記電流経路領域の直上領域または上記電流経路領域の直下領域の少なくとも一部を5×1018cm-3以上にドーピングすればよい。
ここで、上記「電流経路領域の直上領域」および「電流経路領域の直下領域」とは、上記第1導電型の化合物半導体層からなる(電流狭窄されている)電流経路の最上部および最下部に対して連続的に結晶成長された化合物半導体層と、それらの化合物半導体層の最外層に接する化合物半導体層における上記最外層との界面近傍までとを指す。そして、上記各化合物半導体層のうち、上記基板側の各化合物半導体層を「電流経路領域の直下領域」とし、上記基板と反対側の化合物半導体層を「電流経路領域の直上領域」とする。上述の本実施の形態においては、電流狭窄されているのは、p型GaAlAs第3クラッド層39であるから、この第3クラッド層39に対して連続的に結晶成長されたp型GaAsキャップ層40と、そのp型GaAsキャップ層40の最外層に接するp型GaAsコンタクト層44のうちp型GaAsキャップ層40との界面近傍までを「電流経路領域の直上」とするのである。
上記「電流経路領域の直上」領域は、電流経路(電流狭窄された)領域から1.5μm以内となるような構造とすることが好ましい。また、「電流経路領域の直下」領域は、上記第1実施の形態において述べたように、主動作層から少なくとも0.15μm以上離すことが好ましい。尚、結晶成長が不連続となっている界面(再成長界面)では、一般に、結晶中に酸素が多く取り込まれる傾向にある。
この直列抵抗低減効果は、本実施の形態の半導体レーザ素子のように、再成長界面近傍と5×1018cm-3以上にドーピングした領域とを一致させることによって、さらに大きくすることができる。
さらに、本実施の形態の半導体レーザ素子においては、3回目の結晶成長を行う際に、上述したように、p型GaAsコンタクト層44を成長させる前から、AsH3を成長室内に供給している。したがって、そのことによって、リッジ頂部のp型GaAsキャップ層40およびリッジ両側のp型GaAsキャップ層43夫々の半導体層からのAsの再蒸発を防止できる。その結果、3回目の結晶成長の下地となる上記p型キャップ層40,43の表面の荒れが防止され、良好な結晶品質のp型GaAsコンタクト層44を成長することが可能となる。
また、本実施の形態においては、p側電極46直下のp型GaAsコンタクト層44の基板(成長)温度を600℃以下の595℃とすることによって、そのドーピング濃度を高めてp側電極46として使用したTi/Pt/Auに対するコンタクト抵抗(オーミック抵抗)を低下させることができる。
本実施の形態においては、このように、電流狭窄されることによって、その幅が狭められた電流経路領域およびその近傍の界面・バルクの抵抗と、p側電極に対するコンタクト抵抗との両方を低下させ、且つ、良好な結晶性を有する再成長層が形成でき、それによって、低い直列抵抗を実現して低消費電力動作が可能な半導体レーザ素子を提供することができる。
・第3実施の形態
本実施の形態は、上記第1実施の形態における半導体レーザ素子を用いた光伝送モジュールおよびこの光伝送モジュールを用いた光伝送システムに関する。図13は、光伝送モジュール51を示す断面図である。また、図14は、図13における光源の部分を示す斜視図である。
本光伝送モジュール51では、光源として、上記第1実施の形態において説明した発振波長890nmのInGaAs系半導体レーザ素子(レーザチップ)52を用いている。また、受光素子53として、シリコン(Si)のpinフォトダイオードを用いている。尚、上記光伝送システムにおいては、信号を送受信する相手側も同じ光伝送モジュール51を備えていることを前提としている。
図13において、回路基板54上には半導体レーザ駆動用の正負両電極のパターン(図示せず)が形成されており、レーザチップ52を搭載する部分には深さが300μmの凹部54aが設けられている。この凹部54aの底部は平坦になっており、この平坦部上にレーザチップ52が搭載されたレーザマウント(マウント材)55を半田で固定する。レーザマウント55の正電極56の平坦部57(図14参照)は、回路基板54上のレーザ駆動用正電極部(図示せず)とワイヤ58aによって電気的に接続されている。また、凹部54aはレーザ光の放射を妨げない程度の深さになっており、表面の粗さが放射角に影響を与えないようになっている。
上記受光素子53は、上記レーザマウント55と同様に回路基板54に実装されて、ワイヤ58bによって電気信号が取り出されるようになっている。この他に、回路基板54上には、レーザ駆動用や受信信号処理用のIC回路(集積回路)59が実装されている。
また、上記回路基板54の凹部54aに搭載されたレーザマウント55は、シリコン樹脂60によって封止されている。この樹脂封止は、回路基板54におけるレーザマウント55が固定された凹部54aの部分に液状のシリコン樹脂60を適量滴下し、80℃で約5分間加熱してゼリー状になるまで硬化させることによって行われる。上述のように滴下されたシリコン樹脂60は、表面張力のために凹部54a内に留まり、レーザマウント55を覆い且つ凹部54aに固定するのである。尚、本実施の形態においては、回路基板54上に凹部54aを設け、この凹部54a内にレーザマウント55を実装しているが、シリコン樹脂60は表面張力によってレーザチップ52の表面およびその近傍に留まるので、凹部54aは必ずしも設ける必要はない。
さらに、上記回路基板54上全体が、透明なエポキシ樹脂モールド61によって被覆されている。その際に、レーザチップ52の上面には、放射角制御のためのレンズ部62が形成され、受光素子53の上面には信号光を集光するためのレンズ部63が形成されている。このレンズ部62とレンズ部63とは一体と成ってモールドレンズを構成している。
次に、図14に従って上記レーザマウント55について詳細に説明する。図14において、レーザチップ52は、L字型のヒートシンク64の垂直部64aにIn糊剤を用いてダイボンドされている。ここで、レーザチップ52は、上記第1実施の形態におけるInGaAs系半導体レーザ素子であり、そのチップ下面52bには高反射膜(図示せず)がコーティングされる一方、チップ上面52aには低反射膜(図示せず)がコーティングされている。これらの反射膜は、レーザチップ52端面の保護も兼ねている。
上記ヒートシンク64の基部64bには、正電極56がヒートシンク64と導通しないように絶縁物によって固着されている。この正電極56とレーザチップ52表面のp型電極52cとは、金ワイヤ58cによって接続されている。上記構成を有するレーザマウント55は、図13に示すように、回路基板54の凹部54aにおける平坦部に形成された負電極(図示せず)に半田で固定される一方、正電極56上部の平坦部57と回路基板54上のレーザ駆動用正電極部(図示せず)とがワイヤ58aで接続される。このように配線されることによって、発振によってレーザビーム65を得ることが可能な光伝送モジュール51が完成する。
図15は、上記光伝送モジュール51を用いた光伝送システムの概観図である。上述したように、この光伝送システムでは、相手側が同じ光伝送モジュール51を保持して、光信号の送受信を行うことを前提としている。図15に示す光伝送システムは、パーソナルコンピュータ71と基地局72とにおいて、光(赤外線)によるデータ通信を行うものである。
上記パーソナルコンピュータ71における操作面には、図13および図14に示す構成を有する光伝送モジュール51が、光出射面および受光面を上方に向けて搭載されている。また、基地局72は、部屋の天井に設置されており、図13および図14に示す構成を有する光伝送モジュール(図示せず)51が光出射面および受光面を下方に向けて搭載されている。そして、パーソナルコンピュータ71を端末として使用し、基地局72サーバとして使用することによって、光(赤外線)によるデータ通信を行うのである。
例えば、上記パーソナルコンピュータ71に搭載されている光伝送モジュール51の光源(レーザチップ52)から、特定の情報を表す信号光(データ信号が重畳されたレーザ光)が出射される。そうすると、この信号光は、基地局72に搭載されている光伝送モジュール51の受光素子53によって受信される。同様にして、基地局72から発信された信号光はパーソナルコンピュータ71側の受光素子53によって受信されるのである。
その場合において、本実施の形態における光伝送モジュール51は、上述したように再成長膜界面付近の抵抗値の悪化が無く、さらに高信頼性を有する半導体レーザ素子を使用しているため、光伝送モジュール51の消費電力を従来の光伝送モジュールに比べて低く抑えることができる。すなわち、本実施の形態によれば、省エネルギーで環境に与える負荷がより小さく、長寿命な光伝送システムを提供することができるのである。さらに、本光伝送システムを携帯機器等に搭載した場合には、その動作時間を従来の光伝送システムよりも延長させることができるのである。
・第4実施の形態
本実施の形態は、上記第1実施の形態の構成を有する半導体レーザ素子(但し、発振波長を光ディスク用に調整)を用いた光ディスク装置に関する。図16は、本実施の形態における光ディスク装置の構成図である。この光ディスク装置は、光ディスク81にデータを書き込んだり、光ディスク81に書き込まれたデータを再生したりするものであり、その際に用いる発光素子として、上記第1実施の形態の構成を有する半導体レーザ素子82を備えている。
以下、本光ディスク装置の構成および動作について説明する。本光ディスク装置は、書き込みの際には、半導体レーザ素子82から出射された信号光(データ信号が重畳されたレーザ光)はコリメートレンズ83を通過して平行光となり、ビームスプリッタ84を透過する。そして、λ/4偏光板85によって偏光状態が調節された後に、レーザ光照射用対物レンズ86によって集光されて光ディスク81を照射する。こうして、データ信号が重畳されたレーザ光によって、光ディスク81にデータが書き込まれる。
一方、読み出しの際には、上記半導体レーザ素子82から出射されたデータ信号が重畳されていないレーザ光が、上記書き込みの場合と同じ経路を辿って光ディスク81を照射する。そして、データが記録された光ディスク81の表面で反射されたレーザ光は、レーザ光照射用対物レンズ86およびλ/4偏光板85を経た後、ビームスプリッタ84で反射されて進行方向が90°変更される。その後、再生光用対物レンズ87によって集光され、信号検出用受光素子88に入射される。そして、こうして信号検出用受光素子88内で、入射したレーザ光の強弱に応じて光ディスク81から読み出されたデータ信号が電気信号に変換され、信号光再生回路89によって元の情報信号に再生されるのである。
本実施の形態における光ディスク装置においては、上述したように、再成長膜界面付近の抵抗値の悪化が無く、さらに高信頼性を有する半導体レーザ素子82を使用している。したがって、光ディスク装置の消費電力を、従来の光ディスク装置に比べて低く抑えることができるのである。
尚、この発明の半導体レーザ装置、半導体レーザ装置の製造方法、光伝送システム、および、光ディスク装置は、上記第1および第2の実施の形態における半導体レーザ装置およびその製造方法、上記第3実施の形態における光伝送システム、および、上記第4実施の形態における光ディスク装置に、限定されるものではない。例えば、井戸層・障壁層の層厚や層数等、この発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論のことである。
本発明の半導体レーザ装置およびその製造方法は、III‐V族化合物半導体層の上に再成長半導体層の再成長を行う際の再成長界面付近の抵抗を低減すると共に、再成長界面の荒れを防止するのに有用であり、HBTに利用することができる。
この発明の半導体レーザ素子における断面図である。 図1に示す半導体レーザ素子の製造工程中における断面図である。 図2に続く製造工程中における断面図である。 図3に続く製造工程中における断面図である。 再成長時における成長温度と原料ガスフローとの制御シーケンスを示す図である。 この発明の第2の半導体レーザ素子における断面図である。 図6に示す第2の半導体レーザ素子の製造工程中における断面図である。 図7に続く製造工程中における断面図である。 図8に続く製造工程中における断面図である。 図9に続く製造工程中における断面図である。 図10に続く製造工程中における断面図である。 図6に示す第2の半導体レーザ素子の第3回目の結晶成長(再成長)時における成長温度と原料ガスフローとの制御シーケンスを示す図である。 図1に示す半導体レーザ素子を用いた光伝送モジュールの断面図である。 図13における光源の部分を示す斜視図である。 この発明の光伝送システムの概観図である。 この発明の光ディスク装置の構成図である。 従来の半導体レーザ素子の断面図である。 図17に示す半導体レーザ素子の製造工程中における断面図である。 図18に続く製造工程中における断面図である。 図19に続く製造工程中における断面図である。
11,31…n型GaAs基板、
12,32…n型GaAsバッファ層、
13,33…n型GaAlAs第1クラッド層、
14,34…n型GaAlAs第1光ガイド層、
15,35…多重量子井戸活性層、
16,36…p型GaAlAs第2光ガイド層、
17,37…p型GaAlAs第2クラッド層、
18…InGaAsPエッチストップ層、
19,41…n型GaAlAs電流ブロック層、
20…n型GaAs保護層、
21…p+型GaAs半導体層、
22,39…p型GaAlAs第3クラッド層、
23,24,44…p型GaAsコンタクト層、
25,45…n側電極、
26,46…p側電極、
38…p型GaAsエッチストップ層
40…p型GaAsキャップ層
42…n型GaAs電流ブロック層
43…p型GaAsキャップ層
51…光伝送モジュール、
52…InGaAs系半導体レーザ素子(レーザチップ)、
53…受光素子、
54…回路基板、
55…レーザマウント、
56…正電極、
60…シリコン樹脂、
61…エポキシ樹脂モールド、
62,63…レンズ部、
64…ヒートシンク、
65…レーザビーム、
71…パーソナルコンピュータ、
72…基地局、
81…光ディスク、
82…半導体レーザ素子、
83…コリメートレンズ、
84…ビームスプリッタ、
85…λ/4偏光板、
86…レーザ光照射用対物レンズ、
87…再生光用対物レンズ、
88…信号検出用受光素子、
89…信号光再生回路。

Claims (9)

  1. 基板上に、少なくとも、第1導電型の第1クラッド層、活性層、第2導電型の第2クラッド層、ストライプ状の電流経路を有する第2導電型の半導体層、上記第2クラッド層上における上記半導体層の両側に位置して上記半導体層を挟んで上記電流経路を狭窄する第1導電型の電流ブロック層、および、上記半導体層上に配置された第2導電型のコンタクト層を、形成する工程を備え、
    上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層は、再成長工程によって形成され、
    上記再成長工程は、上記第2導電型のドーパントガスの供給開始と同時にまたは上記第2導電型のドーパントガスの供給を開始した後に、少なくともGaとAsとを含むと共にAl組成が0以上且つ0.05以下である上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層を、再成長の開始と共に上記基板の温度を上昇させながら成長させることにより、ドーピング濃度が再成長界面となる上記基板側で高く上記基板の反対側に向かって連続的に低下するように成長させる工程を含んでおり、
    上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始する際におけるドーピング濃度は、5×1018cm-3以上である
    ことを特徴とする半導体レーザの製造方法。
  2. 請求項1に記載の半導体レーザの製造方法において、
    上記第2導電型のドーパントガスの供給を開始する際の上記基板の温度が、500℃以上であり且つ550℃以下であり、
    上記再成長させる第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を開始する際の上記基板の温度が、550℃以上であり且つ600℃以下である
    ことを特徴とする半導体レーザの製造方法。
  3. 請求項1あるいは請求項2に記載の半導体レーザの製造方法において、
    上記第2導電型の第2クラッド層,上記第2導電型の半導体層および上記第2導電型のコンタクト層のドーパントはZnであり、
    上記第2導電型の半導体層あるいは上記第2導電型のコンタクト層の再成長を、有機金属化学気相成長法を用いて行う
    ことを特徴とする半導体レーザの製造方法。
  4. 請求項1から請求項3までの何れか一つに記載の半導体レーザの製造方法において、
    上記電流経路が上記電流ブロック層によって狭窄されている上記第2導電型の半導体層は、上記再成長工程によって形成されており、
    上記第2導電型の半導体層上に、上記電流ブロック層によって挟まれて、電流経路が上記電流ブロック層で狭窄されているストライプ状の第2導電型の第3クラッド層を形成する工程を備え、
    上記活性層と上記第2導電型の半導体層の再成長面との間隔が0.15μm以上である
    ことを特徴とする半導体レーザの製造方法。
  5. 請求項4に記載の半導体レーザの製造方法において、
    上記再成長によって形成される上記第2導電型の半導体層の層厚は30Å以上且つ100Å以下である
    ことを特徴とする半導体レーザの製造方法。
  6. 請求項4あるいは請求項5に記載の半導体レーザの製造方法において、
    上記再成長による上記第2導電型の半導体層の形成は、上記基板の温度が600℃に到達するまでに完了する
    ことを特徴とする半導体レーザの製造方法。
  7. 請求項4から請求項6までの何れか一つに記載の半導体レーザの製造方法において、
    上記第2導電型の第2クラッド層と、上記第1導電型の電流ブロック層および上記第2導電型の半導体層との間に、上記第2導電型の半導体層が再成長される際の下地となるPを含む下地層を形成する工程と、
    上記再成長時に、上記第2導電型のドーパントガスの供給を開始するに先立って、上昇する上記基板の温度が400℃に到達する前に成長室内への少なくともPの原料ガスの供給を開始すると共に、上記第2導電型の半導体層を再成長させる直前に上記Pの原料ガスの供給を停止する工程と
    を含むことを特徴とする半導体レーザの製造方法。
  8. 請求項7に記載の半導体レーザの製造方法において、
    上記Pを含む下地層はInGaPあるいはInGaAsPからなる
    ことを特徴とする半導体レーザの製造方法。
  9. 請求項1に記載の半導体レーザの製造方法において、
    上記第2導電型のコンタクト層は、再成長工程によって形成されており、
    上記第2導電型の半導体層は、リッジ状を成す第2導電型の第3クラッド層およびキャップ層である
    ことを特徴とする半導体レーザの製造方法。
JP2004380735A 2004-01-09 2004-12-28 半導体レーザ装置の製造方法 Expired - Fee Related JP4870349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380735A JP4870349B2 (ja) 2004-01-09 2004-12-28 半導体レーザ装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004003912 2004-01-09
JP2004003912 2004-01-09
JP2004380735A JP4870349B2 (ja) 2004-01-09 2004-12-28 半導体レーザ装置の製造方法

Publications (2)

Publication Number Publication Date
JP2005223316A JP2005223316A (ja) 2005-08-18
JP4870349B2 true JP4870349B2 (ja) 2012-02-08

Family

ID=34998676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380735A Expired - Fee Related JP4870349B2 (ja) 2004-01-09 2004-12-28 半導体レーザ装置の製造方法

Country Status (1)

Country Link
JP (1) JP4870349B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573819B2 (ja) * 2011-11-09 2014-08-20 住友電気工業株式会社 Iii−v化合物半導体光素子を作製する方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166285A (ja) * 1986-12-26 1988-07-09 Toshiba Corp 半導体発光装置の製造方法
JP3015371B2 (ja) * 1988-01-20 2000-03-06 株式会社東芝 半導体レーザ
JPH03201585A (ja) * 1989-12-28 1991-09-03 Toshiba Corp 光半導体素子の製造方法および低抵抗半導体層の成長方法
JP2561802Y2 (ja) * 1990-05-29 1998-02-04 三洋電機株式会社 半導体レーザ
JP3205589B2 (ja) * 1992-04-24 2001-09-04 シャープ株式会社 半導体薄膜の成長方法
JPH0684805A (ja) * 1992-09-01 1994-03-25 Fujitsu Ltd 化合物半導体結晶成長方法
JPH07154031A (ja) * 1993-07-06 1995-06-16 Mitsubishi Electric Corp 半導体レーザ装置
JP3423203B2 (ja) * 1997-03-11 2003-07-07 シャープ株式会社 半導体レーザ素子の製造方法
JP2002124738A (ja) * 2000-10-17 2002-04-26 Mitsubishi Chemicals Corp 半導体光デバイス装置及びその製造方法
JP4265875B2 (ja) * 2001-05-28 2009-05-20 日本オプネクスト株式会社 面発光半導体レーザの製造方法

Also Published As

Publication number Publication date
JP2005223316A (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
US8679876B2 (en) Laser diode and method for fabricating same
JP3468082B2 (ja) 窒化物半導体素子
JP4204982B2 (ja) 半導体レーザ素子
JP2000261106A (ja) 半導体発光素子、その製造方法及び光ディスク装置
US7558307B2 (en) Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system
US5956362A (en) Semiconductor light emitting device and method of etching
JPH065976A (ja) 半導体レーザ装置の製造方法
JP4038046B2 (ja) 半導体レーザ装置の製造方法
JPH1041581A (ja) 窒化物半導体素子
JPH11186665A (ja) 半導体発光素子
JP4870349B2 (ja) 半導体レーザ装置の製造方法
US7492801B2 (en) Semiconductor laser element, manufacturing method thereof, optical disk apparatus and optical transmission system
JP4683731B2 (ja) 窒化物半導体レーザ素子とこれを含む光学装置
JP3235440B2 (ja) 窒化物半導体レーザ素子とその製造方法
JP4121494B2 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP2001148540A (ja) 半導体発光素子
JP4786873B2 (ja) 半導体レーザ素子の製造方法
JP3241326B2 (ja) 半導体発光素子およびその製造方法
JP2005167196A (ja) 半導体レーザ素子およびその製造方法および光ディスク装置および光伝送システム
JP4619647B2 (ja) 化合物半導体装置の製造方法
JPH07106698A (ja) 半導体発光素子
JPH07263796A (ja) 半導体レーザ
US6023483A (en) Semiconductor light-emitting device
JP2005340576A (ja) 半導体レーザ素子およびその製造方法、光ディスク装置並びに光伝送システム
JP2001028473A (ja) n型窒化物半導体の成長方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees