JP4864821B2 - 画像処理装置、画像処理方法、プログラム及び記録媒体 - Google Patents

画像処理装置、画像処理方法、プログラム及び記録媒体 Download PDF

Info

Publication number
JP4864821B2
JP4864821B2 JP2007175099A JP2007175099A JP4864821B2 JP 4864821 B2 JP4864821 B2 JP 4864821B2 JP 2007175099 A JP2007175099 A JP 2007175099A JP 2007175099 A JP2007175099 A JP 2007175099A JP 4864821 B2 JP4864821 B2 JP 4864821B2
Authority
JP
Japan
Prior art keywords
nonlinear
correction
cone
forward conversion
conversion process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007175099A
Other languages
English (en)
Other versions
JP2009017100A (ja
Inventor
敬徳 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007175099A priority Critical patent/JP4864821B2/ja
Publication of JP2009017100A publication Critical patent/JP2009017100A/ja
Application granted granted Critical
Publication of JP4864821B2 publication Critical patent/JP4864821B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、色の見えモデルを用いた色順応変換を行う画像処理装置及び方法に関する。
異なる光源下で同一サンプル(例えば画像)を観察した場合、観察されるサンプルに対する色の見えは異なる。このため、異なる光源下での色の見えを予測する色の見えモデルが生み出され、(1)比率変換、(2)Von Kries変換、(3)色知覚モデルによる予測式等が提案されている。
例えば特許文献1には、比率変換(段落[0006])、Von Kries変換(段落[0007])、色知覚モデル(CIECAM97s)による予測式(段落[0008])について記載されている。色知覚モデルによる予測式は、CIECAM02(CIE TECHNICAL REPORT−CIE159:2004)も知られている。
特に、CIECAM97sやCIECAM02は、改良を重ねた色の見えモデルであり、色の見えの予測がよく一致する。特許文献1には、CIECAM97sを利用した色順応変換を行う画像処理方法の例が記載されている。
特許第3291259号公報
パーソナルコンピュータの普及等に伴い、デジタルカメラやカラースキャナなどの画像入力機器によって画像を入力し、その画像をCRTやLCDなどの画像表示装置で表示・確認し、さらに、用途に応じて画像に編集・加工・修正等を施してカラープリンタなどの画像出力機器によって出力することが容易になった。
デジタルカメラ、カラースキャナ、カラーモニタ、カラープリンタなど画像入出力機器の色再現特性や色再現範囲は異なり、それぞれ固有の色空間を有している。このため画像入出力機器間で色信号を交換する色空間として標準的な色空間が使用され、画像を入出力する目的や用途に応じて階調性重視(色味重視)、鮮やかさ重視、色差重視などの色処理が行われる。
機器間で色信号を交換するための標準的な色空間として、従来はモニタ色空間であるsRGB(IEC61966−2−1)が使われていたが、カラープリンタ等の色空間を包含できない等の理由から、さらに広い色域をもつ標準的な色空間としてbg−sRGB(IEC61966−2−1)やscRGB(IEC61966−2−2)が提案され利用されようとしている。
しかし、これらの色空間は、人間の視覚領域を超える広い色域をもつ色空間であり、人間の視覚領域内の色を対象にしたCIECAM97s、CIECAM02等の色の見えモデルを用いた色順応変換を正常に実行できない(システムが停止する等)場合があるという問題が生じている。
よって、本発明の目的は、色の見えモデルを用いた色順応変換における上述の問題を解決した画像処理装置及び画像処理方法を提供することにある。
上記課題を解決するため、本発明の画像処理装置は、請求項1に記載のように、
色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理手段と、
前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定手段と、
前記判定手段により正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正手段とを有し、
前記判定手段は、非線形錐体応答R′a,G′a,B′aが、
R′a+G′a+(21/20)B′a<α (但し、0<α<0.305)
の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
R′a+G′a+(21/20)B′a=α
を満たすように補正することにある。
本発明の画像処理装置のもう1つの特徴は、請求項2に記載のように、請求項1記載の構成において、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
R′a=G′a=B′a
の方向に補正することにある。
本発明の画像処理装置のもう1つの特徴は、請求項3に記載のように、請求項1記載の構成において、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
R′a=G′a=(20/21)B′a
の方向に補正することにある。
