JP4869059B2 - アンテナ、プラズマ処理装置および基板の処理方法 - Google Patents

アンテナ、プラズマ処理装置および基板の処理方法 Download PDF

Info

Publication number
JP4869059B2
JP4869059B2 JP2006503590A JP2006503590A JP4869059B2 JP 4869059 B2 JP4869059 B2 JP 4869059B2 JP 2006503590 A JP2006503590 A JP 2006503590A JP 2006503590 A JP2006503590 A JP 2006503590A JP 4869059 B2 JP4869059 B2 JP 4869059B2
Authority
JP
Japan
Prior art keywords
turn
antenna
loop
leg
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006503590A
Other languages
English (en)
Other versions
JP2006518915A (ja
Inventor
ウィルコックスソン・マーク・エイチ.
ベイリー・アンドリュー・ディ.・ザサード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2006518915A publication Critical patent/JP2006518915A/ja
Application granted granted Critical
Publication of JP4869059B2 publication Critical patent/JP4869059B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/26Supports; Mounting means by structural association with other equipment or articles with electric discharge tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Description

本発明は、IC製造で用いられる半導体基板、またはフラットパネルディスプレイの応用例で用いられるガラスパネルのような基板を処理する装置および方法に関する。より具体的には本発明は、基板表面にわたって高度な処理の均一さで基板を処理できる改良されたプラズマ処理システムに関する。
プラズマ処理システムができて久しい。何年にもわたり、誘導結合されたプラズマ源、電子サイクロトロン共鳴(ECR)源、容量性ソースなどを利用するプラズマ処理システムが、半導体基板およびガラスパネルを処理するために導入され、さまざまな割合で用いられてきた。
処理中、複数の堆積および/またはエッチングステップが典型的に利用される。堆積中、材料は基板表面(ガラスパネルまたはウェーハの表面など)の上に堆積される。例えばさまざまな形態のシリコン、シリコン酸化物、シリコン窒化物、金属のような堆積された層が基板上に形成されえる。逆に、エッチングは、基板表面上の予め決められた領域から選択的に材料を除去するために利用されえる。例えば、バイア、コンタクト、またはトレンチのようなエッチングされた特徴が基板の層中に形成されえる。
プラズマ処理のある具体的な方法は、誘導性ソースを用いてプラズマを生成する。図1は、プラズマ処理に用いられる従来技術によるプラズマ処理リアクタ100を示す。典型的な誘導性プラズマ処理リアクタは、誘電体窓106上に配置されたアンテナまたは誘導コイル104を持つチャンバ102を含む。典型的にはアンテナ104は、第1RF電力源108に動作可能に結合される。さらにガスソース材料、例えばエッチャントソースガスを、誘電体窓106および基板112間のRFで誘導されたプラズマ領域に放出するように構成されたガスポート110がチャンバ102内に設けられる。基板112は、チャンバ102内に導入され、チャック114上に配置され、このチャックは一般に電極として働き、第2RF電力源116に動作可能に結合される。
プラズマを発生するために、処理ガスがガスポート110を通してチャンバ102内に入れられる。それから第1RF電力源108を用いて電力が誘導コイル104に供給される。供給されたRFエネルギーは、誘電体窓106を通して結合し、大きな電界をチャンバ102内に誘導する。より具体的には、電界に応じて、回転電流がチャンバ102内に誘導される。電界は、チャンバ内に存在する少数の電子を加速し、それらを処理ガスのガス分子と衝突させる。これらの衝突により、イオン化および放電つまりプラズマ118の開始に至る。この技術分野でよく知られるように、処理ガスの中性ガス分子は、これらの強い電界に曝されるとき、電子を失い、あとに正に帯電したイオンを残す。その結果、正に帯電したイオン、負に帯電した電子、および中性ガス分子(および/または原子)がプラズマ118内に含まれる。自由電子の生成速度がその消失速度を超えると、プラズマが点火する。
いったんプラズマが形成されると、プラズマ内の中性ガス分子は、基板表面に向かって導かれる傾向がある。例を挙げれば、基板における中性ガス分子の存在に寄与するメカニズムの一つは、拡散である(すなわちチャンバ内での分子のランダムな動きである)。よって、中性種の層(例えば中性ガス分子)は典型的には基板112の表面に沿って見られる。対応して、底部電極114に電源が入ると、イオンは基板に向かって加速し、基板において中性種と共にエッチング反応を活性化する。
上述のような誘導性プラズマシステムに見受けられる一つの問題は、基板全体にわたってのエッチングパフォーマンスのバラツキ、例えば、不均一なエッチング速度である。すなわち、基板のある領域が、他の領域と異なるようにエッチングされる。その結果、集積回路に関連するパラメータ、すなわち微小寸法、アスペクト比などを制御するのが非常に困難である。さらに不均一なエッチング速度は、半導体回路のデバイス欠陥に結びつき、これは製造者にとってはより高いコストにつながる。さらに全体的なエッチング速度、エッチングプロファイル、マイクロローディング、選択性など、他の心配の種も存在する。
近年において、これら不均一なエッチング速度は、基板の表面にわたるプラズマ密度のバラツキの結果、すなわち反応種(例えば正に帯電したイオン)が多かったり少なかったりする領域群を持つプラズマの結果であるとわかってきた。理論に拘束されたくないと願う反面で、プラズマ密度のバラツキは、電力結合、例えば、アンテナ、誘電体窓、および/またはプラズマの電力伝送特性に見いだされる非対称性によって作られると信じられている。もし電力結合が非対称であれば、誘導された電界の循環電流も非対称で、よってイオン化およびプラズマ開始も非対称であるというロジックが成り立つ。その結果、プラズマ密度のバラツキが見いだされる。例えば、ある種のアンテナ構成は、コイルの中心において強く、コイルの外周において弱い電流を誘導する。それに対応して、プラズマは、プロセスチャンバの中心に向かって集中する傾向がある(プラズマ118によって図1で示されるように)。
非対称電力結合を克服する標準的な手法は、非対称性を補償または平衡することである。例えば、弱い電流領域における電流密度を増すために平面アンテナの対を用いること、異なる半径においてより多くの円形ループを形成するようにスパイラルアンテナに半径方向の部材を付加すること、誘電体窓の厚さを変化させて強電流領域の電流密度を低下させることがある。しかしこれらの平衡技術は、方位角については対称的な電力結合を提供しにくい。すなわちこれらは依然として、プラズマのバラツキに結びつく方位角についてのバラツキを持つ傾向があり、エッチングの均一性を得るのを困難にしている。
さらに今日用いられるたいていのアンテナ構成は、ある程度の容量性結合をアンテナおよびプラズマ間に形成する。容量性結合は、アンテナおよびプラズマ間の電圧降下によって発生する。電圧降下は、典型的には、誘電体窓において、またはその近傍でシース電圧を発生する。たいていの場合、シース電圧は底部電極(電力が供給された)のようにふるまう傾向がある。すなわちプラズマのイオンは、シースを横切って加速され、よって負に帯電された結合窓に向かって加速する。その結果、加速されるイオンは、結合窓の表面に衝突する傾向にある。
これらの衝突イオンは、基板上に対してと実質的に同じ影響を結合窓に対して持つ。すなわちそれらは、結合窓表面上に材料をエッチングまたは堆積する。これは、不要な、および/または予測不能な結果を招きえる。例えば、堆積した材料は、結合窓上に積もり、有害な粒子源になりえ、特に材料が基板表面上に剥がれ落ちるときにはそうである。結合窓から材料を除去するのも同じ影響がある。結局、厚さの増加または減少は、例えば、電力結合の電力伝送特性(例えばアンテナ、誘電体窓、プラズマ)において処理のバラツキを招く。前述のように、処理のバラツキは不均一な処理に結びつき、半導体回路中のデバイス欠陥につながる。
上述のことを鑑みて、基板表面において均一な処理を行う改良された方法および装置が望まれる。
本発明は、ある実施形態においては、窓を通してプロセスチャンバ内で電界を生成するアンテナ構成に関する。一般に、このアンテナ構成は、アンテナ軸の周りに配置された第1外側ループターンを備える外側ループ、前記アンテナ軸の周りに配置された第1内側ループターンを備える内側ループを備え、前記内側ループターンは、それぞれの方位角方向において前記第1外側ループターンよりも前記アンテナ軸により近く、および前記外側ループを前記内側ループに半径方向に電気的に接続する半径方向コネクタを備え、前記半径方向コネクタは前記窓から大きな距離をあけて配置される。
本発明は、他の実施形態においては、基板を処理するプラズマ処理装置に関する。一般に、プロセスチャンバは、前記処理のためにプラズマが点火および維持されるよう提供される。窓は、前記プロセスチャンバへRFエネルギーが透過することを可能にするよう前記プロセスチャンバの側面を形成する。マルチレイヤアンテナは前記窓に隣接し、RFエネルギーを介して前記プロセスチャンバ内に電界を作るよう構成される。マルチレイヤアンテナは、前記アンテナ軸の周りに配置された第1外側ループターンを備える外側ループ、前記アンテナ軸の周りに配置された第1内側ループターンを備える内側ループを備え、前記内側ループターンは、それぞれの方位角方向において前記第1外側ループターンよりも前記アンテナ軸により近く、および前記外側ループを前記内側ループに半径方向に電気的に接続する半径方向コネクタを備え、前記半径方向コネクタは前記窓から大きな距離をあけて配置される。
本発明は、添付の図面中の図において限定としてではなく、例示によって示され、これら図面においては同様の参照番号は同様の要素を示す。
本発明は、以下にいくつかの実施形態を参照し添付の図面に示されるように詳細に説明される。以下の説明において、多くの具体的な詳細が述べられるが、これは本発明の完全な理解を促すためである。しかり当業者には、本発明はこれらの具体的な詳細の一部または全てなしでも実施しえることが自明であろう。あるいは、よく知られたプロセスステップは、本発明を不必要にぼかさないために詳細には説明されていない。
基板を処理するとき、プロセスエンジニアが改善しようと努力する最も重要なパラメータのうちの一つは、プロセス均一性である。ここでこの語が用いられるように、エッチング均一性は、基板表面にわたるエッチングプロセス全体の均一性をいい、エッチング速度、マイクロローディング、マスク選択比、アンダーレイヤ選択比、微小寸法制御、および側壁角および粗さのようなプロファイル特性が含まれる。例えばもしエッチングが非常に均一であれば、基板上の異なる点でのエッチング速度は実質的に同じであると期待される。この場合、基板のある領域が程度を過ぎた過度のエッチングをされ、他の領域が不十分にエッチングされるということは起こりにくい。
本発明は、均一なエッチングを行うことができる基板を処理するプラズマ処理システムを提供する。プラズマ処理システムは、RF電力源およびプロセスチャンバを含む。プラズマ処理システムはさらに、RF電力源に動作可能に結合された実質的に円形のアンテナを含み、このアンテナは、基板が処理のためにプロセスチャンバ内に配置されるとき、基板によって定義される平面上に配置される。実質的に円形なアンテナは、RF電力源によって生成されたRFエネルギーでプロセスチャンバ内に電界を誘導するように構成される。実質的に円形のアンテナは、同心円ループ群の少なくとも一つの第1ペアを第1平面内に有する。第2平面内の同心円ループ群の第2ペアは、同心円ループ群の第1ペアと関連付けて配置される。同心円ループの第1ペアおよび同心円ループの第2ペアは、実質的に同一で、互いに共通の軸に沿って対称的にアラインされている。全てのループ内で同じ方向に電流を駆動するのに必要とされるそれぞれのループ内の同心円ターン間の半径方向の接続は、窓および同心円ループから大きな距離を置かれている。好ましくは半径方向コネクタは、窓から遠く離れて配置され、反対の電流を与えて結果として生じる電界をいくらか打ち消すように互いに近くに配置される。
プラズマ処理システムはさらに、アンテナおよびプロセスチャンバ間に配置された結合窓を含む。結合窓は、RFエネルギーがアンテナからプロセスチャンバ内部へ透過することを可能にする。さらに結合窓は、第1レイヤおよび第2レイヤを持つ。第2レイヤは、結合窓を通して通る電圧の少なくとも一部を吸収することによって窓およびプラズマ間に形成される電圧降下を低減させるように構成される。実質的に円形のアンテナおよびこの結合窓は協働して、実質的に均一なプロセス速度を基板表面にわたって実現するプロセスチャンバ内において、方位角について対称な(azimuthally symmetric)プラズマを形成するように構成される。
本発明のある局面によれば、基板表面にわたるプロセス均一性は、均一なプラズマを作るよう構成された改良されたアンテナ構成を提供することによって達成される。前述のように、電力がアンテナに供給されて電界が誘導され、その結果、プロセスチャンバ内に循環電流が誘導される。対応して、電界は、プロセスチャンバ内の電子を加速し、電子が処理ガスのガス分子と衝突するようにし、その結果、処理ガスはプラズマをイオン化し開始させる。
プラズマの発生に続いて、電力が下部電極に供給され、イオンが基板に向かって加速される。基板表面の加速されたイオンおよび中性反応種は、基板表面上に置かれた材料と反応し、よって基板を処理する。一般にプラズマの密度が基板のある領域で大きいとき、不均一な処理速度が引き起こされる。したがって改良されたアンテナ構成は、方位角について対称な電界を誘導することによってこれらのプラズマのバラツキを低減し、よってより均一な処理速度を実現する。
本発明は、以下のルールを最も良く満足するように構築されたアンテナを提供する。すなわち、1)それぞれのターン中の全ての欠けている方位角電流を、その欠けているセグメントまたはギャップになるべく近接して配置された方位角電流で補償する。2)全ての非方位角電流を、なるべく近接して配置された逆電流で補償する。3)非方位角非対称電流成分を、それらが近くで補償されるにしても、その個別の磁束が窓から遠ざかるように保持する。
ある実施形態において、改良されたアンテナは、方位角について対称な循環電流を発生するように構成される。理論には拘束されたくないと願う反面で、誘導された電界に応じて、電力結合の伝送線路特性は、方位角についてのバラツキを循環電流に生じると信じられている。これらの伝送線路特性は、アンテナ長に沿って高電圧および低電圧の変動する領域を形成する定在波を発生し、その結果、高電流密度および低電流密度の変動する領域を誘導された電界中に形成する。すなわち電圧が高いときには電流は低く、電圧が低いときには電流は高い。当業者によく知られるように、プラズマへの電力注入は、電流密度に依存する。例えば、電流密度が高いところではプラズマ密度は高い傾向にあり、電流密度が低いところではプラズマ密度は低い傾向にある。したがって方位角について非対称なプラズマは典型的には、電流密度が高電流および低電流の変動領域を持つときに発生する。
より具体的には、RFエネルギーの波長がアンテナ長よりも小さいとき、より多くの節が定在波パターンに現れる。一般に、定在波は以下の方程式によって支配され、アンテナの電気長=1/2(波長)×nであり、ここでn=節の数である。たいていのアンテナ構成は、約1 1/2から約2 1/2波長の長さであり、その結果、3個から5個の節を生じる。これらの節は、上述の低電圧に対応する。
改良されたアンテナは、伝送線路としてよりも電力配送システム中の集中回路要素として振る舞うように構成されることによってこの欠点を克服する。すなわち、改良されたアンテナは、動作周波数におけるRFエネルギーの波長よりも小さい見かけの長さを持つように構成される。その結果、節の数は減少され、よって誘導された電流の方位角についてのバラツキが実質的になくなり、伝送線路のアナロジーがもはや成立しない。
ある実施形態において、改良されたアンテナ構成は、シングルターンアンテナのように振る舞うマルチターンアンテナである。マルチターンアンテナは、複数のループを含む実質的に単一の伝導エレメントであり、これらのループは、近接して巻かれ、互いにスタックにされる。近接して巻き、ループ群を一緒にスタックにすることによって、アンテナの全体のサイズ(例えば外周)は、誘導される循環電流の強度に影響することなく、小さく作ることができる。さらにアンテナのサイズを小さくすることによって、アンテナの全体の長さが小さくでき、その結果、アンテナの伝送線路的な特性を低減する。さらにループ群が互いに近接して配置されるので、ターン間で見られる放射のバラツキは、典型的には低減される。対応して、改良されたアンテナ構成は、方位角について対称である循環電流を効果的に誘導する。したがって方位角について対称である循環電流は、方位角について対称であるプラズマを形成する傾向にあり、その結果、そのようなプラズマは基板表面において均一なプラズマ処理を実現する傾向にある。
マルチターンスタックアンテナ構成の他の局面は自己遮蔽特性であり、すなわちプラズマは窓に隣接するターン群によってアンテナ端子電圧から遮蔽される。これにより容量性結合および後で起こる窓のエロージョンが大きく減少するが、これらについては以下に詳述する。
本発明の他の局面によれば、改良された結合窓は、アンテナおよびプラズマ間で起こる容量性結合を低減するように構成される。たいていの電力結合構成(例えばアンテナ、結合窓、および電力)は、アンテナおよびプラズマ間である程度の容量結合を生む。容量結合は、アンテナおよびプラズマ間に起こる電圧降下によって作られる。この電圧降下は典型的には結合窓近傍にシース電圧を発生する。当業者にはよく知られるようにシース電圧はさらなるバラツキをプラズマに生じえる。例えばシース電圧は、プラズマを窓から引き離し、容量結合係数の低減を招く。さらにシース電圧は、イオンの結合窓への衝突によって大きな粒子汚染を作りえる。さらに窓のイオン衝突によって消費されるいくらかの電力は、プラズマ発生には典型的には利用不可能であり、それに応じて与えられた電力当たりのプラズマ密度を低下させる。
アンテナおよびプラズマ間の容量結合を低下させるために、改良された結合窓は、一緒に配置される誘電体層および遮蔽層を含むように構成される。プロセスチャンバ内に配置される層である遮蔽層は、電圧を結合窓の表面から遠ざけるように導く静電遮蔽として働くよう好ましくは構成される。遮蔽層は、プラズマとの容量結合を実質的に抑圧する。さらに遮蔽層は、容量性(静電、電位の勾配)電界を除去しつつ、一方で、誘導性(curlB、gradF=0のタイプ)電界を実質的に変化させないよう構成される。すなわち、結合窓は、結合窓を通しての直接的容量結合を阻止しつつ、一方で、アンテナが誘導的にプラズマを形成することを許すよう(遮蔽層に実質的な損失を与えず)構成される。
より具体的には、遮蔽層は、電気的に絶縁され、伝導性または半伝導性材料から形成される。したがってアンテナおよびプラズマ間でふつう起こる電圧降下は、こんどはアンテナおよび遮蔽層間で起こる。したがって結合窓の表面近傍のシース電圧は、実質的に低減され、その結果、誘導結合係数を増し、結合窓のイオン衝突による電力損失を低減する。
さらに、グラウンドされていない静電遮蔽は、均一な静電界を作り、遮蔽の領域にわたる静電界の変化だけを遮蔽する。この最後の特徴は、プラズマの衝撃を促進するのに用いられえる。さらにこの遮蔽層は、プロセスチャンバの内部に露出されているので、好ましくはプラズマ処理の温度的、化学的、および物理的影響に耐える材料から形成される。
本発明の特徴および効果は、図および以下の議論を参照してよりよく理解されよう。
図2は、本発明のある実施形態によるプラズマ処理システム200を示し、これは、基板206を処理するためにその中でプラズマ204が点火され維持されるプロセスチャンバ202を含む。基板206は、処理されるべきワークピースを表し、これは例えば、エッチングされたり、堆積されたり、または他の方法で処理されたりするべき半導体基板、またはフラットパネルディスプレイに処理されるべきガラスパネルでありえる。さらにプロセスチャンバ202は、好ましくは実質的に円筒の形状であるよう構成され、実質的に鉛直なチャンバ壁208を持つ。しかし本発明は上述のものに限定されず、プロセスチャンバのさまざまな構成が用いられえることに注意されたい。
プラズマ処理システム200はさらに、アンテナ構成210および結合窓構成212を含み、これらは電力をプラズマ204に結合するよう構成される。アンテナ構成210は、アンテナ構成210に約0.4MHzから約50MHzの範囲の周波数を持つRFエネルギーを供給するよう構成される第1RF電源214に結合される。結合窓212は、アンテナ構成210からの第1RFエネルギーがプロセスチャンバの内部に透過することを可能にする。好ましくは結合窓212は、基板206およびアンテナ構成210の間に配置される。
さらにアンテナ構成210は、プラズマ204の形成を促進するために結合窓に充分に近くなければならない。すなわち、アンテナ構成が結合窓により近いほど、チャンバ内で発生する電流の強度がより強くなる。さらにアンテナ構成210は、好ましくはプロセスチャンバ202および基板206と同軸上に構成される。アンテナ構成の対称的な配置は、基板表面にわたってプラズマの均一性を高めるが、全てのプロセスに必要とされるわけではないことが理解されるべきである。アンテナ構成210および結合窓212は、以下により詳細に説明される。
ガス注入器215が典型的にはチャンバ202内に備えられる。ガス注入器215は好ましくはチャンバ202の内側周囲の周りに配置され、ガス源材料、例えばエッチング剤材料ガスを結合窓212および基板206の間のRF誘導されたプラズマ領域に放出するように構成される。あるいはガス源材料はまた、チャンバそのものの壁に組み込まれたポートから、または誘電体窓内に構成されたシャワーヘッドを通して放出されえる。ガスの対称的な分布は、基板表面にわたるプラズマの均一性を向上しえるが、全てのプロセスについて必要とされるわけではないことを理解されたい。例示的なプラズマ処理システムで用いられえるガス分配システムの例は、「PLASMA PROCESSING SYSTEM WITH DYNAMIC GAS DISTRIBUTION CONTROL」と題された1999年11月15日に出願された米国特許出願第09/470,236号においてより詳細に記載され、ここで参照によって援用される。
たいていの場合、基板206はチャンバ202内に導入され、チャック216上に配置され、このチャックは処理中に基板を保持するように構成される。チャック216は、例えば、ESC(静電)チャックを表し、これは基板206を静電力でチャックの表面に固定する。典型的にはチャック216は、底部電極として働き、好ましくは第2RF電源218によってバイアスされる。さらにチャック216は、好ましくは実質的に円筒の形状に構成され、プロセスチャンバおよびチャックが円筒状に対称的であるようにプロセスチャンバ202と同軸上にアラインされる。チャック216はまた、基板206をローディングしたりアンローディングしたりする第1位置(不図示)、および基板を処理する第2位置(不図示)の間を動くように構成されえる。
また図2を参照して、排気ポート220がチャンバ壁202およびチャック216の間に配置される。しかし排気ポートの実際の配置は、それぞれのプラズマ処理システムの特定の設計に基づいて変わりえる。しかし高度な均一性が非常に重要な場合においては、円筒状に対称的な排気ポートがかなり有益となりえる。好ましくは排気ポート220は、処理中に形成された副生成ガスを排気するように構成される。さらに排気ポート220は、典型的にはチャンバ202の外に位置するターボ分子ポンプ(不図示)に結合される。当業者にはよく知られるようにターボ分子ポンプは、チャンバ202内で適切な気圧を維持する。
さらにエッチング処理のような半導体処理の場合、処理チャンバ内の多くのパラメータは、高い許容誤差の結果を維持するために厳しく制御されなければならない。処理チャンバの温度は、そのようなパラメータのうちの一つである。エッチング許容誤差(etch tolerance)(および結果として生じる半導体ベースのデバイスのパフォーマンス)は、システム中の要素の温度変動に非常に敏感でありえるので、正確な制御が必要とされる。例として、温度制御を実現する例示的なプラズマ処理システムで用いられえる温度管理システムは、「TEMPERATURE CONTROL SYSTEM FOR PLASMA PROCESSING APPARATUS」と題された2001年10月16日に発行された米国特許第6,302,966号においてより詳細に記載され、この特許はここで参照によって援用される。
さらにプラズマ処理を通して厳しい制御を達成するのに他の重要な問題点は、プラズマ処理チャンバに利用される材料、例えばチャンバ壁のような内部表面である。さらに他の重要な問題点は、基板を処理するのに用いられるガス化学物質である。例として、例示的なプラズマ処理システムで用いられえる材料およびガス化学物質の両方は、同時係属中の「MATERIALS AND GAS CHEMISTRIES FOR PLASMA PROCESSING SYSTEMS」と題された1999年11月15日に出願された米国特許出願第09/440,794号に記載されており、この出願はここで参照によって援用される。
プラズマを作るために、処理ガスは、チャンバ202にガス注入器215を通して導入される。それから電力がRF電源214を用いてアンテナ構成210に供給され、大きな電界が結合窓212を通してチャンバ202内に誘導される。電界は、チャンバ内に存在する少数の電子を加速し、それらが処理ガスのガス分子と衝突するようにさせる。これらの衝突は、放電、つまりプラズマ204のイオン化および開始につながる。当業者にはよく知られるように、処理ガスの中性ガス分子は、これらの強電界に曝されると電子を失い、後に正に帯電したイオンを残す。その結果、正に帯電したイオン、負に帯電した電子、および中性ガス分子がプラズマ204の中に含まれる。
プラズマがいったん形成されると、プラズマの中の中性ガス分子は、基板表面に向かって導かれる傾向にある。例として基板における中性ガス分子の存在に寄与するメカニズムのうちの一つは拡散である(例えばチャンバ内の分子のランダムな動き)。よって中性種のレイヤ(例えば中性ガス分子)は典型的には基板206の表面に沿って見いだされる。対応して、底面電極216に電力が供給されるとき、イオンは基板に向かって加速する傾向があり、基板において中性種と共に基板の処理、すなわちエッチング、堆積などを活性化する。
たいていの場合、プラズマ204は、主としてチャンバの上部領域(例えば活性化領域)に留まるが、プラズマの一部はチャンバ全体を埋める傾向がありえる。プラズマは、一般にそれが維持される場所に移動し、それはチャンバ内のほとんどすべての場所である。例として、プラズマは、ポンプ構成のベロー(例えば非活性領域)のような基板の下の領域を埋めえる。もしプラズマがこれらの領域に達すれば、それら領域のエッチング、堆積および/または浸食が進みえ、これは領域をエッチングしたり、堆積した材料が剥がれ落ちたりすることによってプロセスチャンバ内の粒子汚染につながる。
さらに閉じ込められないプラズマは、非均一なプラズマを形成する傾向にあり、これはプロセスパフォーマンスにおけるバラツキにつながる。このようなプロセスパフォーマンスには、エッチング均一性、全体のエッチング速度、エッチングプロファイル、マイクロローディング、選択比などがある。前述の効果を低減するために、プラズマを閉じ込めるためにプラズマ閉じ込め構成が使用されえる。例として、プラズマを閉じ込める例示的なプラズマ処理システムで用いられえるプラズマ閉じ込め構成は、1999年11月15日に出願された「METHOD AND APPARATUS FOR CONTROLLING THE VOLUME OF PLASMA」と題された米国特許出願第09/439,759号においてより詳細に記載され、この出願はここで参照によって援用される。
本発明のある局面によれば、プラズマ処理装置は、プラズマ処理システムのプロセスチャンバの内部において方位角について対称な(azimuthally symmetric)電界が誘導されるように、マルチターンアンテナ構成が設けられる。
微小寸法が小さくなり続けるにつれて、方位角について対称的でないプラズマの許容誤差も小さくなる。短絡を防ぐために、アンテナターンは不完全であり、アンテナループの端部の間にはギャップが存在する。そのようなギャップは、プラズマが方位角について対称的であることを阻止しえる。図3は、ギャップ308を持つ、完全でないアンテナターン304の概略図である。第1角316によって定義される第1方位角扇形部312は、ギャップ308を含む。第2角324によって定義される第2方位角扇形部320は、ギャップ308を含まない。ギャップ308は、第1方位角扇形部312内のRF電力が第2方位角扇形部320内のRF電力よりも小さくなるように働く。ギャップをブリッジするために、さまざまな電流を流す要素が用いられてきた。そのようなブリッジ要素の非対称性によって、そのような要素は所望の均一性を提供できなくなる。
図4は、ギャップ406、410をそれぞれ持つ2つの部分アンテナターン404、408の概略図である。ブリッジ414は、ギャップ406、410について補償するよう設けられている。半径方向のレッグ416は、電気的接続を部分アンテナターン404、408およびブリッジ414の間に提供し、それにより完全な電流パスを2つの部分アンテナターン404、408の間に提供する。半径方向電流成分は小さく、他のレベルにおいてターンのペアによって補償されえるが、この半径方向電流が大きな非対称性を生むことが判っている。これらレッグはアンテナターン404、408と同じ平面内にあるので、半径方向電流パスは、窓に「近接して」いる。明細書および特許請求の範囲において、もし半径方向電流パスが、最も遠いアンテナターンの少なくとも3倍の距離だけ窓から離れているなら、半径方向電流パスは、窓から離れているとして定義される。半径方向電流は、方位角方向に非対称な電流成分であり、アンテナそのものの同様の近接する電流成分に匹敵する電界を誘導する。この電界は、距離の2乗で除された半径方向電流部分の長さに比例して小さくなる。所望の対称アンテナ寄与分に比較して窓のプラズマ側上に現れるこの非対称成分を大きく低減するために、アンテナおよび窓のプラズマ側の間の距離(d1)および新しい半径方向部分の位置(d2)の比は10より小さくなければならない。すなわち、(d1/d2)2<10であり、これはほぼd2≧3*d1である。
図5および6は、本発明のある実施形態によるマルチターンアンテナ構成600を示す。マルチターンアンテナ構成600は、RF電源604に動作可能に結合されたマルチターンアンテナ602を含み、これらは図2に示されるアンテナ210およびRF電源214にそれぞれ対応する。
前述のように、もしアンテナ長が波長に対して短いなら、電力結合の伝送線路記述はもはや適切ではなく、電力結合は集中定数回路要素として振る舞う。したがってマルチターンアンテナ602は、伝送されるエネルギーの波長よりも短い長さを持つように構成される。アンテナ長を短くすることによって、定在波パターン中に作られる節がより少なくなり、その結果、アンテナの方位角方向における高電圧および低電圧領域が実質的に減らされる。
マルチターンアンテナ構成は、発生する電磁界が単一のターンアンテナからであるように見えるよう、互いに近接して配置された複数のターン群を持つよう好ましくは構成される。より具体的には、ターン群を互いに近接して配置することによってアンテナの容量を作る電流は増す。例えばもしアンテナが互いに近接した4ターンであるなら、プラズマを通る電流は、アンテナ中のそれの約4倍の強さになる傾向がある。対応して、この集中した電流は、より均一な集中したプラズマにつながる。その結果、アンテナの直径は、プロセスチャンバの直径に対してより小さくでき、よってこれでアンテナ長を小さくできる。アンテナの実際のサイズは、以下に詳細に説明される。
マルチターンアンテナ602は、実質的に円形であり、少なくとも第1平面内の同心円ループ群606の第1ペア、および第2平面内の同心円ループ群610の第2ペアを含む。好ましくは同心円ループ606の第1ペアおよび同心円ループ610の第2ペアは、実質的に同一であり、アンテナ軸614に沿って互いに対称的にアラインされる。実質的に円形のアンテナは、実質的に円形の電界を発生し、その結果、実質的に円形のプラズマを発生することに注意されたい。したがって、プロセスチャンバおよび基板が円形であるので、実質的に円形のプラズマはより均一な処理を基板表面において実行できる傾向にあるというロジックが成り立つ。
本発明は実質的に円形であるとして示され説明されてきたが、チャンバ設計におけるある程度の非対称性を持ったディスプレイまたは補償のためなど、異なる形状の基板を必要とする応用例のための代替の形状が使用されえることが理解されなければならない。例として、上述と同じ原理に従う楕円形、または円形の角を持つ長方形もうまく機能しえる。
さらに同心円ループ群606の第1ペアは、好ましくは同心円ループ群608の第2ペア上にスタックされる。単一平面アンテナは典型的には容量結合が増すが、これは端子電圧および全ての電圧の節が窓の直近に存在するからである。しかしスタックされたアンテナ、および同心円ループ群の第1ペアおよび同心円ループ群の第2ペア間の対称的なアライメントのために、高端子電圧は、同心円ループ群の第2ペアによって効果的に遮蔽される。より具体的には、第1同心円ループおよびプラズマ間に典型的に起こる電圧降下(例えば容量性結合)が大きく低減されるが、これは同心円ループ群の第2ペアが、電圧降下の伝導パスを提供し、よって電圧降下がプラズマに相互作用を及ばさないからである。
さらに、同心円ループ群606の第1ペアは、好ましくは第1ターン616および第4ターン622を含み、同心円ループ群610の第2ペアは、好ましくは第2ターン618および第3ターン620を含む。さらに第1ターン616は実質的に第2ターン618と同一で、第2ターン618の上に配置され、第4ターン622は実質的に第3ターン620と同一で、第3ターン620の上に配置される。
第1ターン616は動作可能に第2ターン618に結合され、第2ターン618は動作可能に第3ターン620に結合され、第3ターン620は動作可能に第4ターン622に結合され、それぞれのターンは、電流の向きがアンテナ軸614の周りに同じ向きになるよう構成される。ある実施形態において、マルチターンアンテナは、単一の伝導要素から形成される。しかしこれは限定ではなく、マルチターンアンテナは構造的にかつ電気的に互いに結合された別個の部品から形成されえる。さらにマルチターンアンテナ602は、入力リード624および出力リード626を含み、これらはRF電力源604にリード680を介して接続されえる。
この実施形態において、入力リード624は第1ターン616の第1端に動作可能に結合される。第1ターンの第2端は、第1コネクタ640の第1端に動作可能に結合される。第1コネクタの第2端は、第2ターン618の第1端に動作可能に結合される。第2ターン618の第2端は、半径方向接続の第1レッグ632に動作可能に結合される。半径方向接続の第2レッグ636は、第3ターン620の第1端に動作可能に結合される。少なくとも第1および第2レッグが窓に近接している(遠くはない)所では、第1レッグ632および第2レッグ636は、ターン616、618、620、622によって定義される平面に実質的に垂直である。より好ましくは第1および第2レッグは、第1および第2レッグの実質的に全長にわたってこれらターンによって定義される平面に垂直である。半径方向接続の半径方向コネクタ682は、第1レッグ632から第2レッグ636へと伸び、ターンによって定義される平面に実質的に平行でありえる。第3ターン620の第2端は、第2コネクタ644の第1端に動作可能に結合される。第2コネクタ644の第2端は、第4ターン622の第1端に動作可能に結合される。第4ターン622の第2端は、出力リード626に動作可能に結合される。電流は、入力リード624から第1ターン616を通り、第1コネクタ640を通り、第2ターン618を通り、半径方向接続の第1レッグ632を通り、半径方向接続の第2レッグ636を通り、第3ターン620を通り、第2コネクタ644を通り、第4ターン622を通り、出力リード626に達する。この電流の流れは矢印によって示される。したがって、RF電圧を入力リード624および出力リード626の間に印加することによって、RF電流がマルチターンアンテナ602を通して流れるよう構成される。
さらに図3および図4を参照して、第4ターン418は、第1ターン416よりもより大きい直径を持ち、第3ターン422は、第2ターン420よりもより大きい直径を持つ。外側ターン(例えば第3および第4ターン)はより大きい直径を持つが、それらは好ましくは内周ターン(例えば第1および第2ターン)の近傍に配置される。すなわち第4ターン418は好ましくは第1ターン416の近傍に配置され、第3ターン418は好ましくは第2ターン420の近傍に配置される。これらの近接配置によって、マルチターンアンテナは単一ターンアンテナのような形状であり、また単一ターンアンテナのように振る舞う(例えば実質的にターン間にはスペースがない)。したがって半径方向の高および低電流領域は実質的に低減される。楕円形、円形、および正方形のアンテナのような他のアンテナ形状を一般化すれば、第3および第4ターンは、第1および第2ターンよりも大きい幅(直径)を有する。第1ターンが第4ターン内であるとき、第1ターンは全ての方位角方向において第4ターンよりもアンテナ軸により近い。
ブリッジ414をギャップに近接し、ターンの平面内、または平面間にある半径方向のレッグ416と共に用いる代わりに、図5および6のアンテナは、半径方向コネクタをターン間において窓212から大きな距離を離して提供する。距離d1は、マルチターンアンテナ602のターン616、618、620、622の最も遠い部分および窓212のプラズマ側の間の距離である。距離d2は、半径方向接続の半径方向コネクタ682および窓212のプラズマ側の間の距離である。窓および半径方向接続の半径方向コネクタ682の距離が大きいとは、窓および半径方向コネクタ682間の距離d2が、窓およびアンテナのターンの最も遠い部分間の距離d1の少なくとも3倍であることを意味する。より好ましくは、窓および半径方向接続の半径方向コネクタ682間の距離は、可能である限り遠い。本発明によって、少なくとも窓の幅またはアンテナの幅の最も小さいもののオーダーの増加が大きな改良を行うために必要であるが、方位角方向で非対称な半径方向セグメントおよび窓のすぐ下の間の距離の増加によって均一性における改善が達成される。この実施形態の例は、この大きな距離は少なくとも4インチである。このような大きな距離を与えるために、ギャップのブリッジングは、半径方向レッグを持つブリッジを用いるよりも方位角方向の非対称の同じ補正を提供してはならないが、小さい半径方向電流によって生じる方位角方向の非対称は、方位角方向電流の偏差によって生じる方位角方向の非対称性よりも、より多くの非対称性をウェーハ処理に生じえる。加えて、半径方向のコネクタ682は好ましくは、出力リード626の半径方向ライン680の平行および近傍に配置され、それにより電流はさらに方位角方向非対称性を低減するように逆平行に流れる。
当業者にはよく知られるように、2つの導体間の小さいスペースは、典型的には2つの導体間でアークを発生する。したがって外側および内側ターン間のスペースは、アークを起こさない距離に限定される。しかし本発明のある実施形態において、内側および外側ターンが互いになるべく接近して配置されつつも、一方で、実質的に内側および外側ターン間のアークを防止することを可能にするために、このスペースは誘電体材料で埋められる。例として、約0.2から約1cmの間のスペースを持つテフロン(登録商標)またはセラミック材料がうまく機能する。
さらにマルチターンアンテナは一般に銅から形成される。ある実現例では、マルチターンアンテナは銀でコーティングされた銅から形成される。しかしマルチターンアンテナは銅または銀でコーティングされた銅に限定はされず、任意の適切な伝導性金属が用いられえることに注意されたい。ある実施形態において、アンテナループの断面は、それぞれループを窓およびそれぞれの他のループに対して繰り返し位置決めするのが楽なように長方形である。しかしこれは限定ではなく、他の断面形状およびサイズが用いられえる。代替としては、アンテナループは、温度制御を促進するために(すなわちその中を流体を流すために)空洞のある導体から形成されえる。
マルチターンアンテナの全体のサイズ、すなわち外側直径について、アンテナがプロセスチャンバの断面よりも小さい大きさに設定されることが一般には好ましく(絶対に必要というわけではなく)、これはプラズマを基板上の領域に集中させた状態に維持し、チャンバ壁への不要なプラズマ拡散を避けるためである。このプラズマ拡散は、プラズマ処理システムを動作させる電力をより多く必要とし、壁のエロージョンを増加させるなどの不利益をもたらす。さらにプラズマのサイズは一般に用いられるアンテナのサイズに対応するので、よってマルチターンアンテナは、均一なエッチング速度を実現するために、基板の直径と実質的に同様な外側直径を持たなければならない。例として、基板のサイズは典型的には約6から約12インチの間であり、よってある実施形態では、マルチターンアンテナは、約6および約12インチの間の外側直径を持つ。
さらに詳述すれば、増加された電流容量のために、すなわちマルチターンアンテナは単一のターンのように振る舞うので、マルチターンアンテナは基板よりも小さく構成されえる。すなわち電流のより高い集中は、基板を処理するのに充分に大きいプラズマを発生する傾向にある。しかしより小さいアンテナの使用は全ての処理に必要とされるわけではなく、アンテナは基板よりも大きく構成されえることに注意されたい。しかしもし高度な均一性が重要であるなら、より小さいアンテナの使用はかなり有用でありえる。例として、12インチの基板を処理するためには、アンテナの直径は約6から約15インチの間で構成されえ、好ましくは約7から約11インチである。しかしこれは限定ではなく、アンテナの実際のサイズは、基板の特定のサイズにしたがって(例えばアンテナサイズはより小さいまたは大きい基板が関連するときに必要に応じて大きさを変更されえる)、またはそれぞれのプラズマ処理システムの特定の設計にしたがって変化しえる。
用いられるRF周波数について、一般的なガイドラインとして、より低いRF周波数(例えば13MHz未満)は、定在波の効果を減らすことによって電力結合の伝送線路特性の効果を低減させる傾向にある。すなわちより低い周波数は、アンテナの方位角についての潜在的な非対称結合特性をより緩和する傾向にある。さらにより低いRF周波数において、アンテナおよびプラズマ間の容量性結合も緩和され、よって結合窓のイオン衝突が減少する。したがってRF電源の周波数は一般に約13MHz以下に構成され、好ましくは約0.4MHzおよび約13MHzの間であり、さらに好ましくは約4MHzである。より低い周波数の使用は全ての処理に必要とされるわけではないことに注意されたい。しかしもし高度の均一性が重要であるなら、低い周波数の使用はかなり有用でありえる。
前述のように、本発明の第1の局面の効果は数多くある。異なる実施形態または実現例は、以下の効果の一つ以上を持ちえる。本発明の一つの効果は、方位角について対称的なプラズマがプロセスチャンバ内に作られることである。その結果、プロセス均一性を高くでき、これは基板スループットを増し、デバイス欠陥を減らし、処理されている基板の全体的な生産性を上げる。本発明の他の効果は、本発明のアンテナ構成はそれ自身で遮蔽でき、よってアンテナおよびプラズマ間の容量性結合を低減させる。対応して、結合窓のイオン衝突が低減され、よって結合窓の寿命が延び、イオン衝突に関連付けられた粒子コンタミネーションが低減される。
本発明のある局面によれば、プラズマ処理装置は、アンテナおよびプラズマ間の容量性結合を実質的に低減するために多層結合窓構成を備える。本発明のこの局面の議論を進めるために、図7は、本発明のある実施形態による多層結合窓構成700を示す。多層結合窓構成700は、図2の結合窓212に対応しえる。多層結合窓700は、少なくとも第1レイヤ704および第2レイヤ706を含む。好ましくは第1レイヤ704は第2レイヤ706に接着されている。ある実現例では、2つのレイヤは互いに熱的に接着される。しかしこれは限定ではなく、他の接着プロセスが用いられえることに注意されたい。代替としては、レイヤ間にギャップ、すなわち真空ギャップまたはレイヤ間をガスが流れるギャップが設けられえ、一方で、前述の利点をも享受できることに注意されたい。さらに第2レイヤ706は、好ましくはプロセスチャンバの内側周辺表面の一部を形成する。
まず第2レイヤを参照すれば、第2レイヤは、その表面上での電位差を少なくする静電遮蔽として振る舞うよう構成される。さらに第2レイヤは、電気的に絶縁され、好ましくは、アンテナからプラズマへの誘導性RFエネルギーの透過を促進できる伝導性または半伝導性材料から形成されるよう構成される。さらに第2レイヤは、プロセスチャンバ内のプラズマに曝されるので、第2レイヤは好ましくはプラズマに実質的に耐えうる材料から形成される。好ましい実施形態において、第2レイヤは、シリコンカーバイド(SiC)から形成される。たいていの場合、SiCは、プラズマ処理の熱的、化学的、および物理的影響に耐えうる。さらにSiCは一般に誘電体として分類され、しかし電流の流れに対してある程度の抵抗を示す。抵抗特性は遮蔽効果を生むものであり、誘電体特性は誘導性結合を許すものである。
第2レイヤの抵抗は、静電遮蔽としてレイヤが機能することを確実にしつつ、一方で、誘導性電界に影響を与えないための重要なパラメータである。たいていの場合、本発明で用いられる特定の抵抗レンジは、結合窓が用いられるアンテナの具体的な寸法、電力結合の動作周波数、および第2レイヤの厚さに依存する。例として、約100Ω−cmから約10kΩ−cmがうまく機能する。しかしもし望まれるなら、第2レイヤ(例えばSiC)が誘電体層としてより振る舞うようにさせるために、抵抗は、106Ω−mより大きく構成されえる。
理論によって拘束されたくないと願う反面、第2レイヤの電気抵抗は、プラズマを形成するのに用いられる処理ガスに等電位表面を提供すると信じられる。例えば、プラズマの点火後、第2レイヤ上の電位は、プラズマが第2レイヤの近傍に位置するために大きく下げられる。さらに容量性電圧分割器が一般に形成され、例えば一定の容量を持つ誘電体第1レイヤによって形成される上部と、および点火前には伝導性第2レイヤおよびチャンバ壁によって、点火後には伝導性第2レイヤおよびプラズマによって形成される下部とからなる。点火前にはこの下部は小さい容量を持ち、よって点火を助ける大きな電圧が存在する(例えば放電を開始するためには、容量性電界が典型的には必要である)。点火後には、この下部は、この電圧が大きく下げられる大きな容量を持ち、よって大きな容量性電力結合には結びつかない。
こんどは第1レイヤを参照すれば、この第1レイヤは好ましくは、アンテナからプラズマへの誘導性RFエネルギーの透過を促進できる誘電体材料から形成される。さらに第1レイヤは、構造的に真空を維持するよう充分な強度を持って、かつチャンバの定期的クリーニング中に容易に扱えるよう充分に堅固に構成される。さらに第1レイヤは、窓の温度制御を可能にする優れた熱的特性を持つ誘電体材料から一般に形成される。例として、窒化シリコン(SiN)または窒化アルミニウム(AlN)から形成された誘電体材料がうまく機能する。しかしこれは限定ではなく、他の材料も用いられえることに注意されたい。例えば、アルミナおよび石英もうまく機能する。
多層結合窓700の全体の厚さは、アンテナRFエネルギーをプラズマに効率的に伝送できるよう充分に薄くしつつ、処理中に発生する圧力および熱に耐えるのに充分なよう構成される。好ましくは、多層結合窓の厚さは、約0.5および約1インチの間である。さらに第1レイヤ704は、第2レイヤ706よりも厚い厚さを持たなければならない。好ましくは、第1レイヤの厚さは、約0.5および約1インチの間である。さらに第2レイヤの厚さは、好ましくは、約0.1および約0.5インチの間である。レイヤの実際の厚さは、それぞれのレイヤに選ばれた具体的な材料にしたがって変更されえる。
結合窓のサイズがプラズマ処理チャンバのサイズに等しくなければならないという条件は存在しないことに注意されたい。しかし一般に小さい結合窓はコストを下げ、特にSiCのような高価な材料が採用されるときにはそうである。ある実施形態においては、結合窓の形状は、アンテナ構成の形状と一致するように構成され、よって結合窓は実質的に円形である。他の実施形態においては、結合窓の外側寸法は、アンテナを囲みえる電気的に伝導性を持つ要素への結合を少なくするために、アンテナの外側寸法を少しの距離だけ超えて外に伸びるよう構成されえる。ある例では、結合窓の外側寸法は、アンテナの外側寸法を約1インチ超えて外に伸びるように構成されえる。さらに他の実施形態においては、結合窓は実質的にアンテナと同じ、すなわち輪状の形状を持ちえる。
採用される誘電体特性(例えば誘電率)について、一般的なガイドラインとしては、より低い誘電率、例えば約10未満が、定在波効果を減少させることによって電力結合の伝送線路特性の効果を減らす傾向にある。より具体的には、より低い誘電率は、伝送されるエネルギーの波長をより長くする傾向があり、これはアンテナを見かけ上短くし、よって定在波パターン中に少ししか節を作らないことになる。したがって、より低い誘電率は、アンテナの任意の潜在的な方位角について非対称な結合特性を緩和する傾向にある。
さらに、上述のマルチターンアンテナおよび多層結合窓と共に、プラズマ処理システム中の基板の均一な処理をより向上させるために、追加の要素が採用されえることが考えられる。例として、結合窓およびマルチターンアンテナの近傍領域のプロセスチャンバ内での静磁界の半径方向のバラツキを制御するために、磁気構成物がマルチターンアンテナと共に構成されえる。そのような磁気構成物の例は、1999年11月15日に出願された「IMPROVED PLASMA PROCESSING SYSTEMS AND METHODS THEREFOR」と題された同時係属中の米国特許出願第09/439,661号に見られ、ここで参照によって援用される。
図8は、本発明の実施形態によって与えられるマルチターンアンテナ800の透視図である。図8のこのマルチターンアンテナ800は、図6の概略図の実現例でありえるので、同じ部分には同じ番号付けが用いられている。マルチターンアンテナ800は、第1ターン616、第2ターン618、第3ターン620、および第4ターン622を備える。それぞれのターンは平面を定義し、この平面はターンの周囲を通る。これら平面は、互いに実質的に平行であるか、または同一平面にあるかのいずれかである。入力バス624は第1ターン616の第1端に接続される。第1ターン616の第2端は第1コネクタ640の第1端に接続される。第1コネクタの第2端は、第2ターン618の第1端に接続される。第1ターン616および第2ターン618の間に架かる第1コネクタは、第1ターン616および第2ターン618によって定義される平面に実質的に垂直である。第2ターン618の第2端は、半径方向接続の第1レッグ632に接続される。半径方向接続の第2レッグ636は、第3ターン620の第1端に接続される。第1レッグ632および第2レッグ636は、ターン616、618、620、622によって定義される平面に実質的に垂直である。半径方向接続の半径方向コネクタ682は、第1レッグ632から第2レッグ636へ伸び、ターンによって定義される平面に実質的に平行である辺を有しえる。第3ターン620の第2端は、第2コネクタ644の第1端に接続される。第2コネクタ644の第2端は、第4ターン622の第1端に接続される。第3ターン620および第4ターン622の間に架かる第2コネクタ644の一部は、第3ターン620および第4ターン622によって定義される平面に実質的に垂直である。第4ターン622の第2端は、出力バス626に接続される。図9は、図8の切り欠き部分830の拡大された概略上面図であり、これは第3ターン620、第4ターン622、第2レッグ636、第2コネクタ644、および出力バス626の部分を示す。ターン616、618、620、622によって定義される平面は水平であるので、第1レッグ632、第2レッグ636、第1コネクタ640、および第2コネクタ644の辺は、実質的に垂直であり、一方、半径方向接続の半径方向コネクタは実質的に水平である。
図10は、第3ターン620の上面図である。第3ターン620は第1端1004および第2端1008を有し、ここで第3ターン620の第1端1004および第2端1008は、第3ターンギャップ1012によって分離される。半径方向接続の第2レッグ636は、第3ターン620の第1端1004に接続される。第2コネクタ644は、第3ターン620の第2端1008に接続される。第3ターン620の第1端1004および第2端1008の両方は、ノッチ1020、1024を形成する。第1ノッチ1020は、第1端1004の狭窄カンチレバー部1030を形成する。第2ノッチ1024は、第2端1008の狭窄カンチレバー部1034を形成する。ノッチ1020、1024および狭窄カンチレバー部1030、1034は、狭窄カンチレバー部1030、1034が同じ半径方向に沿って並ぶことを可能に、これは第2コネクタ644および第2レッグ636がターンの同じ半径方向に沿って並ぶことを可能にし、これは実質的に完全なターンを形成しえる。完全に切り欠きが付けられたターンは図10に示されるターンであり、これは切り欠きの付けられた第1端および第2端を有することで、カンチレバー部を形成し、ここは第1端および第2端のカンチレバー部の部分が同じ半径方向に沿って並び、それにより第1端に接続された電気的コネクタは、第2端に接続された第2電気的コネクタと同様にアンテナ軸を通った共通の半径に沿って位置する。
図11は、第4ターン622の上面図である。第4ターン622は、第1端1104および第2端1108を有し、これらはギャップ1112によって分離される。第2コネクタ644は、第1端1104の底面に接続される。第3コネクタ1116は、第4ターン622の第2端1108に接続される。ノッチ1120は、第4ターン622の第1端1104に形成され、第1端1104の狭窄カンチレバー部1130を形成する。ノッチ1120は、半径方向接続の第2レッグ636が短絡することなく通るための空間を提供する。空間が第2レッグ636に与えられるので、第1端1104および第2端1108は、半径方向に沿っては重ならない。その代わり、第4ターン622は不完全である。
図12は、第4ターン622の上にある上部コネクタ1204の上面図である。上部コネクタ1204は、第3コネクタ1116に接続された第1端および出力リード626に接続された第2端を有する。図9に示されるように、第3コネクタ1116は、第4ターン622から上部コネクタ1204へ伸び、上部コネクタ1204は、第4ターン622の第1端の上に伸び、それにより第4ターン622および上部コネクタ1204は、実質的に完全なターンを形成する。もし第4ターン中のギャップが、第4ターン622の平面内の、第4ターンの方向とは異なる半径方向長さにおけるブリッジによって補償されたなら、半径方向成分は、第4ターンのブリッジを接続する必要が生じ、これは方位角方向の非対称性を生じる半径方向電流を生む。その代わり、上部コネクタ1204は、第4ターン622と同じ半径方向長さに沿って、ただし第4ターン622の上においてギャップをブリッジする。
図13は、第2ターン618の上面図である。第2ターン618は、第1端および第2端を有し、ここで第2ターン618の第1端および第2端は、第2ターンギャップ1312によって分離される。第1コネクタ640は、第2ターン618の第1端に接続される。半径方向接続の第1レッグ632は、第2ターン618の第2端に接続される。第2ターン618の第1端および第2端の両方は、ノッチを形成する。第1ノッチは、第1端の狭窄カンチレバー部1330を形成する。第2ノッチは、第2端の狭窄カンチレバー部1334を形成する。これらノッチおよび狭窄カンチレバー部1330、1334は、狭窄カンチレバー部1330、1334が同じ半径方向に沿って並ぶことを可能にし、これは第1コネクタ640および第1レッグ632が同じ半径方向に沿って並ぶことを可能にし、これは実質的に完全なターンを形成しえる。
図14は、第1ターン616の上面図である。第1ターン616は、第1端および第2端を有し、これらはギャップ1412によって分離される。第1コネクタ640は第1端の底側に接続される。第4コネクタ1416は、第1ターン616の第2端に接続される。ノッチ1420は、第1ターン616の第1端に形成されて、第1端の狭窄カンチレバー部1430を形成する。ノッチ1420は、半径方向接続の第1レッグ632が短絡することなく通るための空間を提供する。空間が第1レッグ636に与えられるので、第1端および第2端は、半径方向に沿っては重ならない。その代わり、第1ターン616は不完全である。
図15は、第1ターン616の上にある第2上部コネクタ1504の上面図である。第2上部コネクタ1504は、第4コネクタ1416に接続された第1端および入力リード624に接続された第2端を有する。第4コネクタ1416は、第1ターン616から第2上部コネクタ1504へ伸び、第2上部コネクタ1504は、第1ターン616の第1端の上に伸び、それにより第1ターン616および第2上部コネクタ1504は、実質的に完全なターンを形成する。もし第1ターン中のギャップが、第1ターン616の平面内の、第1ターンの方向とは異なる半径方向長さにおけるブリッジによって補償されたなら、半径方向成分は、第1ターンのブリッジを接続する必要が生じ、これは方位角方向の非対称性を生じる半径方向電流を生む。その代わり、上部コネクタ1504は、第1ターン616と同じ半径方向長さに沿って、ただし第1ターン616の上においてギャップをブリッジする。
上述のように、誘電体材料は、ターン616、618、620、622間に配置されることで、ターンが互いになるべく接近して配置されることを可能にする一方で、内側および外側ターン間でのアークを除去する。図16は、そのような絶縁体がそれらの間に配置されたターン616、618、620、622の断面図である。第1、第2、第3、および第4ターン616、618、620、622は、示されるようにアセンブリを形成するための中央絶縁体1604をその周りに配置される。この中央絶縁体は底部リッジリング1608を形成する。このアセンブリは底部絶縁体1612上に配置される。中央絶縁体1604の底部リッジリング1608は、底部絶縁体1612の中央溝内に取り付けられる。上部リッジリング1616は、第1ターン616および第4ターン622の上を伸び、その結果、上部リッジリング1616の表面に沿った、第1ターン616から第4ターン622までの距離は、アークを防止するのに必要とされる最小表面距離よりも大きい。底部絶縁体1612はファラデーシールド1620上に配置されえ、これは誘電体窓212上に配置されえる。
図19は、ファラデーシールド1620の上面図である。ファラデーシールド1620は、結合の方位角についてのバラツキをさらに最小化し、容量性結合の程度を制御するために設けられえる。これは、ファラデーシールド1620をグラウンドに落とすか、特定の電圧をファラデーシールドに印加するか、またはファラデーシールドをフローティング状態にするかのいずれかによって実現されえる。アンテナのフットプリントがリングの形状であるので、ファラデーシールド1620はアンテナのフットプリントと一致するリング形状でありえる。好ましい実施形態においては、ファラデーシールド1620は、アンテナのフットプリントよりもわずかに大きく、リングの一部を横切る少なくとも一つの半径方向スロット1904を有するリング形状の伝導体材料である。他の好ましい実施形態においては、一つより多いスロットが設けられる。
この実施形態の例では、ターン616、618、620、622は約1cmの厚さである。中央絶縁体1604は、ターン616、618、620、622に約0.5cm離れた距離を置く。ファラデーシールドは約0.15cmの厚さを有する。したがって誘電体窓212および第1または第4ターン616、622の上部であるターンの最も離れた部分間の距離は、約3cmである。したがってこの実施形態において、半径方向コネクタ682をターンの最も遠い部分の3倍より大きい距離だけ誘電体窓212から置くことが望ましく、これは9cmとなる。
少なくとも第1レッグ632が窓の近傍である(窓から遠くはない)領域においては、第1レッグ632は、ターンによって定義される平面に実質的に垂直であり、入力リード624および第1コネクタ640に近接して配置され、それにより第1レッグ632、入力リード624、および第1コネクタ640によって生じる非対称性を最小化する。第1コネクタ640および入力リード624は、第1レッグ632の実質的に全長に沿って磁界を打ち消すよう提供される。少なくとも第2レッグが窓の近傍である領域においては、第2レッグ636は、ターンによって定義される平面に実質的に垂直であり、出力リード626および第2コネクタ644に近接して配置され、それにより第2レッグ636、出力リード626、および第2コネクタ644によって生じる非対称性を最小化する。
接続集中部を異なる方位角位置、例えばループの反対側に置くことによって、接続の不完全性によって作られる非方位角方向の摂動は分離され、これは方位角方向の均一性を改善する。このような接続をターンの反対側に配置することによって、接続によって生じる残留ダイポールは互いに対向するようにされえる。接続によって生じる残留ダイポールはターンの対向する側上に配置されるが、この実施形態はそれが互いに対向するようするのであって、それらをターンの同じ側に配置させ、同じ方向に向かせることはしない。
本発明のアンテナは、ウェーハ結果における計測された方位角方向の非対称性においてほぼ2〜3倍の減少を生むことが判っている。
図17は、本発明の他の実施形態において用いられる第3ターン620および第4ターン622の一部の断面図である。第3ターンは、第1端1704および第2端1708を有し、ここで第3ターン620の第1端1704および第2端1708は、第3ターンギャップ1712によって分離される。半径方向接続の第2レッグ636は、第3ターン620の第1端1704に接続される。第2コネクタ644は第3ターン620の第2端1708に接続される。ギャップ1712は、第3ターン620が不完全なループを形成するようにする。
第4ターン622は、第1端1724および第2端1728を有し、これらはギャップ1732によって分離される。第2コネクタ644は、第4ターン622の第1端1724に接続される。第3コネクタ1736は、第4ターン622の第2端1728に接続される。ギャップ1732は、第4ターン622が不完全なループを形成するようにする。
上部コネクタ1744は、第3コネクタ1736に接続される第1端および出力リード626に接続される第2端を有する。第3コネクタ1736は、第4ターン622から上部コネクタ1744まで伸び、上部コネクタ1744は、第4ターン622の第1端の上を伸び、それにより上部コネクタ1744がギャップ1712、1732をブリッジするようにする。この結果、上部コネクタ1744、第3ターン620、および第4ターン622は、2つの実質的に完全なターンを形成するようになる。
この実施形態において、第2レッグ636が第4ターン622を通るような、コネクタを可能にするためにノッチを用いる代わりに、第2レッグ636は第4ターン622、上部コネクタ1744、および出力リード626を通る。第2レッグ636がアークなしに通るように充分な空間を提供するように、穴1760は第4ターン622を通って配置され、穴1764は第2レッグ636および上部コネクタ1744を通って配置される。さらにアークを防ぐために、絶縁体が穴の中の第2レッグ636の周りに配置されえる。それぞれのターンのギャップは、ターンと同じ平面内でブリッジされないが、半径方向コネクタは窓から大きな距離だけ移動されている。ターンと同じ平面内の代わりにターンと同じ半径方向の距離においてギャップをブリッジすることによって作られた方位角方向の非対称性は、半径方向コネクタが窓の近くに配置されたときに生じる半径方向電流からの方位角半径方向の非対称性ほど大きくはない。
第2レッグ636を出力リード626と同軸上にすることによって、第2レッグ636および出力リード626からの磁界は、より良く互いに打ち消されえる。加えて、第2コネクタ644は、さらに打ち消し合うように第2レッグ636に近く配置される。
図18は、図17に示されるデバイスの断面図であり、ここで受動アンテナ1804は第3ターン620および第4ターン622に隣接して配置される。このような受動アンテナは、2002年9月22日に出願されたHowaldらによる「Methods and Apparatus For Producing Uniform Processing Rates」と題された米国特許出願第10/200,833号において説明されており、全ての目的のためにここで参照によって援用される。受動アンテナ1804は、方位角方向の非対称性を低減させるために用いられえる。このパススルー設計は、受動アンテナの明瞭な設計を可能にし、これは電流を所望の方位角方向電流パスに向きを戻すのに役立つ。
第1、第2、第3、および第4ターン616、618、620、622を持つ前の実施形態においては、第1および第2ターン616、618は内側ループであり、第3および第4ターン620、622は外側ループであり、レッグおよび半径方向コネクタが内側ループを外側ループに接続すると考えられる。これらの実施形態において、内側ループは、外側ループと同心円状であり、ここで外側ループは内側ループよりも大きい直径を有する。
前述の実施形態においてアンテナは第1ループおよび第2ループから形成され、ここで第1ループおよび第2ループは、同じ形状寸法であり、同軸であり、一方のループが他方のループの上に配置されるが、他のタイプのアンテナ構成も使用されえる。そのような他の構成は、2つの単一ループを使用しえ、または第2ループが第1ループとは異なる幾何学的形状でありえる。ループは2ターンよりも多くてもよい。好ましくはループを含むターン内の方位角方向のギャップは最小化され、その結果、ギャップは3°未満の中心角をなし、かつその結果、ギャップに隣接するターンの端部の半径は同一である。さらに入力および出力フィードは、それらのダイポール効果を低減する他の方法として、それらの長さの一部について同軸でありえる。この実施形態において、ターンギャップは好ましくは約1/8インチである。より好ましくはターンギャップは、図10および13に示されるように同じ半径方向距離においてノッチに嵌る方向付けられたカンチレバー部分によって補償される。そのような方向付けられたカンチレバーおよびノッチ設計が実際的ではないとき、本発明は、同じ半径方向位置における欠けている方位角方向ギャップにほぼ等しい長さを持つ追加の部分アンテナターンを他のターンに実質的に平行な平面内に追加することによって、整数個の実質的に完全なターンを形成して、方位角方向電流におけるギャップを補償する原理に従うのが好ましいとする。
このような他の構成は、2つの単一のループを用いえ、または第2ループが第1ループとは異なる幾何学的形状でありえる。2ループより多くてもよい。このループは1ターンを有してもよい。さらに高い結合界のために、ループは好ましくはより多くのループターンを有する。好ましくは2つのループターンが用いられ、それによって電界打ち消しのために、方位角方向の電流辺を補償する部分ターン(図12の1204、図15の1504、図17の1744を参照)が方位角方向のギャップにほぼ等しく、同時に2つのループリードを近傍に置く。多ループターンの構成は好ましくは、垂直な接続レッグおよび関連する方位角方向ギャップの均一な方位角方向の間隔を必要とし、それによってほぼ整数のループターンが達成され、一方、ループリードは電界打ち消しのために近傍に置かれる。
本発明では、窓から遠く離れた半径方向の接続によって、同じ半径において方位角方向電流補償を行う単一の、または複数ループから構成される多数ループを持つ改良された新規なアンテナが構築されえる(図10〜11参照)。改良された方位角方向に対称な電界を作るために、半径方向の近傍にループを置くことに対する制約がなくなる。もし個別のループが、アンテナを通して伝送されるエネルギーの波長に比較して電気的に短いならより良い。ループが、アンテナ構成を通して伝送されるエネルギーの波長よりも小さい結合長を有する程度にループは互いに近くあるのが好ましい。
図20は、本発明のある実施形態によるマルチターンアンテナ構成2000の概略図であり、ここで2つのターンだけが提供される。マルチターンアンテナ構成2000は、RF電力源2004に動作可能に結合されたマルチターンアンテナを含み、これは例えば図2に示されるアンテナ210およびRF電力源214にそれぞれ対応する。
マルチターンアンテナは実質的に円形であり、少なくとも第1ターン2016および第2ターン2022を含む。この実施形態において、入力リード2024は、第1ターン2016の第1端に動作可能に結合される。第1ターン2016の第2端は、半径方向接続の第1レッグ2032に動作可能に結合される。半径方向接続の第2レッグ2036は、第2ターン2022の第1端に動作可能に結合される。少なくとも窓の近傍において、第1レッグ2032および第2レッグ2036は、ターン2016、2022の直径に実質的に垂直である。半径方向接続の半径方向コネクタ2082は、第1レッグ2032から第2レッグ2036に伸び、ターンの直径に実質的に平行でありえる。第2ターン2022の第2端は、出力リード2026に動作可能に結合される。電流は、入力リード2024から第1ターン2016を通り、半径方向接続の第1レッグ2032を通り、半径方向接続の第2レッグ2036を通り、第2ターン2022を通り、出力リード2026に達する。この電流フローは矢印によって表される。したがって、RF電圧を入力リード2024および出力リード2026の間に印加することによって、RF電流がマルチターンアンテナ2006を通して流れるよう構成される。
さらに図20を参照して、第2ターン2022は、第1ターン2016より大きい直径を有する。外側ターン(例えば第2ターン)はより大きい直径を有するが、それらは好ましくは内側ターン(例えば第1)の近傍に配置される。すなわち、第2ターン2022は好ましくは第1ターン2016の近傍にあるよう構成される。それらの近接性の結果、マルチターンアンテナは、単一のターンアンテナのように見え、振る舞う(例えば実質的にターン間にスペースがない)。したがって半径方向における高いまたは低い電流領域は実質的に低減される。
他の実施形態におけるように、ギャップに近接して半径方向のレッグを持つブリッジを用いる代わりに、この実施形態のアンテナは、窓212から大きな距離隔ててターン間に半径方向コネクタを提供する。窓および半径方向接続の半径方向コネクタ2082間の大きな距離とは、窓および半径方向接続2082の間の距離が、窓およびアンテナのターンの最も遠い部分の間の距離の少なくとも3倍であることである。より好ましくは、窓および半径方向接続2082の間の距離は、窓およびアンテナのターンの最も遠い部分の間の距離の少なくとも4倍である。加えて、半径方向コネクタ2082は、出力リード2026の半径方向ライン2080に平行かつ近傍に配置されえ、それによって電流が逆平行に流れ、半径方向の電流によって生じた方位角方向非対称性をさらに低減する。
この実施形態において、第1ターン2016は、第2ターン2022より小さい直径を有し、それにより第2ターン2022は第1ターン2016から半径方向に離れて置かれる。この例では、第1ターン2016は内側ループを形成し、第2ターン2022は外側ループを形成し、それにより第1ターン2016は、それぞれの方位角方向において、第2ターン2022がアンテナ軸にそうであるよりも、アンテナ軸により近い。ターンが異なる直径を有するので、半径方向コネクタは、第1ターン2016と第2ターンを接続するのに用いられなければならない。半径方向コネクタは、窓から大きな距離をあけて置かれる。好ましくは第1ターンは、第1平面が第1ターンの全周囲を通るような第1平面を定義し、第2ターンは、第2平面が第2ターンの全周囲を通るような第2平面を定義し、ここで第1平面および第2平面は実質的に平行である。半径方向コネクタは、第1ターンおよび第2ターンによって定義される平面に実質的に平行である辺を有する。より好ましくは、第1ターンおよび第2ターンは同心円状であり同一平面上にある。図20に示される例では、第1および第2ターンは同一平面上にあり、それにより第1平面および第2平面は同じ平面2090である。好ましくは、第1ターンおよび第2ターンがその周りに配置されるアンテナ軸2014は、実質的に第1平面および第2平面に垂直である。好ましくは、第1レッグ2032、第2レッグ2036、入力リード2024、および出力リード2026は、窓の近傍においては第1および第2平面2090に実質的に垂直である。入力リード2024を第1レッグ2032の近傍に置くこと、およびそれらを窓近傍のターンによって定義される平面に実質的に垂直にすることによって、入力リード2024および第1レッグ2032によって生じる方位角方向の非対称性が最小化される。
他の実施形態において、レッグ、コネクタ、およびリードは、ターンに実質的に垂直であるだけであり、ターンまたは窓の近くにあるレッグ、コネクタ、およびリードの部分については近くに配置される。レッグ、コネクタ、およびリードは、ターンまたは窓から離れた所では実質的に垂直または互いに近くではない。加えて、他の実施形態においては、本発明のアンテナは、容量結合プラズマチャンバおよび他のデバイスのために用いられえる。
本発明は、いくつかの好ましい実施形態について記載されてきたが、改変、さまざまな変更、組み合わせ、および代替の等価物が存在し、これらは本発明の範囲に入る。また本発明の半径方向および装置を実現する多くの代替のやり方が存在する。したがって以下の添付の特許請求の範囲は、本発明の真の精神および範囲内に入る全てのそのような改変、組み合わせ、および代替の等価物を含むと解釈されるべきである。
プラズマ処理に用いられる従来技術の誘導性プラズマ処理リアクタを示す図である。 本発明のある実施形態によるアンテナ構成および結合窓構成を含むプラズマ処理システムの図である。 ギャップを持つ部分アンテナターンの概略図である。 マルチターンアンテナ構成の概略図である。 本発明のある実施形態によるマルチターンアンテナ構成を示す図である。 マルチターンアンテナ構成の断面側面図である。 本発明のある実施形態による多層結合窓の断面側面図である。 本発明のある実施形態のマルチターンアンテナの透視図である。 図8のマルチターンアンテナの拡大された部分図である。 第3ターンの上面図である。 第4ターンの上面図である。 第4ターンの上の上部コネクタの上面図である。 第2ターンの上面図である。 第1ターンの上面図である。 第1ターンの上の第2上部コネクタの上面図である。 その間に配置された絶縁体を持つターンの断面図である。 本発明の他の実施形態において用いられる第3ターンおよび第4ターンの一部の断面図である。 受動アンテナを持つ図17に示される装置の図である。 ファラデー遮蔽の上面図である。 本発明の他の実施形態の概略図である。

Claims (36)

  1. 窓を通してプロセスチャンバ内で電界を生成するアンテナであって、
    アンテナ軸の周りに配置された第1外側ループターンを備える外側ループと、
    前記アンテナ軸の周りに配置された第1内側ループターンを備える内側ループと、前記第1内側ループターンは、それぞれの方位角方向において前記第1外側ループターンよりも前記アンテナ軸により近いことと、
    前記内側ループから伸びる第1レッグと、
    前記外側ループから伸び、前記内側ループの中心を横切って前記第1レッグに対向する第2レッグと、
    前記内側ループを横切って前記第1レッグと第2レッグとを接続することにより、前記外側ループと前記内側ループとを半径方向に電気的に接続する半径方向コネクタであって、前記外側および内側ループよりも前記窓から大きな距離をあけて配置される前記半径方向コネクタと
    を備える
    アンテナ。
  2. 請求項1に記載のアンテナであって、前記第1レッグは前記外側ループによって規定される第1平面に実質的に垂直であり、前記第2レッグは前記内側ループによって規定される第2平面に実質的に垂直であるアンテ
  3. 請求項1または2のいずれかに記載のアンテナであって、前記外側ループは前記窓から第1距離であり、前記半径方向コネクタは前記窓から第2距離であり、前記第2距離は前記第1距離の少なくとも3倍であるアンテ
  4. 請求項1から3のいずれかに記載のアンテナであって、前記内側ループは前記外側ループと同軸であり、かつ同一平面上であるアンテ
  5. 請求項1から4のいずれかに記載のアンテナであって、前記内側ループおよび前記外側ループの間にそれらの間でのアークを除去するための誘電体媒体をさらに備えるアンテ
  6. 請求項1から5のいずれかに記載のアンテナであって、前記内側ループおよび前記外側ループは、前記アンテナをを通して伝送されるエネルギーの波長より小さい結合長を有するアンテ
  7. 請求項1から6のいずれかに記載のアンテナであって、前記外側ループは前記アンテナ軸の周りに配置された第2外側ループターンをさらに備え、前記内側ループは前記アンテナ軸の周りに配置された第2内側ループターンをさらに備えるアンテ
  8. 請求項7に記載のアンテナであって、前記第2外側ループターンは、前記第1外側ループターンの上に配置され、前記第2内側ループターンは、前記第1内側ループターンの上に配置され、前記第1外側ループターンおよび第1内側ループターンは、前記第2外側ループターンおよび前記第2内側ループターンの端子電圧を実効的に遮蔽するアンテ
  9. 請求項7または8のいずれかに記載のアンテナであって、第1外側ループターン、第2外側ループターン、第1内側ループターン、および第2内側ループターンの間に配置されたそれらの間でのアークを除去する誘電体媒体をさらに備えるアンテ
  10. 請求項1から9のずれかに記載のアンテナであって、前記内側ループおよび前記外側ループに結合されたRF電力源をさらに備えるアンテ
  11. 請求項10に記載のアンテナであって、前記内側ループおよび外側ループは協働して、前記RF電力源によって発生されたRFエネルギーで、方位角方向に対称な電界をプロセスチャンバに形成し、前記方位角方向に対称な電界は、実質的に方位角方向に対称なプラズマを形成し、これが実質的に均一なプロセスレートを前記プロセスチャンバの内部に置かれた基板の表面にわたって実現するアンテ
  12. 請求項1から11のいずれかに記載のアンテナであって、前記内側ループに電気的に接続された第1リードおよび前記外側ループに電気的に接続された第2リードをさらに備えるアンテ
  13. 請求項12に記載のアンテナであって、前記第2リードから伸びる半径方向ラインをさらに備え、前記半径方向コネクタは、半径方向電流によってもたらされるを方位角非対称性を低減するように、前記半径方向ラインに平行且つ近接して配置されている、アンテ
  14. 請求項1から13のいずれかに記載のアンテナであって、前記第1外側ループターンおよび第1内側ループターンのうちの少なくとも1つは完全な切り欠きの付けられたターンであるアンテ
  15. 請求項8から14のいずれかに記載のアンテナであって、前記第2外側ループターンおよび第2内側ループターンのうちの少なくとも1つは方位角方向のギャップを有し、半径方向距離だけ前記アンテナ軸から離れ、前記方位角方向のギャップに架かる部分ターンをさらに備え、前記部分ターンは前記アンテナ軸から、前記方位角方向のギャップが前記アンテナ軸から離れている半径方向の距離に等しい半径方向の距離にあるアンテ
  16. 基板を処理するプラズマ処理装置であって、
    前記処理のためにプラズマが点火および維持されるプロセスチャンバ、
    前記プロセスチャンバへRFエネルギーが透過することを可能にするよう構成される前記プロセスチャンバの側面を形成する窓、および
    前記窓に隣接し、RFエネルギーを介して前記プロセスチャンバ内に電界を作るよう構成されたマルチレイヤアンテナであって、
    前記アンテナ軸の周りに配置された第1外側ループターンを備える外側ループと、
    前記アンテナ軸の周りに配置された第1内側ループターンを備える内側ループと、前記内側ループターンは、それぞれの方位角方向において前記第1外側ループターンよりも前記アンテナ軸により近いことと、
    前記内側ループから伸びる第1レッグと、
    前記外側ループから伸び、前記内側ループの中心を横切って前記第1レッグに対向する第2レッグと、
    前記内側ループを横切って前記第1レッグと第2レッグとを接続することにより、前記外側ループと前記内側ループとを半径方向に電気的に接続する半径方向コネクタであって、前記外側および内側ループよりも前記窓から大きな距離をあけて配置される前記半径方向コネクタと
    を備えるマルチレイヤアンテナ
    を備えるプラズマ処理装置。
  17. 請求項16に記載のプラズマ処理装置であって、前記外側ループは前記窓から第1距離であり、前記半径方向コネクタは前記窓から第2距離であり、前記第2距離は前記第1距離の少なくとも3倍であるプラズマ処理装置。
  18. 基板を処理する方法であって、
    前記基板を処理チャンバ内に置くことであって、前記処理チャンバは、前記処理チャンバ内の基板ホルダおよび前記処理チャンバの側面を形成する誘電体窓を備え、アンテナは前記誘電体窓に隣接する前記チャンバの外に配置され、
    前記処理ガスを前記チャンバ内に導入すること、
    前記アンテナを用いて方位角方向に対称な電界を作ることであって、前記アンテナは、アンテナ軸の周りに配置された第1外側ループターンを備える外側ループと、前記アンテナ軸の周りに配置された第1内側ループターンを備える内側ループと、前記内側ループターンは、それぞれの方位角方向において前記第1外側ループターンよりも前記アンテナ軸により近いことと、前記内側ループから伸びる第1レッグと、前記外側ループから伸び、前記内側ループの中心を横切って前記第1レッグに対向する第2レッグと、および前記内側ループを横切って前記第1レッグと第2レッグとを接続することにより、前記外側ループと前記内側ループとを半径方向に電気的に接続する半径方向コネクタであって、前記外側および内側ループよりも前記窓から大きな距離をあけて配置される前記半径方向コネクタとを備える、前記アンテナを用いて電界を作ること、
    前記方位角方向に対称な電界を用いて前記処理ガスから方位角方向に実質的に均一なプラズマを形成すること、および
    基板の表面にわたって実質的に均一なプロセスレートを作ること
    を含む方法。
  19. 請求項18に記載の方法であって、前記第2レッグは前記外側ループによって規定される第1平面に実質的に垂直であり、前記第1レッグは前記内側ループによって規定される第2平面に実質的に垂直である方法。
  20. 請求項18または19のいずれかに記載の方法であって、前記外側ループは前記窓から第1距離であり、前記半径方向コネクタは前記窓から第2距離であり、前記第2距離は前記第1距離の少なくとも3倍である方法。
  21. 請求項18から20のいずれかに記載の方法であって、前記内側ループは前記外側ループと同軸であり、かつ同一平面上である方法。
  22. 請求項18から21のいずれかに記載の方法であって、前記内側ループおよび前記外側ループの間にそれらの間でのアークを除去するための誘電体媒体が配置される方法。
  23. 請求項18から22のいずれかに記載の方法であって、前記外側ループは前記アンテナ軸の周りに配置された第2外側ループターンをさらに備え、前記内側ループは前記アンテナ軸の周りに配置された第2内側ループターンをさらに備える方法。
  24. 請求項23に記載の方法であって、前記第2外側ループターンは、前記第1外側ループターンの上に配置され、前記第2内側ループターンは、前記第1内側ループターンの上に配置され、前記第1外側ループターンおよび第1内側ループターンは、前記第2外側ループターンおよび前記第2内側ループターンの端子電圧を実効的に遮蔽する方法。
  25. 請求項18から27のいずれかに記載の方法であって、前記アンテナを通る電流をラジオ周波に等しい周波数において交番させることをさらに含む方法。
  26. 請求項25に記載の方法であって、前記周波数は波長を有し、前記内側ループおよび外側ループの結合された長さは前記波長より小さい方法。
  27. 請求項18から26のいずれかに記載の方法であって、前記第1外側ループターンおよび第1内側ループターンは完全な切り欠きのあるターンである方法。
  28. 請求項23から27のいずれかに記載の方法であって、前記第2外側ループターンおよび第2内側ループターンのうちの少なくとも1つは方位角方向のギャップを有し、半径方向距離だけ前記アンテナ軸から離れ、前記方位角方向のギャップに架かる部分ターンをさらに備え、前記部分ターンは前記アンテナ軸から、前記方位角方向のギャップが前記アンテナ軸から離れている半径方向の距離に等しい半径方向の距離にある方法。
  29. 基板を処理する方法であって、
    前記基板を処理チャンバ内に置くことであって、前記処理チャンバは、前記処理チャンバ内の基板ホルダおよび前記処理チャンバの側面を形成する誘電体窓を備え、アンテナは前記誘電体窓に隣接する前記チャンバの外に配置され、
    前記処理ガスを前記チャンバ内に導入すること、
    電流を前記アンテナを通して提供することであって、前記電流は、入力レッグから第1ループ、第1コネクタレッグ、半径方向コネクタ、第2コネクタレッグ、第2ループ、出力レッグへ流れ、前記第1ループは、アンテナ軸の周りに配置され、前記第2ループは、前記アンテナ軸について前記第1ループに同軸であり、前記第2コネクタレッグは、前記半径方向コネクタが前記第1ループを横切り前記第1および第2コネクタレッグを接続するように、前記第1および第2ループの中心を横切る前記第1コネクタレッグに対向し、前記入力レッグ、前記第1コネクタレッグ、前記第2コネクタレッグ、および前記出力レッグは平行であり、前記半径方向コネクタは前記外側および内側ループよりも前記窓から大きな距離をあけて配置され、前記電流は前記第1ループおよび第2ループを通して前記アンテナ軸について同じ方向に流れる、電流を提供すること、および
    前記アンテナを通る前記電流を用いて前記処理ガスをプラズマに変換すること
    を含む方法。
  30. 請求項29に記載の方法であって、前記第1ループおよび前記第2ループは前記アンテナ軸について同心円状である方法。
  31. 請求項29から30のいずれかに記載の方法であって、前記第1ループは第1ターンおよび第2ターンを備え、前記第1ターンは第1平面を定義し、前記第2ターンは第2平面を定義し、前記第1平面は前記第2平面から距離が置かれ、前記第2ループは、前記第2平面内の第3ターンおよび前記第1平面内の第4ターンを備える方法。
  32. 請求項31に記載の方法であって、前記第1平面は前記誘電体窓から第1距離であり、前記第2平面は前記誘電体窓から第2距離であり、前記半径方向コネクタは前記誘電体窓から第3距離であり、前記第3距離は前記第1距離の少なくとも3倍であり、前記第3距離は前記第2距離の少なくとも3倍である方法。
  33. 請求項29から32のいずれかに記載の方法であって、前記アンテナを通る電流をラジオ周波に等しい周波数において交番させることをさらに含む方法。
  34. 請求項33に記載の方法であって、前記周波数は波長を有し、前記内側ループおよび外側ループの結合された長さは前記波長より小さく、それにより前記アンテナを通る前記電流は前記波長より短い距離を伝搬する方法。
  35. 請求項29から34のいずれかに記載の方法であって、前記第1ループおよび前記第2ループは協働して、RFエネルギーで、方位角方向に対称な電界をプロセスチャンバ内に形成する電流を提供し、
    前記方位角方向に対称な電界から方位角方向に実質的に均一なプラズマを形成すること、および
    前記処理チャンバの内側に配置された基板の表面にわたって実質的に均一なプロセスレートを作ること
    を含む方法。
  36. 請求項29に記載の方法であって、前記電流はさらに半径方向ラインを介して前記出力レッグを介して流れ、前記半径方向コネクタは、半径方向電流によってもたらされるを方位角非対称性を低減するように、前記半径方向ラインに平行且つ近接して配置されている、方法
JP2006503590A 2003-02-24 2004-02-12 アンテナ、プラズマ処理装置および基板の処理方法 Expired - Fee Related JP4869059B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/374,868 2003-02-24
US10/374,868 US6744213B2 (en) 1999-11-15 2003-02-24 Antenna for producing uniform process rates
PCT/US2004/004399 WO2004077608A2 (en) 2003-02-24 2004-02-12 Antenna for producing uniform process rates

Publications (2)

Publication Number Publication Date
JP2006518915A JP2006518915A (ja) 2006-08-17
JP4869059B2 true JP4869059B2 (ja) 2012-02-01

Family

ID=32926260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006503590A Expired - Fee Related JP4869059B2 (ja) 2003-02-24 2004-02-12 アンテナ、プラズマ処理装置および基板の処理方法

Country Status (10)

Country Link
US (2) US6744213B2 (ja)
EP (1) EP1632006B1 (ja)
JP (1) JP4869059B2 (ja)
KR (1) KR101094124B1 (ja)
CN (1) CN1833296B (ja)
AT (1) ATE506687T1 (ja)
DE (1) DE602004032334D1 (ja)
IL (1) IL170926A (ja)
TW (1) TWI326940B (ja)
WO (1) WO2004077608A2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200253559Y1 (ko) * 2001-07-30 2001-11-22 주식회사 플라즈마트 회전방향으로 균일한 플라즈마 밀도를 발생시키는유도결합형 플라즈마 발생장치의 안테나구조
US6855225B1 (en) * 2002-06-25 2005-02-15 Novellus Systems, Inc. Single-tube interlaced inductively coupling plasma source
GB0326500D0 (en) * 2003-11-13 2003-12-17 Oxford Instr Plasma Technology Gas port assembly
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
US7527713B2 (en) * 2004-05-26 2009-05-05 Applied Materials, Inc. Variable quadruple electromagnet array in plasma processing
US7686926B2 (en) * 2004-05-26 2010-03-30 Applied Materials, Inc. Multi-step process for forming a metal barrier in a sputter reactor
US8187416B2 (en) * 2005-05-20 2012-05-29 Applied Materials, Inc. Interior antenna for substrate processing chamber
JP5561812B2 (ja) * 2006-11-28 2014-07-30 サムコ株式会社 プラズマ処理装置
JP5098882B2 (ja) * 2007-08-31 2012-12-12 東京エレクトロン株式会社 プラズマ処理装置
JP5301812B2 (ja) * 2007-11-14 2013-09-25 東京エレクトロン株式会社 プラズマ処理装置
WO2011022612A2 (en) * 2009-08-21 2011-02-24 Mattson Technology, Inc. Inductive plasma source
US20110094683A1 (en) 2009-10-26 2011-04-28 Applied Materials, Inc. Rf feed structure for plasma processing
US20110094994A1 (en) * 2009-10-26 2011-04-28 Applied Materials, Inc. Inductively coupled plasma apparatus
US9313872B2 (en) * 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN102054649B (zh) * 2009-10-27 2014-03-19 东京毅力科创株式会社 等离子体处理装置以及等离子体处理方法
JP5554047B2 (ja) * 2009-10-27 2014-07-23 東京エレクトロン株式会社 プラズマ処理装置
US8741097B2 (en) 2009-10-27 2014-06-03 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5592098B2 (ja) * 2009-10-27 2014-09-17 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5554099B2 (ja) * 2010-03-18 2014-07-23 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5905447B2 (ja) * 2010-04-20 2016-04-20 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理システムにおける誘導コイルアセンブリ
JP5916044B2 (ja) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5851682B2 (ja) 2010-09-28 2016-02-03 東京エレクトロン株式会社 プラズマ処理装置
US8884178B2 (en) * 2010-10-20 2014-11-11 Lam Research Corporation Methods and apparatus for igniting and sustaining plasma
JP5018994B1 (ja) * 2011-11-09 2012-09-05 日新電機株式会社 プラズマ処理装置
FR2998722B1 (fr) * 2012-11-23 2016-04-15 Thales Sa Systeme antennaire a boucles imbriquees et vehicule comprenant un tel systeme antennaire
CN105340059B (zh) * 2013-06-17 2019-03-22 应用材料公司 用于等离子体反应器的增强等离子体源
KR20150088453A (ko) * 2014-01-24 2015-08-03 한국전자통신연구원 다중 대역 플라즈마 루프 안테나
US10062670B2 (en) 2016-04-18 2018-08-28 Skyworks Solutions, Inc. Radio frequency system-in-package with stacked clocking crystal
US10320071B2 (en) 2016-04-19 2019-06-11 Skyworks Solutions, Inc. Methods for selectively shielding radio frequency modules
TWI800014B (zh) 2016-12-29 2023-04-21 美商天工方案公司 前端系統及相關裝置、積體電路、模組及方法
US10515924B2 (en) 2017-03-10 2019-12-24 Skyworks Solutions, Inc. Radio frequency modules
US10460914B2 (en) 2017-11-30 2019-10-29 Lam Research Corporation Ferrite cage RF isolator for power circuitry
US20200209928A1 (en) * 2018-12-27 2020-07-02 Innolux Corporation Electronic device
CN111785605A (zh) 2020-06-23 2020-10-16 北京北方华创微电子装备有限公司 一种线圈结构及半导体加工设备
US20220130704A1 (en) * 2020-10-23 2022-04-28 Applied Materials, Inc. Bipolar electrostatic chuck to limit dc discharge
CN116390320A (zh) * 2023-05-30 2023-07-04 安徽农业大学 一种电子回旋共振放电装置及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125497A (ja) * 1996-06-10 1998-05-15 Lam Res Corp ほぼ均一なプラズマ束を誘導するための誘導結合源
JP2001085196A (ja) * 1999-08-26 2001-03-30 Jusung Engineering Co Ltd 誘導結合型プラズマ発生用アンテナ装置
JP2001516944A (ja) * 1997-09-16 2001-10-02 ラム リサーチ コーポレーション 導電性セグメントを周辺部分に追加したコイルを有する真空プラズマ・プロセッサ
KR20030008856A (ko) * 2001-07-20 2003-01-29 주식회사 셈테크놀러지 균일 분포 플라즈마를 형성하는 대면적 플라즈마안테나(lapa)및 이를 포함하는 플라즈마 발생장치
WO2003012821A2 (en) * 2001-07-27 2003-02-13 Lam Research Corporation Method and apparatus for producing uniform process rates
JP2003517197A (ja) * 1999-11-15 2003-05-20 ラム リサーチ コーポレーション 均一なプロセス速度を生成するための方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514376B1 (en) * 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus
US6089182A (en) * 1995-08-17 2000-07-18 Tokyo Electron Limited Plasma processing apparatus
JP3153743B2 (ja) 1995-08-31 2001-04-09 東京エレクトロン株式会社 プラズマ処理装置
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing
US6229264B1 (en) * 1999-03-31 2001-05-08 Lam Research Corporation Plasma processor with coil having variable rf coupling
US6341574B1 (en) 1999-11-15 2002-01-29 Lam Research Corporation Plasma processing systems
US6302966B1 (en) 1999-11-15 2001-10-16 Lam Research Corporation Temperature control system for plasma processing apparatus
US6322661B1 (en) 1999-11-15 2001-11-27 Lam Research Corporation Method and apparatus for controlling the volume of a plasma
KR100396214B1 (ko) * 2001-06-19 2003-09-02 주성엔지니어링(주) 초단파 병렬 공명 안테나를 구비하는 플라즈마 공정장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125497A (ja) * 1996-06-10 1998-05-15 Lam Res Corp ほぼ均一なプラズマ束を誘導するための誘導結合源
JP2001516944A (ja) * 1997-09-16 2001-10-02 ラム リサーチ コーポレーション 導電性セグメントを周辺部分に追加したコイルを有する真空プラズマ・プロセッサ
JP2001085196A (ja) * 1999-08-26 2001-03-30 Jusung Engineering Co Ltd 誘導結合型プラズマ発生用アンテナ装置
JP2003517197A (ja) * 1999-11-15 2003-05-20 ラム リサーチ コーポレーション 均一なプロセス速度を生成するための方法および装置
KR20030008856A (ko) * 2001-07-20 2003-01-29 주식회사 셈테크놀러지 균일 분포 플라즈마를 형성하는 대면적 플라즈마안테나(lapa)및 이를 포함하는 플라즈마 발생장치
WO2003012821A2 (en) * 2001-07-27 2003-02-13 Lam Research Corporation Method and apparatus for producing uniform process rates

Also Published As

Publication number Publication date
WO2004077608A2 (en) 2004-09-10
TW200507338A (en) 2005-02-16
IL170926A (en) 2012-01-31
WO2004077608A3 (en) 2006-01-12
KR101094124B1 (ko) 2011-12-15
JP2006518915A (ja) 2006-08-17
KR20050103504A (ko) 2005-10-31
DE602004032334D1 (de) 2011-06-01
CN1833296B (zh) 2010-10-20
EP1632006B1 (en) 2011-04-20
US6873112B2 (en) 2005-03-29
EP1632006A2 (en) 2006-03-08
IL170926A0 (en) 2011-08-01
ATE506687T1 (de) 2011-05-15
US20040216676A1 (en) 2004-11-04
CN1833296A (zh) 2006-09-13
US6744213B2 (en) 2004-06-01
TWI326940B (en) 2010-07-01
EP1632006A4 (en) 2008-11-26
US20030189524A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
JP4869059B2 (ja) アンテナ、プラズマ処理装置および基板の処理方法
KR100826488B1 (ko) 균일 처리속도 생성방법 및 장치
JP4378169B2 (ja) プロセスチャンバ内に電界を発生するアンテナ及びプラズマ処理装置
JP5410950B2 (ja) プラズマ処理装置
JP5155235B2 (ja) プラズマ処理装置およびプラズマ生成装置
JP5572329B2 (ja) プラズマ処理装置およびプラズマ生成装置
US20030057845A1 (en) Plasma processing apparatus
JP5705290B2 (ja) プラズマ処理装置
CN110770880B (zh) 等离子处理装置
IL159935A (en) Method and apparatus for producing uniform process rates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100713

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4869059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees