JP4862759B2 - Method for producing starch-containing food and enzyme preparation for modifying starch-containing food - Google Patents

Method for producing starch-containing food and enzyme preparation for modifying starch-containing food Download PDF

Info

Publication number
JP4862759B2
JP4862759B2 JP2007164867A JP2007164867A JP4862759B2 JP 4862759 B2 JP4862759 B2 JP 4862759B2 JP 2007164867 A JP2007164867 A JP 2007164867A JP 2007164867 A JP2007164867 A JP 2007164867A JP 4862759 B2 JP4862759 B2 JP 4862759B2
Authority
JP
Japan
Prior art keywords
added
enzyme
tgl
starch
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007164867A
Other languages
Japanese (ja)
Other versions
JP2008194024A (en
Inventor
律彰 山田
哲平 小川
明子 丸山
武 岡本
秀彦 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2007164867A priority Critical patent/JP4862759B2/en
Publication of JP2008194024A publication Critical patent/JP2008194024A/en
Application granted granted Critical
Publication of JP4862759B2 publication Critical patent/JP4862759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/40Products characterised by the type, form or use
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/042Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/109Types of pasta, e.g. macaroni or noodles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)

Description

本発明は、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを用いる澱粉含有食品の製造方法及び澱粉含有食品改質用の酵素製剤に関するものである。   The present invention relates to an enzyme having transglycosylation activity for converting an α-1,4 bond of a sugar chain into an α-1,6 bond, a method for producing a starch-containing food using transglutaminase, and an enzyme for modifying starch-containing food It relates to the preparation.

α化した澱粉を常温や低温で放置すると、水分を分離し硬くなる。この現象を老化といい澱粉の老化現象については数多く研究されている。一般に老化の防止のためには温度を80℃以上に保っておくか、急速に乾燥させて水分を15%以下にする、pH13以上のアルカリ性に保つことが必要である。また、老化を防止する方法として澱粉含有食品に糖類(ブドウ糖、果糖、液糖等)や大豆タンパク、小麦グルテン、脂肪酸エステル、多糖類(山芋、こんにゃく等)が一般に知られており、特許文献1には増粘剤、界面活性剤等を添加する方法が記載されている。しかし、これらの方法では食味が大きく変化し、また効果も不安定で十分な解決法とはなっていない。   If the pregelatinized starch is allowed to stand at room temperature or low temperature, moisture is separated and hardened. This phenomenon is called aging, and many studies have been conducted on the aging phenomenon of starch. Generally, in order to prevent aging, it is necessary to keep the temperature at 80 ° C. or higher, or to dry quickly to bring the moisture to 15% or less, and to keep the pH at 13 or higher. Moreover, as a method for preventing aging, saccharides (glucose, fructose, liquid sugar, etc.), soybean protein, wheat gluten, fatty acid esters, polysaccharides (e.g., yam, konjac) are commonly known as starch-containing foods. Describes a method of adding a thickener, a surfactant and the like. However, these methods greatly change the taste, and the effects are unstable, and are not sufficient solutions.

また、従来、老化防止の手段として、酵素を添加する方法も知られている。例えば、特許文献2には、精白米にアミラーゼ、プロテアーゼ、リパーゼ等の酵素と、食塩及びサイクロデキストリンを混合して炊飯する米飯の改良方法が記載されている。特許文献3には、炊飯後の米飯に糖化型アミラーゼ(β-アミラーゼ、グルコアミラーゼ)の水溶液を噴霧添加する米飯の老化防止方法が記載されている。しかしながら、米に各種の酵素剤を添加して米飯の品質改良を試みているが、いずれも目ざましい効果は得られていないのが現状である。   Conventionally, a method of adding an enzyme as a means for preventing aging is also known. For example, Patent Document 2 describes a method for improving cooked rice in which polished rice is mixed with an enzyme such as amylase, protease, or lipase, and salt and cyclodextrin. Patent Document 3 describes a method for preventing aging of cooked rice by spraying and adding an aqueous solution of saccharified amylase (β-amylase, glucoamylase) to cooked rice. However, various enzyme preparations have been added to rice to try to improve the quality of cooked rice, but none of these have achieved remarkable effects.

澱粉含有食品の一つである、麺類の食感改良方法に関しては多くの知見がある。 例えば、茹で麺の食感を改良するためにタンパク質素材(活性グルテン、大豆タンパク質、卵白、全卵、カゼイン等)や澱粉等(各種澱粉、多糖類、乳化剤等)を添加することが行われている(特許文献4)。また、レトルト殺菌処理の場合に食感を維持させるために高温、短時間処理を行っている(特許文献5)。また、トランスグルタミナーゼを使用し、食感を改善させる方法も知られている(特許文献6、7)。これらの方法によれば、トランスグルタミナーゼの作用によりタンパク質間及びタンパク質内のネットワーク構造を麺体の中に形成させて麺体内での水分の均一化を防止することにより、茹で後の弾力(こし)のある好ましい食感を維持することができる。しかしながら、全体が均一な食感となり、アルデンテと呼ばれる、中芯感のある食感(外側に比べ内側が硬い)を得るには改善の余地があった。   There is a lot of knowledge about the method for improving the texture of noodles, which is one of starch-containing foods. For example, in order to improve the texture of boiled noodles, protein materials (active gluten, soy protein, egg white, whole egg, casein, etc.) and starches (various starches, polysaccharides, emulsifiers, etc.) are added. (Patent Document 4). Moreover, in order to maintain food texture in the case of retort sterilization processing, the high temperature and short time processing is performed (patent document 5). Moreover, the method of improving food texture using a transglutaminase is also known (patent documents 6 and 7). According to these methods, the transglutaminase acts to form a network structure between proteins and within the protein in the noodle body, thereby preventing the water from being homogenized in the noodle body. A preferable texture can be maintained. However, there is room for improvement in order to obtain a uniform texture (harder on the inner side than on the outer side), which is called Ardente, with a uniform texture as a whole.

また、特許文献8によれば澱粉含有食品の物性改良剤として、トランスグルコシダーゼを小麦混練時に添加することによって、硬さ、粘りが増し、かつ時間が経つと無添加に比べ中芯感もあるうどんを得ることができる。かなりの効果が見られるものの、茹で直後での物性改良効果において改善の余地が残っていた。このように、いずれの方法によっても、茹で上げ直後の食感を向上させ、かつその優れた食感を長時間にわたって維持するという2つを両立させることは難しく、いまだ完全には達成されていないのが現状である。食品の物性を決定する上で重要なものは、タンパク質と糖質(澱粉)の状態である。タンパク質の物性改良に有効な酵素としてトランスグルタミナーゼが、澱粉の物性改良に有効な酵素としてトランスグルコシダーゼが見出されているが、これらを組み合わせて、物性改良に用いた例は未だ報告されていない。
特開昭59-2664号公報 特開昭58-86050号公報 特開昭60-199355号公報 特開平2-117353号公報 特開平2-186954号公報 特開平2-286054号公報 特開平6-14733号公報 WO2005/096839
Further, according to Patent Document 8, as a physical property improving agent for starch-containing foods, the addition of transglucosidase at the time of wheat kneading increases the hardness and stickiness, and the udon also has a core feeling over time without addition. Can be obtained. Although a considerable effect was observed, there was still room for improvement in the physical property improving effect immediately after boiling. As described above, it is difficult to achieve both of the above-mentioned methods of improving the texture immediately after being boiled and maintaining the excellent texture over a long period of time by any method, and it has not been completely achieved yet. is the current situation. What is important in determining the physical properties of food is the state of protein and sugar (starch). Transglutaminase has been found as an enzyme effective for improving the physical properties of proteins, and transglucosidase has been found as an enzyme effective for improving the physical properties of starch. However, there have been no reports of examples of using these in combination for improving physical properties.
JP 59-2664 JP 58-86050 A JP-A-60-199355 JP-A-2-117353 JP-A-2-86954 JP-A-2-86054 JP-A-6-14733 WO2005 / 096839

本発明の目的は、物性及び食味の改善された澱粉含有食品の製造方法及び澱粉含有食品改質用の酵素製剤を提供することである。特に穀粉等を混練する麺類の製造直後の品質(食味と物性)を向上し、製造工程及び製造後の流通過程での時間経過による品質劣化を抑制する方法を提供することである。   An object of the present invention is to provide a method for producing a starch-containing food with improved physical properties and taste, and an enzyme preparation for modifying starch-containing food. In particular, it is to provide a method for improving quality (taste and physical properties) immediately after production of noodles kneaded with flour and the like, and suppressing quality deterioration due to passage of time in the production process and the distribution process after production.

本発明者等は、鋭意研究を行った結果、α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを用いて澱粉含有食品を製造することにより上記目的を達成しうることを見出し、本発明を完成するに至った。即ち、本発明は以下の通りである。
(1)糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを添加することを特徴とする澱粉含有食品の製造方法。
(2)糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素がトランスグルコシダーゼである(1)記載の方法。
(3)澱粉含有食品が穀粉を原料とする麺類である(1)又は(2)記載の方法。
(4)トランスグルコシダーゼの量が、穀粉1g当たり1.5〜300,000Uであり、トランスグルタミナーゼの量が穀粉1g当たり0.0001〜100Uである(3)記載の方法。
(5)トランスグルコシダーゼの量が、トランスグルタミナーゼ1U当たり1U〜200,000Uである(4)記載の方法。
(6)トランスグルコシダーゼの量が、トランスグルタミナーゼ1U当たり90U〜7,500Uである(4)記載の方法。
(7)澱粉含有食品が、野菜天ぷら又は和菓子又はピザ又は豆腐又はヨーグルト又は卵焼き又はマヨネーズである(1)又は(2)記載の方法。
(8)トランスグルコシダーゼの量が、トランスグルタミナーゼ1U当たり90U〜7,500Uである(7)記載の方法。
(9)トランスグルコシダーゼ及びトランスグルタミナーゼを含有する澱粉含有食品改質用の酵素製剤。
(10)トランスグルコシダーゼの含有量がトランスグルタミナーゼ1U当り90U〜200,000Uである(9)記載の酵素製剤。
(11)澱粉含有食品が麺類であり、トランスグルコシダーゼの含有量がトランスグルタミナーゼ1U当り90U〜7,500Uである(9)記載の酵素製剤。
As a result of intensive studies, the present inventors have produced starch-containing foods using an enzyme having transglycosylation activity that converts α-1,4 bonds into α-1,6 bonds and transglutaminase. The inventors have found that the above object can be achieved and have completed the present invention. That is, the present invention is as follows.
(1) A method for producing a starch-containing food comprising adding an enzyme having transglycosylation activity for converting an α-1,4 bond of a sugar chain to an α-1,6 bond and transglutaminase.
(2) The method according to (1), wherein the enzyme having transglycosylation activity that converts an α-1,4 bond of a sugar chain into an α-1,6 bond is transglucosidase.
(3) The method according to (1) or (2), wherein the starch-containing food is noodles made from flour.
(4) The method according to (3), wherein the amount of transglucosidase is 1.5 to 300,000 U per gram of flour and the amount of transglutaminase is 0.0001 to 100 U per gram of flour.
(5) The method according to (4), wherein the amount of transglucosidase is 1 U to 200,000 U per 1 U of transglutaminase.
(6) The method according to (4), wherein the amount of transglucosidase is 90 U to 7,500 U per 1 U of transglutaminase.
(7) The method according to (1) or (2), wherein the starch-containing food is vegetable tempura, Japanese confectionery, pizza, tofu, yogurt, fried egg or mayonnaise.
(8) The method according to (7), wherein the amount of transglucosidase is 90 U to 7,500 U per 1 U of transglutaminase.
(9) An enzyme preparation for starch-containing food modification containing transglucosidase and transglutaminase.
(10) The enzyme preparation according to (9), wherein the content of transglucosidase is 90 U to 200,000 U per 1 U of transglutaminase.
(11) The enzyme preparation according to (9), wherein the starch-containing food is noodles and the transglucosidase content is 90 U to 7,500 U per 1 U of transglutaminase.

本発明により、麺類等の澱粉含有食品の製造直後の品質(食味と物性)を向上することができ、時間経過による該食品の品質劣化を抑制することができる。   According to the present invention, quality (taste and physical properties) immediately after production of starch-containing foods such as noodles can be improved, and quality deterioration of the foods over time can be suppressed.

本発明による澱粉含有食品の製造方法には、α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素とトランスグルタミナーゼを用いる。α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の例として、トランスグルコシダーゼ(EC3.2.1.20)、1,4-αグルカン分枝酵素、1,4-αグルカン6-α-D-グルコシルトランスフェラーゼが挙げられる。トランスグルコシダーゼは糖転移能を有するα-グルコシダーゼ酵素である。α-グルコシダーゼとは非還元末端α-1,4-グルコシド結合を加水分解し、α-グルコースを生成する酵素である。尚、グルコアミラーゼはα-グルコシダーゼと類似の反応を起こすが生成するグルコースはα-グルコースではなく、β-グルコースである。さらに、本発明に用いる酵素は単に分解活性を有するのみではなく、水酸基を持つ適当な受容体がある場合、グルコースをα-1,4結合よりα-1,6結合へと転移させ、分岐糖を生成する糖転移活性を有するものであることが特に重要である。従来の物性改良剤に含まれる酵素は澱粉分解酵素であり、糖転移酵素ではない。尚、トランスグルコシダーゼL「アマノ」という商品名で天野エンザイム(株)より市販されている酵素が、α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の一例である。   In the method for producing a starch-containing food according to the present invention, an enzyme having transglycosylation activity for converting an α-1,4 bond into an α-1,6 bond and transglutaminase are used. Examples of enzymes having transglycosylation activity for converting α-1,4 bonds to α-1,6 bonds include transglucosidase (EC 3.2.1.20), 1,4-α glucan branching enzyme, 1 , 4-α-glucan 6-α-D-glucosyltransferase. Transglucosidase is an α-glucosidase enzyme having sugar transfer ability. α-Glucosidase is an enzyme that hydrolyzes the non-reducing terminal α-1,4-glucoside bond to produce α-glucose. Glucoamylase causes a reaction similar to α-glucosidase, but the glucose produced is not α-glucose but β-glucose. Further, the enzyme used in the present invention not only has a degrading activity but also has a suitable acceptor having a hydroxyl group, it transfers glucose from an α-1,4 bond to an α-1,6 bond, thereby branching sugar. It is particularly important that it has glycosyltransferase activity to produce Enzymes contained in conventional physical property improving agents are amylolytic enzymes, not glycosyltransferases. An example of an enzyme having transglycosylation activity, which is an enzyme commercially available from Amano Enzyme Co., Ltd. under the trade name transglucosidase L “Amano”, which converts α-1,4 bonds into α-1,6 bonds. It is.

トランスグルタミナーゼはタンパク質やペプチド中のグルタミン残基を供与体、リジン残基を受容体とするアシル転移反応を触媒する活性を有する酵素のことを指し、哺乳動物由来のもの、魚類由来のもの、微生物由来のものなど、種々の起源のものが知られている。本発明で用いる酵素はこの活性を有している酵素であれば構わず、その起源としてはいずれのものでも構わない。また、組み換え酵素であっても構わない。味の素(株)より「アクティバ」TGという商品名で市販されている微生物由来のトランスグルタミナーゼが一例である。   Transglutaminase refers to an enzyme having an activity of catalyzing an acyl transfer reaction using a glutamine residue in a protein or peptide as a donor and a lysine residue as an acceptor, and is derived from mammals, fish, microorganisms Those of various origins, such as those of origin, are known. The enzyme used in the present invention may be any enzyme having this activity, and any origin may be used. Moreover, it may be a recombinant enzyme. An example is a transglutaminase derived from a microorganism marketed by Ajinomoto Co., Inc. under the trade name “Activa” TG.

澱粉含有食品としては様々なものが考えられるが、市場の大きさや、ニーズ等と照らし合わせると、うどん、パスタ、日本そば、中華麺、焼きそば、フライ工程や乾燥工程を経る即席麺、餃子、焼売の皮等の麺類に作用させるのが特に有効であると考えられる。その他、いも天ぷら等の野菜天ぷら、白玉団子、みたらし団子、大福、桜餅、柏餅、蕨餅、ういろう、すあま、八つ橋等の和菓子、ピザ、食パン、フランスパン、バターロール、米粉パン、デニッシュ、ベーグル、ラスク、ドーナツ、フォカッチャ、ナン、ピタパン等のパン・ベーカリー類、豆腐、ベジタリアン向け大豆ハンバーグ、湯葉、油揚げ等の大豆加工品、ヨーグルト、ヨーグルトドリンク、ホワイトソース、アイスクリーム、生クリーム等の乳加工品、厚焼き卵、卵焼き、目玉焼き、スクランブルエッグ、オムレツ、かに玉、茶碗蒸し、プリン、卵豆腐、カスタードクリーム等の卵加工品、マヨネーズ、マヨネーズタイプ調味料も含まれる。   There are various types of starch-containing foods, but in light of the market size and needs, udon, pasta, Japanese soba, Chinese noodles, fried noodles, instant noodles that have undergone the frying process and drying process, dumplings, and fried rice It is thought that it is particularly effective to act on noodles such as husks. Other potato tempura and other vegetable tempura, Shiratama dumpling, Mitarashi dumpling, Daifuku, Sakura mochi, rice cake, rice cake, uirou, suama, yatsuhashi and other Japanese sweets, pizza, bread, French bread, butter roll, rice flour bread, Danish, Bakery products such as bagels, rusks, donuts, focaccia, naan, pita bread, tofu, processed soybean products such as soybean hamburger, yuba, fried chicken, yogurt, yogurt drink, white sauce, ice cream, fresh cream Processed products, thick-baked eggs, fried eggs, fried eggs, scrambled eggs, omelettes, crab balls, steamed egg custard, pudding, egg tofu, custard cream and other processed eggs, mayonnaise, mayonnaise type seasonings are also included.

麺類等澱粉含有食品にトランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合は、製造工程のどの段階で作用させてもかまわない。すなわち原料混合時に酵素を添加してもよいし、混合後に酵素を振りかけて作用させてもよい。さらに、α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼ以外の他の酵素や物質(デキストリン、澱粉、加工澱粉等の糖類、畜肉エキス等の調味料、植物蛋白、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、蛋白加水分解物、蛋白部分分解物、乳化剤、クエン酸塩、重合リン酸塩等のキレート剤、グルタチオン、システイン等の還元剤、アルギン酸、かんすい、色素、酸味料、香料等その他の食品添加物等)と併用し使用してもかまわない。小麦粉を用いる場合はどのような品種の小麦粉でもよく、強力粉、準強力粉、中力粉、薄力粉、デュラムセモリナ粉でもかまわない。また、米粉等の他の穀粉、澱粉(加工澱粉を含む)と混合して使用してもかまわない。   When making an enzyme with transglycosylation activity that converts α-1,4 linkages into α-1,6 linkages such as transglucosidase and transglutaminase act on starch-containing foods such as noodles, whichever step in the production process It doesn't matter. That is, an enzyme may be added at the time of mixing raw materials, or the enzyme may be sprinkled to act after mixing. In addition, enzymes having transglycosylation activity that converts α-1,4 bonds to α-1,6 bonds and other enzymes and substances other than transglutaminase (sugars such as dextrin, starch, and modified starch, and meat extract) Seasoning, protein such as vegetable protein, gluten, egg white, gelatin, casein, protein hydrolyzate, protein partial degradation product, emulsifier, citrate, chelating agent such as polymerized phosphate, reducing agent such as glutathione, cysteine, Other food additives such as alginic acid, citrus, coloring matter, acidulant, and fragrance may be used in combination. When using wheat flour, any kind of flour may be used, and may be strong flour, semi-strong flour, medium strength flour, weak flour or durum semolina flour. Moreover, you may mix and use other cereals, such as rice flour, and starch (a process starch is included).

麺類等澱粉含有食品にトランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合、糖転移活性を有する酵素の添加量は、原料穀粉1gに対して酵素活性が1.5U以上、好ましくは1.5〜300,000U 、より好ましくは15〜150,000Uの範囲が適正である。大豆加工品に、トランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合、糖転移活性を有する酵素の添加量は、大豆乾燥重量1gに対して酵素活性が0.15U以上、好ましくは0.15〜300,000Uの範囲が適正である。乳加工品の場合、糖転移活性を有する酵素の添加量は、無脂乳固形分1gに対して酵素活性が0.15U以上、好ましくは0.15〜300,000Uの範囲が適正である。卵加工品の場合、糖転移活性を有する酵素の添加量は、卵原料乾燥重量1gに対して酵素活性が0.15U以上、好ましくは0.15〜300,000Uの範囲が適正である。マヨネーズの場合、糖転移活性を有する酵素の添加量は、澱粉類1gに対して酵素活性が0.15U以上、好ましくは0.15〜300,000Uの範囲が適正である。尚、酵素活性については1mM α-メチル-D-グルコシド1mlに0.02M酢酸バッファー(pH5.0)1mlを加え、酵素溶液0.5ml添加して、40℃、60分間を作用させた時に、反応液2.5ml中に1μgのブドウ糖を生成する酵素量を1U(ユニット)と定義した。   When noodles and other starch-containing foods are treated with an enzyme having transglycosylation activity, such as transglucosidase, which converts α-1,4 bonds to α-1,6 bonds, and transglutaminase, In addition, an enzyme activity of 1.5 U or more, preferably 1.5 to 300,000 U, more preferably 15 to 150,000 U is appropriate for 1 g of raw material flour. When the enzyme having transglycosylation activity such as transglucosidase and the like having transglycosylation activity and transglutaminase are allowed to act on processed soybean products, The enzyme activity is 0.15 U or more, preferably 0.15 to 300,000 U per 1 g of soybean dry weight. In the case of a dairy product, the amount of the enzyme having transglycosylation activity is appropriately 0.15 U or more, preferably 0.15 to 300,000 U, with respect to 1 g of nonfat milk solid content. In the case of processed egg products, the amount of the enzyme having transglycosylation activity is appropriately 0.15 U or more, preferably 0.15 to 300,000 U with respect to 1 g of egg raw material dry weight. In the case of mayonnaise, the addition amount of the enzyme having transglycosylation activity is in the range of 0.15 U or more, preferably 0.15 to 300,000 U, with respect to 1 g of starch. As for enzyme activity, 1 ml of 1 mM α-methyl-D-glucoside was added with 1 ml of 0.02 M acetic acid buffer (pH 5.0), 0.5 ml of enzyme solution was added and allowed to act at 40 ° C. for 60 minutes. The amount of enzyme that produces 1 μg of glucose in 2.5 ml of the reaction solution was defined as 1 U (unit).

麺類等澱粉含有食品にトランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合、トランスグルタミナーゼの添加量は、穀粉1gに対して酵素活性が0.0001U以上、好ましくは0.0001〜100U 、より好ましくは0.05〜10Uの範囲が適正である。大豆加工品の場合、トランスグルタミナーゼの添加量は、大豆乾燥重量1gに対して酵素活性が0.0001U以上、好ましくは0.0001〜100Uの範囲が適正である。乳加工品の場合、トランスグルタミナーゼの添加量は、無脂乳固形分1gに対して酵素活性が0.0001U以上、好ましくは0.0001〜100Uの範囲が適正である。卵加工品の場合、トランスグルタミナーゼの添加量は、卵原料乾燥重量1gに対して酵素活性が0.0001U以上、好ましくは0.0001〜100Uの範囲が適正である。マヨネーズの場合、トランスグルタミナーゼの添加量は、澱粉類1gに対して酵素活性が0.0001U以上、好ましくは0.0001〜100Uの範囲が適正である。尚、酵素活性についてはベンジルオキシカルボニル-L-グルタミニルグリシンとヒドロキシルアミンを基質として反応を行い、生成したヒドロキサム酸をトリクロロ酢酸存在下で鉄錯体を形成させた後525nmの吸光度を測定し、ヒドロキサム酸の量を検量線より求め活性を算出する。37℃,pH6.0で1分間に1μmolのヒドロキサム酸を生成する酵素量を1U(ユニット)と定義した。   When an enzyme having transglycosylation activity such as transglucosidase that converts α-1,4 bonds to α-1,6 bonds and transglutaminase are allowed to act on starch-containing foods such as noodles, the amount of transglutaminase added is 1 g of flour. On the other hand, the enzyme activity is 0.0001 U or more, preferably 0.0001 to 100 U, more preferably 0.05 to 10 U. In the case of processed soybean products, the amount of transglutaminase added is 0.0001 U or more, preferably 0.0001 to 100 U in terms of enzyme activity with respect to 1 g of soybean dry weight. In the case of a dairy product, the amount of transglutaminase added is 0.0001 U or more, preferably 0.0001 to 100 U, with respect to 1 g of nonfat milk solid content. In the case of processed egg products, the amount of transglutaminase added is 0.0001 U or more, preferably 0.0001 to 100 U, with respect to 1 g of egg raw material dry weight. In the case of mayonnaise, the amount of transglutaminase added is 0.0001 U or more, preferably 0.0001 to 100 U, with respect to 1 g of starch. Regarding enzyme activity, benzyloxycarbonyl-L-glutaminylglycine and hydroxylamine were used as substrates, and the hydroxamic acid produced was formed into an iron complex in the presence of trichloroacetic acid, and then the absorbance at 525 nm was measured. The amount of acid is obtained from a calibration curve and the activity is calculated. The amount of enzyme that produces 1 μmol of hydroxamic acid per minute at 37 ° C and pH 6.0 was defined as 1U (unit).

麺類等澱粉含有食品にトランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合の両酵素の添加量比については、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素のユニット数が、トランスグルタミナーゼ1Uに対して0.15U〜3000000Uが好ましく、1U〜200000Uがより好ましく、90U〜7500Uがさらに好ましい。小麦粉を主原料とする麺類の場合、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり1U〜200000Uが好ましく、90U〜50000Uがより好ましく、90U〜7500Uがさらに好ましい。うどんの場合、トランスグルコシダーゼ等糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり300U〜7500Uが特に好ましい。そば粉を含有する麺類の場合、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり0.15〜7500Uが好ましく、0.5U〜800Uがより好ましい。日本そばの場合、トランスグルコシダーゼ等糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり90U〜800Uが特に好ましい。デュラム粉を主原料とする麺類の場合、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり0.15〜200000Uが好ましい。特に、デュラム粉を主原料とするパスタの場合、トランスグルコシダーゼ等糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素の添加量は、トランスグルタミナーゼ1U当たり90U〜7500Uがさらに好ましい。その他、白玉団子、みたらし団子、大福、桜餅、柏餅、蕨餅、ういろう、すあま、八つ橋等の和菓子、ピザ、食パン、フランスパン、バターロール、米粉パン、デニッシュ、ベーグル、ラスク、ドーナツ、フォカッチャ、ナン、ピタパン等のパン・ベーカリー類、豆腐、ベジタリアン向け大豆ハンバーグ、湯葉、油揚げ等の大豆加工品、ヨーグルト、ヨーグルトドリンク、ホワイトソース、
アイスクリーム、生クリーム等の乳加工品、厚焼き卵、卵焼き、目玉焼き、スクランブルエッグ、オムレツ、かに玉、茶碗蒸し、プリン、卵豆腐、カスタードクリーム等の卵加工品、マヨネーズ、マヨネーズタイプ調味料、野菜天ぷら等の澱粉含有食品の場合、トランスグルコシダーゼ等α-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素及びトランスグルタミナーゼを作用させる場合の両酵素の添加量比については、糖鎖のα-1,4結合をα-1,6結合へと変換する糖転移活性を有する酵素のユニット数が、トランスグルタミナーゼ1Uに対して0.15U〜3000000U、好ましくは1U〜200000U、より好ましくは90U〜7500Uの範囲が適正である。
Regarding the ratio of addition of both enzymes when transglutaminase and an enzyme having transglycosylation activity such as transglucosidase to convert α-1,4 bonds to α-1,6 bonds are applied to starch-containing foods such as noodles. The number of units of the enzyme having transglycosylation activity that converts α-1,4 bonds of chains into α-1,6 bonds is preferably 0.15 U to 3000000 U with respect to 1 U of transglutaminase, and more preferably 1 U to 200000 U. 90U to 7500U are more preferable. In the case of noodles mainly made of wheat flour, the amount of the enzyme having transglycosylation activity that converts α-1,4 bonds of sugar chains into α-1,6 bonds is preferably 1 U to 200000 U per 1 U of transglutaminase. 90U to 50000U is more preferable, and 90U to 7500U is further preferable. In the case of udon, the addition amount of an enzyme having transglycosylation activity that converts α-1,4 bonds of sugar chains such as transglucosidase into α-1,6 bonds is particularly preferably 300 U to 7500 U per 1 U of transglutaminase. In the case of noodles containing buckwheat flour, the amount of enzyme having transglycosylation activity that converts α-1,4 bonds of sugar chains to α-1,6 bonds is 0.15 to 7500 U per 1 U of transglutaminase. Preferably, 0.5 U to 800 U is more preferable. In the case of Nippon Soba, the amount of the enzyme having transglycosylation activity that converts α-1,4 bonds of sugar chains such as transglucosidase into α-1,6 bonds is particularly preferably 90 U to 800 U per 1 U of transglutaminase. In the case of noodles mainly made of durum flour, the amount of the enzyme having transglycosylation activity that converts α-1,4 linkages of sugar chains into α-1,6 linkages is 0.15 to 1U of transglutaminase. 200,000 U is preferred. In particular, in the case of pasta using durum flour as the main ingredient, the amount of an enzyme having transglycosylation activity that converts α-1,4 bonds of sugar chains such as transglucosidase into α-1,6 bonds is 1 U of transglutaminase. 90 U to 7500 U is more preferable. Others, Shiratama dumplings, Mitarashi dumplings, Daifuku, Sakura mochi, candy, candy, Uiro, Suama, Yatsuhashi, etc. , Bread and bakery products such as naan and pita bread, tofu, soy hamburger for vegetarians, yuba, deep-fried soybean processed products, yogurt, yogurt drink, white sauce,
Processed milk products such as ice cream, fresh cream, thick-baked eggs, fried eggs, fried eggs, scrambled eggs, omelet, crab balls, steamed egg custard, pudding, egg tofu, custard cream and other processed eggs, mayonnaise, mayonnaise type seasonings, In the case of starch-containing foods such as vegetable tempura, the ratio of the amount of both enzymes added when transglutaminase and an enzyme having transglycosylation activity, such as transglucosidase, which convert α-1,4 bonds to α-1,6 bonds As for transglutaminase 1U, the number of units of the enzyme having transglycosylation activity for converting sugar chain α-1,4 bonds to α-1,6 bonds is 0.15 U to 3000000 U, preferably 1 U to A range of 200000 U, more preferably 90 U to 7500 U is appropriate.

各酵素の反応時間は、酵素が基質物質に作用することが可能な時間であれば特に構わなく、非常に短い時間でも逆に長時間作用させても構わないが、現実的な作用時間としては5分〜24時間が好ましい。また、反応温度に関しても酵素が活性を保つ範囲であればどの温度であっても構わないが、現実的な温度としては0〜80℃で作用させることが好ましい。すなわち、通常の食品製造工程を経ることで十分な反応時間が得られる。   The reaction time of each enzyme is not particularly limited as long as the enzyme can act on the substrate substance, and may be allowed to act for a very short time or conversely for a long time. 5 minutes to 24 hours are preferred. Further, the reaction temperature may be any temperature as long as the enzyme maintains activity, but it is preferable that the reaction temperature be 0 to 80 ° C. as a practical temperature. That is, a sufficient reaction time can be obtained through a normal food production process.

トランスグルコシダーゼ及びトランスグルタミナーゼにデキストリン、澱粉、加工澱粉等の賦形剤、畜肉エキス等の調味料、植物蛋白、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、蛋白加水分解物、蛋白部分分解物、乳化剤、クエン酸塩、重合リン酸塩等のキレート剤、グルタチオン、システイン等の還元剤、アルギン酸、かんすい、色素、酸味料、香料等その他の食品添加物等を混合することにより、麺類等澱粉含有食品改質用の酵素製剤を得ることができる。本発明の酵素製剤は液体状、ペースト状、顆粒状、粉末状のいずれの形態でも構わない。また、酵素製剤における各酵素の配合量は0%より多く、100%より少ないが、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり0.15U〜3000000Uが好ましく、1U〜200000Uがより好ましく、90U〜50000Uがさらに好ましい。小麦粉を主原料とする麺類の製造に用いられる酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり1U〜200000Uが好ましく、90U〜50000Uがより好ましく、90U〜7500Uがさらに好ましい。うどん用の酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり300U〜7500Uが特に好ましい。そば粉を含有する麺類の製造に用いられる酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり0.15U〜3000000Uが好ましく、1U〜200000Uがより好ましく、90U〜7500Uがさらに好ましい。日本そば用の酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり90U〜800Uが特に好ましい。デュラム粉を主原料とする麺類の製造に用いられる酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり1U〜200000Uが好ましい。デュラム粉を主原料とするパスタ用の酵素製剤の場合、トランスグルコシダーゼの配合量はトランスグルタミナーゼ1U当たり90U〜7500Uが特に好ましい。その他、白玉団子、みたらし団子、大福、桜餅、柏餅、蕨餅、ういろう、すあま、八つ橋等の和菓子、ピザ、食パン、フランスパン、バターロール、米粉パン、デニッシュ、ベーグル、ラスク、ドーナツ、フォカッチャ、ナン、ピタパン等のパン・ベーカリー類、豆腐、ベジタリアン向け大豆ハンバーグ、湯葉、油揚げ等の大豆加工品、ヨーグルト、ヨーグルトドリンク、ホワイトソース、アイスクリーム、生クリーム等の乳加工品、厚焼き卵、卵焼き、目玉焼き、スクランブルエッグ、オムレツ、かに玉、茶碗蒸し、プリン、卵豆腐、カスタードクリーム等の卵加工品、マヨネーズ、マヨネーズタイプ調味料、野菜天ぷら等の澱粉含有食品の製造に用いられる酵素製剤の場合、トランスグルコシダーゼ及びトランスグルタミナーゼの配合比は、トランスグルタミナーゼ1Uに対してトランスグルコシダーゼが0.15U〜3000000U、好ましくは1U〜200000U、より好ましくは90U〜7500Uの範囲が適正である。   Transglucosidase and transglutaminase, excipients such as dextrin, starch, processed starch, seasonings such as animal meat extract, proteins such as plant protein, gluten, egg white, gelatin, casein, protein hydrolysates, partial protein degradation products, emulsifiers , Citrates, polymerized phosphates and other chelating agents, glutathione, cysteine and other reducing agents, alginic acid, citrus, pigments, acidulants, flavoring and other food additives, etc. An enzyme preparation for modification can be obtained. The enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder. In addition, the amount of each enzyme in the enzyme preparation is more than 0% and less than 100%, but the amount of transglucosidase is preferably 0.15 U to 3000000 U per 1 U of transglutaminase, more preferably 1 U to 200000 U, 90 U to 50000 U. Is more preferable. In the case of an enzyme preparation used for the production of noodles mainly made of wheat flour, the amount of transglucosidase is preferably 1 U to 200000 U, more preferably 90 U to 50000 U, and even more preferably 90 U to 7500 U per 1 U of transglutaminase. In the case of an enzyme preparation for udon, the amount of transglucosidase is particularly preferably 300 U to 7500 U per 1 U of transglutaminase. In the case of an enzyme preparation used for producing noodles containing buckwheat flour, the amount of transglucosidase is preferably 0.15 U to 3000000 U per 1 U of transglutaminase, more preferably 1 U to 200000 U, and even more preferably 90 U to 7500 U. In the case of an enzyme preparation for Japanese buckwheat, the amount of transglucosidase is particularly preferably 90 U to 800 U per 1 U of transglutaminase. In the case of an enzyme preparation used for the production of noodles mainly made of durum powder, the amount of transglucosidase is preferably 1 U to 200000 U per 1 U of transglutaminase. In the case of an enzyme preparation for pasta mainly made of durum powder, the amount of transglucosidase is particularly preferably 90 U to 7500 U per 1 U of transglutaminase. Others, Shiratama dumplings, Mitarashi dumplings, Daifuku, Sakura mochi, candy, candy, Uiro, Suama, Yatsuhashi and other Japanese sweets, pizza, bread, French bread, butter roll, rice flour bread, Danish, bagels, rusks, donuts, focaccia , Bread and bakery such as naan and pita bread, tofu, soy hamburger for vegetarians, yuba, deep-fried soybeans, yogurt, yogurt drink, white sauce, ice cream, dairy products such as fresh cream, thick-baked eggs, Egg preparation, fried egg, scrambled egg, omelet, crab ball, steamed rice bowl, pudding, egg tofu, custard cream and other processed egg products, mayonnaise, mayonnaise type seasoning, and starch-containing foods such as vegetable tempura In case of transglucosidase and transglutaminase , Transglucosidase 0.15U~3000000U against transglutaminase 1U, preferably 1U~200000U, more preferably the proper range of 90U~7500U.

以下に実施例を挙げ、本発明をさらに詳しく説明する。本発明は、この実施例により何ら限定されない。   The following examples further illustrate the present invention. The present invention is not limited in any way by this example.

市水35gに、「トランスグルコシダーゼL」(天野エンザイム社製)(以下TGL)、トランスグルタミナーゼ製剤である「STG-Mコシキープ」(味の素社製)(以下TG)を添加し溶解させた。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを共に添加した区分の4試験区とした。デュラム粉「DF」(日清製粉社製)100gを混練機(HOBART社製)にて混合しながら、上記酵素溶液を添加し、混練機設定のスピード1にて3分間、同スピード2にて7分間混練した。その後、恒温恒湿槽「LH21-12P」(ナガノ科学機械製作所社製)を用いて55℃、湿度85%にて2時間寝かせ、パスタマシン「R.M.」(IMPERIA社製)を用いてバラ掛け、複合、圧延、切り出しを行った。圧延はパスタマシン設定の厚さ5、切り出しは裁断幅2mmのパスタマシン付属のカッター「R.220」(IMPERIA社製)にて行った。酵素使用量は、TGLを原料小麦粉1gあたり5000U、上記TGを原料小麦粉に対して0.5%(原料小麦粉1gあたり0.1U)とした。製麺された生麺を、恒温恒湿槽を用いて40℃、湿度90%で30分の乾燥後、18時間後に湿度65%となる勾配設定にて乾燥させ、乾麺を製造した。乾麺を沸騰水にて10分間ゆでた後、氷水にて1分間冷却し、水切りをして保存容器に入れた。冷蔵庫で1日保存した後、常温のコンソメスープを添加して官能評価を行った。官能評価は、硬さ、ねばり(ボソボソ感と対義)に関して、コントロール区分を5点として、0点から10点までの11段階の評点法にて、評価人数8人で行い、平均値を算出した。結果を図1,2に示した。   To 35 g of city water, “transglucosidase L” (manufactured by Amano Enzyme) (hereinafter referred to as TGL) and “STG-M Koshikeep” (manufactured by Ajinomoto Co.) (hereinafter referred to as TG) which is a transglutaminase preparation were added and dissolved. There were four test sections: a control section where no enzyme was added, a section where only TGL was added, a section where only TG was added, and a group where both TGL and TG were added. While mixing 100 g of durum powder “DF” (manufactured by Nisshin Seifun Co., Ltd.) with a kneader (manufactured by HOBART), the above enzyme solution was added, and the kneader setting speed 1 for 3 minutes and the same speed 2 Kneaded for 7 minutes. After that, using a constant temperature and humidity chamber “LH21-12P” (Nagano Scientific Machinery Co., Ltd.) for 2 hours at 55 ° C. and a humidity of 85%, and using a pasta machine “RM” (IMPERIA), Compounding, rolling, and cutting were performed. Rolling was carried out with a cutter “R.220” (manufactured by Imperia) with a pasta machine setting thickness of 5 and cutting with a cutting width of 2 mm. The amount of enzyme used was 5000 U per gram of raw material flour for TGL and 0.5% of the TG for the raw material flour (0.1 U per gram of raw material flour). The raw noodles made of noodles were dried in a constant temperature and humidity chamber at 40 ° C. and 90% humidity for 30 minutes, and then dried at a gradient setting of 65% humidity after 18 hours to produce dry noodles. The dried noodles were boiled with boiling water for 10 minutes, then cooled with ice water for 1 minute, drained and placed in a storage container. After storing in the refrigerator for one day, sensory evaluation was performed by adding normal temperature consomme soup. For sensory evaluation, regarding the hardness and stickiness (as opposed to the tingling feeling), the control classification is 5 points, and the evaluation is performed by 8 people using the 11-point scoring system from 0 to 10 points, and the average value is calculated. did. The results are shown in FIGS.

図1に示す通り、TGL処理をすることでやや硬くなり、TG処理をすること非常に硬くなったが、TGLとTGを併用処理することにより更に硬く歯応えのあるパスタとなった。また、図2に示す通り、TGL処理によりねばりが増加する一方TG処理ではねばりが低下したが、TGLとTGを併用処理することにより歯応えとねばりのある好ましい食感となった。以上より、TGLとTGを併用処理することにより、それぞれの酵素の単独の使用では実現の難しかった、硬く歯応えがあり、かつねばりのある食感のパスタが製造可能であることが明らかとなった。   As shown in FIG. 1, the TGL treatment was slightly hardened and the TG treatment was very hard, but the combined use of TGL and TG resulted in a harder and more crisp pasta. In addition, as shown in FIG. 2, the stickiness increased by the TGL treatment, while the stickiness decreased by the TG treatment. However, when TGL and TG were used in combination, the texture became sticky and sticky. From the above, it was clarified that by using TGL and TG in combination, it was difficult to achieve the use of each enzyme alone, and it was possible to produce a pasta with a hard, crunchy and sticky texture. .

市水400gに食塩30gを加えた20℃の食塩水に、TGL、TGを添加し溶解させた。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを共に添加した区分の4試験区とした。中力粉「雀」(日清製粉社製)1kgに上記酵素溶液を加えながら3分間手混合し、混練機「TVM03-0028」(トーメン社製)にて10分間(95rpm;4分、75rpm;6分)混合した。混合後、バラ掛け、複合、圧延し、40℃にて1時間寝かせた後に#12の切り刃を用いて切り出しを行った。製造した生麺を沸騰水にて7分間ゆでた後、−40℃で冷凍して、冷凍うどんを製造した。TGLを原料小麦粉1gあたり5000U、上記TGを原料小麦粉に対して0.5%(原料小麦粉1gあたり0.1U)とした。冷凍うどんは、沸騰水にて1分間ゆでた後、官能評価を行った。官能評価は、硬さ、弾力に関して、コントロール区分を3点として、1点から5点までの評点法にて評価人数4人で行った。結果を図3,4に示す。   TGL and TG were added and dissolved in a 20 ° C. saline solution obtained by adding 30 g of salt to 400 g of city water. There were four test sections: a control section where no enzyme was added, a section where only TGL was added, a section where only TG was added, and a group where both TGL and TG were added. Hand-mix for 3 minutes while adding the above enzyme solution to 1 kg of medium-powered flour “Jung” (Nisshin Flour Mills), and 10 minutes (95 rpm; 4 minutes, 75 rpm) with a kneader “TVM03-0028” (Tomen) 6 minutes). After mixing, they were loosened, compounded, rolled, and allowed to stand at 40 ° C. for 1 hour, and then cut out using a # 12 cutting blade. The produced raw noodles were boiled with boiling water for 7 minutes and then frozen at -40 ° C to produce frozen udon. TGL was 5000 U per gram of raw material flour, and the TG was 0.5% with respect to the raw material flour (0.1 U per gram of raw material flour). The frozen udon was boiled in boiling water for 1 minute and then subjected to sensory evaluation. The sensory evaluation was performed by four evaluation persons with a score method of 1 to 5 points, with 3 points for the control category regarding hardness and elasticity. The results are shown in FIGS.

図3に示す通り、TGL処理による硬さへの影響はパスタとは異なり非常に小さい一方、TG処理では非常に硬くなったが、TGLとTGを併用処理することにより更に硬く歯応えのあるうどんとなった。また、図4に示す通り、TGL処理およびTG処理による弾力への影響はほとんどないものの、TGLとTGを併用処理することにより弾力のある食感となった。以上のように、TGLとTGを併用処理することにより、硬く歯応えがあり、かつ弾力のある食感のうどんが製造可能であることが明らかとなった。   As shown in Fig. 3, the effect on hardness by TGL treatment is very small, unlike pasta, while it became very hard by TG treatment, but by using TGL and TG in combination, it became harder and more crunchy. became. Further, as shown in FIG. 4, although there was almost no influence on the elasticity by the TGL treatment and the TG treatment, a combined texture of TGL and TG resulted in a resilient texture. As described above, it has been clarified that by using TGL and TG in combination, it is possible to produce a udon with a hard, crunchy and elastic texture.

中力粉「雀」(日清製粉社製)750g、加工澱粉「あじさい」(松谷化学工業社製)250g、小麦グルテン「AグルG」(グリコ栄養食品社製)20gに、TGL、TGを添加し100rpmで混練機「2kg真空捏機」(大竹麺機社製)にて1分混合した。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを5通りの割合で共に添加した区分の8試験区とした。それぞれの酵素添加量は、表1に示す通りである。表1中の穀粉は中力粉であり、加工澱粉は含まれない。市水410gに食塩30gを加えた5℃の食塩水を、上記混合原料に全量加えて、混練機にて5分間(100rpm;2分、50rpm;3分)混練した。混練後、製麺機「小型粗麺帯機・小型連続圧延機」(トム社製)にてバラ掛け、複合、圧延し、室温にて1時間寝かせた後に#10の切り刃を用いて切り出しを行った。切り出した麺線は直ちに凍結し、冷凍生うどんとした。冷凍生うどんは、沸騰水にて15分間ゆでた後6時間冷蔵保存し、官能評価を行った。官能評価は、硬さ、弾力、粘り、中芯感、総合評価に関して、コントロール区分を3点とし、0点から5点までの評点法にて評価人数6人で行った。結果を図5に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。例えば、併用(2)の粘りの理論値の場合、TGのみ0.134U/g添加時の粘りの評点が「−0.2」であり、併用(2)ではTGを0.094U/g使用している為「−0.2×0.094/0.134=−0.14」、一方TGLのみ108.3U/g添加時の粘りの評点が「1.4」であり、併用(2)ではTGLを32.5U/g使用している為「1.4×32.5/108.3=0.42」、これらを合計すると「−0.14+0.42=0.28」と算出される。よって「0.28」が併用(2)の粘りの理論値である。このように算出した値を用いて、理論値と実際の評点の差を求めた(図6)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   TGL and TG are added to 750 g of medium-powered flour “Sparrow” (Nisshin Flour Mills), 250 g of processed starch “Hydrangea” (Matsuya Chemical Industries), 20 g of wheat gluten “A Guru G” (Glico Nutrition Foods) The mixture was added and mixed at 100 rpm for 1 minute in a kneader “2 kg vacuum kneader” (Otake noodle machine). The test categories were 8 test zones: a control zone where no enzyme was added, a zone where only TGL was added, a zone where only TG was added, and a zone where TGL and TG were added together in five ratios. The amount of each enzyme added is as shown in Table 1. The flour in Table 1 is a medium flour and does not contain processed starch. A total amount of 5 ° C. saline solution obtained by adding 30 g of salt to 410 g of city water was added to the above mixed raw material, and kneaded for 5 minutes (100 rpm; 2 minutes, 50 rpm; 3 minutes). After kneading, the noodle making machine “Small Coarse Noodle Banding Machine / Small Continuous Rolling Machine” (manufactured by Tom Co., Ltd.) is loosened, combined, rolled, allowed to stand at room temperature for 1 hour, and then cut using a # 10 cutting blade Went. The cut noodle strings were immediately frozen and used as frozen raw udon. The frozen raw udon was boiled in boiling water for 15 minutes and then refrigerated for 6 hours for sensory evaluation. The sensory evaluation was performed with a rating method of 0 to 5 points and 6 evaluations with respect to hardness, elasticity, stickiness, core feeling, and overall evaluation, with a control classification of 3 points. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. For example, in the case of the theoretical value of stickiness of combined use (2), only TG has a stickiness rating of `` -0.2 '' when 0.134 U / g is added, and in combined use (2), 0.094 U / g of TG is used. Therefore, “-0.2 × 0.094 / 0.134 = −0.14”, while TGL only has a stickiness score of “1.4” when 108.3 U / g is added. Since 32.5 U / g is used, “1.4 × 32.5 / 108.3 = 0.42” is added, and when these are added, “−0.14 + 0.42 = 0.28” is calculated. Therefore, “0.28” is the theoretical value of stickiness of the combined use (2). Using the value thus calculated, the difference between the theoretical value and the actual score was obtained (FIG. 6). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図5に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さが付与された。弾力および中芯感においては、両酵素をある一定の割合で作用させた際に、特に大きな効果が得られることが明らかとなった。総合評価においても同様の傾向が見られた。また、図6に示す通り、全ての併用試験区において食感について相乗効果があることが見出された。総合評価においても、併用(1)よりもTGL添加量の多い全範囲において相乗効果が得られ、併用(2)と併用(5)に挟まれる範囲において特に顕著な効果であることが明らかとなった。   As shown in FIG. 5, as the addition ratio of TGL increased, viscosity was imparted, and as the addition ratio of TG increased, hardness was imparted. In terms of elasticity and core feeling, it has been clarified that particularly great effects can be obtained when both enzymes are allowed to act at a certain ratio. A similar trend was seen in the overall evaluation. Moreover, as shown in FIG. 6, it was found that all the combination test sections had a synergistic effect on the texture. The overall evaluation also revealed that a synergistic effect was obtained in the entire range where the amount of TGL added was higher than that in combination (1), and that the effect was particularly remarkable in the range between combination (2) and combination (5). It was.

そば粉「平和」(北東製粉社製)500g、強力粉「青鶏」(日清製粉社製)500gに、TGL、TGを添加し100rpmで混練機「2kg真空捏機」(大竹麺機社製)にて1分混合した。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを5通りの割合で共に添加した区分の8試験区とした。それぞれの酵素添加量は、表2に示す通りである。表2中の穀粉はそば粉と強力粉の合算である。市水350gに食塩15gを加えた5℃の食塩水を、上記混合原料に全量加えて、混練機にて5分間(100rpm;2分、50rpm;3分)混練した。混練後、製麺機「小型粗麺帯機・小型連続圧延機」(トム社製)にてバラ掛け、複合、圧延し、#18の切り刃を用いて切り出しを行った。切り出した麺線は直ちに凍結し、冷凍生日本そばとした。冷凍生日本そばは、沸騰水にて2.5分間ゆでた後24時間冷蔵保存し、官能評価を行った。官能評価は、硬さ、弾力、粘り、中芯感、歯切れ、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数6人で行った。結果を図7に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図8)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   TGL and TG are added to 500 g of buckwheat flour “Peace” (made by Tohoku Flour Mills) and 500 g of strong powder “Aoki” (made by Nisshin Flour Mills Co., Ltd.), and a kneading machine “2 kg vacuum mill” (made by Otake Noodle Machine Co., Ltd.) at 100 rpm ) For 1 minute. The test categories were 8 test zones: a control zone where no enzyme was added, a zone where only TGL was added, a zone where only TG was added, and a zone where TGL and TG were added together in five ratios. The amount of each enzyme added is as shown in Table 2. The flour in Table 2 is the sum of buckwheat flour and strong flour. A total amount of 5 ° C. saline containing 15 g of sodium chloride in 350 g of city water was added to the above mixed raw material, and kneaded for 5 minutes (100 rpm; 2 minutes, 50 rpm; 3 minutes). After kneading, the noodle making machine “Small Coarse Noodle Banding Machine / Small Continuous Rolling Machine” (manufactured by Tom Co., Ltd.) was separated, combined, rolled, and cut using a # 18 cutting blade. The cut noodle strings were immediately frozen and used as frozen raw Japanese soba. Frozen raw Japanese soba was boiled in boiling water for 2.5 minutes and then refrigerated for 24 hours for sensory evaluation. The sensory evaluation was performed with a rating of 6 points from a score of -2 to 2 with a control classification of 0 points for hardness, elasticity, stickiness, core feeling, crispness, and overall evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 8). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図7に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さと歯切れが付与された。総合評価においては、両酵素をある一定の割合で作用させた際に特に大きな効果が得られることが明らかとなった。また、図8に示す通り、全ての併用試験区において食感について相乗効果があることが見出された。総合評価においては、併用(4)および(5)ではわずかな相乗効果であったが、それよりもTG添加量の多い全範囲において顕著な相乗効果が得られ、併用(1)と併用(3)に挟まれる範囲において特に顕著な効果であることが明らかとなった。   As shown in FIG. 7, the stickiness was imparted as the TGL addition ratio increased, and the hardness and crispness were imparted as the TG addition ratio increased. In the comprehensive evaluation, it was revealed that a particularly large effect was obtained when both enzymes were allowed to act at a certain ratio. Further, as shown in FIG. 8, it was found that all the combination test sections had a synergistic effect on the texture. In the overall evaluation, the combination (4) and (5) showed a slight synergistic effect, but a significant synergistic effect was obtained over the entire range where the amount of TG added was larger than that, and the combination (1) and combination (3 ) Was found to be particularly noticeable in the range between.

デュラム粉「DF」(日清製粉社製)2kgに、TGL、TGを添加し十分に混合した。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを5通りの割合で共に添加した区分の8試験区とした。それぞれの酵素添加量は、表2に示す通りである。上記混合原料に市水540gを加え、混練機「真空ミキサーVU-2」(尾久葉鐵工所社製)にて15分間(混練機設定の速度100)混練した。混練後、パスタマシン「真空押出機FPV-2」(ニップンエンジニアリング社製)にて、1.8mmのロングパスタ用ダイスを用いて押し出し製麺を行った。押し出した麺線は、乾燥機「恒温恒湿槽LH21-13P」(ナガノ科学機械製作所社製)にて乾燥し、乾パスタとした。乾パスタは、沸騰水にて9.5分間ゆでた後官能評価を行った。これをゆで直後の評価とした。また、同様に9.5分間ゆでた後24時間冷蔵保存し、30秒間レンジアップして官能評価を行った。これを保存後の評価とした。官能評価は、硬さ、弾力、粘り、中芯感、歯切れ、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数7人で行った。結果を図9および図11に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図10、図12)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   TGL and TG were added to 2 kg of durum powder “DF” (Nisshin Flour Mills) and mixed well. The test categories were 8 test zones: a control zone where no enzyme was added, a zone where only TGL was added, a zone where only TG was added, and a zone where TGL and TG were added together in five ratios. The amount of each enzyme added is as shown in Table 2. 540 g of city water was added to the mixed raw material, and kneaded for 15 minutes (kneader setting speed 100) with a kneading machine “vacuum mixer VU-2” (Okuyo Hakko Kogyo Co., Ltd.). After kneading, extrusion noodles were made with a pasta machine “vacuum extruder FPV-2” (manufactured by Nipple Engineering Co., Ltd.) using a 1.8 mm long pasta die. The extruded noodle strings were dried with a dryer “Constant temperature and humidity chamber LH21-13P” (manufactured by Nagano Scientific Machinery Co., Ltd.) to obtain dry pasta. The dry pasta was boiled in boiling water for 9.5 minutes and then subjected to sensory evaluation. This was evaluated immediately after boiled. Similarly, after boiling for 9.5 minutes, refrigerated for 24 hours and ranged for 30 seconds for sensory evaluation. This was regarded as an evaluation after storage. The sensory evaluation was performed by 7 evaluation persons with a rating method from -2 to 2 points, with the control classification set to 0 for hardness, elasticity, stickiness, core feeling, crispness, and comprehensive evaluation. The results are shown in FIG. 9 and FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIGS. 10 and 12). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

ゆで直後の評価結果である図9に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さと歯切れが付与された。弾力および中芯感においては、両酵素をある一定の割合で作用させた際に、特に大きな効果が得られることが明らかとなった。総合評価においても同様の傾向が見られた。また、保存後の評価においても同様であった(図11)。更に、図10、図12に示す通り、ゆで直後および保存後の全ての併用試験区において、食感について相乗効果があることが見出された。中でも総合評価においては、併用(1)から併用(5)の全ての試験区にて顕著な相乗効果が確認された。   As shown in FIG. 9, which is the evaluation result immediately after boiled, stickiness was imparted as the TGL addition ratio increased, and hardness and crispness were imparted as the TG addition ratio increased. In terms of elasticity and core feeling, it has been clarified that particularly great effects can be obtained when both enzymes are allowed to act at a certain ratio. A similar trend was seen in the overall evaluation. Moreover, it was the same also in the evaluation after a preservation | save (FIG. 11). Furthermore, as shown in FIGS. 10 and 12, it was found that there was a synergistic effect on the texture in all the combination test groups immediately after boiled and after storage. In particular, in the comprehensive evaluation, a remarkable synergistic effect was confirmed in all the test groups from combination (1) to combination (5).

中力粉「白椿」(日清製粉社製)1kg、クチナシ黄色素「イエローカラーTH-G」(長谷川香料社製)1gに、TGL、TGを添加し100rpmで混練機「2kg真空捏機」(大竹麺機社製)にて1分混合した。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを5通りの割合で共に添加した区分の8試験区とした。それぞれの酵素添加量は、表2に示す通りである。市水420gに食塩5g、かんすい「粉末かんすいX」(日本コロイド社製)10gを加えた5℃の溶液を、上記混合原料に全量加えて、混練機にて3.5分間(100rpm;2分、50rpm;1.5分)混練した。混練後、製麺機「小型粗麺帯機・小型連続圧延機」(トム社製)にてバラ掛け、複合、圧延し、#18の切り刃を用いて切り出しを行った。切り出した麺線は直ちに凍結し、冷凍生中華麺とした。冷凍生中華麺は、沸騰水にて2.5分間ゆでた後、官能評価を行った。官能評価は、硬さ、弾力、粘り、中芯感、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数4人で行った。結果を図13に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図14)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   TGL and TG were added to 1 kg of medium strength powder “Shirakaba” (Nisshin Flour Milling) 1 kg and gardenia yellow “Yellow Color TH-G” (Hasegawa Fragrance) 1 g. "(Otake noodle machine company) for 1 minute. The test categories were 8 test zones: a control zone where no enzyme was added, a zone where only TGL was added, a zone where only TG was added, and a zone where TGL and TG were added together in five ratios. The amount of each enzyme added is as shown in Table 2. A 5 ° C. solution of 5 g of sodium chloride and 420 g of Kansui “Powder Kansui X” (manufactured by Nippon Colloid Co., Ltd.) in 420 g of city water is added to the above mixed raw material in a total amount for 3.5 minutes (100 rpm; 2 minutes). , 50 rpm; 1.5 minutes). After kneading, the noodle making machine “Small Coarse Noodle Banding Machine / Small Continuous Rolling Machine” (manufactured by Tom Co., Ltd.) was separated, combined, rolled, and cut using a # 18 cutting blade. The cut noodle strings were immediately frozen and used as frozen raw Chinese noodles. The frozen raw Chinese noodles were boiled in boiling water for 2.5 minutes and then subjected to sensory evaluation. The sensory evaluation was performed by 4 evaluation persons with a rating method from -2 to 2 points, with the control classification set to 0 for hardness, elasticity, stickiness, core feeling, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 14). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図13に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さが付与された。総合評価においては、両酵素をある一定の割合で作用させた際に特に大きな効果が得られることが明らかとなった。また、図14に示す通り、全ての併用試験区において何らかの項目について食感の相乗効果があることが見出された。総合評価においても、全ての併用試験区において相乗効果が認められ、併用(3)と併用(5)に挟まれる範囲において特に顕著な効果であることが明らかとなった。   As shown in FIG. 13, the stickiness was imparted as the TGL addition ratio increased, and the hardness was imparted as the TG addition ratio increased. In the comprehensive evaluation, it was revealed that a particularly large effect was obtained when both enzymes were allowed to act at a certain ratio. In addition, as shown in FIG. 14, it was found that there was a synergistic effect on the texture of any item in all combination test sections. Also in the comprehensive evaluation, a synergistic effect was observed in all the combination test sections, and it became clear that the effect was particularly remarkable in the range between the combination (3) and the combination (5).

実施例6にて得られた冷凍生中華麺を、サンプルとして用いた。冷凍生中華麺は、熱水中にて軽くほぐした後、蒸し器にて7分間蒸した。冷却した後、やきそば用ソース15gと共にフライパンにて30秒間焼き、官能評価を行った。官能評価は、硬さ、弾力、粘り、中芯感、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数4人で行った。結果を図15に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図16)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   The frozen raw Chinese noodles obtained in Example 6 were used as samples. The frozen raw Chinese noodles were lightly loosened in hot water and then steamed for 7 minutes in a steamer. After cooling, it was baked in a frying pan for 30 seconds together with 15 g of yakisoba sauce and subjected to sensory evaluation. The sensory evaluation was performed by 4 evaluation persons with a rating method from -2 to 2 points, with the control classification set to 0 for hardness, elasticity, stickiness, core feeling, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 16). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図15に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さが付与された。総合評価においては、両酵素をある一定の割合で作用させた際に特に大きな効果が得られることが明らかとなった。また、図16に示す通り、全ての併用試験区において何らかの項目について食感の相乗効果があることが見出された。総合評価においては、併用 (5)ではわずかな相乗効果であったが、それよりもTG添加量の多い全範囲において顕著な相乗効果が得られ、併用(1)と併用(3)に挟まれる範囲において特に顕著な効果であることが明らかとなった。   As shown in FIG. 15, the stickiness was imparted as the TGL addition ratio increased, and the hardness was imparted as the TG addition ratio increased. In the comprehensive evaluation, it was revealed that a particularly large effect was obtained when both enzymes were allowed to act at a certain ratio. In addition, as shown in FIG. 16, it was found that there was a synergistic effect of food texture on some items in all combination test sections. In the overall evaluation, the combined use (5) showed a slight synergistic effect, but a significant synergistic effect was obtained over the entire range with a larger amount of TG added, and it was sandwiched between the combined use (1) and the combined use (3). It became clear that the effect was particularly remarkable in the range.

準強力粉「特ナンバーワン」(日清製粉社製)850g、加工澱粉「松谷桜」(松谷化学工業社製)150gを混練機「真空ミキサーVU-2」(尾久葉鐵工所社製)にて2分間(90rpm)予備混合した。市水200gに食塩15g、かんすい「粉末かんすいX」(日本コロイド社製)2g、チキンエキス「アジエキス」チキンL-1(味の素社製)を加えた溶液、および市水130gに酵素を溶解した溶液を、上記混合原料に全量加え、上記混練機にて15分間(90rpm;1分、45rpm;14分)混練した。試験区分は、酵素を添加しないコントロール区分、TGLのみを添加した区分、TGのみを添加した区分、TGLとTGを3通りの割合で共に添加した区分の6試験区とした。それぞれの酵素添加量は、表3に示す通りである。表3中の穀粉は準強力粉であり、加工澱粉は含まれない。混練後、製麺機(富士製作所社製)にてバラ掛け、複合、圧延し、厚さ1mmの生地を得た。10分間静置した後、#16の切り刃を用いて切り出し、蒸し機(富士製作所社製)にて95〜98℃で3分間蒸した。型枠取りをした後、フライヤー「コンパクトオートフライヤーKCAF-187EL-T」(北沢産業社製)にて145℃で75秒間フライし、フライ麺を得た。得られたフライ麺は、熱湯にて4.5分間湯戻しし、湯切りした後に官能評価を行った。官能評価は、硬さ、弾力、粘り、中芯感、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数4人で行った。結果を図17に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、各併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図18)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   850 g of quasi-strong powder “Special Number One” (Nisshin Flour Milling Co., Ltd.) and 150 g of processed starch “Matsuya Sakura” (Matsutani Chemical Industry Co., Ltd.) are mixed into the “Vacuum Mixer VU-2” (manufactured by Okuyo Seiko Co., Ltd.). For 2 minutes (90 rpm). A solution obtained by adding 15 g of salt to 200 g of city water, 2 g of Kansui “Powder Kansai X” (manufactured by Nippon Colloid Co., Ltd.), chicken extract “Aji Extract” Chicken L-1 (manufactured by Ajinomoto Co., Inc.), and a solution of enzyme dissolved in 130 g of city water Was added to the above mixed raw material and kneaded for 15 minutes (90 rpm; 1 minute, 45 rpm; 14 minutes) in the kneader. The test categories were six test categories: a control category in which no enzyme was added, a category in which only TGL was added, a category in which only TG was added, and a category in which TGL and TG were added together at three ratios. The amount of each enzyme added is as shown in Table 3. The flour in Table 3 is a semi-strong flour and does not contain modified starch. After kneading, the noodle making machine (manufactured by Fuji Seisakusho) was loosened, compounded and rolled to obtain a dough having a thickness of 1 mm. After leaving still for 10 minutes, it cut out using the cutting blade of # 16, and it steamed at 95-98 degreeC for 3 minutes with the steamer (made by Fuji Seisakusho). After mold removal, it was fried at 145 ° C. for 75 seconds with a flyer “Compact Auto Flyer KCAF-187EL-T” (manufactured by Kitazawa Sangyo Co., Ltd.) to obtain fried noodles. The obtained fried noodles were reconstituted with hot water for 4.5 minutes, drained and subjected to sensory evaluation. The sensory evaluation was performed by 4 evaluation persons with a rating method from -2 to 2 points, with the control classification set to 0 for hardness, elasticity, stickiness, core feeling, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of each combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 18). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図17に示す通り、TGLの添加割合が増えるに従い粘りが付与され、TGの添加割合が増えるに従い硬さが付与された。総合評価においては、両酵素をある一定の割合で作用させた際に特に大きな効果が得られることが明らかとなった。また、図18に示す通り、全ての併用試験区において何らかの項目について食感の相乗効果があることが見出された。総合評価においても、全ての併用試験区において相乗効果が認められ、併用(2)を中心に特に顕著な効果が見られた。   As shown in FIG. 17, the stickiness was imparted as the TGL addition ratio increased, and the hardness was imparted as the TG addition ratio increased. In the comprehensive evaluation, it was revealed that a particularly large effect was obtained when both enzymes were allowed to act at a certain ratio. In addition, as shown in FIG. 18, it was found that there was a synergistic effect on the texture of any item in all the combination test sections. Also in the comprehensive evaluation, a synergistic effect was observed in all the combination test sections, and a particularly remarkable effect was seen mainly in the combination (2).

表4に示す配合に従い、小麦粉を混練機(HOBART社製)にて混合しながら、酵素および食塩を溶解した水を添加した。表4中の穀粉は薄力粉と強力粉の合算である。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。上記混練機にて、混練機設定のスピード1にて3分間、同スピード2にて7分間混練した。15℃にて1時間寝かせた後、パスタマシン「R.M.」(IMPERIA社製)を用いてバラ掛け、複合、圧延を行い、厚さ1mmの生地を得た。生地は、直径89mmの円形に型抜きし、生麺帯を得た。生麺帯は、沸騰水にて4分間ゆで、氷水にて1分間冷却し、冷蔵にて1日間保存した後に官能評価を行った。官能評価は、硬さ、弾力、しなやかさ、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数3人で行った。結果を図19に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図20)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 4, water in which the enzyme and salt were dissolved was added while mixing the flour with a kneader (made by HOBART). The flour in Table 4 is the sum of weak flour and strong flour. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. The kneader was kneaded for 3 minutes at the speed 1 set for the kneader and 7 minutes at the same speed 2. After laying down at 15 ° C. for 1 hour, using a pasta machine “R.M.” (manufactured by Imperia), it was spread, compounded and rolled to obtain a dough having a thickness of 1 mm. The dough was cut into a circle with a diameter of 89 mm to obtain a raw noodle strip. The raw noodle strips were boiled with boiling water for 4 minutes, cooled with ice water for 1 minute, and stored for 1 day in a refrigerator to perform sensory evaluation. The sensory evaluation was performed by three evaluation persons with a rating method from -2 to 2 points, with the control classification set to 0 for hardness, elasticity, flexibility, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 20). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図19に示す通り、TGにより弾力が付与されるものの生地の硬化やしなやかさの低下が見られ、TGLにより弾力やしなやかさが付与された。一方、両酵素を併用することで、生地の硬化が適度に抑制され、弾力、しなやかさの付与された好ましい食感となった。また、図20に示す通り、弾力およびしなやかさにおいて相乗効果があることが見出され、総合評価においても相乗的に好ましい効果が得られることが確認された。以上より、穀粉を原料とする麺帯の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の麺帯が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 19, although the elasticity was imparted by TG, the fabric was hardened and the flexibility was lowered, and the elasticity and flexibility were imparted by TGL. On the other hand, by using both enzymes in combination, hardening of the dough was moderately suppressed, and a favorable texture with elasticity and suppleness was obtained. Further, as shown in FIG. 20, it was found that there is a synergistic effect in elasticity and flexibility, and it was confirmed that a favorable effect can be obtained synergistically in the overall evaluation. From the above, in the production of noodle strips made from flour, the combination of both enzymes, rather than TG or TGL alone, provides a more favorable noodle strip with a synergistic effect in improving the texture. It was shown that

表5に示す配合に従い薄力粉に水を混合し、酵素を添加して室温で2時間攪拌し、バッター液を得た。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。1cm幅の輪切りにしたさつまいもをバッター液に漬け、フライヤーにて170℃で3分間フライし、さつまいもの天ぷらを得た。天ぷらは、冷凍(−20℃)にて1週間保存し、自然解凍した後にレンジアップをして官能評価を行った。官能評価は、硬さ、ボソつき抑制効果、総合評価に関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数3人で行った。結果を図21に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図22)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 5, water was mixed into the flour, the enzyme was added, and the mixture was stirred at room temperature for 2 hours to obtain a batter solution. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. Sweet potatoes cut into 1 cm wide rings were dipped in batter liquid and fried at 170 ° C. for 3 minutes with a fryer to obtain sweet potato tempura. Tempura was stored for 1 week in frozen (−20 ° C.), naturally thawed, and then subjected to sensory evaluation by range-up. The sensory evaluation was performed by three evaluation persons with a rating method from -3 points to 3 points, with the control classification set to 0 points regarding hardness, the anti-bending effect, and the comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 22). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図21に示す通り、TGにより硬さが付与されるものの衣がボソつく傾向が見られ、TGLによりボソつき抑制効果が見られた。一方、両酵素を併用することで、硬さを維持し、ボソ付きが抑制された好ましい食感となった。また、図22に示す通り、全ての評価項目において相乗効果があることが見出され、総合評価においても相乗的に好ましい効果が得られることが確認された。以上より、穀粉を原料とするバッターを用いたフライ食品の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感のフライ食品が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 21, there was a tendency for the garment to become voluminous although the hardness was imparted by TG, and the anti-bottleness effect was seen by TGL. On the other hand, by using both enzymes in combination, it was possible to maintain the hardness and to have a preferable texture in which the stickiness was suppressed. Further, as shown in FIG. 22, it was found that all the evaluation items had a synergistic effect, and it was confirmed that a favorable effect can be obtained synergistically in the comprehensive evaluation. From the above, in the production of fried food using batter made from flour, the fried food with a more preferable texture can be obtained by using both enzymes in combination with TG or TGL alone. It was shown that a synergistic effect can be obtained.

表6に示す配合に従い、白玉粉に水、酵素を添加して、混練機(HOBART社製)にて混練機設定のスピード1で4分間混練した。表6中の穀粉は白玉粉である。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。混練した生地を12gの団子状に成型し、室温で1時間寝かせた後、沸騰水にて3.5分間ボイルして白玉団子を得た。白玉団子は冷凍(−20℃)にて1週間保存し、自然解凍して官能評価を行った。官能評価は、硬さ、弾力、もちもち感、総合評価に関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数4人で行った。結果を図23に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図24)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   In accordance with the formulation shown in Table 6, water and enzymes were added to the white flour and kneaded for 4 minutes at a kneader setting speed 1 with a kneader (manufactured by HOBART). The flour in Table 6 is white flour. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. The kneaded dough was formed into a 12-g dumpling shape, allowed to sleep at room temperature for 1 hour, and then boiled in boiling water for 3.5 minutes to obtain a white ball dumpling. Shiratama dumplings were stored in a frozen (−20 ° C.) for 1 week, and thawed naturally for sensory evaluation. The sensory evaluation was performed by four evaluation persons with a rating method from -3 points to 3 points with a control classification of 0 points regarding hardness, elasticity, stickiness, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 24). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図23に示す通り、TGにより硬さや弾力が付与され、TGLによりもちもち感が付与されるものの硬さが低下した。一方、両酵素を併用することで、硬さ、弾力、もちもち感の付与された好ましい食感となった。また、図24に示す通り、全ての評価項目において相乗効果があることが見出され、総合評価においても相乗的に好ましい効果が得られることが確認された。以上より、穀粉を原料とする和菓子の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の和菓子が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 23, hardness and elasticity were imparted by TG, and hardness was reduced although a sticky feeling was imparted by TGL. On the other hand, by using both enzymes in combination, it was possible to obtain a preferable food texture that was imparted with hardness, elasticity, and feeling of stickiness. Further, as shown in FIG. 24, it was found that all the evaluation items had a synergistic effect, and it was confirmed that a favorable effect can be obtained synergistically in the comprehensive evaluation. From the above, in the production of Japanese confectionery using flour as a raw material, it is possible to obtain a more preferable Japanese confectionery by using both enzymes instead of TG or TGL alone, and to obtain a synergistic effect in improving the texture. It has been shown.

表7に示す配合に従い、強力粉に砂糖、食塩、ドライイースト、ショートニング、水および酵素を添加して、3分間手混合し、常温にて30分間静置し発酵した。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。生地を105gに分割し、直径16cmのピザ生地に成型してピケした後、オーブンにて250℃で5分間焼成した。トマトソース15gおよびチーズ30gをトッピングし、冷凍(−20℃)にて1週間保存した。冷凍ピザは、オーブンにて250℃で6分間焼成し、官能評価を行った。官能評価は、硬さ、弾力、もちもち感、総合評価に関して、コントロール区分を0点とし、−2点から2点までの評点法にて評価人数4人で行った。結果を図25に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図26)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 7, sugar, salt, dry yeast, shortening, water and enzyme were added to the strong powder, mixed by hand for 3 minutes, and allowed to stand at room temperature for 30 minutes for fermentation. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. The dough was divided into 105 g, formed into a pizza dough having a diameter of 16 cm, pickled, and baked in an oven at 250 ° C. for 5 minutes. Topped with 15 g of tomato sauce and 30 g of cheese and stored frozen (−20 ° C.) for 1 week. The frozen pizza was baked in an oven at 250 ° C. for 6 minutes for sensory evaluation. The sensory evaluation was performed by four evaluation persons with a rating method from -2 to 2 points, with the control division set to 0 for hardness, elasticity, stickiness, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 26). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図25に示す通り、TGにより硬さや弾力が付与されるもののもちもち感が低下し、TGLにより弾力やもちもち感が付与されるものの硬さがやや低下した。一方、両酵素を併用することで、適度な硬さを有し、弾力、もちもち感の付与された好ましい食感となった。また、図26に示す通り、弾力、もちもち感において相乗効果があることが見出され、総合評価においても相乗的に好ましい効果が得られることが確認された。以上より、穀粉を原料とする発酵食品の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の穀粉発酵食品が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 25, the feeling of glutinousness was reduced by TG, although the hardness and elasticity were imparted by TG, and the hardness was somewhat lowered by the impartation of elasticity and glutinous feeling by TGL. On the other hand, when both enzymes were used in combination, it had a suitable texture with moderate hardness, elasticity, and a feeling of stickiness. Further, as shown in FIG. 26, it was found that there was a synergistic effect in elasticity and glutinous feeling, and it was confirmed that a favorable effect can be obtained synergistically in the overall evaluation. From the above, in the production of fermented foods using flour as a raw material, a flour fermented food with a more favorable texture can be obtained by using both enzymes together instead of TG or TGL alone, and there is a synergistic effect in modifying the texture. It was shown to be obtained.

表8に示す配合に従い、豆乳および加工澱粉を混合し、酵素を添加した。使用した豆乳のBrixは14%であり、この値が豆乳中の固形分値と同等であると定義した。すなわち、ここで用いた豆乳の固形分は14%である。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。上記混合液およびにがりを豆腐用のパックに充填し、寄せを行った後シーラー「卓上型パック手動包装機FK-105」(藤村工業社製)にてシールした。常温にて1時間、65℃にて1時間の熟成を行った後、95℃の熱水で40分間加熱した。冷却した後、1辺が1.5cmの立方体にカットし、−40℃にて冷凍して冷凍豆腐を得た。冷凍豆腐は、自然解凍した後に官能評価を行った。官能評価は、硬さ、弾力、なめらかさに関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数3人で行った。結果を図27に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図28)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 8, soy milk and modified starch were mixed and an enzyme was added. The soymilk used had a Brix of 14%, which was defined as being equivalent to the solids value in soymilk. That is, the solid content of the soymilk used here is 14%. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. The above mixed solution and bittern were filled in a tofu pack, and after being put together, it was sealed with a sealer “desktop pack manual packaging machine FK-105” (manufactured by Fujimura Kogyo Co., Ltd.). After aging at room temperature for 1 hour and at 65 ° C. for 1 hour, it was heated with hot water at 95 ° C. for 40 minutes. After cooling, it was cut into a cube having one side of 1.5 cm and frozen at -40 ° C. to obtain frozen tofu. The frozen tofu was subjected to sensory evaluation after natural thawing. The sensory evaluation was performed by three evaluation persons with a rating method from -3 points to 3 points, with the control division set to 0 points for hardness, elasticity, and smoothness. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 28). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図27に示す通り、TGにより硬さや弾力が付与されるもののなめらかさが低下し、TGLによりなめらかさが付与されるものの硬さや弾力が低下した。一方、両酵素を併用することで、硬さ、弾力、なめらかさの付与された好ましい食感となった。また、図28に示す通り、全ての評価項目において相乗効果があることが見出された。以上より、豆類を原料とする加工食品の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の豆類加工食品が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 27, although the hardness and elasticity were imparted by TG, the smoothness was lowered, while the smoothness and elasticity were imparted by TGL. On the other hand, by using both enzymes in combination, it was possible to obtain a preferable texture that was imparted with hardness, elasticity, and smoothness. Moreover, as shown in FIG. 28, it was found that all evaluation items have a synergistic effect. From the above, in the manufacture of processed foods made from beans, by using both enzymes in combination with TG or TGL alone, a processed food product with a more favorable texture can be obtained, and there is a synergistic effect in improving the texture. It was shown to be obtained.

表9に示す配合に従い、牛乳、脱脂粉乳、水、加工澱粉を混合した。混合液に酵素を添加し、スターラーにて5℃で24時間攪拌した。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。続いて、90℃の熱湯にて5分間殺菌し、40℃程度にまで冷却した後、スターターを添加して混合した。混合液をプラスチックカップに充填し、pH4.5になるまで38℃にて発酵させてハードタイプヨーグルトを得た。5℃にて24時間保存した後、官能評価を行った。官能評価は、硬さ、濃厚感、持続性に関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数3人で行った。結果を図29に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図30)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 9, milk, skim milk powder, water, and modified starch were mixed. Enzyme was added to the mixture, and the mixture was stirred with a stirrer at 5 ° C. for 24 hours. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. Subsequently, the mixture was sterilized with hot water at 90 ° C. for 5 minutes and cooled to about 40 ° C., and then a starter was added and mixed. The mixed solution was filled in a plastic cup and fermented at 38 ° C. until pH 4.5 was obtained to obtain a hard type yogurt. After storing at 5 ° C. for 24 hours, sensory evaluation was performed. The sensory evaluation was performed by three evaluation persons with a rating method from -3 points to 3 points, with the control division being 0 points regarding hardness, richness, and sustainability. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 30). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図29に示す通り、TGにより硬さが主に付与され、TGLにより濃厚感が主に付与された。一方、両酵素を併用することで、硬さ、濃厚感、持続性の付与された好ましい食感となった。また、図30に示す通り、全ての評価項目において相乗効果があることが見出された。以上より、乳を原料とする加工食品の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の乳加工品が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 29, the hardness was mainly given by TG, and the rich feeling was mainly given by TGL. On the other hand, by using both enzymes in combination, it was possible to obtain a preferable texture that was imparted with hardness, richness and durability. Further, as shown in FIG. 30, it was found that all evaluation items had a synergistic effect. From the above, in the production of processed foods using milk as raw materials, the combined use of both enzymes, rather than TG or TGL alone, yields a dairy product with a better texture, and has a synergistic effect in improving the texture. It was shown to be obtained.

表10に示す配合に従い、酵素を含む全原料を混合し、室温にて1時間静置した。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。卵焼き用角型フライパンに油「サラダ油」(味の素社製)を添加して弱火で2分間熱した後、原料全量を投入し、攪拌しながら弱火で3.5分間加熱し、手前半分に寄せた後に更に弱火で4.5分間加熱した。裏返した後、弱火で3分間加熱し、厚焼き卵を得た。厚焼き卵は、カットしてパウチに入れ、冷凍(−20℃)にて1週間保存した後、自然解凍して官能評価を行った。官能評価は、弾力、ソフト感、しなやかさ、総合評価に関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数3人で行った。結果を図31に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図32)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 10, all the raw materials including the enzyme were mixed and allowed to stand at room temperature for 1 hour. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. After adding the oil “salad oil” (manufactured by Ajinomoto Co., Inc.) to the egg-frying square frying pan and heating for 2 minutes on low heat, all the ingredients were added and heated for 3.5 minutes on low heat with stirring and brought to the front half. Thereafter, the mixture was further heated for 4.5 minutes with low heat. After turning over, it was heated on low heat for 3 minutes to obtain a thick baked egg. Thick baked eggs were cut and placed in a pouch, stored for one week in a frozen state (−20 ° C.), and then naturally thawed for sensory evaluation. The sensory evaluation was performed by three evaluation persons with a rating method of -3 to 3 points with a control classification of 0 points regarding elasticity, soft feeling, flexibility, and comprehensive evaluation. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 32). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図31に示す通り、TGにより弾力が付与されるもののソフト感やしなやかさが低下し、TGLによりソフト感やしなやかさが付与された。一方、両酵素を併用することで、弾力、ソフト感、しなやかさの付与された好ましい食感となった。また、図32に示す通り、全ての評価項目において相乗効果があることが見出され、総合評価においても相乗的に好ましい効果が得られることが確認された。以上より、卵を原料とする加工食品の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の卵加工食品が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 31, although the elasticity was imparted by TG, the soft feeling and suppleness were lowered, and the soft feeling and suppleness were imparted by TGL. On the other hand, by using both enzymes in combination, a favorable texture with elasticity, softness and suppleness was obtained. Moreover, as shown in FIG. 32, it was found that all the evaluation items had a synergistic effect, and it was confirmed that a favorable effect can be obtained synergistically in the comprehensive evaluation. From the above, in the production of processed foods using eggs as raw materials, the combined use of both enzymes, rather than TG or TGL alone, yields a processed egg food with a more favorable texture and has a synergistic effect in improving the texture. It was shown to be obtained.

表11に示す配合に従い、コーンスターチと水を混合し、90℃にて2分間加熱してペースト状に糊化させた。糊化澱粉に全卵、酵素を入れて攪拌した後、食酢、砂糖、食塩を添加して攪拌した。試験区分は、酵素を添加しないコントロール区分、TGのみを添加した区分、TGLのみを添加した区分、TGとTGLを共に添加した併用区分の4試験区とした。尚、併用区におけるTG1ユニット当たりのTGL量はおよそ800ユニットである。そこへサラダ油を投入し、ハンドミキサー「bamix Gastro 200」(ESGE社製)にて5分間乳化し、更に1分間全体を攪拌し、マヨネーズタイプ調味料を得た。冷蔵にて24時間保存後、官能評価を行った。官能評価は、硬さ、なめらかさ、持続性に関して、コントロール区分を0点とし、−3点から3点までの評点法にて評価人数3人で行った。結果を図33に示す。また、TGLのみを添加した区分およびTGのみを添加した区分の結果をもとに、併用添加区分の理論上の評点を算出した。算出方法は実施例3と同様とし、算出した値を用いて理論値と実際の評点の差を求めた(図34)。この値がゼロであれば理論値通りの効果、すなわち相加効果であり、ゼロより大きければ理論値より大きな効果、すなわち相乗効果が出ていることを意味する。   According to the formulation shown in Table 11, corn starch and water were mixed and heated at 90 ° C. for 2 minutes to make a paste. Whole egg and enzyme were added to gelatinized starch and stirred, and then vinegar, sugar and salt were added and stirred. There were four test sections: a control section where no enzyme was added, a section where only TG was added, a section where only TGL was added, and a combined section where both TG and TGL were added. In addition, the TGL amount per TG unit in the combination zone is about 800 units. Salad oil was added thereto, emulsified with a hand mixer “bamix Gastro 200” (manufactured by ESGE) for 5 minutes, and the whole was further stirred for 1 minute to obtain a mayonnaise type seasoning. Sensory evaluation was performed after 24 hours storage in the refrigerator. The sensory evaluation was performed by three evaluation persons with a rating method from -3 points to 3 points, with the control division being 0 points regarding hardness, smoothness, and sustainability. The results are shown in FIG. In addition, based on the results of the category to which only TGL was added and the category to which only TG was added, the theoretical score of the combined addition category was calculated. The calculation method was the same as in Example 3, and the difference between the theoretical value and the actual score was obtained using the calculated value (FIG. 34). If this value is zero, it means an effect as the theoretical value, that is, an additive effect, and if it is larger than zero, it means that an effect larger than the theoretical value, that is, a synergistic effect is produced.

図33に示す通り、TGにより硬さや持続性が付与されるもののなめらかさが低下し、TGLによりなめらかさが付与されるものの硬さや持続性が低下した。一方、両酵素を併用することで、硬さ、なめらかさ、持続性の付与された好ましい食感となった。また、図34に示す通り、全ての評価項目において相乗効果があることが見出された。以上より、澱粉類を含有する汎用基本調味料の製造において、TGもしくはTGL単独ではなく、両酵素を併用することにより、より好ましい食感の基本調味料が得られ、食感の改質において相乗効果が得られることが示された。   As shown in FIG. 33, although the hardness and sustainability were imparted by TG, the smoothness was lowered, while the smoothness and sustainability were imparted by TGL. On the other hand, by using both enzymes in combination, it became a preferable texture imparted with hardness, smoothness and durability. Moreover, as shown in FIG. 34, it was found that all evaluation items have a synergistic effect. From the above, in the production of general-purpose basic seasonings containing starches, it is possible to obtain a basic seasoning with a more favorable texture by using both enzymes in combination with TG or TGL alone, and synergistically in the texture modification. It was shown that an effect can be obtained.

本発明によると、麺類等の澱粉含有食品の品質を向上できるので、食品分野において極めて有用である。   According to the present invention, the quality of starch-containing foods such as noodles can be improved, which is extremely useful in the food field.

パスタの硬さについての官能評価結果である。(実施例1)It is a sensory evaluation result about the hardness of pasta. Example 1 パスタのねばりについての官能評価結果である。(実施例1)It is a sensory evaluation result about the stickiness of pasta. Example 1 うどんの硬さについての官能評価結果である。(実施例2)It is a sensory evaluation result about the hardness of udon. (Example 2) うどんの弾力についての官能評価結果である。(実施例2)It is a sensory evaluation result about the elasticity of udon. (Example 2) うどんの硬さ、弾力、粘り、中芯感、総合評価についての官能評価結果である。(実施例3)It is the sensory evaluation result about the hardness, elasticity, stickiness, center feeling, and comprehensive evaluation of udon. (Example 3) うどんの硬さ、弾力、粘り、中芯感、総合評価における、相乗効果についての結果である。(実施例3)It is the result about the synergistic effect in the hardness, elasticity, stickiness, core feeling, and comprehensive evaluation of udon. (Example 3) 日本そばの硬さ、弾力、粘り、中芯感、歯切れ、総合評価についての官能評価結果である。(実施例4)It is a sensory evaluation result about the hardness, elasticity, stickiness, core feeling, crispness, and comprehensive evaluation of Japanese buckwheat. Example 4 日本そばの硬さ、弾力、粘り、中芯感、歯切れ、総合評価における、相乗効果についての結果である。(実施例4)It is a result about the synergistic effect in hardness, elasticity, stickiness, core feeling, crispness, and comprehensive evaluation of Japanese buckwheat. Example 4 ゆで直後のパスタの硬さ、弾力、粘り、中芯感、歯切れ、総合評価についての官能評価結果である。(実施例5)It is the sensory evaluation result about the hardness of a pasta just after boiled, elasticity, stickiness, a feeling of a core, crispness, and comprehensive evaluation. (Example 5) ゆで直後のパスタの硬さ、弾力、粘り、中芯感、歯切れ、総合評価における、相乗効果についての結果である。(実施例5)It is the result about the synergistic effect in the hardness of a pasta just after a boil, elasticity, stickiness, a feeling of center, crispness, and comprehensive evaluation. (Example 5) 冷蔵保存後のパスタの硬さ、弾力、粘り、中芯感、歯切れ、総合評価についての官能評価結果である。(実施例5)It is the sensory evaluation result about the hardness of a pasta after refrigerated storage, elasticity, stickiness, a feeling of center, crispness, and comprehensive evaluation. (Example 5) 冷蔵保存後のパスタの硬さ、弾力、粘り、中芯感、歯切れ、総合評価における、相乗効果についての結果である。(実施例5)It is a result about the synergistic effect in the hardness of a pasta after refrigerated storage, elasticity, stickiness, a feeling of core, crispness, and comprehensive evaluation. (Example 5) 冷やし中華の硬さ、弾力、粘り、中芯感、総合評価についての官能評価結果である。(実施例6)It is the sensory evaluation result about the hardness, elasticity, stickiness, center feeling, and comprehensive evaluation of chilled Chinese. (Example 6) 冷やし中華の硬さ、弾力、粘り、中芯感、総合評価における、相乗効果についての結果である。(実施例6)It is the result about the synergistic effect in the hardness, elasticity, stickiness, center feeling, and comprehensive evaluation of chilled Chinese. (Example 6) やきそばの硬さ、弾力、粘り、中芯感、総合評価についての官能評価結果である。(実施例7)It is a sensory evaluation result about the hardness, elasticity, stickiness, center feeling, and comprehensive evaluation of yakisoba. (Example 7) やきそばの硬さ、弾力、粘り、中芯感、総合評価における、相乗効果についての結果である。(実施例7)This is the result of the synergistic effect in the hardness, elasticity, stickiness, core feeling, and overall evaluation of yakisoba. (Example 7) 即席麺の硬さ、弾力、粘り、中芯感、総合評価についての官能評価結果である。(実施例8)It is the sensory evaluation result about the hardness, elasticity, stickiness, center feeling, and comprehensive evaluation of instant noodles. (Example 8) 即席麺の硬さ、弾力、粘り、中芯感、総合評価における、相乗効果についての結果である。(実施例8)It is the result about the synergistic effect in the hardness of noodles, elasticity, stickiness, a feeling of center, and comprehensive evaluation. (Example 8) 麺帯の硬さ、弾力、しなやかさ、総合評価についての官能評価結果である。(実施例9)It is the sensory evaluation result about the hardness of a noodle strip, elasticity, suppleness, and comprehensive evaluation. Example 9 麺帯の硬さ、弾力、しなやかさ、総合評価における、相乗効果についての結果である。(実施例9)It is the result about the synergistic effect in the hardness of a noodle belt, elasticity, suppleness, and comprehensive evaluation. Example 9 天ぷらの硬さ、ボソつき抑制、総合評価についての官能評価結果である。(実施例10)It is the sensory evaluation result about the hardness of a tempura, suppression of a stickiness, and comprehensive evaluation. (Example 10) 天ぷらの硬さ、ボソつき抑制、総合評価における、相乗効果についての結果である。(実施例10)It is the result about the synergistic effect in the hardness of tempura, the suppression of a stickiness, and comprehensive evaluation. (Example 10) 白玉団子の硬さ、弾力、もちもち感、総合評価についての官能評価結果である。(実施例11)It is a sensory evaluation result about the hardness, elasticity, stickiness, and comprehensive evaluation of white ball dumplings. (Example 11) 白玉団子の硬さ、弾力、もちもち感、総合評価における、相乗効果についての結果である。(実施例11)It is the result of the synergistic effect in the hardness, elasticity, stickiness, and comprehensive evaluation of white ball dumplings. (Example 11) ピザの硬さ、弾力、もちもち感、総合評価についての官能評価結果である。(実施例12)It is a sensory evaluation result about the hardness, elasticity, stickiness, and comprehensive evaluation of pizza. (Example 12) ピザの硬さ、弾力、もちもち感、総合評価における、相乗効果についての結果である。(実施例12)It is a result about the synergistic effect in the hardness, elasticity, stickiness, and comprehensive evaluation of pizza. (Example 12) 豆腐の硬さ、弾力、なめらかさについての官能評価結果である。(実施例13)It is a sensory evaluation result about the hardness, elasticity, and smoothness of tofu. (Example 13) 豆腐の硬さ、弾力、なめらかさにおける、相乗効果についての結果である。(実施例13)It is the result about the synergistic effect in the hardness, elasticity, and smoothness of tofu. (Example 13) ヨーグルトの硬さ、濃厚感、持続性についての官能評価結果である。(実施例14)It is a sensory evaluation result about the hardness, richness, and sustainability of yogurt. (Example 14) ヨーグルトの硬さ、濃厚感、持続性における、相乗効果についての結果である。(実施例14)This is a result of a synergistic effect on the hardness, richness and sustainability of yogurt. (Example 14) 厚焼き卵の弾力、ソフト感、しなやかさ、総合評価についての官能評価結果である。(実施例15)These are sensory evaluation results for the elasticity, softness, suppleness, and overall evaluation of thick-baked eggs. (Example 15) 厚焼き卵の弾力、ソフト感、しなやかさ、総合評価における、相乗効果についての結果である。(実施例15)This is the result of the synergistic effect on the elasticity, softness, suppleness and comprehensive evaluation of thick-baked eggs. (Example 15) マヨネーズの硬さ、なめらかさ、持続性についての官能評価結果である。(実施例16)It is a sensory evaluation result about the hardness, smoothness, and sustainability of mayonnaise. (Example 16) マヨネーズの硬さ、なめらかさ、持続性における、相乗効果についての結果である。(実施例16)This is a result of synergistic effects on mayonnaise hardness, smoothness and sustainability. (Example 16)

Claims (3)

トランスグルコシダーゼ及びトランスグルタミナーゼを添加することを特徴とする澱粉含有食品の製造方法であって、澱粉含有食品が穀粉を原料とする麺類であり、トランスグルコシダーゼの量が、穀粉1g当たり1.5〜300,000Uであり、トランスグルタミナーゼの量が穀粉1g当たり0.0001〜100Uであり、トランスグルコシダーゼの量が、トランスグルタミナーゼ1U当たり90U〜7,500Uである澱粉含有食品の製造方法 A method for producing a starch-containing food characterized by adding transglucosidase and transglutaminase , wherein the starch-containing food is noodles made from flour, and the amount of transglucosidase is 1.5 to 300 per gram of flour. A method for producing a starch-containing food, wherein the amount of transglutaminase is 0.0001 to 100 U per gram of flour, and the amount of transglucosidase is 90 U to 7,500 U per 1 U of transglutaminase . 麺類が、うどん又は日本そばである請求項1記載の方法。The method according to claim 1, wherein the noodles are udon or Japanese soba noodles. トランスグルコシダーゼ及びトランスグルタミナーゼを含有し、トランスグルコシダーゼの含有量がトランスグルタミナーゼ1U当り90U〜7,500Uである麺類改質用の酵素製剤。 An enzyme preparation for modifying noodles containing transglucosidase and transglutaminase, wherein the transglucosidase content is 90 U to 7,500 U per 1 U of transglutaminase .
JP2007164867A 2006-06-30 2007-06-22 Method for producing starch-containing food and enzyme preparation for modifying starch-containing food Active JP4862759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164867A JP4862759B2 (en) 2006-06-30 2007-06-22 Method for producing starch-containing food and enzyme preparation for modifying starch-containing food

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006180674 2006-06-30
JP2006180674 2006-06-30
JP2007008649 2007-01-18
JP2007008649 2007-01-18
JP2007164867A JP4862759B2 (en) 2006-06-30 2007-06-22 Method for producing starch-containing food and enzyme preparation for modifying starch-containing food

Publications (2)

Publication Number Publication Date
JP2008194024A JP2008194024A (en) 2008-08-28
JP4862759B2 true JP4862759B2 (en) 2012-01-25

Family

ID=38845693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164867A Active JP4862759B2 (en) 2006-06-30 2007-06-22 Method for producing starch-containing food and enzyme preparation for modifying starch-containing food

Country Status (5)

Country Link
JP (1) JP4862759B2 (en)
KR (1) KR101073371B1 (en)
CN (1) CN101484023B (en)
TW (1) TWI389647B (en)
WO (1) WO2008001940A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE535160T1 (en) * 2008-03-17 2011-12-15 Ajinomoto Kk METHOD FOR PRODUCING A FISH PASTE PRODUCT AND ENZYME PREPARATION FOR FISH PASTE PRODUCTS
CN102164506B (en) * 2008-09-25 2013-10-30 味之素株式会社 Method for producing cooked rice food, and enzyme preparation for improving cooked rice food
TWI446875B (en) 2009-02-04 2014-08-01 Ajinomoto Kk A method for producing noodles and an enzyme preparation for modifying noodles
CA2766018A1 (en) * 2009-07-01 2011-01-06 Amano Enzyme Inc. Maltotriosyl transferase, process for production thereof, and use thereof
CN102396675A (en) * 2010-09-19 2012-04-04 李德远 Method for controlling retrogradation of instant rice
KR101259622B1 (en) * 2010-12-28 2013-04-29 주식회사 강동오케익 Method for preparing par-baked frozen dough using wheat
CN103369973B (en) 2011-02-04 2016-06-01 天野酶制品株式会社 The novelty teabag of trisaccharide maltose based transferase
JP6089779B2 (en) * 2012-02-28 2017-03-08 味の素株式会社 Method for producing microwave oven noodles and enzyme preparation for modifying microwave oven noodles
WO2014115894A1 (en) * 2013-01-24 2014-07-31 味の素株式会社 Method for manufacturing starch-containing food product, and enzyme preparation for modifying starch-containing food product
KR101514534B1 (en) * 2013-07-31 2015-05-21 대한민국(농촌진흥청장) Soybean-meat processed food and manufacturing method thereof
JP2016171762A (en) * 2015-03-16 2016-09-29 味の素株式会社 Manufacturing method of rice cake dough and formulation for modifying rice cake dough
US20190297925A1 (en) 2018-04-03 2019-10-03 Nestec S.A. Shelf-stable, ready-to-eat pasta products and methods of producing same
CN114521592A (en) * 2020-10-30 2022-05-24 天野酶制品株式会社 Method for producing processed vegetable protein product with improved taste

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749363B2 (en) * 1989-04-28 1998-05-13 昭和産業株式会社 Manufacturing method of noodles
JPH0614733A (en) * 1991-02-25 1994-01-25 Ajinomoto Co Inc Noodles
JP3254796B2 (en) * 1993-03-18 2002-02-12 味の素株式会社 Manufacturing method of frozen tofu
JP3312469B2 (en) * 1994-03-14 2002-08-05 味の素株式会社 Manufacturing method of processed egg food
JP2660159B2 (en) * 1994-06-01 1997-10-08 東洋水産株式会社 Production method of raw type packaged noodles
JP2702073B2 (en) * 1994-07-15 1998-01-21 東洋水産株式会社 Production method of raw type packed Chinese noodles
JP2000513568A (en) * 1996-05-02 2000-10-17 ノボ ノルディスク アクティーゼルスカブ Use of branching enzymes in baking
DE69707881T2 (en) * 1996-07-01 2002-07-18 Novozymes As Use of peptidoglutaminase in the baking process
JP3582265B2 (en) * 1996-11-28 2004-10-27 味の素株式会社 Modified flour and processed flour using the same
JPH10276695A (en) * 1997-04-11 1998-10-20 Ajinomoto Co Inc Production of noodle
US6800467B1 (en) 1997-05-16 2004-10-05 Novozymes Biotech, Inc. Polypeptides having aminopeptidase activity and nucleic acids encoding same
JPH11332495A (en) * 1998-05-22 1999-12-07 Ajinomoto Co Inc Batter for fried food
JP2000253841A (en) * 1999-03-08 2000-09-19 Nisshin Flour Milling Co Ltd Production of boiled noodle or the like
CA2367999C (en) 1999-03-29 2015-10-27 Novozymes A/S Polypeptides having branching enzyme activity and nucleic acids encoding same
JP2001046003A (en) * 1999-08-06 2001-02-20 Ajinomoto Co Inc Bean curd having freezing resistance and its production
JP2001252011A (en) * 2000-03-10 2001-09-18 Koiwai Nyugyo Kk Method for producing yogurt
JP3951584B2 (en) * 2000-10-10 2007-08-01 味の素株式会社 Method for producing modified raw milk and dairy product using the same
JP2003219826A (en) * 2002-01-29 2003-08-05 Ajinomoto Co Inc Batter for oil-fried food and method for producing the oil-fried food
JP3948309B2 (en) * 2002-02-27 2007-07-25 味の素株式会社 Production method of oil-boiled food
JP2004305071A (en) * 2003-04-04 2004-11-04 Sanei Gen Ffi Inc Stabilizer for fermented milk food, fermented milk food and method for producing the food
JP4111083B2 (en) * 2003-07-01 2008-07-02 味の素株式会社 Method for producing frozen tofu
JP2005110599A (en) * 2003-10-09 2005-04-28 Kaneka Corp Acidic oil-in-water type emulsion composition
EP1736061B1 (en) * 2004-04-05 2016-10-12 Ajinomoto Co., Inc. Method of improving properties of starch-containing food and use of a property-improving agent
WO2005110108A1 (en) * 2004-05-10 2005-11-24 Ajinomoto Co., Inc. Method of producing yogurt
JP2006223189A (en) * 2005-02-17 2006-08-31 Kibun Food Chemifa Co Ltd Food improving agent
JP2006314312A (en) * 2005-04-15 2006-11-24 Ajinomoto Co Inc Rice noodle improved in quality

Also Published As

Publication number Publication date
TWI389647B (en) 2013-03-21
KR20090024187A (en) 2009-03-06
WO2008001940A1 (en) 2008-01-03
KR101073371B1 (en) 2011-10-17
JP2008194024A (en) 2008-08-28
CN101484023A (en) 2009-07-15
CN101484023B (en) 2012-11-14
TW200808199A (en) 2008-02-16

Similar Documents

Publication Publication Date Title
JP4862759B2 (en) Method for producing starch-containing food and enzyme preparation for modifying starch-containing food
JP6642617B2 (en) Method for producing starch-containing food and enzyme preparation for modifying starch-containing food
KR101206281B1 (en) Method of improving properties of starch-containing food and property-improving agent
JP6555484B2 (en) Cohesiveness improver for bread and other cereal flour foods
US6432458B1 (en) Enzyme preparations and process for producing noodles
KR101596682B1 (en) Method for producing cooked rice food, and enzyme preparation for improving cooked rice food
EP0634106B1 (en) Process for treating water-soluble dietary fiber with beta-glucanase
US20110151055A1 (en) Processed food and method of producing the same
JP2006223189A (en) Food improving agent
KR101696623B1 (en) Method for producing noodle, and enzyme preparation for modifying noodle
JPH06292505A (en) Oil in water type emulsion composition and its production
EP4292437A1 (en) Methods respectively for producing cheese and cheese analogue using enzyme
JP7360843B2 (en) Quality improving agent for bread, method for manufacturing bread, and method for improving quality of bread
JP6066258B2 (en) Anti-aging composition for processed cereal products
JP2021122209A (en) Production method of enzymatically decomposed starch-containing plant raw material
JP2020191812A (en) Bread quality improving agent, method of improving quality of bread, and method of producing bread
JP6089779B2 (en) Method for producing microwave oven noodles and enzyme preparation for modifying microwave oven noodles
JP7461178B2 (en) Quality improver for noodles
JP2021036865A (en) Bakery oil and fat composition
JP2022051308A (en) Wheat flour fired japanese-style food product mix, and manufacturing wheat flour fired japanese-style food product using the same
JP2019024436A (en) Composition for fried batter or coating, and modifier for fried food, and fried food using the composition for fried batter or coating or the modifier for fried food
JP2005124435A (en) Pizza pie crust for freezing, method for producing the same and quality-improving agent
JP2003038087A (en) Quality improving agent for confectionery and bakery and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250