本発明の画像処理装置のもう1つの特徴は、請求項4に記載のように、
色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理手段と、
前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′a又は無彩色応答Aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定手段と、
前記判定手段により正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正手段とを有し、
前記判定手段は、無彩色応答Aが負の場合、又は、非線形錐体応答R′a,G′a,B′aが
2R′a+G′a+B′a/20−0.305<0
の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
2R′a+G′a+B′a/20=0.305
を満たすように補正することにある。
本発明の画像処理装置のもう1つの特徴は、請求項5に記載のように、請求項4記載の画像処理装置において、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
R′a=G′a=B′a
の方向に補正することにある。
本発明の画像処理装置のもう1つの特徴は、請求項6に記載のように、請求項4記載の構成において、
前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
(1/2)R′a=G′a=20B′a
の方向に補正することにある。
また、上記課題を解決する本発明の画像処理方法は、請求項7に記載のように、
色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理ステップと、
前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定ステップと、
前記判定ステップにより正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正ステップとを有し、
前記判定ステップは、非線形錐体応答R′a,G′a,B′aが、
R′a+G′a+(21/20)B′a<α (但し、0<α<0.305)
の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
前記補正ステップは、非線形錐体応答R′a,G′a,B′aを、
R′a+G′a+(21/20)B′a=α
を満たすように補正することにある。
本発明の画像処理方法のもう1つの特徴は、請求項8に記載のように、
色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理ステップと、
前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′a又は無彩色応答Aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定ステップと、
前記判定ステップにより正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正ステップとを有し、
前記判定ステップは、無彩色応答Aが負の場合、又は、非線形錐体応答R′a,G′a,B′aが
2R′a+G′a+B′a/20−0.305<0
の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
前記補正ステップは、非線形錐体応答R′a,G′a,B′aを、
2R′a+G′a+B′a/20=0.305
を満たすように補正することにある。
本発明の画像処理装置又は方法によれば、CIECAM02等の色の見えモデルで扱うことができない色に対しても、順方向変換処理で算出される非線形錐体応答の補正により、支障なくかつ精度良く色順応変換を行うことができ、これまでCIECAM02等の色の見えモデルで扱うことができなかった人間の視覚領域を超える広い色域を持つ色空間に対する精度の良い色順応変換が可能になる。
以下、図面を参照し、本発明の実施形態について説明する。
本発明の画像処理装置は、例えば、図1に例示するようなコンピュータシステム上でソフトウェアを利用して実現される。図1において、101は一般的な構成のコンピュータ(パーソナルコンピュータ、マイクロコンピュータ等)である。このコンピュータ101には、画像を入力するためのデジタルカメラやカラースキャナなどの画像入力装置102が接続され、また、画像出力装置として、画像を画面出力するCRTやLCDなどの画像表示装置103と、画像を印刷出力するカラープリンタなどの画像出力装置104が接続されている。
コンピュータ101は、中央演算装置であるCPU111、基本動作プログラムを格納する不揮発性メモリであるROM112、プログラムやデータ等を格納する揮発性メモリであるRAM113を備える。コンピュータ101は、ROM112やハードディスク109に格納されたプログラムに従って画像処理等の処理を行う。コンピュータ101の内部において、画像入力部105は、画像入力装置102から入力された色信号を取り込むためのUSBやIEEE1394等のI/F(インターフェース)である。画像表示部106は、画像表示装置103に表示する色信号を生成するビデオI/Fである。画像出力部107は、画像出力装置104へ色信号を出力するIEEE1284、USB、IEEE1394等のI/Fである。バッファメモリ108は、画像処理を行うために色信号を一時的に保持しておくワーク用メモリ領域である。ハードディスク109は、色信号の半恒久的記憶や、各種画像処理パラメータ、画像処理プログラム等の記憶に利用される。操作部110は、ユーザがデータや指令を入力するためのキーボードやポインティングデバイスである。
次に、図1に示したコンピュータシステム上に実現される本発明の一実施形態に係る画像処理装置について詳細に説明する。
図2は、本実施形態に係る画像処理装置(以下、単に画像処理装置と記す)の機能的構成を処理の流れ及び色信号の流れに沿って示したブロック図である。画像処理装置においては、色の見えモデルによる色順応変換が行われるが、色順応変換の順方向変換を実行する処理ブロックとして順方向変換ブロック202を備え、色順応変換の逆方向変換を実行する処理ブロックとして、画像表示装置103のための逆方向変換ブロック205と画像出力装置104のための逆方向変換ブロック206とを備える。なお、ここでは色の見えモデルとしてCIECAM02を用いるものとして説明する。
画像処理装置は、画像入力装置102から入力された画像の画素単位の色信号を、画像入力部105を介しバッファメモリ108に一時保存する。ここでは、この色信号を処理するものとする。なお、色信号を16−bitのscRGB(IEC61966−2−2)として説明するが、これのみに限定されるものではなく、人間の視覚領域を超える広い色域をもつ他の色空間の信号であってもよい。
さて、16−bitのscRGB(scRGB(16))と三刺激値XYZは、次のような関係にある。
RscRGB=RscRGB(16)/8192−0.5
GscRGB=GscRGB(16)/8192−0.5 ・・・(1)
BscRGB=BscRGB(16)/8192−0.5
Figure 0004864821
処理の流れは以下の通りである。まず、バッファメモリ108に保存された色信号scRGBは、scRGB⇒XYZ変換ブロック201へ入力され、そこで上式に従い三刺激値信号XYZに変換される。
この三刺激値信号XYZは、順方向変換ブロック202で、入力観察条件221に応じた順方向変換を施されて色知覚信号JChに変換される。
この色知覚信号JChは、ガマットマッピング処理ブロック203において、対応する画像出力手段すなわち画像表示装置103や設定されているガマットマッピングモードに応じたガマットマッピング処理を施され、ガマットマッピングされた色知覚信号JCh′に変換される。
このガマットマッピングされた色知覚信号JCh′は、逆方向変換ブロック205で、画像表示装置103での出力(表示)観察条件222に応じた逆方向変換を施され、三刺激値信号XYZ′へ変換される。
この三刺激値信号XYZ′は、XYZ⇒sRGB変換ブロック207で、表示デバイス信号sRGBに変換される。ここでは、画像表示装置103は標準的なsRGBモニタと同等の特性を有しているものとして、下式に従う変換が行われるが、これのみ限定されるものではなく、例えば、画像表示装置103の表示特性を示すプロファイル(ICCプロファイル等)に従った変換を行うようにしても良い。
Figure 0004864821
表示デバイス信号sRGBは、画像表示部105を介して画像表示装置103に画面表示される。
画像出力装置104側の処理も同様である。すなわち、順方向変換後の色知覚信号JChは、ガマットマッピング処理ブロック204において、対応する出力手段すなわち画像出力装置104や設定されているガマットマッピングモードに応じた、ガマットマッピング処理を施され、ガマットマッピングされた色知覚信号JCh″に変換される。
このガマットマッピングされた色知覚信号JCh″は、逆方向変換ブロック206で、画像出力装置104での出力観察条件223に応じた逆方向変換を施され三刺激値信号XYZ″に変換される。
この三刺激値信号XYZ″は、XYZ⇒CMYK変換ブロック208で、出力デバイス信号CMYKに変換される。この出力デバイス信号CMYKは、画像出力部107を介して画像出力装置104で印刷出力される。ここでは画像出力装置104はCMYKの4色の色材を用いるプリンタとしているが、これのみに限られるものではない。
以上においては、画像入力装置102から入力された画像の色信号を直接処理するものとして説明したが、これのみに限られるものではない。例えば、画像補正・加工ブロック209において、バッファメモリ108に保存されている色信号に画像強調や色補正等の処理を施したものを再度バッファメモリ108に保存してから、処理に供しても良い。また、バッファメモリ108に保存された色信号をハードディスク109に保存しておき、ハードディスク109から色信号を読み出してバッファメモリ108に展開して処理に供しても良い。
また、順方向変換ブロック202や逆方向変換ブロック205,206等の処理ブロックはプログラムによって実現されるが、ハードウェアとして実現することも可能であり、かかる形態も本発明に包含されることは勿論である。
また、ガマットマッピング処理ブロック203,204は図2に示した位置に必ずしもある必要はない。例えば、同様のガマットマッピング機能は、色知覚信号ではなく、三刺激値信号の段階でも実現できる。また、XYZ⇒sRGB変換ブロック207やXYZ⇒CMYK変換ブロック208等で、その変換と同時にガマットマッピング処理を実施するようにしてもよい。
<順方向変換ブロック202の詳細説明>
以下、順方向変換ブロック202について説明する。順方向変換ブロック202では、入力色信号すなわち三刺激値信号XYZに対し、入力観察条件221に応じた色の見えモデル(ここではCIECAM02)の順方向変換を施すが、色の見えモデルはもともと人間の視覚領域内の色を対象に考えられており、人間の視覚領域外の色に対する適用を保証したものではない。一方、例えば16−bitのscRGB値から算出される三刺激値XYZには、人間の視覚領域外の実在しない色も含まれる。つまり、三刺激値XYZには、色の見えモデルの順方向変換を正常に行うことができない値も存在し、そのような値に対し無理に順方向変換処理を実行しようとするとシステム(プログラム)が停止してしまう。
そこで、本発明は、順方向変換ブロック202において、順方向変換処理の途中で、順方向変換処理を最後まで正常に実行可能であるか否かの判定を行い、判定結果が「否」の場合には正常な処理を可能にするための対応処置をする。以下、順方向変換ブロック202のいくつかの実施例について詳細に説明する。なお、下記説明で参照される各フローチャート(図3乃至図6)中の各処理ステップは、プログラムにより実現される処理手段と言い換えてもよいことは云うまでもない。
[実施例1]
図3に、実施例1に係る順方向変換ブロック202の処理フローを示す。図3において、ステップS1はCIECAM02に従った入力観察条件221に応じた順方向変換処理を実行する処理ステップである。CIECAM02の順方向変換それ自体については、”CIE TECHNICAL REPORT-CIE159:2004”等で当業者には周知であるので、ここでは詳細説明は割愛する。
ステップS2は、順方向変換処理(ステップS1)の途中において、処理を最後まで正常に実行することが可能であるか否か判定するステップである。
ステップS3は、順方向変換が正常に実行できないと判定されたときに(ステップS2,No)、順方向変換を正常に実行可能にするための対応処置をするステップである。
さて、CIECAM02の順方向変換において算出される非線形錐体応答R′a,G′a,B′aの値が、
R′a+G′a+(21/20)B′a≦0 ・・・(4)
の関係となった場合には、順方向変換を正常に行うことができない。具体的には、クロマCが算出不能となる。そして、発明者等の研究では、実在する色に対する(4)式の左辺の最小値は、0.305であった。
したがって、ステップS2は、順方向変換処理において少なくとも非線形錐体応答R′a,G′a,B′aが算出された段階で、
R′a+G′a+(21/20)B′a<α (但し、0<α<0.305)・・・(5)
の条件について調べ、この条件が成立するときに順方向変換が正常に実行できない(No)と判定し、その条件が成立しないときに順方向変換が正常に実行できる(Yes)と判定することができる(判定方法1)。
なお、(4)式の左辺が“0”に近づくと、算出されるクロマCが急激に拡大し、色知覚信号空間JChの歪が顕著となる。この意味では、αは0.305に近いほど有利であるが、その反面、順方向変換を正常に実行できると判定される領域が狭くなるという不利益を併せ持つ。したがって、両者のバランスを取って定数αを決定する必要があるが、発明者の経験では、
0.050<α<0.255
のような範囲のときに良好なバランスとなる。
ステップ2で順方向変換が正常に実行できない(No)と判定された場合、ステップS3で順方向変換を正常に実行可能にするための対応処置をする。この対応処置とは、非線形錐体応答R′a,G′a,B′aの値を、(6)式の条件を満たす非線形錐体応答R″a,G″a,B″aに補正することである。これは、入力色空間の色を色変換モデルで扱うことができる色に変換することと等価である。
R″a+G″a+(21/20)B″a=α ・・・(6)
より具体的な補正方法は、非線形錐体応答R′a,G′a,B′aを、無彩軸である
R′a=G′a=B′aの方向に補正する方法、すなわち(7)式、(8)式のように補正する方法である(補正方法1)。
R″a=R′a+β
G″a=G′a+β ・・・(7)
B″a=B′a+β
β=(20/61)(α−(R′a+G′a+(21/20)B′a))・・・(8)
また、(6)式は三次元空間の平面式と見なす事ができるので、座標点(R′a,G′a,B′a)から垂線を下ろし、その交点を補正後の値としても良い。よって、もう一つの補正方法は、非線形錐体応答R′a,G′a,B′aをR′a=G′a=(20/21)B′aの方向に補正する方法、すなわち(9)式、(10)式のように補正する方法である(補正方法2)。
R″a=R′a+ β
G″a=G′a+ β ・・・・・・・・・・(9)
B″a=B′a+(20/21)β
β=(1/3)(α−(R′a+G′a+(21/20)B′a))・・・(10)
なお、補正方法2の場合、非線形錐体応答空間で最も近い点に補正されるので、補正に起因する歪を補正方法1に比べ小さくすることができる。
ここまでの説明から明らかなように、実施例1においては、順方向変換処理は少なくとも比線形錐体応答が算出された段階で処理が一時的に中断される。そして、ステップS2で順方向変換が正常に実行可能であると判定された場合には、格別の処置をすることなく中断された順方向変換処理が続行される。順方向変換が正常に実行可能でないと判定された場合には、ステップS3で補正方法1又は補正方法2により非線形錐体応答の値が補正され、補正後の非線形錐体応答を用いて、中断された順方向変換の処理が続行されることになる。
[実施例2]
別の実施例2係る順方向変換ブロック202の処理フローも、前記実施例1の場合と同様に図3のように表すことができるので、本実施例についても図3を参照して説明する。
図3において、ステップS1はCIECAM02に従った入力観察条件221に応じた順方向変換処理を実行する処理ステップであり、ステップS2は順方向変換処理(ステップS1)の途中において、処理を最後まで正常に実行することが可能であるか否か判定するステップであり、ステップS3は順方向変換が正常に実行できないと判定されたときに(ステップS2,No)、順方向変換を正常に実行可能にするための対応処置をするステップである。
CIECAM02の順方向変換は、無彩色応答Aが、
A=[2R′a+G′a+B′a/20−0.305]Nbb<0 ・・・(11)
の関係となると、明度J以下の算出が不能となる。Nbbは観察条件で定まる係数で、
Nbb>0 ・・・(12)
である。したがって、実質的には、非線形錐体応答R′a,G′a,B′aの値が、
2R′a+G′a+B′a/20−0.305<0 ・・・(13)
の条件の場合に順方向変換を正常に実行できないということである。
よって、ステップS2では、順方向変換で非線形錐体応答R′a,G′a,B′aが算出された段階で、(13)式又は(11)式の条件が成立するか否か調べ、条件が成立するときに順方向変換が正常に実行できない(No)と判定し、条件が不成立のときに順方向変換が正常に実行できる(Yes)と判定することができる(判定方法2)。
ステップS2で順方向変換が正常に実行できないと判定された場合、ステップS3で順方向変換を正常に実行可能にするための対応処置をする。この対応処置とは、非線形錐体応答R′a,G′a,B′aを(14)式の条件を満たす非線形錐体応答R″a,G″a,B″aに補正することである。
2R″a+G″a+B″a/20−0.305=0 ・・・(14)
より具体的な補正方法は、非線形錐体応答R′a,G′a,B′aを、無彩軸である
R′a=G′a=B′aの方向に補正する方法、すなわち(15)式、(16)式のように補正する方法である(補正方法3)。
R″a=R′a+γ
G″a=G′a+γ ・・・(15)
B″a=B′a+γ
γ=(20/61)(0.305−(2R′a+G′a+(1/20)B′a))・・・(16)
また、(14)式は、三次元空間の平面式と見なすことができるので、座標点(R′a,G′a,B′a)から垂線を下ろし、その交点を補正後の値としても良い。よって、もう一つの補正方法は、非線形錐体応答R′a,G′a,B′aを(1/2)R′a=G′a=20B′aの方向に補正する方法、すなわち、(17)式、(18)式のように補正する方法である(補正方法4)。
R″a=R′a+(1/2)γ
G″a=G′a+ γ ・・・(17)
B″a=B′a+ 20γ
γ=(1/3)(0.305−(2R′a+G′a+(1/20)B′a))・・・(18)
なお、補正方法4の場合、非線形錐体応答空間で最も近い点に補正されるので、補正に起因する歪を補正方法3に比べ小さくすることができる。
ここまでの説明から明らかなように、実施例2においては、順方向変換は少なくとも比線形錐体応答が算出された段階で処理が一時的に中断される。そして、ステップS2で順方向変換が正常に実行可能であると判定された場合には、格別の処置をすることなく中断された順方向変換の処理が続行される。順方向変換が正常に実行可能でないと判定された場合には、ステップS3で補正方法3又は補正方法4により非線形錐体応答の値が補正され、補正後の非線形錐体応答を用いて、中断された順方向変換の処理が続行されることになる。
[実施例3]
図4に、別の実施例3に係る順方向変換ブロック202の処理フローを示す。図4において、ステップS1はCIECAM02の入力観察条件221に応じた順方向変換の処理ステップである。ステップS11,S13は、順方向変換が正常に実行可能であるか否かを判定するステップであり、ステップS12,S14はステップS11,S13で順方向変換が正常に実行可能でない(No)と判定されたときに順方向変換を正常に実行可能にするための対応処置をするステップである。
第1の態様では、ステップS11で前記実施例2のステップS2と同様の判定方法2による判定を行い、ステップS12で対応処置として前記実施例2のステップS3と同様の補正方法3又は補正方法4による非線形錐体応答の補正を行う。ステップS13では、ステップS12で補正が行われた場合には、その補正後の非線形錐体応答について、ステップS12で補正が行われない場合には、順方向変換で算出された非線形錐体応答について、前記実施例1のステップS2と同様の判定方法1による判定を行い、ステップS14では対応処置として前記実施例1のステップS3と同様の補正方法1又は補正方法2による非線形錐体応答の補正を行う。
第2の態様では、ステップS11,S12で前記実施例1と同様の判定と補正を行い、ステップS13,S14で前記実施例2と同様の判定と補正を行う。
ステップS12,S14で補正方法1と補正方法3のような同じ方向へ補正する方法が用いられる場合には、第1の態様と第2の態様とに優劣はない。しかし、ステップS12,S14で、補正方法1と補正方法4のような異なった方向へ補正する方法が用いられる場合には、経験的に、第1の態様のほうが第2の態様より良好な結果を得られることが多い。
以上の説明から明らかなように、本実施例によれば、順方向変換が正常に実行不可能になる(4)式のような場合と(11)式のような場合の一方だけが発生したときにも、その両方が同時に発生したときにも、順方向変換の正常実行を保証することができる。
[実施例4]
図5に、別の実施例4に係る順方向変換ブロック202の処理フローを示す。図5において、ステップS1はCIECAM02の順方向変換の処理ステップである。ステップS21,S23は、非線形錐体応答に基づいて順方向変換が正常に実行可能であるか否かを判定するステップである。ステップS22は、ステップS21で順方向変換が正常に実行可能でないと判定されたときに、順方向変換を正常に実行可能にするための対応処置をするステップである。ステップS24は、ステップS23で順方向変換を正常に実行可能でないと判定されたときに、順方向変換を正常に実行な可能にするための対応処置をするステップである。ただし、ステップS22での対応処置は非線形錐体応答の補正であるが、ステップS24の対応処置は順方向変換を通常の処理モードから拡張処理モードへ切り換えさせることである。以下、より詳細に説明する。
ステップS21では、前記判定方法1((5)式)により判定を行う。ステップS22では前記補正方法3((15)式,(16)式)又は補正方法4((17)式,(18)式)により非線形錐体応答R′a,G′a,B′aの補正を行う。
ステップS23では、前記判定方法2による判定を行う。すなわち、無彩色応答Aが負つまり、
A=[2R′a+G′a+B′a/20−0.305]Nbb<0 ・・・(11)
となるか、あるいは、非線形錐体応答R′a,G′a,B′aが、
2R′a+G′a+B′a/20−0.305<0 ・・・(13)
の条件を満たすときに、順方向変換を正常に実行不可能である(No)と判定する。
次に、順方向変換の拡張処理モードについて説明する。この拡張処理モードの処理は、CIECAM02に規定されたものではなく、本発明により導入されたものである。
CIECAM02に従った順方向変換の処理(通常処理モードの処理)では、(11)式又は(13)式が成立する場合には明度Jの算出が不能となる。これは、明度Jの算出に次式が使用されるためである。
J=100(A/Aw)^CZ ・・・(19)
ここで、Awは観察条件で定まる係数で、
Aw>0 ・・・(20)
である。
拡張処理モードの処理では、負の明度Jを許容するように明度Jの計算式を
J=−100(−A/Aw)^CZ (但し、A<0の時) ・・・(21)
に変更する。
このように負の明度Jを許容させた場合、クロマCの算出も不能となる。これは、通常処理モードの処理ではクロマCの算出式として次式が使用されるためである。
C=t^0.9 sqrt(J/100) (1.64−0.29n))0.73 ・・・(22)
そこで、拡張処理モードの処理では、負のクロマCを許容するようにクロマCの計算式を次のように変更する。
C=−t^0.9 sqrt(−J/100) (1.64−0.29^n))0.73
(但し、J<0の時、即ち、A<0の時) ・・・(23)
このような順方向変換処理の拡張(換言すれば色の見えモデルの拡張)によって、無彩色応答A等が負であっても、順方向変換処理を正常に実行可能となって色知覚信号JChを得ることができる。
色知覚信号JChの空間では、上述したようにガマットマッピング処理を行うことができるが、scRGB等に含まれる人間の視覚領域外の実在しない色も変換可能な視覚領域内の色と同様に扱えると、それを区別して取扱う必要がなくなるので、本実施例によればガマットマッピング処理の実現が容易となる。
なお、ステップS21で正常に実行可能である(Yes)と判定された場合に、ステップS23,S24をスキップさせる構成とすることも可能であり、かかる態様も本発明に包含される。
<逆方向変換ブロック205,206の一実施例>
さて、上に述べたように順方向変換処理を拡張した場合、負の明度J、負のクロマCが許容されるので、それに対応して逆方向変換でも処理の拡張が必要となることがある。このような順方向変換処理の拡張に対応可能な逆方向変換ブロック205,206の一実施例について、次に説明する。
図6に、そのような逆方向変換ブロック205,206の一実施例の処理フローを示す。図6において、ステップS33はCIECAM02に従った出力観察条件222,223に応じた逆方向変換の処理ステップである。ただし、ステップS33では逆方向変換処理の拡張が可能である。
ステップS31は、逆方向変換の正常な実行が可能であるか否かを判定するステップである。具体的には、入力色信号の明度JとクロマCの正負を調べ、明度J又はクロマCが負のときに正常実行不可能(No)と判定し、その両方が正のときに正常実行可能(Yes)と判定する。ステップS31で逆方向変換の正常実行が不可能と判定された場合、ステップS32で逆方向変換を通常処理モードから拡張処理モードへ切り換える。
明度J又はクロマCが負の場合、CIECAM02に従った逆方向変換の処理(通常処理モードの処理)では、一時的な値tおよび無彩色応答Aの算出が不能となる。これは、それらの算出に以下の計算式が使用されるためである。
t=(C/(sqrt(J/100)(1.64−0.29^n)^0.73))^(1/0.9)
・・・(26)
A=Aw(J/100)^(1/CZ) ・・・(27)
次に、逆方向変換の拡張処理モードについて説明する。この拡張処理モードの処理は、CIECAM02に規定されたものではなく、本発明により導入されたものである。
逆方向変換の拡張処理モードでは、一時的な値tと無彩色応答Aを次式により算出させる。
t=(|C|/(sqrt(|J|/100)(1.64−0.29^n)^0.73))^(1/0.9)
・・・(28)
A=Aw(−J/100)^(1/CZ) (但し、J<0の時) ・・・(29)
これにより、明度J又はクロマCが負であっても、逆方向変換を正常に実行可能となり、三刺激値信号XYZを得ることができる。
このように順方向変換処理および逆方向変換処理の拡張(色の見えモデルの拡張)により、従来取扱えなかった16−bitのscRGB値から算出される三刺激値XYZ等もそのまま扱えるようになった。これにより、入力観察条件および出力観察条件に応じた色順応変換をより簡単に行えるようになった。
ここまでは、色の見えモデルとしてCIECAM02を例にして説明したが、本発明はこれのみに限定されるわけではない。例えば、CIECAM02と同様な非線形錐体応答を算出する色の見えモデルであるCIECAM97sの色順応変換を行う場合にも本発明を同様に適用し得る。
以上、本発明の画像処理装置について説明したが、以上の説明は本発明の画像処理方法の説明でもある。また、図3乃至図6を参照して説明した処理内容をコンピュータで実行させるプログラム、及び、同プログラムが記録された磁気ディスク、光ディスク、光磁気ディスク、半導体記憶素子等のコンピュータ読み取り可能な各種記録(記憶)媒体も本発明に包含される。
さて、図2に示した画像処理装置では、順方向変換ブロック202と、逆方向変換ブロック205,206が独立しているが、それらを統合することも可能である。
例えば、図7に示すように、統一処理ブロック501に図2中の順方向変換ブロック202、ガマットマッピング処理ブロック203、逆方向変換ブロック205を統合し、統一処理ブロック502に図2中の順方向変換ブロック202、ガマットマッピング処理ブロック204、逆方向変換ブロック206を統合することができる。
さらに、図8に示すように、統一処理ブロック503に図7中の統一処理ブロック501とscRGB⇒XYZ変換ブロック201を統合し、統一処理ブロック504に図7中の統一処理ブロック504とscRGB⇒XYZ変換ブロック201を統合することができる。
さらに、図9に示すように、統一処理ブロック505に図8中の統一処理ブロック503とXYZ⇒sRGB変換ブロック207を統合し、また、統一処理ブロック506に図8中の統一処理ブロック504とXYZ⇒CMYK変換ブロック208を統合することができる。
以上の統一的処理には、三刺激値信号XYZや色信号scRGBを入力とする3次元LUT(ルックアップテーブル)を使用することができる。即ち、3次元LUTの各位置に、対応する入力色信号を前述したような処理フローで処理した出力信号を保存しておき、入力された三刺激値信号XYZや色信号scRGBで、この3次元LUTを参照して出力色信号を得る。
なお、本発明は、入力色空間を同種立体に分割し、各格子点の出力信号のみを3次元LUTに保存し、格子点間の出力信号は補間処理により算出を行う場合に有効である。即ち、このような格子点の中には、人間の視覚領域外の実在しない色も含まれているが、従来はこれを適応な人間の視覚領域の色に置き換えて3次元LUTを作成していた。その結果、人間の視覚領域外の色と人間の視覚領域内の色を含む補間立体、即ち、補間方式によって定まる立方体、三角柱、三角錐等の補間処理の単位立体では、置換えによる歪が発生して正しい結果が得られなかった。本発明では、人間の視覚領域外の実在しない色も、できる限りそのまま処理するので、このような歪の影響が発生を低減できる。特に、色の見えモデルを拡張した場合は、更にこのような歪の影響が発生を低減可能である。
本発明が実施されるコンピュータシステムの一例を示すブロック図である。 本発明の一実施形態に係る画像処理装置を説明するためのブロック図である。 順方向変換ブロックの実施例1,2を説明するためのフローチャートである。 順方向変換ブロックの実施例3を説明するためのフローチャートである。 順方向変換ブロックの実施例4を説明するためのフローチャートである。 逆方向変換ブロックの一実施例を説明するためのフローチャートである。 色順応変換に関係した処理ブロックの統合例を示すブロック図である。 色順応変換に関係した処理ブロックの別の統合例を示すブロック図である。 色順応変換に関係した処理ブロックの他の統合例を示すブロック図である。
符号の説明
101 コンピュータ
102 画像入力装置
103 画像表示装置
104 画像出力装置
202 順方向変換ブロック
205,206 逆方向変換ブロック
S1 順方向変換処理ステップ(順方向変換処理手段)
S2 判定ステップ(判定手段)
S3 補正ステップ(補正手段)
S11,S13 判定ステップ(判定手段)
S12,S14 補正ステップ(補正手段)
S21,S23 判定ステップ(判定手段)
S22 補正ステップ(補正手段)
S24 順方向変換処理を拡張させるステップ(順方向変換処理を拡張させる手段)
S31 判定ステップ(判定手段)
S32 逆方向変換処理を拡張させるステップ(逆方向変換処理を拡張させる手段)
S33 逆方向変換処理ステップ(逆方向変換処理手段)

Claims (10)

  1. 色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理手段と、
    前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定手段と
    前記判定手段により正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正手段とを有し、
    前記判定手段は、非線形錐体応答R′a,G′a,B′aが、
    R′a+G′a+(21/20)B′a<α (但し、0<α<0.305)
    の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
    前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    R′a+G′a+(21/20)B′a=α
    を満たすように補正することを特徴とする画像処理装置。
  2. 前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    R′a=G′a=B′a
    の方向に補正することを特徴とする請求項1に記載の画像処理装置。
  3. 前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    R′a=G′a=(20/21)B′a
    の方向に補正することを特徴とする請求項1に記載の画像処理装置。
  4. 色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理手段と、
    前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′a又は無彩色応答Aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定手段と、
    前記判定手段により正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正手段とを有し、
    前記判定手段は、無彩色応答Aが負の場合、又は、非線形錐体応答R′a,G′a,B′aが、
    2R′a+G′a+B′a/20−0.305<0
    の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
    前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    2R′a+G′a+B′a/20=0.305
    を満たすように補正することを特徴とする画像処理装置。
  5. 前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    R′a=G′a=B′a
    の方向に補正することを特徴とする請求項4に記載の画像処理装置。
  6. 前記補正手段は、非線形錐体応答R′a,G′a,B′aを、
    (1/2)R′a=G′a=20B′a
    の方向に補正することを特徴とする請求項4に記載の画像処理装置。
  7. 色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理ステップと、
    前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定ステップと、
    前記判定ステップにより正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正ステップとを有し、
    前記判定ステップは、非線形錐体応答R′a,G′a,B′aが、
    R′a+G′a+(21/20)B′a<α (但し、0<α<0.305)
    の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
    前記補正ステップは、非線形錐体応答R′a,G′a,B′aを、
    R′a+G′a+(21/20)B′a=α
    を満たすように補正することを特徴とする画像処理方法。
  8. 色の見えモデルを用いた色順応変換のうちの入力観察条件に応じた順方向変換処理を実行する順方向変換処理ステップと、
    前記順方向変換処理において算出される非線形錐体応答R′a,G′a,B′a又は無彩色応答Aに基づいて、前記順方向変換処理が正常に実行可能であるか否かを判定する判定ステップと、
    前記判定ステップにより正常に実行可能でないと判定された場合に、前記非線形錐体応答R′a,G′a,B′aを補正する補正ステップとを有し、
    前記判定ステップは、無彩色応答Aが負の場合、又は、非線形錐体応答R′a,G′a,B′aが、
    2R′a+G′a+B′a/20−0.305<0
    の条件を満たす場合に、前記順方向変換処理が正常に実行可能でないと判定し、
    前記補正ステップは、非線形錐体応答R′a,G′a,B′aを、
    2R′a+G′a+B′a/20=0.305
    を満たすように補正することを特徴とする画像処理方法。
  9. 請求項7もしくは8記載の画像処理方法の各ステップをコンピュータに実行させるプログラム。
  10. 請求項7もしくは8記載の画像処理方法の各ステップをコンピュータに実行させるプログラムが記録されたコンピュータが読み取り可能な記録媒体。
JP2007175099A 2007-07-03 2007-07-03 画像処理装置、画像処理方法、プログラム及び記録媒体 Expired - Fee Related JP4864821B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175099A JP4864821B2 (ja) 2007-07-03 2007-07-03 画像処理装置、画像処理方法、プログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175099A JP4864821B2 (ja) 2007-07-03 2007-07-03 画像処理装置、画像処理方法、プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2009017100A JP2009017100A (ja) 2009-01-22
JP4864821B2 true JP4864821B2 (ja) 2012-02-01

Family

ID=40357467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175099A Expired - Fee Related JP4864821B2 (ja) 2007-07-03 2007-07-03 画像処理装置、画像処理方法、プログラム及び記録媒体

Country Status (1)

Country Link
JP (1) JP4864821B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343752B2 (ja) * 2004-03-31 2009-10-14 キヤノン株式会社 色処理装置およびその方法
JP4721398B2 (ja) * 2004-03-31 2011-07-13 キヤノン株式会社 色処理装置およびその方法
JP4595771B2 (ja) * 2005-09-28 2010-12-08 セイコーエプソン株式会社 色変換装置

Also Published As

Publication number Publication date
JP2009017100A (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4263131B2 (ja) 色変換方法および画像処理装置
JP2004120217A (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP5630115B2 (ja) 色処理装置及びプログラム
US7616361B2 (en) Color processing apparatus and its method
US8446634B2 (en) Color conversion apparatus, and color conversion method and computer program product
JP4971948B2 (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP4910557B2 (ja) 色変換装置、色変換方法、色変換プログラム、色変換係数作成装置、色変換係数作成方法、及び色変換係数作成プログラム
JP5709062B2 (ja) 画像処理装置
US8818090B2 (en) Color processing apparatus and computer readable medium storing program
JP4864821B2 (ja) 画像処理装置、画像処理方法、プログラム及び記録媒体
JP4853296B2 (ja) 色変換装置、色変換方法、色変換プログラム、色変換係数作成装置、色変換係数作成方法、及び色変換係数作成プログラム
JP4985162B2 (ja) 色域生成装置、色域生成プログラム、及び色変換装置
JP5206428B2 (ja) 色処理装置及びプログラム
JP4853303B2 (ja) 色変換装置及びプログラム
JP2008245274A (ja) 色変換プロファイルの調整方法及び色変換プロファイルの調整装置
JP5112234B2 (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP4472594B2 (ja) 画像データの色変換装置、色変換方法及び色変換プログラム
JP2009182637A (ja) 色処理装置およびその方法
JP2005119189A (ja) 画像処理装置及び画像処理方法
JP4970419B2 (ja) 画像処理装置
JP2004080648A (ja) 色変換方法
JP2009284261A (ja) 色処理装置、方法及びプログラム
JP2006238336A (ja) 色処理方法および装置
JP2009272832A (ja) 画像処理装置、方法およびプログラム
JP2009111823A (ja) 映像信号変換装置,映像表示装置,映像信号変換方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4864821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees