JP4859186B2 - Zoom lens and image pickup apparatus including the same - Google Patents

Zoom lens and image pickup apparatus including the same Download PDF

Info

Publication number
JP4859186B2
JP4859186B2 JP2005325911A JP2005325911A JP4859186B2 JP 4859186 B2 JP4859186 B2 JP 4859186B2 JP 2005325911 A JP2005325911 A JP 2005325911A JP 2005325911 A JP2005325911 A JP 2005325911A JP 4859186 B2 JP4859186 B2 JP 4859186B2
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
positive
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005325911A
Other languages
Japanese (ja)
Other versions
JP2007133133A (en
Inventor
雅司 半川
綱樹 穂積
和也 西村
隆裕 天内
徹 宮島
正仁 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2005325911A priority Critical patent/JP4859186B2/en
Priority to US11/594,506 priority patent/US7471459B2/en
Publication of JP2007133133A publication Critical patent/JP2007133133A/en
Application granted granted Critical
Publication of JP4859186B2 publication Critical patent/JP4859186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、ズームレンズ及びそれを備えた撮像装置に関し、特に、屈折力配置が負、正、正若しくは負、正、負タイプのズームレンズとそれを備えた撮像装置に関するものである。   The present invention relates to a zoom lens and an image pickup apparatus including the zoom lens, and more particularly to a zoom lens having a refractive power arrangement of negative, positive, positive, negative, positive, or negative and an image pickup apparatus including the zoom lens.

近年、デジタルスチルカメラの小型化や、携帯電話への撮像機能搭載化が進み、撮像レンズもより一層の小型化、薄型化が求められている。   In recent years, digital still cameras have been downsized and imaging functions have been incorporated into mobile phones, and imaging lenses have been required to be further reduced in size and thickness.

これらの撮影レンズには、広角端から望遠端での変倍比が2.5倍を越えるズーム倍率が望まれている。   These photographic lenses are desired to have a zoom magnification in which the zoom ratio from the wide angle end to the telephoto end exceeds 2.5.

このような薄型のズームレンズを実現するために、ズームレンズ中に反射部材を用いて光軸を垂直方向に折り曲げる方式や、ズームレンズを構成する一部のレンズ群を光軸外へ待避させる方式のズームレンズが知られている。   In order to realize such a thin zoom lens, a method of bending the optical axis in the vertical direction using a reflecting member in the zoom lens, or a method of retracting a part of the lens group constituting the zoom lens outside the optical axis Zoom lenses are known.

しかし、反射部材を用いて折り曲げる方式は、光線を折り曲げるためのスペースや、変倍比の確保のためのレンズ群を可動させるスペースが必要となる。そのため、これらのスペースはカメラ等の撮像装置の未使用時でもなくならないため、未使用時の撮像装置の体積の小型化には不利となる。また、光軸を折り曲げることで撮像装置内のレイアウトが制限される。   However, the method of bending using a reflecting member requires a space for bending the light beam and a space for moving the lens group for securing a zoom ratio. Therefore, these spaces are not lost when the imaging device such as a camera is not used, which is disadvantageous for reducing the volume of the imaging device when not used. Further, the layout in the imaging apparatus is limited by bending the optical axis.

一方、未使用時にレンズ群の一部を待避させる方式では、レンズ群を待避させる機構を追加することになるため、光軸に対してレンズ群が偏心した際の影響を抑えることが難しい。また、レンズ群の一部を退避させるための退避駆動手段が必要となるので、未使用時の体積を抑え難く、コスト面でも不利となる。   On the other hand, in the method of retracting a part of the lens group when not in use, a mechanism for retracting the lens group is added. Therefore, it is difficult to suppress the influence when the lens group is decentered with respect to the optical axis. Further, since a retracting drive means for retracting a part of the lens group is required, it is difficult to suppress the volume when not in use, which is disadvantageous in terms of cost.

また、通常の沈胴方式にて小型化を図ったズームレンズにおける各群のパワー配分のタイプとして、
負、正タイプのズームレンズ、
負、正、負タイプのズームレンズ、
負、正、正タイプのズームレンズ、
が知られている。
In addition, as a type of power distribution of each group in a zoom lens that is reduced in size by a normal retractable method,
Negative and positive zoom lens,
Negative, positive, negative type zoom lens,
Negative, positive, positive type zoom lens,
It has been known.

この中、負、正タイプのズームレンズは、レンズ群数が少ないので、レンズを直接保持する鏡枠の総厚みを小さくするのには有利である。しかしながら、変倍比を確保するためには第2レンズ群を等倍結像となる領域含んで移動させることとなる。そのため、第2レンズ群でフォーカシングを行おうとすると、画角の変動、フォーカシングのための移動量、移動方向の変化が大きくなり、第2レンズ群をフォーカス群には使用できない。したがって、フォーカシングに第1レンズ群を動かすかズームレンズ全体を動かすことになり、フォーカシング機構も含めた鏡枠全長の増大を招き、結果として薄型化や変倍比の確保に不利となる。   Among these, the negative and positive type zoom lenses have a small number of lens groups, and are advantageous in reducing the total thickness of the lens frame that directly holds the lenses. However, in order to ensure the zoom ratio, the second lens group is moved to include the region where the same magnification imaging is performed. For this reason, if focusing is performed with the second lens group, a change in the angle of view, a moving amount for focusing, and a change in the moving direction increase, and the second lens group cannot be used for the focusing group. Accordingly, the first lens unit or the entire zoom lens is moved for focusing, which leads to an increase in the total length of the lens frame including the focusing mechanism. As a result, it is disadvantageous for thinning and securing a zoom ratio.

それに対して、負、正、負タイプのズームレンズ、負、正、正タイプのズームレンズは、フォーカシングを第3レンズ群にて行うことで全長の増大を抑えられる点で有利となる。   On the other hand, the negative, positive, and negative type zoom lenses and the negative, positive, and positive type zoom lenses are advantageous in that the increase in the total length can be suppressed by performing focusing with the third lens group.

また、負、正、負タイプのズームレンズは、前玉径を小さくできる等、小型化に有利ではある。   In addition, negative, positive, and negative type zoom lenses are advantageous for miniaturization because the front lens diameter can be reduced.

また、負、正、正タイプのズームレンズでは、安定した光学性能を出しやすいといったメリットを有する。   In addition, negative, positive, and positive type zoom lenses have an advantage that stable optical performance is easily obtained.

負、正、正又は負、正、負タイプのズームレンズの中で、第3レンズ群が広角端に対して望遠端にて像側に動くかほとんど動かないタイプが一般的に知られている。しかし、このような移動方式では、望遠端での第3レンズ群の位置が像面から近い位置にあるため、第3レンズ群における軸外での光線が高くなりレンズの径の小型化に不利となる。また、フォーカス感度(フォーカスレンズが単位移動量だけ動くときの像面位置の移動量)も低くなりやすいため、必然的に第3レンズ群には強いパワーが要求されることになり、レンズの径との兼ね合いからレンズ肉厚も大きくなりやすい。   Among zoom lenses of negative, positive, positive or negative, positive and negative types, a type in which the third lens group moves toward the image side at the telephoto end or hardly moves at the telephoto end is generally known. . However, in such a moving system, the position of the third lens group at the telephoto end is close to the image plane, so that the off-axis light beam in the third lens group becomes high, which is disadvantageous for reducing the lens diameter. It becomes. In addition, since the focus sensitivity (the amount of movement of the image plane position when the focus lens moves by the unit movement amount) tends to be low, the third lens group inevitably requires a strong power, and the lens diameter. The lens thickness tends to increase due to the balance between the two.

また、望遠端へのズーム時に第3レンズ群が物体側に動く例として、特許文献1、特許文献2、特許文献3の実施例3、4、特許文献4の実施例2に記載されたものが知られている。   Examples of the third lens unit moving to the object side during zooming to the telephoto end are described in Patent Document 1, Patent Document 2, Examples 3 and 4 of Patent Document 3, and Example 2 of Patent Document 4. It has been known.

しかしながら、特許文献3記載のズームレンズは、ズームレンズの全長が長く、また、各レンズ群の厚みも大きいため、沈胴させた状態での薄型化に不利な構成となっている。また、望遠端での第3レンズ群移動による十分なフォーカス駆動域が確保できていない。   However, the zoom lens described in Patent Document 3 is disadvantageous in reducing the thickness in the retracted state because the entire length of the zoom lens is long and the thickness of each lens group is large. In addition, a sufficient focus drive range by moving the third lens group at the telephoto end cannot be secured.

また、特許文献1、特許文献2、特許文献4に記載のズームレンズは、変倍時に第2、第3レンズ群を一体で移動させて、フォーカシング時にのみ第3レンズ群を移動させるものであるが、何れもレンズ全長が長く、また、各レンズ群の厚みも大きいため薄型化に不利である。
特開2000−284177号公報、 特開2001−242378号公報、 特許3,513,369号公報 特許3,606,548号公報
In the zoom lenses described in Patent Document 1, Patent Document 2, and Patent Document 4, the second and third lens groups are moved together during zooming, and the third lens group is moved only during focusing. However, all the lenses have a long overall length, and the thickness of each lens group is large, which is disadvantageous for thinning.
JP 2000-284177 A, JP 2001-242378 A, Japanese Patent No. 3,513,369 Japanese Patent No. 3,606,548

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、光軸の折り曲げや一部のレンズ群の光軸外への待避を行わずに、適度なズーム比確保でき、小型化、光学性能の確保に有利なズームレンズとそれを用いた撮像装置を提供することである。   The present invention has been made in view of such problems in the prior art, and its purpose is to achieve an appropriate zoom ratio without bending the optical axis or retracting some lens groups outside the optical axis. It is possible to provide a zoom lens that can be secured, which is advantageous for ensuring miniaturization and optical performance, and an imaging device using the zoom lens.

本発明の第1のズームレンズは、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正又は負屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚のレンズからなり、
以下の条件式(1)、(2)’、(A)を満足することを特徴とするズームレンズである。
0.4<Dce/D123G<0.6 ・・・(1)
0.00≦(D2 (t)−D2 (w))/fw <0.5 ・・・(2)’
2.5≦ft /fw <5.5 ・・・(A)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
2 (w):広角端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
2 (t):望遠端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
w :ズームレンズの広角端状態での焦点距離、
t :ズームレンズの望遠端状態での焦点距離、
である。
本発明の第2のズームレンズは、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正又は負屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端へ
の変倍時に物体側にのみ移動し、
前記第2レンズ群は、物体側から順に、正レンズ、負レンズ、正レンズの3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚のレンズからなり、
以下の条件式(1)を満足することを特徴とするズームレンズである。
0.4<Dce/D123G<0.6 ・・・(1)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
である。
本発明の第3のズームレンズは、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚の正レンズからなり、
前記第3レンズ群はフォーカシングのために移動し、
以下の条件式(1)、(4) を満足することを特徴とするズームレンズである。
0.4<Dce/D123G<0.6 ・・・(1)
3.0<f3 /fw <15.0 ・・・(4)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
3 :第3レンズ群の焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
本発明の第4のズームレンズは、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚の正レンズからなり、
以下の条件式(1)、(6)を満足することを特徴とするズームレンズである。
0.4<Dce/D123G<0.6 ・・・(1)
0.03<D3G/ft <0.09 ・・・(6)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
3G:第3レンズ群の軸上での肉厚、
t :ズームレンズの望遠端状態での焦点距離、
である。
本発明の第5のズームレンズは、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚の正レンズからなり、
前記第3レンズ群はフォーカシングのために移動し、
以下の条件式(1)、(B−1)を満足することを特徴とするズームレンズである。
0.4<Dce/D123G<0.6 ・・・(1)
0.35<1−β3T 2 <0.98 ・・・(B−1)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
β3T:第3レンズ群の望遠端での横倍率、
である。
The first zoom lens of the present invention includes three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation,
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group consists of one lens,
The zoom lens satisfies the following conditional expressions (1), (2) ′, and (A).
0.4 <D ce / D 123G <0.6 (1)
0.00 ≦ (D 2 (t) −D 2 (w)) / f w <0.5 (2) ′
2.5 ≦ f t / f w <5.5 (A)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
D 2 (w): an air space on the optical axis between the second lens unit and the third lens unit at the wide-angle end,
D 2 (t): an air interval on the optical axis between the second lens group and the third lens group at the telephoto end,
f w : Focal length at the wide-angle end of the zoom lens,
f t : focal length of the zoom lens in the telephoto end state,
It is.
The second zoom lens according to the present invention includes three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation,
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side, and a cemented lens in which each lens is cemented on the optical axis.
The third lens group consists of one lens,
The zoom lens satisfies the following conditional expression (1).
0.4 <D ce / D 123G <0.6 (1)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
It is.
The third zoom lens of the present invention is composed of three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation;
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group is composed of one positive lens,
The third lens group moves for focusing;
This zoom lens satisfies the following conditional expressions (1) and (4).
0.4 <D ce / D 123G <0.6 (1)
3.0 <f 3 / f w <15.0 (4)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
f 3 : focal length of the third lens group,
f w : Focal length at the wide-angle end of the zoom lens,
It is.
The fourth zoom lens of the present invention is composed of three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation;
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group is composed of one positive lens,
The zoom lens satisfies the following conditional expressions (1) and (6).
0.4 <D ce / D 123G <0.6 (1)
0.03 <D 3G / ft <0.09 (6)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
D 3G : Thickness on the axis of the third lens group,
f t : focal length of the zoom lens in the telephoto end state,
It is.
The fifth zoom lens of the present invention is composed of three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation;
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group is composed of one positive lens,
The third lens group moves for focusing;
The zoom lens satisfies the following conditional expressions (1) and (B-1).
0.4 <D ce / D 123G <0.6 (1)
0.35 <1-β 3T 2 <0.98 (B-1)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
β 3T : lateral magnification at the telephoto end of the third lens group,
It is.

以下に、本発明の第1から第5のズームレンズにおいて、上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above-described configuration in the first to fifth zoom lenses of the present invention will be described.

以下に、本発明のズームレンズにおいて、上記構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the zoom lens according to the present invention will be described.

上記の本発明は、共通で、物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正又は負屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚のレンズからなり、
上記の条件式(1)を満足するものである。
The present invention described above is common, and is composed of three lens groups in order from the object side: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A zoom lens in which an interval between the first lens group and the second lens group changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation,
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group consists of one lens,
The above conditional expression (1) is satisfied.

つまり、第3レンズ群が望遠側への変倍時に物体側に動く構成としている。このように構成すると、第3レンズ群が変倍時に固定若しくは像側に動く場合に比べて、第3レンズ群の光線高を低くできる。そのため、第3レンズ群の径を小さくできる。   That is, the third lens group is configured to move to the object side when zooming to the telephoto side. With this configuration, the height of the light beam of the third lens group can be made lower than when the third lens group is fixed or moved to the image side during zooming. Therefore, the diameter of the third lens group can be reduced.

特に、第3レンズ群を1枚のレンズとしているため、最低限のシンプルな構成となり、沈胴時の小型化に有利となる。   In particular, since the third lens group is a single lens, the minimum configuration is simple, which is advantageous for downsizing when retracted.

そして、第2レンズ群を、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズとしている。このように、第2レンズ群に正レンズと負レンズを含めることで、第2レンズ群での収差発生を抑えやすいながら、少ないレンズ枚数の構成としている。そして、それらのレンズにて接合レンズを構成することで、第2レンズ群中の空気間隔をなくし、第2レンズ群自体の小型化、偏心による収差への影響の低減、第3レンズ群の移動範囲の確保に有利な構成としている。   The second lens group includes a positive lens and a negative lens, and is composed of two or three lenses, and is a cemented lens in which each lens is cemented on the optical axis. As described above, by including the positive lens and the negative lens in the second lens group, it is easy to suppress the occurrence of aberration in the second lens group, but the number of lenses is small. Then, by forming a cemented lens with these lenses, the air gap in the second lens group is eliminated, the second lens group itself is reduced in size, the influence on aberrations due to decentration is reduced, and the third lens group is moved. The configuration is advantageous for securing the range.

また、第2レンズ群の構成を接合レンズのみとすることにより、第2レンズ群中の何れかのレンズの少なくとも一か所のみで保持すればよく、枠の厚みも薄くできるため、沈胴時の薄型化に有利となる。   In addition, since the configuration of the second lens group is only a cemented lens, it is only necessary to hold at least one of the lenses in the second lens group, and the thickness of the frame can be reduced. It is advantageous for thinning.

そして、上述の条件式(1)を満足している。沈胴時の薄型化を確保しつつ生産時の歩留まりを良好にするためには、各群の光軸上の厚さを加算した値D123Gに対する第2レンズ群内の接合レンズの肉厚の比率がこの条件式(1)の範囲にあることが望ましい。 And the above-mentioned conditional expression (1) is satisfied. In order to improve the yield during production while ensuring the thinning when retracted, the ratio of the thickness of the cemented lens in the second lens group to the value D 123G obtained by adding the thickness on the optical axis of each group Is preferably in the range of the conditional expression (1).

本来良好な像面湾曲収差を得るには第2レンズ群の肉厚の総和を大きくすることで、サジタル像面とメリジオナル像面との差を小さくすることが一般的である。また、第2レンズ群の構成長を確保することにより物体側の面で主に球面収差を補正し、像側の面で主に像面湾曲収差を補正することが一般的である。しかしながら、第2レンズ群の全長を長くしてしまうと全系沈胴時のコンパクト化が難しくなる。   In order to obtain an essentially good field curvature aberration, it is common to reduce the difference between the sagittal image plane and the meridional image plane by increasing the total thickness of the second lens group. In general, the spherical lens aberration is mainly corrected on the object side surface and the curvature of field aberration is mainly corrected on the image side surface by securing the configuration length of the second lens group. However, if the total length of the second lens group is increased, it becomes difficult to make the system compact when the entire system is retracted.

一方、第2レンズ群内の各レンズの形状及び材質を工夫し収差バランスを取ることで、設計上の性能を維持しながら第2レンズ群の構成長を小さくすることは一応可能である。しかしながら、その場合、形状や厚みの誤差による光学性能への影響が敏感になる。そのため、製造誤差の許容範囲が小さくなる。   On the other hand, by devising the shape and material of each lens in the second lens group to balance aberrations, it is possible to reduce the configuration length of the second lens group while maintaining the design performance. However, in that case, the influence on the optical performance due to errors in shape and thickness becomes sensitive. For this reason, the allowable range of manufacturing error is reduced.

条件式(1)は、実質的に問題ない製造誤差の許容範囲を確保しつつ、第2レンズ群の構成長を小さくするための条件である。その条件式の下限の0.4を下回って小さくなると、接合レンズの肉厚が小さくなり、肉厚の製造誤差が球面収差と像面湾曲に影響し、光学性能の維持が難しくなる。上限の0.6を上回って大きくなると、全系の厚さに対して第2レンズ群の厚さが厚くなりすぎて沈胴時の薄型化が難しくなる。   Conditional expression (1) is a condition for reducing the configuration length of the second lens group while ensuring an acceptable range of manufacturing errors that is substantially satisfactory. If the lower limit of 0.4 is not reached, the thickness of the cemented lens becomes small, and the manufacturing error of the thickness affects the spherical aberration and the curvature of field, making it difficult to maintain the optical performance. When the value exceeds the upper limit of 0.6, the thickness of the second lens unit becomes too large with respect to the thickness of the entire system, and it is difficult to reduce the thickness when retracted.

なお、第3レンズ群をプラスチック単レンズにて構成して重量を減らすと、さらに好ましい。   It is more preferable that the third lens group is composed of a plastic single lens to reduce the weight.

そして、第3レンズ群のみの移動によりフォーカシングを行うことが好ましい。本発明では、第3レンズ群が望遠側程物体側に位置する。この場合、第3レンズ群におけるフォーカス感度が高くなり、第3レンズ群のパワーを緩められる。そのため、第3レンズ群の厚みを薄くすることができ、沈胴時の薄型化に有利となる。   It is preferable to perform focusing by moving only the third lens group. In the present invention, the third lens group is located closer to the object side as the telephoto side is closer. In this case, the focus sensitivity in the third lens group becomes high, and the power of the third lens group can be relaxed. Therefore, the thickness of the third lens group can be reduced, which is advantageous for reducing the thickness when the lens barrel is retracted.

また、第3レンズ群をフォーカス群とする場合、第3レンズ群がレンズ1枚のみであり、しかもレンズの重量が抑えられるので、駆動系を簡素化することができ、鏡枠の小型化に寄与する。   Further, when the third lens group is a focus group, the third lens group is only one lens, and the weight of the lens can be suppressed, so that the drive system can be simplified and the lens frame can be made smaller. Contribute.

また、変倍時に第2レンズ群と第3レンズ群との間隔が変化する構成とすると、変倍時における像位置調整、変倍による収差変動の抑制に効果的である。   Further, if the distance between the second lens group and the third lens group changes during zooming, it is effective for adjusting the image position during zooming and for suppressing aberration fluctuations due to zooming.

また、第1レンズ群が変倍時に往復移動する構成とすることにより、第1レンズ群に主たる像位置調整機能を持たせられる。   Further, by adopting a configuration in which the first lens group reciprocates during zooming, the first lens group can have a main image position adjustment function.

また、変倍時に第2、第3レンズ群間隔が変化する場合は、相互に移動量を調整することで、変倍による収差変動も抑えられる。   Also, when the distance between the second and third lens groups changes during zooming, aberrations due to zooming can be suppressed by adjusting the amount of movement.

また、第1レンズ群が、物体側から順に、負レンズ、正レンズの2枚のレンズからなる構成とすることが好ましい。   In addition, it is preferable that the first lens group includes a negative lens and a positive lens in order from the object side.

このようい構成すると、第1レンズ群の主点を物体側寄りにして使用状態での小型化を行いつつ、色収差等の収差バランスを行いやすく構成できる。また、光学性能の維持と沈胴時の鏡枠の薄型化との両立に効果的である。   With such a configuration, it is possible to easily balance aberration such as chromatic aberration while reducing the size of the first lens group closer to the object side in use. Further, it is effective for both maintaining optical performance and making the lens frame thinner when retracted.

また、以下の条件式(2)を満足することが好ましい。   Moreover, it is preferable that the following conditional expression (2) is satisfied.

−0.005<(D2 (t)−D2 (w))/fw <0.5 ・・・(2)
ただし、D2 (w):広角端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
2 (t):望遠端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
w :ズームレンズの広角端状態での焦点距離、
である。
−0.005 <(D 2 (t) −D 2 (w)) / f w <0.5 (2)
Where D 2 (w): the air spacing on the optical axis between the second lens group and the third lens group at the wide-angle end,
D 2 (t): an air interval on the optical axis between the second lens group and the third lens group at the telephoto end,
f w : Focal length at the wide-angle end of the zoom lens,
It is.

この条件式(2)は、望遠端と広角端での第2、第3レンズ群間の差を広角端焦点距離で規定したものであり、像位置補正のしやすさと小型化とを両立するための条件式である。この条件式の下限の−0.005を下回らないようにすると、第3レンズ群の位置調整による像面位置ズレの調整に必要とする間隔の確保がしやすくなる。また、第3レンズ群にてフォーカシングを行う場合、望遠端でのフォーカシングに必要な間隔の確保がしやすくなる。また、上限の0.5を上回らないようにすると、広角端での第1レンズ群の光線高が高くなることを抑え、前玉径の増大を抑えやすくなる。若しくは、望遠端での最終レンズである第3レンズ群の軸外光線高が高くなることを抑え、レンズ径の小型化に有利となる。   Conditional expression (2) defines the difference between the second and third lens groups at the telephoto end and the wide-angle end in terms of the focal length at the wide-angle end, and achieves both ease of image position correction and downsizing. Is a conditional expression. If it does not fall below the lower limit of -0.005 of this conditional expression, it becomes easy to secure the interval necessary for adjusting the image plane position deviation by adjusting the position of the third lens group. In addition, when focusing is performed with the third lens group, it is easy to secure an interval necessary for focusing at the telephoto end. Further, if the upper limit of 0.5 is not exceeded, the light ray height of the first lens group at the wide-angle end is suppressed from increasing, and the increase in the front lens diameter is easily suppressed. Alternatively, it is possible to suppress an increase in the off-axis ray height of the third lens group that is the final lens at the telephoto end, which is advantageous in reducing the lens diameter.

また、第3レンズ群を保持する保持枠を第2レンズ群の保持枠から軸を立てて保持を行う場合、軸の長さが第3レンズ群の移動量に従って長くなる。そのため、条件式(2)を満足させることで、沈胴時の薄型化を行いやすく構成できる。   In addition, when the holding frame that holds the third lens group is held upright from the holding frame of the second lens group, the length of the axis becomes longer according to the amount of movement of the third lens group. Therefore, by satisfying conditional expression (2), it is possible to easily reduce the thickness when retracted.

また、第2レンズ群が、物体側から順に、正レンズ、負レンズ、正レンズの3枚のレンズにて構成された1つの接合レンズからなる構成とすることが好ましい。   In addition, it is preferable that the second lens group includes a single cemented lens including three lenses of a positive lens, a negative lens, and a positive lens in order from the object side.

このように構成することで、第2レンズ群での収差発生を抑えやすい正レンズ、負レンズ、正レンズの3枚のレンズとしながらも、第2レンズ群としては1つの接合レンズで構成することで、第2レンズ群自体の小型化や、第3レンズ群の移動範囲の確保に有利な構成となる。   With this configuration, the second lens group is composed of one cemented lens, while the three lenses of the positive lens, the negative lens, and the positive lens are easily suppressed from generating aberrations in the second lens group. Thus, the second lens group itself is advantageous in size reduction and in securing the movement range of the third lens group.

さらには、接合レンズの入射側面を、光軸上にて正屈折力を持ち光軸から離れる程屈折力が小さくなる形状とすることで、第2レンズ群の正屈折力の確保、主点を物体側寄りにすることによる変倍比の確保を行いつつ、この面で発生しやすい球面収差補正に有利となる。   Furthermore, the incident side surface of the cemented lens has a shape having a positive refractive power on the optical axis and a refractive power that decreases as the distance from the optical axis increases, thereby ensuring the positive refractive power of the second lens group. While securing a zoom ratio by being closer to the object side, it is advantageous for correcting spherical aberration that is likely to occur on this surface.

また、接合レンズの射出側面が、周辺程屈折力が小さくなる(正屈折力が弱くなるか負屈折力が強くなる)形状とすることで、像面湾曲の補正に有利となる。   In addition, the exit side surface of the cemented lens has a shape in which the refractive power decreases toward the periphery (the positive refractive power decreases or the negative refractive power increases), which is advantageous for correcting curvature of field.

また、接合レンズ中の負レンズのアッベ数が、接合レンズ中の何れかの正レンズのアッベ数よりも小さく、かつ、接合面が負レンズの凹面であり、負屈折力の接合面とすると、色収差の補正を良好に行うことができる。   Further, if the Abbe number of the negative lens in the cemented lens is smaller than the Abbe number of any positive lens in the cemented lens, and the cemented surface is a concave surface of the negative lens, the cemented surface has a negative refractive power. Correction of chromatic aberration can be performed satisfactorily.

つまり、接合レンズの物体側のレンズ面で主に球面収差を、真中の負レンズではその面形状よりも主にパワーとアッベ数のコントロールで色収差を、像面側のレンズ面で主に軸外収差のコントロールを実現できる。主ではないが、当然接合面での収差コントロールの効果もあるので、前記の主な効果と合わせて利用することが好ましい。   In other words, spherical aberration is mainly caused by the object-side lens surface of the cemented lens, chromatic aberration is mainly controlled by the power and Abbe number rather than the surface shape of the negative lens in the middle, and mainly off-axis by the lens surface on the image side. Aberration control can be realized. Although it is not main, naturally there is also an effect of aberration control at the joint surface, so it is preferable to use it together with the main effect.

また、以下の条件式(3)を満足する構成とすることが好ましい。   Moreover, it is preferable to set it as the structure which satisfies the following conditional expressions (3).

1.2<Cj (t)/ft <1.8 ・・・(3)
ただし、Cj (t):望遠端における第1レンズ群の入射面から像面までの距離、
t :ズームレンズの望遠端での焦点距離、
である。
1.2 <C j (t) / ft <1.8 (3)
Where C j (t): distance from the entrance surface of the first lens group to the image plane at the telephoto end,
f t : Focal length at the telephoto end of the zoom lens,
It is.

この条件式(3)は、望遠端におけるズームレンズの全長を望遠端の焦点距離で規定したものであり、全長短縮により鏡筒の構成をより簡略にし得るようにするための条件である。条件式(3)の下限の1.2を下回らないようにすると、広角端状態での全長増大を抑えやすくなる。若しくは、所望の変倍比を得るのが容易となる。また、上限の1.8を上回らようにすると、鏡枠全長を抑えやすく、小型化に有利となる。   Conditional expression (3) defines the total length of the zoom lens at the telephoto end by the focal length of the telephoto end, and is a condition for enabling the configuration of the lens barrel to be simplified by shortening the total length. If the lower limit of 1.2 of conditional expression (3) is not exceeded, an increase in the total length in the wide-angle end state can be easily suppressed. Alternatively, it is easy to obtain a desired zoom ratio. If the upper limit of 1.8 is exceeded, the entire length of the lens frame can be easily suppressed, which is advantageous for downsizing.

また、第3レンズ群がフォーカシングのために移動すると共に、第3レンズ群が以下の条件式(4)を満足する正レンズとすることが好ましい。   In addition, it is preferable that the third lens group moves for focusing and the third lens group is a positive lens that satisfies the following conditional expression (4).

3.0<f3 /fw <15.0 ・・・(4)
ただし、f3 :第3レンズ群の焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
3.0 <f 3 / f w <15.0 (4)
Where f 3 is the focal length of the third lens group,
f w : Focal length at the wide-angle end of the zoom lens,
It is.

この条件式(4)は、第3レンズ群の焦点距離をズームレンズの広角端での焦点距離にて規定したものである。本発明は、特に第3レンズ群の移動方式により、第3レンズ群の小型化に有利な構成としている。特に、この第3レンズ群をフォーカスレンズ群とする場合、他のフォーカシング方式と比べ、駆動機構の負担を軽減できる。また、本発明では、望遠端における第3レンズ群のフォーカス感度が大きくしやすいので、この第3レンズ群の屈折力が条件式(4)を満足するように適度に小さくでき、より小型化に有利となる。   Conditional expression (4) defines the focal length of the third lens group in terms of the focal length at the wide-angle end of the zoom lens. In the present invention, the third lens unit is advantageously reduced in size by the moving method of the third lens unit. In particular, when the third lens group is a focus lens group, the burden on the drive mechanism can be reduced compared to other focusing methods. In the present invention, since the focus sensitivity of the third lens group at the telephoto end is easily increased, the refractive power of the third lens group can be appropriately reduced so as to satisfy the conditional expression (4). It will be advantageous.

条件式(4)の下限の3.0を下回らないようにすると、広角端での第1レンズ群での光線高を抑えやすく、前玉径(第1レンズ群)を小さくしやすくなる。若しくは、第3レンズ群での収差の影響を抑え、第3レンズ群の厚みの増大を抑え、鏡枠の薄型化に有利となる。条件式(4)の上限の15.0を上回らないようにすると、フォーカシングにおける第3レンズ群の移動量を抑え、薄型化に有利となる。   If it does not fall below 3.0, which is the lower limit of conditional expression (4), it is easy to suppress the light beam height at the first lens group at the wide angle end, and the front lens diameter (first lens group) can be easily reduced. Alternatively, the influence of the aberration in the third lens group is suppressed, the increase in the thickness of the third lens group is suppressed, which is advantageous for thinning the lens frame. If the upper limit of 15.0 in the conditional expression (4) is not exceeded, the amount of movement of the third lens unit during focusing is suppressed, which is advantageous for thinning.

また、第3レンズ群がフォーカシングのために移動すると共に、第3レンズ群が以下の条件式(5)を満足する負レンズとすることが好ましい。   Further, it is preferable that the third lens group is moved for focusing and the third lens group is a negative lens that satisfies the following conditional expression (5).

1.5<|f3 /fw |<15.0 ・・・(5)
ただし、f3 :第3レンズ群の焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
1.5 <| f 3 / f w | <15.0 (5)
Where f 3 is the focal length of the third lens group,
f w : Focal length at the wide-angle end of the zoom lens,
It is.

この条件式(5)は、第3レンズ群の焦点距離をズームレンズの広角端での焦点距離にて規定したものである。本発明は、特に第3レンズ群の移動方式により、第3レンズ群の小型化に有利な構成としている。特に、この第3レンズ群を負レンズとすると、光学系の径方向の小型化に有利となる。そして、この第3レンズ群をフォーカスレンズ群とする場合、望遠端における第3レンズ群のフォーカス感度を大きくしやすいので、この第3レンズ群の屈折力が条件式(5)を満足するように適度に小さくでき、より小型化に有利となる。   Conditional expression (5) defines the focal length of the third lens group in terms of the focal length at the wide-angle end of the zoom lens. In the present invention, the third lens unit is advantageously reduced in size by the moving method of the third lens unit. In particular, if the third lens group is a negative lens, it is advantageous for reducing the size of the optical system in the radial direction. When the third lens group is a focus lens group, the focus sensitivity of the third lens group at the telephoto end is easily increased, so that the refractive power of the third lens group satisfies the conditional expression (5). It can be made reasonably small, which is advantageous for further downsizing.

条件式(5)の下限の1.5を下回らないようにすると、第3レンズ群における屈折力が抑えられ、収差への影響を低減しやすくなる。また、第3レンズ群の縁肉の厚みの増大を抑え、鏡枠の薄型化に有利となる。条件式(5)の上限の15.0を上回らないようにすると、フォーカシングにおける第3レンズ群の移動量を抑え、薄型化に有利となる。   If the lower limit of 1.5 of conditional expression (5) is not exceeded, the refractive power in the third lens group can be suppressed, and the influence on aberration can be easily reduced. Further, an increase in the thickness of the edge of the third lens group is suppressed, which is advantageous for making the lens frame thinner. If the upper limit of 15.0 in conditional expression (5) is not exceeded, the amount of movement of the third lens unit during focusing is suppressed, which is advantageous for thinning.

また、第3レンズ群が適度な厚みの肉厚の正レンズとなるように以下の条件式(6)を満足することが好ましい。   Further, it is preferable that the following conditional expression (6) is satisfied so that the third lens group becomes a thick positive lens having an appropriate thickness.

0.03<D3G/ft <0.09 ・・・(6)
ただし、D3G:第3レンズ群の軸上での肉厚、
t :ズームレンズの望遠端状態での焦点距離、
である。
0.03 <D 3G / ft <0.09 (6)
D 3G : Thickness on the axis of the third lens group,
f t : focal length of the zoom lens in the telephoto end state,
It is.

条件式(6)の下限の0.03を下回らないようにすることで、第3レンズ群に必要な正の屈折力の確保に有利となる。条件式(6)の上限の0.09を上回らないようにすることで、第3レンズ群の軸上の厚みを抑え、沈胴時におけるズームレンズの小型化に有利となる。   By making sure that the lower limit of 0.03 of conditional expression (6) is not exceeded, it is advantageous for securing positive refractive power necessary for the third lens group. By preventing the upper limit of 0.09 of conditional expression (6) from being exceeded, the axial thickness of the third lens group is suppressed, which is advantageous for downsizing the zoom lens when retracted.

また、第3レンズ群が適度な厚みの肉厚の負レンズとなるように以下の条件式(7)を満足することが好ましい。   Further, it is preferable that the following conditional expression (7) is satisfied so that the third lens group becomes a moderately thick negative lens.

0.01<D3G/ft <0.09 ・・・(7)
ただし、D3G:第3レンズ群の軸上での肉厚、
t :ズームレンズの望遠端状態での焦点距離、
である。
0.01 <D 3G / ft <0.09 (7)
D 3G : Thickness on the axis of the third lens group,
f t : focal length of the zoom lens in the telephoto end state,
It is.

条件式(7)の下限の0.01を下回らないようにすることで、第3レンズ群に必要な負レンズの強度の確保に有利となる。条件式(7)の上限の0.09を上回らないようにすることで、第3レンズ群の軸上の厚みを抑え、沈胴時におけるズームレンズの小型化に有利となる。   By making sure that the lower limit of 0.01 of the conditional expression (7) is not exceeded, it is advantageous for securing the strength of the negative lens necessary for the third lens group. By preventing the upper limit of 0.09 of conditional expression (7) from being exceeded, the axial thickness of the third lens group is suppressed, which is advantageous for downsizing the zoom lens when retracted.

また、第3レンズ群の移動によりフォーカシングを行う場合、第3レンズ群のフォーカス感度は、第3レンズ群の倍率に依存する。そこで、第3レンズ群が正レンズの場合、望遠端における第3レンズ群のフォーカス感度が適度になるように以下の条件式(B−1)を満足することが好ましい。   When focusing is performed by moving the third lens group, the focus sensitivity of the third lens group depends on the magnification of the third lens group. Therefore, when the third lens group is a positive lens, it is preferable that the following conditional expression (B-1) is satisfied so that the focus sensitivity of the third lens group at the telephoto end becomes appropriate.

0.35<1−β3T 2 <0.98 ・・・(B−1)
ただし、β3T:第3レンズ群の望遠端での横倍率、
である。
0.35 <1-β 3T 2 <0.98 (B-1)
Where β 3T : lateral magnification at the telephoto end of the third lens group,
It is.

条件式(B−1)の下限の0.35を下回らないようにすると、第3レンズ群の移動量が抑えられ、又は、フォーカス動作のためのスペースの増大を抑えられ、使用時におけるズームレンズ全体の小型化に有利となる。条件式(B−1)の上限の0.98を上回らないようにすると、第3レンズ群での横倍率が小さく抑えられるので、結像面までの距離を抑えて小型化することに有利になる。   If the lower limit of 0.35 in conditional expression (B-1) is not exceeded, the amount of movement of the third lens group can be suppressed, or an increase in the space for the focus operation can be suppressed, and the zoom lens in use. This is advantageous for overall miniaturization. If the upper limit of 0.98 in conditional expression (B-1) is not exceeded, the lateral magnification in the third lens group can be kept small, which is advantageous in reducing the distance to the image plane and reducing the size. Become.

また、第3レンズ群が負レンズの場合、望遠端における第3レンズ群のフォーカス感度が適度になるように以下の条件式(B−2)を満足することが好ましい。   When the third lens group is a negative lens, it is preferable that the following conditional expression (B-2) is satisfied so that the focus sensitivity of the third lens group at the telephoto end becomes appropriate.

−3.5<1−β3T 2 <−0.6 ・・・(B−2)
ただし、β3T:第3レンズ群の望遠端での横倍率、
である。
−3.5 <1-β 3T 2 <−0.6 (B-2)
Where β 3T : lateral magnification at the telephoto end of the third lens group,
It is.

条件式(B−2)の下限の−3.5を下回らないようにすると、第3レンズ群での横倍率の絶対値が小さく抑えられるので、フォーカス感度が高くなりすぎることを抑え、フォーカシングの精度の確保に有利となる。条件式(B−2)の上限の−0.6を上回らないようにすると、フォーカス感度が確保できるので、フォーカス動作のための移動範囲を抑えられ、駆動機構の小型化に有利となる。   If the lower limit of −3.5 of conditional expression (B-2) is not reduced, the absolute value of the lateral magnification in the third lens group can be kept small, so that the focus sensitivity is prevented from becoming too high, and focusing is prevented. This is advantageous for ensuring accuracy. If the upper limit of -0.6 of conditional expression (B-2) is not exceeded, focus sensitivity can be ensured, so that the movement range for the focus operation can be suppressed, which is advantageous for downsizing the drive mechanism.

また、以下の条件式(A)を満足する構成とすることが好ましい。   Moreover, it is preferable to set it as the structure which satisfies the following conditional expressions (A).

2.5≦ft /fw <5.5 ・・・(A)
ただし、ft :ズームレンズの望遠端状態での焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
2.5 ≦ f t / f w <5.5 (A)
Where f t : focal length of the zoom lens in the telephoto end state,
f w : Focal length at the wide-angle end of the zoom lens,
It is.

この条件式(A)は、ズームレンズの変倍比を規定するものである。本発明は、変倍比2.5倍以上の適度な変倍比のズームレンズとすると、全系のサイズと光学性能とのバランスがとりやすく好ましい。この条件式(A)の下限の2.5を下回らないようにすると、一般的な使用での変倍比が満足される。条件式(A)の上限の5.5を上回らないようにすると、収差の補正のためのレンズ枚数の増加を抑える等、低コスト化に有利となる。   This conditional expression (A) defines the zoom ratio of the zoom lens. The present invention is preferably a zoom lens having an appropriate zoom ratio of 2.5 or more, since it is easy to balance the size of the entire system and the optical performance. If the lower limit of 2.5 of the conditional expression (A) is not exceeded, the zoom ratio in general use is satisfied. If the upper limit of 5.5 of the conditional expression (A) is not exceeded, it is advantageous for cost reduction, such as suppressing an increase in the number of lenses for correcting aberrations.

また、第2レンズ群の直前に配されると共に、変倍の際に第2レンズ群と一体で移動する明るさ絞りを有する構成とすることが好ましい。   In addition, it is preferable to have a configuration including an aperture stop that is disposed immediately before the second lens group and moves integrally with the second lens group at the time of zooming.

このような構成により、第1レンズ群の径の大型化を防ぐと共に、第3レンズ群から射出する軸外主光線を光軸と平行に近づけやすくなる。また、明るさ絞りの物体側には第2レンズ群がなく、明るさ絞りの像側に第2レンズ群のレンズが集中するので、第2レンズ群内のレンズ同士の相対偏心による収差劣化も抑えた構成にできる。また、明るさ絞りの移動機構も第2レンズ群と共有でき、構成の簡略化も容易に行える。   With such a configuration, an increase in the diameter of the first lens group can be prevented, and the off-axis principal ray emitted from the third lens group can be easily made parallel to the optical axis. In addition, since there is no second lens group on the object side of the aperture stop and the lenses of the second lens group are concentrated on the image side of the aperture stop, aberration deterioration due to relative decentration of the lenses in the second lens group is also caused. It can be configured to be suppressed. Also, the movement mechanism of the aperture stop can be shared with the second lens group, and the configuration can be simplified easily.

また、上述の本発明何れかのズームレンズと、その像側に配され、光学像を電気信号に変換する撮像素子とを備えることが好ましい。   It is preferable that the zoom lens according to any one of the present invention described above and an image sensor that is disposed on the image side and converts an optical image into an electric signal are provided.

本発明のズームレンズは、小型化、広角端での画角の確保に有利である。また、光線の撮像面への入射角も抑えやすく、色シェーディングの影響を低減できるので、上述の撮像素子を備えた撮像装置に使用することが好ましい。   The zoom lens of the present invention is advantageous for downsizing and securing a field angle at the wide-angle end. In addition, since it is easy to suppress the incident angle of light rays to the imaging surface and the influence of color shading can be reduced, it is preferable to use the imaging device including the above-described imaging device.

上述の各構成は任意に複数を同時に満足してもよく、それにより、より良好な効果を得ることができる。   Each of the above-described configurations may arbitrarily satisfy a plurality at the same time, whereby a better effect can be obtained.

また、特定の構成に従属して記載した構成要件を他の構成に従属させた構成としてもよい。   Moreover, it is good also as a structure which made the structural requirement described dependent on a specific structure dependent on another structure.

また、各条件式についても任意に組み合わせて満足すれば、より良好な効果を得ることができる。   Further, if each conditional expression is satisfied by being arbitrarily combined, a better effect can be obtained.

また、上述の効果をより良好とするため、各条件式について以下の構成とすることが好ましい、
条件式(1)について、製造誤差の影響と、第2レンズ群の構成長とのバランスをより良好とするために、下限値を0.46、さらには、0.48とするとより好ましい。
Moreover, in order to make the above-mentioned effect more favorable, it is preferable to adopt the following configuration for each conditional expression.
In the conditional expression (1), in order to make the balance between the influence of the manufacturing error and the configuration length of the second lens group better, it is more preferable that the lower limit value is 0.46, and further 0.48.

また、上限値を0.55、さらには、0.52とするとより好ましい。   Further, it is more preferable that the upper limit value is 0.55, further 0.52.

条件式(2)について、下限値を0.01、さらには、0.03とするとより好ましい。   For conditional expression (2), it is more preferable to set the lower limit to 0.01, and further to 0.03.

また、上限値を0.4、さらには、0.35とするとより好ましい。   Further, it is more preferable that the upper limit value is 0.4, further 0.35.

条件式(3)について、第3レンズ群が正レンズの場合、収差バランスと全長短縮とのバランスのためには、下限値を1.4 、さらには1.5とするとより好ましい。   Regarding conditional expression (3), when the third lens group is a positive lens, it is more preferable to set the lower limit value to 1.4 and even 1.5 for the balance between aberration balance and overall length reduction.

また、上限値を1.76、さらには1.7とするとより好ましい。   Further, it is more preferable that the upper limit value is 1.76, and further 1.7.

第3レンズ群が負レンズの場合、収差バランスと全長短縮とのバランスのためには、下限値を1.3、さらには、1.35とするとより好ましい。   In the case where the third lens group is a negative lens, it is more preferable that the lower limit value is 1.3, and further 1.35 in order to balance the aberration balance and the shortening of the total length.

また、上限値を1.7、さらには、1.5とするとより好ましい。   Further, it is more preferable that the upper limit value is 1.7, further 1.5.

条件式(4)について、下限値を3.4とするとより好ましい。   For conditional expression (4), it is more preferable to set the lower limit to 3.4.

上限値を10.0、さらには8.0とするとより好ましい。   It is more preferable that the upper limit value is 10.0, further 8.0.

条件式(5)について、下限値を1.8、さらには、2.0とするとより好ましい。   For conditional expression (5), it is more preferable that the lower limit value be 1.8, and further 2.0.

また、上限値を10.0、さらには、7.0とするとより好ましい。   Further, it is more preferable that the upper limit value is 10.0, further 7.0.

条件式(6)について、下限値を0.04、さらには、0.05とするとより好ましい。   For conditional expression (6), it is more preferable to set the lower limit to 0.04, and more preferably 0.05.

また、上限値を0.084、さらには、0.077とするとより好ましい。   Further, the upper limit value is more preferably 0.084, and further preferably 0.077.

条件式(7)について、下限値を0.02、さらには、0.03とするとより好ましい。   In conditional expression (7), it is more preferable that the lower limit value be 0.02, and further 0.03.

また、上限値を0.07、さらには、0.055とするとより好ましい。   Further, it is more preferable that the upper limit value is 0.07, further 0.055.

条件式(A)について、下限値を2.6、さらには2.7とするとより好ましい。   For conditional expression (A), it is more preferable to set the lower limit to 2.6, and even 2.7.

また、上限値を4.5、さらには3.5とするとより好ましい。   Further, it is more preferable that the upper limit value is 4.5, further 3.5.

以上の本発明によると、光軸の折り曲げや一部のレンズ群の光軸外への待避を行わずに、適度なズーム比確保でき、小型化、光学性能の確保に有利なズームレンズとそれを用いた撮像装置を得ることができる。   According to the present invention as described above, it is possible to secure an appropriate zoom ratio without bending the optical axis or retracting a part of the lens group to the outside of the optical axis, and it is advantageous for downsizing and ensuring optical performance. An imaging device using can be obtained.

以下、本発明のズームレンズの実施例1〜17について説明する。実施例1〜17の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図17に示す。図中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、IRカットコートを施したローパスフィルター等を構成する平行平板はF、電子撮像素子(CCDやCMOS)のカバーガラスの平行平板はC、像面(電子撮像素子の受光面)はIで示してある。なお、カバーガラスGの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスGにローパスフィルター作用を持たせるようにしてもよい。   Examples 1 to 17 of the zoom lens according to the present invention will be described below. FIGS. 1 to 17 show lens cross-sectional views of the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 17, respectively. In the figure, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, the parallel plate constituting the low-pass filter with IR cut coating, etc. is F, the electronic imaging element ( The parallel plate of the cover glass of CCD or CMOS) is indicated by C, and the image plane (light receiving surface of the electronic image sensor) is indicated by I. In addition, a multilayer film for limiting the wavelength region may be provided on the surface of the cover glass G. Further, the cover glass G may have a low-pass filter function.

実施例1のズーム光学系は、図1に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に移動する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 1, the zoom optical system according to the first exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The first lens group G1 moves to the image side when zooming from the wide-angle end to the telephoto end. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a biconvex positive lens and an image. The third lens group G3 is composed of one biconcave negative lens. The third lens group G3 is composed of a cemented triplet of a negative meniscus lens having a convex surface on the side and a positive meniscus lens having a convex surface on the image side. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の6面に用いている。   The aspheric surfaces are the surfaces of the positive meniscus lens of the first lens group G1, the most object side surface and the image side surface of the triplet cemented lens of the second lens group G2, and the biconcave negative lens of the third lens group G3. Used on 6 sides.

実施例2のズーム光学系は、図2に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 2, the zoom optical system according to the second embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end from the position of the wide-angle end. Located on the image side. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像側に凸面を向けた負メニスカスレンズとの2枚接合レンズからなり、第3レンズ群G3は、像側の凸面を向けた負メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の2枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a convex surface facing the biconvex positive lens and the image side. The third lens group G3 is composed of a single negative meniscus lens having a convex surface on the image side. The aperture stop S is located on the image side of the most object side surface of the two-junction lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の2枚接合レンズの最も物体側の面と最も像側の面の3面に用いている。   The aspheric surfaces are used for the three surfaces of the image side surface of the biconcave negative lens of the first lens group G1, and the most object side surface and the most image side surface of the two-junction lens of the second lens group G2.

実施例3のズーム光学系は、図3に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 3, the zoom optical system according to the third embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end from the position of the wide-angle end. Located on the image side. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面と同じ位置に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a biconvex positive lens and an image. The third lens group G3 is composed of one biconcave negative lens. The third lens group G3 is composed of a cemented triplet of a negative meniscus lens having a convex surface on the side and a positive meniscus lens having a convex surface on the image side. The aperture stop S is located at the same position as the most object side surface of the three-junction lens of the second lens group G2.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の5面に用いている。   The aspherical surfaces are the image side surface of the negative meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the triplet cemented lens of the second lens group G2, and the biconcave of the third lens group G3. It is used for 5 surfaces on both sides of the negative lens.

実施例4のズーム光学系は、図4に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 4, the zoom optical system according to the fourth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end from the position of the wide-angle end. Located on the image side. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 includes a biconvex positive lens, a biconcave negative lens, and a biconvex lens. The third lens group G3 is composed of a single biconcave negative lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の正メニスカスレンズの物体側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の5面に用いている。   The aspherical surfaces are the object side surface of the positive meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the three-piece cemented lens of the second lens group G2, and the biconcave of the third lens group G3. It is used for 5 surfaces on both sides of the negative lens.

実施例5のズーム光学系は、図5に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に移動する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦縮め次いで広げながら物体側に移動する。   As shown in FIG. 5, the zoom optical system according to the fifth embodiment includes, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a negative refractive power. The first lens group G1 moves to the image side when zooming from the wide-angle end to the telephoto end. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while temporarily shortening and then widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a convex surface facing the biconvex positive lens and the image side. The third lens group G3 includes one biconcave negative lens. The third lens group G3 includes a negative meniscus lens and a negative meniscus lens having a convex surface facing the image side. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の6面に用いている。   The aspheric surfaces are the surfaces of the positive meniscus lens of the first lens group G1, the most object side surface and the image side surface of the triplet cemented lens of the second lens group G2, and the biconcave negative lens of the third lens group G3. Used on 6 sides.

実施例6のズーム光学系は、図6に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に移動する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦広げ次いで縮めながら物体側に移動する。   As shown in FIG. 6, the zoom optical system according to the sixth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The first lens group G1 moves to the image side when zooming from the wide-angle end to the telephoto end. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while once increasing the distance from the second lens group G2 and then reducing it.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと像側に凸面を向けた負メニスカスレンズと両凹負レンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a convex surface facing the biconvex positive lens and the image side. The third lens group G3 is composed of one biconcave negative lens. The third lens group G3 is composed of a cemented lens composed of a negative meniscus lens and a biconcave negative lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の5面に用いている。   The aspherical surfaces are the image side surface of the biconcave negative lens of the first lens group G1, the most object side surface and the most image side surface of the three-piece cemented lens of the second lens group G2, and both of the third lens group G3. It is used for 5 surfaces on both sides of the concave negative lens.

実施例7のズーム光学系は、図7に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、負屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では中間状態より若干物体側であって広角端の位置より像側の位置に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦縮め次いで広げながら物体側に移動する。   As shown in FIG. 7, the zoom optical system according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. Consists of three lens groups G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves with a concave locus on the object side, and at the telephoto end, the object is slightly more intermediate than in the intermediate state. It is located on the image side from the wide-angle end position. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while temporarily shortening and then widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G3は、両凹負レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and an object. The third lens group G3 is composed of one biconcave negative lens. The third lens group G3 is composed of a cemented three-lens lens composed of a negative meniscus lens having a convex surface facing the side and a biconvex positive lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凹負レンズの両面の5面に用いている。   The aspherical surfaces are the image side surface of the biconcave negative lens of the first lens group G1, the most object side surface and the most image side surface of the three-piece cemented lens of the second lens group G2, and both of the third lens group G3. It is used for 5 surfaces on both sides of the concave negative lens.

実施例8のズーム光学系は、図8に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 8, the zoom optical system according to the eighth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The third lens group G3 includes one biconvex positive lens. . The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凸正レンズの物体側の面の4面に用いている。   The aspherical surfaces are the image side surface of the negative meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the triplet cemented lens of the second lens group G2, and the biconvex shape of the third lens group G3. The positive lens is used for four surfaces on the object side.

実施例9のズーム光学系は、図9に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 9, the zoom optical system according to the ninth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and an object. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. . The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の正メニスカスレンズの物体側の面の4面に用いている。   The aspheric surfaces are the image side surface of the biconcave negative lens of the first lens group G1, the most object side surface and the most image side surface of the three-junction lens of the second lens group G2, and the positive surface of the third lens group G3. It is used for four surfaces on the object side of the meniscus lens.

実施例10のズーム光学系は、図10に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 10, the zoom optical system according to the tenth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and an object. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. . The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の正メニスカスレンズの物体側の面の4面に用いている。   The aspheric surfaces are the image side surface of the biconcave negative lens of the first lens group G1, the most object side surface and the most image side surface of the three-junction lens of the second lens group G2, and the positive surface of the third lens group G3. It is used for four surfaces on the object side of the meniscus lens.

実施例11のズーム光学系は、図11に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では中間状態より若干物体側であって広角端の位置より像側の位置に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦広げ次いで縮めながら物体側に移動する。   As shown in FIG. 11, the zoom optical system according to the eleventh embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a positive refractive power. Consists of three lens groups G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves with a concave locus on the object side, and at the telephoto end, the object is slightly more intermediate than in the intermediate state. It is located on the image side from the wide-angle end position. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while once increasing the distance from the second lens group G2 and then reducing it.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The third lens group G3 includes one biconvex positive lens. . The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面と正メニスカスレンズの物体側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の両凸正レンズの両面の6面に用いている。   The aspheric surfaces are the image side surface of the negative meniscus lens and the object side surface of the positive meniscus lens of the first lens group G1, and the most object side surface and the most image side surface of the three-junction lens of the second lens group G2. And 6 surfaces on both sides of the biconvex positive lens of the third lens group G3.

実施例12のズーム光学系は、図12に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 12, the zoom optical system according to the twelfth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a first lens group having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens, a biconcave negative lens, and an object side. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面の3面に用いている。   The aspherical surfaces are used for the image side surface of the biconcave negative lens of the first lens group G1, and the most object side surface and the most image side surface of the three-junction lens of the second lens group G2.

実施例13のズーム光学系は、図13に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 13, the zoom optical system according to the thirteenth embodiment includes, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens, a biconcave negative lens, and an object side. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の両凹負レンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面の3面に用いている。   The aspherical surfaces are used for the image side surface of the biconcave negative lens of the first lens group G1, and the most object side surface and the most image side surface of the three-junction lens of the second lens group G2.

実施例14のズーム光学系は、図14に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦若干広げ次いで若干縮めながら物体側に移動する。   As shown in FIG. 14, the zoom optical system according to the fourteenth embodiment includes, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while slightly increasing the distance from the second lens group G2 and then slightly reducing it.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. The third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side and a bi-convex positive lens. . The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面の4面に用いている。   The aspherical surfaces are used on both surfaces of the positive meniscus lens of the first lens group G1, and on the four surfaces of the most cemented lens in the second lens group G2, the most object side surface and the most image side surface.

実施例15のズーム光学系は、図15に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では中間状態より若干物体側であって広角端の位置より像側の位置に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦広げ次いで縮めながら物体側に移動する。   As shown in FIG. 15, the zoom optical system according to the fifteenth embodiment includes, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a positive refractive power. Consists of three lens groups G3, and when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves with a concave locus on the object side, and at the telephoto end, the object is slightly more intermediate than in the intermediate state. It is located on the image side from the wide-angle end position. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while once increasing the distance from the second lens group G2 and then reducing it.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. The third lens group G3 is composed of a positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. Consists of a single meniscus lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の正メニスカスレンズの両面の6面に用いている。   The aspheric surfaces are both surfaces of the positive meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the triplet cemented lens of the second lens group G2, and both surfaces of the positive meniscus lens of the third lens group G3. It is used for 6 sides.

実施例16のズーム光学系は、図16に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を一旦縮め次いで広げながら物体側に移動する。   As shown in FIG. 16, the zoom optical system of Example 16 has, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the object side while temporarily shortening and then widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. The third lens group G3 is composed of a positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. Consists of a single meniscus lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の正メニスカスレンズの物体側の面の4面に用いている。   The aspherical surfaces are the image side surface of the negative meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the triplet cemented lens of the second lens group G2, and the positive meniscus of the third lens group G3. It is used for four surfaces on the object side of the lens.

実施例17のズーム光学系は、図17に示すように、物体側から順に、負屈折力の第1レンズ群G1、開口絞りS、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹の軌跡を描いて移動し、望遠端では広角端より像側に位置する。開口絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に移動する。   As shown in FIG. 17, the zoom optical system according to the seventeenth embodiment includes, in order from the object side, a first lens unit G1 having a negative refractive power, an aperture stop S, a second lens unit G2 having a positive refractive power, and a first lens unit having a positive refractive power. The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end is closer to the image side than the wide-angle end. Located in. The aperture stop S and the second lens group G2 move monotonously toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。開口絞りSは第2レンズ群G2の3枚接合レンズの最も物体側の面より像側に位置する。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. The third lens group G3 is composed of a positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. Consists of a single meniscus lens. The aperture stop S is positioned on the image side of the most object side surface of the three-piece cemented lens of the second lens group G2.

非球面は、第1レンズ群G1の負メニスカスレンズの像側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像側の面、第3レンズ群G3の正メニスカスレンズの物体側の面の4面に用いている。   The aspherical surfaces are the image side surface of the negative meniscus lens of the first lens group G1, the most object side surface and the most image side surface of the triplet cemented lens of the second lens group G2, and the positive meniscus of the third lens group G3. It is used for four surfaces on the object side of the lens.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 In the following, the numerical data of each of the above embodiments is shown. Symbols are the above, f is the total focal length, FNO is the F number, WE is the wide angle end, ST is the intermediate state, TE is the telephoto end, r 1 , R 2 ... Are the radii of curvature of the lens surfaces, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 are the refractive indices of the d-line of each lens, and ν d1 , ν d2 . It is the Abbe number of the lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010+A1212
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10、A12はそれぞれ4次、6次、8次、10次、12次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12
Where r is the paraxial radius of curvature, K is the conic coefficient, and A 4 , A 6 , A 8 , A 10 , and A 12 are the fourth, sixth, eighth, tenth, and twelfth aspheric coefficients, respectively. .


実施例1
1 = 51.789 d1 = 0.70 nd1 =1.88300 νd1 =40.76
2 = 5.837 d2 = 1.71
3 = 13.554 (非球面) d3 = 1.47 nd2 =1.82114 νd2 =24.06
4 = 75.183 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = -0.72
6 = 3.826 (非球面) d6 = 3.00 nd3 =1.49700 νd3 =81.54
7 = -19.669 d7 = 0.50 nd4 =1.92286 νd4 =18.90
8 = -133.221 d8 = 1.09 nd5 =1.69350 νd5 =53.21
9 = -23.946 (非球面) d9 = (可変)
10= -68.471 (非球面) d10= 0.80 nd6 =1.52542 νd6 =55.78
11= 7.284 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.41
16= ∞(像面)
非球面係数
第3面
K = 0.000
4 = -2.90406×10-4
6 = -2.19067×10-5
8 = 1.93834×10-6
10= -3.55926×10-8
第4面
K = 0.000
4 = -6.25636×10-4
6 = -1.55735×10-5
8 = 1.40541×10-6
10= -3.74784×10-8
第6面
K = 0.000
4 = -3.84634×10-4
6 = -1.86499×10-5
8 = 9.97230×10-6
10= -5.98509×10-7
第9面
K = 0.000
4 = 3.29823×10-3
6 = 2.17032×10-4
8 = -1.07505×10-5
10= 8.77866×10-6
第10面
K = 0.000
4 = 9.19324×10-4
6 = -7.15668×10-4
8 = 2.38646×10-4
10= -2.14848×10-5
第11面
K = 0.000
4 = 1.04459×10-3
6 = -5.99256×10-4
8 = 2.45269×10-4
10= -2.50329×10-5
ズームデータ(∞)
WE ST TE
f (mm) 6.795 11.618 19.666
NO 3.43 4.34 5.81
4 14.53 6.17 1.12
9 1.97 2.41 3.21
11 5.80 8.08 11.34 。

Example 1
r 1 = 51.789 d 1 = 0.70 n d1 = 1.88300 ν d1 = 40.76
r 2 = 5.837 d 2 = 1.71
r 3 = 13.554 (aspherical surface) d 3 = 1.47 n d2 = 1.82114 ν d2 = 24.06
r 4 = 75.183 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.72
r 6 = 3.826 (aspherical surface) d 6 = 3.00 n d3 = 1.49700 ν d3 = 81.54
r 7 = -19.669 d 7 = 0.50 n d4 = 1.92286 ν d4 = 18.90
r 8 = -133.221 d 8 = 1.09 n d5 = 1.69350 ν d5 = 53.21
r 9 = -23.946 (aspherical surface) d 9 = (variable)
r 10 = -68.471 (aspherical surface) d 10 = 0.80 n d6 = 1.52542 ν d6 = 55.78
r 11 = 7.284 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.41
r 16 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 0.000
A 4 = -2.90406 × 10 -4
A 6 = -2.19067 × 10 -5
A 8 = 1.93834 × 10 -6
A 10 = -3.55926 × 10 -8
4th surface K = 0.000
A 4 = -6.25636 × 10 -4
A 6 = -1.55735 × 10 -5
A 8 = 1.40541 × 10 -6
A 10 = -3.74784 × 10 -8
6th surface K = 0.000
A 4 = -3.84634 × 10 -4
A 6 = -1.86499 × 10 -5
A 8 = 9.97230 × 10 -6
A 10 = -5.98509 × 10 -7
Surface 9 K = 0.000
A 4 = 3.29823 × 10 -3
A 6 = 2.17032 × 10 -4
A 8 = -1.07505 × 10 -5
A 10 = 8.77866 × 10 -6
10th surface K = 0.000
A 4 = 9.19324 × 10 -4
A 6 = -7.15668 × 10 -4
A 8 = 2.38646 × 10 -4
A 10 = -2.14848 × 10 -5
11th surface K = 0.000
A 4 = 1.04459 × 10 -3
A 6 = -5.99256 × 10 -4
A 8 = 2.45269 × 10 -4
A 10 = -2.50329 × 10 -5
Zoom data (∞)
WE ST TE
f (mm) 6.795 11.618 19.666
F NO 3.43 4.34 5.81
d 4 14.53 6.17 1.12
d 9 1.97 2.41 3.21
d 11 5.80 8.08 11.34.


実施例2
1 = -68.489 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 4.409 (非球面) d2 = 1.19
3 = 8.039 d3 = 1.67 nd2 =2.00069 νd2 =25.46
4 = 23.572 d4 = (可変)
5 = ∞(絞り) d5 = -0.50
6 = 3.689 (非球面) d6 = 3.79 nd3 =1.49700 νd3 =81.54
7 = -10.025 d7 = 1.00 nd4 =1.84666 νd4 =23.78
8 = -28.095 (非球面) d8 = (可変)
9 = -4.148 d9 = 0.80 nd5 =1.88300 νd5 =40.76
10= -5.287 d10= (可変)
11= ∞ d11= 0.50 nd6 =1.51633 νd6 =64.14
12= ∞ d12= 0.50
13= ∞ d13= 0.50 nd7 =1.51633 νd7 =64.14
14= ∞ d14= 0.59
15= ∞(像面)
非球面係数
第2面
K = -0.549
4 = -1.09327×10-4
6 = -1.43880×10-5
8 = 1.34815×10-7
10= -5.73863×10-9
第6面
K = -0.795
4 = 1.48463×10-3
6 = 3.05264×10-5
8 = 1.15726×10-5
10= -1.32653×10-7
第8面
K = 0.000
4 = 2.40186×10-3
6 = 2.76882×10-4
8 = -3.25134×10-5
10= 9.56196×10-6
ズームデータ(∞)
WE ST TE
f (mm) 6.276 10.701 18.198
NO 3.25 4.16 5.74
4 11.19 4.99 1.50
8 3.56 4.37 4.93
10 4.21 6.63 11.70 。

Example 2
r 1 = -68.489 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 4.409 (aspherical surface) d 2 = 1.19
r 3 = 8.039 d 3 = 1.67 n d2 = 2.00069 ν d2 = 25.46
r 4 = 23.572 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.50
r 6 = 3.689 (aspherical surface) d 6 = 3.79 n d3 = 1.49700 ν d3 = 81.54
r 7 = -10.025 d 7 = 1.00 n d4 = 1.84666 ν d4 = 23.78
r 8 = -28.095 (aspherical surface) d 8 = (variable)
r 9 = -4.148 d 9 = 0.80 n d5 = 1.88300 ν d5 = 40.76
r 10 = -5.287 d 10 = (variable)
r 11 = ∞ d 11 = 0.50 n d6 = 1.51633 ν d6 = 64.14
r 12 = ∞ d 12 = 0.50
r 13 = ∞ d 13 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 14 = ∞ d 14 = 0.59
r 15 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.549
A 4 = -1.09327 × 10 -4
A 6 = -1.43880 × 10 -5
A 8 = 1.34815 × 10 -7
A 10 = -5.73863 × 10 -9
6th surface K = -0.795
A 4 = 1.48463 × 10 -3
A 6 = 3.05264 × 10 -5
A 8 = 1.15726 × 10 -5
A 10 = -1.32653 × 10 -7
8th surface K = 0.000
A 4 = 2.40186 × 10 -3
A 6 = 2.76882 × 10 -4
A 8 = -3.25134 × 10 -5
A 10 = 9.56196 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 6.276 10.701 18.198
F NO 3.25 4.16 5.74
d 4 11.19 4.99 1.50
d 8 3.56 4.37 4.93
d 10 4.21 6.63 11.70.


実施例3
1 = 14898.846 d1 = 1.00 nd1 =1.88300 νd1 =40.76
2 = 6.423 (非球面) d2 = 2.11
3 = 10.315 d3 = 1.30 nd2 =1.92286 νd2 =20.88
4 = 20.902 d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 4.307 (非球面) d6 = 3.06 nd3 =1.49700 νd3 =81.54
7 = -7.020 d7 = 0.50 nd4 =1.67270 νd4 =32.10
8 = -100.000 d8 = 1.27 nd5 =1.58913 νd5 =61.14
9 = -15.900 (非球面) d9 = (可変)
10= -20.236 (非球面) d10= 1.00 nd6 =1.69350 νd6 =53.21
11= 20.000 (非球面) d11= (可変)
12= ∞ d12= 0.91 nd7 =1.53996 νd7 =59.45
13= ∞ d13= 0.28
14= ∞ d14= 0.53 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.59
16= ∞(像面)
非球面係数
第2面
K = 0.000
4 = -2.21409×10-4
6 = 1.77359×10-6
8 = -8.59542×10-7
10= 2.17513×10-8
第6面
K = 0.000
4 = -5.81631×10-4
6 = 7.05939×10-6
8 = 7.18180×10-7
10= 7.05689×10-8
第9面
K = 0.000
4 = 1.51118×10-3
6 = 1.78503×10-4
8 = -1.96850×10-5
10= 2.82432×10-6
第10面
K = -309.655
4 = -1.11996×10-2
6 = 1.06613×10-3
8 = -1.64863×10-4
10= 1.16951×10-5
第11面
K = 0.000
4 = -5.95012×10-3
6 = 2.46173×10-4
8 = -1.14677×10-5
10= 1.07814×10-6
ズームデータ(∞)
WE ST TE
f (mm) 6.810 11.619 19.820
NO 2.85 3.78 5.37
4 10.21 4.20 0.66
9 5.91 5.95 6.02
11 1.41 4.34 9.31 。

Example 3
r 1 = 14898.846 d 1 = 1.00 n d1 = 1.88300 ν d1 = 40.76
r 2 = 6.423 (aspherical surface) d 2 = 2.11
r 3 = 10.315 d 3 = 1.30 n d2 = 1.92286 ν d2 = 20.88
r 4 = 20.902 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 4.307 (aspherical surface) d 6 = 3.06 n d3 = 1.49700 ν d3 = 81.54
r 7 = -7.020 d 7 = 0.50 n d4 = 1.67270 ν d4 = 32.10
r 8 = -100.000 d 8 = 1.27 n d5 = 1.58913 ν d5 = 61.14
r 9 = -15.900 (aspherical surface) d 9 = (variable)
r 10 = -20.236 (aspherical surface) d 10 = 1.00 n d6 = 1.69350 ν d6 = 53.21
r 11 = 20.000 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.91 n d7 = 1.53996 ν d7 = 59.45
r 13 = ∞ d 13 = 0.28
r 14 = ∞ d 14 = 0.53 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.59
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = 0.000
A 4 = -2.21409 × 10 -4
A 6 = 1.77359 × 10 -6
A 8 = -8.59542 × 10 -7
A 10 = 2.17513 × 10 -8
6th surface K = 0.000
A 4 = -5.81631 × 10 -4
A 6 = 7.05939 × 10 -6
A 8 = 7.18180 × 10 -7
A 10 = 7.05689 × 10 -8
Surface 9 K = 0.000
A 4 = 1.51118 × 10 -3
A 6 = 1.78503 × 10 -4
A 8 = -1.96850 × 10 -5
A 10 = 2.82432 × 10 -6
10th face K = -309.655
A 4 = -1.11996 × 10 -2
A 6 = 1.06613 × 10 -3
A 8 = -1.64863 × 10 -4
A 10 = 1.16951 × 10 -5
11th surface K = 0.000
A 4 = -5.95012 × 10 -3
A 6 = 2.46173 × 10 -4
A 8 = -1.14677 × 10 -5
A 10 = 1.07814 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 6.810 11.619 19.820
F NO 2.85 3.78 5.37
d 4 10.21 4.20 0.66
d 9 5.91 5.95 6.02
d 11 1.41 4.34 9.31.


実施例4
1 = -31.828 d1 = 0.70 nd1 =1.88300 νd1 =40.76
2 = 7.165 d2 = 0.78
3 = 9.148 (非球面) d3 = 1.52 nd2 =1.84666 νd2 =23.78
4 = 33.352 d4 = (可変)
5 = ∞(絞り) d5 = -0.18
6 = 4.692 (非球面) d6 = 1.67 nd3 =1.67790 νd3 =55.34
7 = -12.027 d7 = 0.50 nd4 =2.00069 νd4 =25.46
8 = 77.997 d8 = 2.59 nd5 =1.58313 νd5 =59.38
9 = -55.116 (非球面) d9 = (可変)
10= -30.436 (非球面) d10= 0.80 nd6 =1.50913 νd6 =56.20
11= 23.726 (非球面) d11= (可変)
12= ∞ d12= 0.84 nd7 =1.53996 νd7 =59.45
13= ∞ d13= 0.26
14= ∞ d14= 0.49 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.59
16= ∞(像面)
非球面係数
第3面
K = 0.000
4 = 1.15680×10-4
6 = -1.45503×10-5
8 = 1.52852×10-6
10= -4.11662×10-8
第6面
K = 0.000
4 = -1.51567×10-4
6 = 5.06933×10-5
8 = -3.20524×10-6
10= 3.54327×10-7
第9面
K = 0.000
4 = 2.49728×10-3
6 = 2.38997×10-4
8 = -1.91765×10-5
10= 5.71179×10-6
第10面
K = 0.000
4 = -5.74352×10-3
6 = -5.59898×10-4
8 = 1.35762×10-4
10= -3.60148×10-6
第11面
K = 0.000
4 = -5.41979×10-3
6 = -2.65317×10-4
8 = 7.68566×10-5
10= -1.65036×10-6
ズームデータ(∞)
WE ST TE
f (mm) 6.809 11.596 19.747
NO 3.34 4.26 5.90
4 10.75 4.21 0.58
9 5.22 5.97 6.26
11 1.86 3.91 8.41 。

Example 4
r 1 = -31.828 d 1 = 0.70 n d1 = 1.88300 ν d1 = 40.76
r 2 = 7.165 d 2 = 0.78
r 3 = 9.148 (aspherical surface) d 3 = 1.52 n d2 = 1.84666 ν d2 = 23.78
r 4 = 33.352 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.18
r 6 = 4.692 (aspherical surface) d 6 = 1.67 n d3 = 1.67790 ν d3 = 55.34
r 7 = -12.027 d 7 = 0.50 n d4 = 2.00069 ν d4 = 25.46
r 8 = 77.997 d 8 = 2.59 n d5 = 1.58313 ν d5 = 59.38
r 9 = -55.116 (aspherical surface) d 9 = (variable)
r 10 = -30.436 (aspherical surface) d 10 = 0.80 n d6 = 1.50913 ν d6 = 56.20
r 11 = 23.726 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.84 n d7 = 1.53996 ν d7 = 59.45
r 13 = ∞ d 13 = 0.26
r 14 = ∞ d 14 = 0.49 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.59
r 16 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 0.000
A 4 = 1.15680 × 10 -4
A 6 = -1.45503 × 10 -5
A 8 = 1.52852 × 10 -6
A 10 = -4.11662 × 10 -8
6th surface K = 0.000
A 4 = -1.51567 × 10 -4
A 6 = 5.06933 × 10 -5
A 8 = -3.20524 × 10 -6
A 10 = 3.54327 × 10 -7
Surface 9 K = 0.000
A 4 = 2.49728 × 10 -3
A 6 = 2.38997 × 10 -4
A 8 = -1.91765 × 10 -5
A 10 = 5.71179 × 10 -6
10th surface K = 0.000
A 4 = -5.74352 × 10 -3
A 6 = -5.59898 × 10 -4
A 8 = 1.35762 × 10 -4
A 10 = -3.60148 × 10 -6
11th surface K = 0.000
A 4 = -5.41979 × 10 -3
A 6 = -2.65317 × 10 -4
A 8 = 7.68566 × 10 -5
A 10 = -1.65036 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 6.809 11.596 19.747
F NO 3.34 4.26 5.90
d 4 10.75 4.21 0.58
d 9 5.22 5.97 6.26
d 11 1.86 3.91 8.41.


実施例5
1 = -123.809 d1 = 0.70 nd1 =1.88300 νd1 =40.76
2 = 6.941 d2 = 0.99
3 = 9.801 (非球面) d3 = 1.63 nd2 =1.84666 νd2 =23.78
4 = 29.771 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = -0.52
6 = 3.591 (非球面) d6 = 1.97 nd3 =1.49700 νd3 =81.54
7 = -23.495 d7 = 0.50 nd4 =1.92286 νd4 =18.90
8 = -93.239 d8 = 1.79 nd5 =1.51633 νd5 =64.14
9 = -160.642 (非球面) d9 = (可変)
10= -16.790 (非球面) d10= 0.80 nd6 =1.50913 νd6 =56.20
11= 22.686 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.40
16= ∞(像面)
非球面係数
第3面
K = 0.000
4 = -2.75036×10-4
6 = -3.07840×10-5
8 = 1.58082×10-6
10= -3.29070×10-8
第4面
K = 0.000
4 = -3.71542×10-4
6 = -3.43210×10-5
8 = 2.04735×10-6
10= -5.01217×10-8
第6面
K = 0.000
4 = -4.17928×10-4
6 = 2.46517×10-5
8 = 2.80412×10-6
10= -3.23125×10-7
第9面
K = 0.000
4 = 4.85479×10-3
6 = 4.60043×10-4
8 = -8.22251×10-6
10= 1.98515×10-5
第10面
K = 0.000
4 = -2.47640×10-3
6 = -2.34974×10-4
8 = 1.88850×10-4
10= -1.61128×10-5
第11面
K = 0.000
4 = -1.93357×10-3
6 = -1.52885×10-4
8 = 1.29934×10-4
10= -1.10625×10-5
ズームデータ(∞)
WE ST TE
f (mm) 6.812 11.596 19.749
NO 3.33 4.32 5.80
4 12.84 5.76 0.92
9 3.15 2.84 3.65
11 3.85 7.17 10.57 。

Example 5
r 1 = -123.809 d 1 = 0.70 n d1 = 1.88300 ν d1 = 40.76
r 2 = 6.941 d 2 = 0.99
r 3 = 9.801 (aspherical surface) d 3 = 1.63 n d2 = 1.84666 ν d2 = 23.78
r 4 = 29.771 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.52
r 6 = 3.591 (aspherical surface) d 6 = 1.97 n d3 = 1.49700 ν d3 = 81.54
r 7 = -23.495 d 7 = 0.50 n d4 = 1.92286 ν d4 = 18.90
r 8 = -93.239 d 8 = 1.79 n d5 = 1.51633 ν d5 = 64.14
r 9 = -160.642 (aspherical surface) d 9 = (variable)
r 10 = -16.790 (aspherical surface) d 10 = 0.80 n d6 = 1.50913 ν d6 = 56.20
r 11 = 22.686 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.40
r 16 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 0.000
A 4 = -2.75036 × 10 -4
A 6 = -3.07840 × 10 -5
A 8 = 1.58082 × 10 -6
A 10 = -3.29070 × 10 -8
4th surface K = 0.000
A 4 = -3.71542 × 10 -4
A 6 = -3.43210 × 10 -5
A 8 = 2.04735 × 10 -6
A 10 = -5.01217 × 10 -8
6th surface K = 0.000
A 4 = -4.17928 × 10 -4
A 6 = 2.46517 × 10 -5
A 8 = 2.80412 × 10 -6
A 10 = -3.23125 × 10 -7
Surface 9 K = 0.000
A 4 = 4.85479 × 10 -3
A 6 = 4.60043 × 10 -4
A 8 = -8.22251 × 10 -6
A 10 = 1.98515 × 10 -5
10th surface K = 0.000
A 4 = -2.47640 × 10 -3
A 6 = -2.34974 × 10 -4
A 8 = 1.88850 × 10 -4
A 10 = -1.61128 × 10 -5
11th surface K = 0.000
A 4 = -1.93357 × 10 -3
A 6 = -1.52885 × 10 -4
A 8 = 1.29934 × 10 -4
A 10 = -1.10625 × 10 -5
Zoom data (∞)
WE ST TE
f (mm) 6.812 11.596 19.749
F NO 3.33 4.32 5.80
d 4 12.84 5.76 0.92
d 9 3.15 2.84 3.65
d 11 3.85 7.17 10.57.


実施例6
1 =-21692.039 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 8.032 (非球面) d2 = 1.37
3 = 9.774 d3 = 2.22 nd2 =2.00069 νd2 =25.46
4 = 16.834 d4 = (可変)
5 = ∞(絞り) d5 = -0.82
6 = 4.180 (非球面) d6 = 2.46 nd3 =1.49700 νd3 =81.54
7 = -32.928 d7 = 1.47 nd4 =1.92286 νd4 =18.90
8 = -955.516 d8 = 1.93 nd5 =1.49700 νd5 =81.54
9 = 163.416 (非球面) d9 = (可変)
10= -42.579 (非球面) d10= 0.80 nd6 =1.52511 νd6 =56.22
11= 13.093 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.41
16= ∞(像面)
非球面係数
第2面
K = 0.000
4 = -9.38394×10-6
6 = 5.54741×10-8
8 = -3.54097×10-9
10= -4.67171×10-10
第6面
K = 0.000
4 = -4.42518×10-4
6 = -2.07748×10-5
8 = 2.18064×10-6
10= -2.04579×10-7
第9面
K = 0.000
4 = 2.86385×10-3
6 = 3.70120×10-4
8 = -4.41500×10-5
10= 8.47589×10-6
第10面
K = 0.000
4 = -5.63885×10-3
6 = 5.08036×10-4
8 = -4.05295×10-5
10= 3.08061×10-6
第11面
K = 0.000
4 = -5.20991×10-3
6 = 3.91246×10-4
8 = -1.66900×10-5
10= 6.24580×10-7
ズームデータ(∞)
WE ST TE
f (mm) 8.160 13.643 23.512
NO 2.88 3.56 4.96
4 17.18 6.85 1.22
9 3.96 4.61 4.33
11 3.52 5.32 10.55 。

Example 6
r 1 = -21692.039 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 8.032 (aspherical surface) d 2 = 1.37
r 3 = 9.774 d 3 = 2.22 n d2 = 2.00069 ν d2 = 25.46
r 4 = 16.834 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.82
r 6 = 4.180 (aspherical surface) d 6 = 2.46 n d3 = 1.49700 ν d3 = 81.54
r 7 = -32.928 d 7 = 1.47 n d4 = 1.92286 ν d4 = 18.90
r 8 = -955.516 d 8 = 1.93 n d5 = 1.49700 ν d5 = 81.54
r 9 = 163.416 (aspherical surface) d 9 = (variable)
r 10 = -42.579 (aspherical surface) d 10 = 0.80 n d6 = 1.52511 ν d6 = 56.22
r 11 = 13.093 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.41
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = 0.000
A 4 = -9.38394 × 10 -6
A 6 = 5.54741 × 10 -8
A 8 = -3.54097 × 10 -9
A 10 = -4.67171 × 10 -10
6th surface K = 0.000
A 4 = -4.42518 × 10 -4
A 6 = -2.07748 × 10 -5
A 8 = 2.18064 × 10 -6
A 10 = -2.04579 × 10 -7
Surface 9 K = 0.000
A 4 = 2.86385 × 10 -3
A 6 = 3.70120 × 10 -4
A 8 = -4.41500 × 10 -5
A 10 = 8.47589 × 10 -6
10th surface K = 0.000
A 4 = -5.63885 × 10 -3
A 6 = 5.08036 × 10 -4
A 8 = -4.05295 × 10 -5
A 10 = 3.08061 × 10 -6
11th surface K = 0.000
A 4 = -5.20991 × 10 -3
A 6 = 3.91246 × 10 -4
A 8 = -1.66900 × 10 -5
A 10 = 6.24580 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 8.160 13.643 23.512
F NO 2.88 3.56 4.96
d 4 17.18 6.85 1.22
d 9 3.96 4.61 4.33
d 11 3.52 5.32 10.55.


実施例7
1 = -34.705 d1 = 0.95 nd1 =1.80610 νd1 =40.92
2 = 7.051 (非球面) d2 = 1.54
3 = 12.304 d3 = 2.07 nd2 =2.00069 νd2 =25.46
4 = 52.168 d4 = (可変)
5 = ∞(絞り) d5 = -1.18
6 = 4.577 (非球面) d6 = 2.64 nd3 =1.49700 νd3 =81.54
7 = 87.702 d7 = 0.60 nd4 =1.80810 νd4 =22.76
8 = 14.053 d8 = 2.21 nd5 =1.49700 νd5 =81.54
9 = -65.670 (非球面) d9 = (可変)
10= -22.159 (非球面) d10= 0.80 nd6 =1.52542 νd6 =55.78
11= 130.774 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.53996 νd7 =59.45
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.42
16= ∞(像面)
非球面係数
第2面
K = 0.000
4 = -2.39358×10-4
6 = -5.68999×10-6
8 = 1.10603×10-7
10= -4.44730×10-9
第6面
K = 0.000
4 = -2.30366×10-4
6 = 8.36646×10-7
8 = 9.08393×10-8
10= 0
第9面
K = 0.000
4 = 2.56285×10-3
6 = 2.19102×10-5
8 = 4.74149×10-5
10= -7.24474×10-6
12= 6.43200×10-7
第10面
K = 0.000
4 = 1.96811×10-4
6 = -1.09241×10-4
8 = 9.88849×10-6
10= -2.12643×10-7
第11面
K = 0.000
4 = 1.82798×10-4
6 = -4.12618×10-5
8 = -2.94854×10-7
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.157 13.668 23.513
NO 2.88 3.70 5.04
4 15.90 7.41 1.58
9 3.13 2.89 4.38
11 7.19 11.42 15.92 。

Example 7
r 1 = -34.705 d 1 = 0.95 n d1 = 1.80610 ν d1 = 40.92
r 2 = 7.051 (aspherical surface) d 2 = 1.54
r 3 = 12.304 d 3 = 2.07 n d2 = 2.00069 ν d2 = 25.46
r 4 = 52.168 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -1.18
r 6 = 4.577 (aspherical surface) d 6 = 2.64 n d3 = 1.49700 ν d3 = 81.54
r 7 = 87.702 d 7 = 0.60 n d4 = 1.80810 ν d4 = 22.76
r 8 = 14.053 d 8 = 2.21 n d5 = 1.49700 ν d5 = 81.54
r 9 = -65.670 (aspherical surface) d 9 = (variable)
r 10 = -22.159 (aspherical surface) d 10 = 0.80 n d6 = 1.52542 ν d6 = 55.78
r 11 = 130.774 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.53996 ν d7 = 59.45
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.42
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = 0.000
A 4 = -2.39358 × 10 -4
A 6 = -5.68999 × 10 -6
A 8 = 1.10603 × 10 -7
A 10 = -4.44730 × 10 -9
6th surface K = 0.000
A 4 = -2.30366 × 10 -4
A 6 = 8.36646 × 10 -7
A 8 = 9.08393 × 10 -8
A 10 = 0
Surface 9 K = 0.000
A 4 = 2.56285 × 10 -3
A 6 = 2.19102 × 10 -5
A 8 = 4.74149 × 10 -5
A 10 = -7.24474 × 10 -6
A 12 = 6.43200 × 10 -7
10th surface K = 0.000
A 4 = 1.96811 × 10 -4
A 6 = -1.09241 × 10 -4
A 8 = 9.88849 × 10 -6
A 10 = -2.12643 × 10 -7
11th surface K = 0.000
A 4 = 1.82798 × 10 -4
A 6 = -4.12618 × 10 -5
A 8 = -2.94854 × 10 -7
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.157 13.668 23.513
F NO 2.88 3.70 5.04
d 4 15.90 7.41 1.58
d 9 3.13 2.89 4.38
d 11 7.19 11.42 15.92.


実施例8
1 = 50.852 d1 = 0.90 nd1 =1.80610 νd1 =40.92
2 = 5.799 (非球面) d2 = 1.89
3 = 9.201 d3 = 1.76 nd2 =2.00069 νd2 =25.46
4 = 16.258 d4 = (可変)
5 = ∞(絞り) d5 = -0.60
6 = 5.636 (非球面) d6 = 2.63 nd3 =1.74320 νd3 =49.34
7 = 11.974 d7 = 1.71 nd4 =1.80518 νd4 =25.42
8 = 4.090 d8 = 1.25 nd5 =1.58313 νd5 =59.38
9 = 13.539 (非球面) d9 = (可変)
10= 18.182 (非球面) d10= 1.50 nd6 =1.52542 νd6 =55.78
11= -61.937 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.49
16= ∞(像面)
非球面係数
第2面
K = -1.118
4 = 4.40772×10-4
6 = -1.79165×10-7
8 = 6.84992×10-8
10= -4.27115×10-10
第6面
K = -0.831
4 = 5.53954×10-4
6 = -6.08508×10-7
8 = 1.25836×10-6
10= -3.07335×10-8
第9面
K = 0.000
4 = 1.86701×10-3
6 = 9.48986×10-5
8 = -1.36654×10-7
10= 1.56679×10-6
第10面
K = 0.000
4 = -7.43754×10-5
6 = 7.82756×10-6
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.904 15.227 22.840
NO 2.97 3.93 4.95
4 16.00 4.96 1.00
9 3.47 3.89 5.15
11 7.19 12.46 17.93 。

Example 8
r 1 = 50.852 d 1 = 0.90 n d1 = 1.80610 ν d1 = 40.92
r 2 = 5.799 (aspherical surface) d 2 = 1.89
r 3 = 9.201 d 3 = 1.76 n d2 = 2.00069 ν d2 = 25.46
r 4 = 16.258 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.60
r 6 = 5.636 (aspherical surface) d 6 = 2.63 n d3 = 1.74320 ν d3 = 49.34
r 7 = 11.974 d 7 = 1.71 n d4 = 1.80518 ν d4 = 25.42
r 8 = 4.090 d 8 = 1.25 n d5 = 1.58313 ν d5 = 59.38
r 9 = 13.539 (aspherical surface) d 9 = (variable)
r 10 = 18.182 (aspherical surface) d 10 = 1.50 n d6 = 1.52542 ν d6 = 55.78
r 11 = -61.937 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.49
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -1.118
A 4 = 4.40772 × 10 -4
A 6 = -1.79165 × 10 -7
A 8 = 6.84992 × 10 -8
A 10 = -4.27115 × 10 -10
6th surface K = -0.831
A 4 = 5.53954 × 10 -4
A 6 = -6.08508 × 10 -7
A 8 = 1.25836 × 10 -6
A 10 = -3.07335 × 10 -8
Surface 9 K = 0.000
A 4 = 1.86701 × 10 -3
A 6 = 9.48986 × 10 -5
A 8 = -1.36654 × 10 -7
A 10 = 1.56679 × 10 -6
10th surface K = 0.000
A 4 = -7.43754 × 10 -5
A 6 = 7.82756 × 10 -6
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.904 15.227 22.840
F NO 2.97 3.93 4.95
d 4 16.00 4.96 1.00
d 9 3.47 3.89 5.15
d 11 7.19 12.46 17.93.


実施例9
1 = -55.947 d1 = 0.90 nd1 =1.80610 νd1 =40.92
2 = 6.646 (非球面) d2 = 1.62
3 = 11.161 d3 = 1.82 nd2 =2.00069 νd2 =25.46
4 = 30.512 d4 = (可変)
5 = ∞(絞り) d5 = -0.67
6 = 5.808 (非球面) d6 = 3.51 nd3 =1.74320 νd3 =49.34
7 = 16.319 d7 = 0.60 nd4 =1.84666 νd4 =23.78
8 = 5.200 d8 = 1.36 nd5 =1.58313 νd5 =59.38
9 = 26.430 (非球面) d9 = (可変)
10= 24.745 (非球面) d10= 1.24 nd6 =1.52542 νd6 =55.78
11= 7929.558 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.46
16= ∞(像面)
非球面係数
第2面
K = -3.702
4 = 1.29210×10-3
6 = -2.94031×10-5
8 = 6.63852×10-7
10= -7.48401×10-9
第6面
K = -2.011
4 = 1.29270×10-3
6 = -8.81428×10-6
8 = 1.57107×10-6
10= -3.88466×10-8
第9面
K = 0.000
4 = 1.94125×10-3
6 = 3.03189×10-5
8 = 1.16357×10-5
10= 1.55401×10-7
第10面
K = 0.000
4 = -1.01517×10-4
6 = 5.70765×10-6
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.511 14.600 21.633
NO 2.88 3.86 4.84
4 15.42 4.74 1.07
9 4.10 4.19 4.41
11 6.28 11.59 16.78 。

Example 9
r 1 = -55.947 d 1 = 0.90 n d1 = 1.80610 ν d1 = 40.92
r 2 = 6.646 (aspherical surface) d 2 = 1.62
r 3 = 11.161 d 3 = 1.82 n d2 = 2.00069 ν d2 = 25.46
r 4 = 30.512 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.67
r 6 = 5.808 (aspherical surface) d 6 = 3.51 n d3 = 1.74320 ν d3 = 49.34
r 7 = 16.319 d 7 = 0.60 n d4 = 1.84666 ν d4 = 23.78
r 8 = 5.200 d 8 = 1.36 n d5 = 1.58313 ν d5 = 59.38
r 9 = 26.430 (aspherical surface) d 9 = (variable)
r 10 = 24.745 (aspherical surface) d 10 = 1.24 n d6 = 1.52542 ν d6 = 55.78
r 11 = 7929.558 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.46
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -3.702
A 4 = 1.29210 × 10 -3
A 6 = -2.94031 × 10 -5
A 8 = 6.63852 × 10 -7
A 10 = -7.48401 × 10 -9
6th surface K = -2.011
A 4 = 1.29270 × 10 -3
A 6 = -8.81428 × 10 -6
A 8 = 1.57107 × 10 -6
A 10 = -3.88466 × 10 -8
Surface 9 K = 0.000
A 4 = 1.94125 × 10 -3
A 6 = 3.03189 × 10 -5
A 8 = 1.16357 × 10 -5
A 10 = 1.55401 × 10 -7
10th surface K = 0.000
A 4 = -1.01517 × 10 -4
A 6 = 5.70765 × 10 -6
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.511 14.600 21.633
F NO 2.88 3.86 4.84
d 4 15.42 4.74 1.07
d 9 4.10 4.19 4.41
d 11 6.28 11.59 16.78.


実施例10
1 = -200.434 d1 = 0.90 nd1 =1.80610 νd1 =40.92
2 = 6.474 (非球面) d2 = 1.53
3 = 9.933 d3 = 2.02 nd2 =2.00069 νd2 =25.46
4 = 21.902 d4 = (可変)
5 = ∞(絞り) d5 = -0.63
6 = 5.753 (非球面) d6 = 2.06 nd3 =1.80610 νd3 =40.92
7 = 35.230 d7 = 1.27 nd4 =1.84666 νd4 =23.78
8 = 5.202 d8 = 2.06 nd5 =1.58313 νd5 =59.38
9 = 16.552 (非球面) d9 = (可変)
10= 14.000 (非球面) d10= 1.24 nd6 =1.52542 νd6 =55.78
11= 41.056 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.43
16= ∞(像面)
非球面係数
第2面
K = -3.501
4 = 1.39590×10-3
6 = -2.94154×10-5
8 = 6.73010×10-7
10= -7.13429×10-9
第6面
K = -2.429
4 = 1.61259×10-3
6 = -1.94631×10-5
8 = 2.01443×10-6
10= -5.44542×10-8
第9面
K = -4.333
4 = 2.27790×10-3
6 = 1.03782×10-5
8 = 2.09837×10-5
10= -4.69417×10-7
第10面
K = 0.000
4 = -1.47199×10-4
6 = 5.67379×10-6
8 = 4.82046×10-7
10= -1.84788×10-8
ズームデータ(∞)
WE ST TE
f (mm) 7.512 14.376 21.635
NO 2.88 3.78 4.76
4 16.35 5.11 1.03
9 4.20 4.23 4.65
11 5.83 10.66 15.58 。

Example 10
r 1 = -200.434 d 1 = 0.90 n d1 = 1.80610 ν d1 = 40.92
r 2 = 6.474 (aspherical surface) d 2 = 1.53
r 3 = 9.933 d 3 = 2.02 n d2 = 2.00069 ν d2 = 25.46
r 4 = 21.902 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.63
r 6 = 5.753 (aspherical surface) d 6 = 2.06 n d3 = 1.80610 ν d3 = 40.92
r 7 = 35.230 d 7 = 1.27 n d4 = 1.84666 ν d4 = 23.78
r 8 = 5.202 d 8 = 2.06 n d5 = 1.58313 ν d5 = 59.38
r 9 = 16.552 (aspherical surface) d 9 = (variable)
r 10 = 14.000 (aspherical surface) d 10 = 1.24 n d6 = 1.52542 ν d6 = 55.78
r 11 = 41.056 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.43
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -3.501
A 4 = 1.39590 × 10 -3
A 6 = -2.94154 × 10 -5
A 8 = 6.73010 × 10 -7
A 10 = -7.13429 × 10 -9
6th page K = -2.429
A 4 = 1.61259 × 10 -3
A 6 = -1.94631 × 10 -5
A 8 = 2.01443 × 10 -6
A 10 = -5.44542 × 10 -8
Surface 9 K = -4.333
A 4 = 2.27790 × 10 -3
A 6 = 1.03782 × 10 -5
A 8 = 2.09837 × 10 -5
A 10 = -4.69417 × 10 -7
10th surface K = 0.000
A 4 = -1.47199 × 10 -4
A 6 = 5.67379 × 10 -6
A 8 = 4.82046 × 10 -7
A 10 = -1.84788 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 7.512 14.376 21.635
F NO 2.88 3.78 4.76
d 4 16.35 5.11 1.03
d 9 4.20 4.23 4.65
d 11 5.83 10.66 15.58.


実施例11
1 = 31.493 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 4.015 (非球面) d2 = 1.36
3 = 6.467 (非球面) d3 = 1.80 nd2 =1.84666 νd2 =23.78
4 = 13.950 d4 = (可変)
5 = ∞(絞り) d5 = -0.45
6 = 3.743 (非球面) d6 = 1.30 nd3 =1.74320 νd3 =49.34
7 = 20.976 d7 = 0.50 nd4 =1.71736 νd4 =29.52
8 = 3.002 d8 = 2.03 nd5 =1.51633 νd5 =64.14
9 = 9.297 (非球面) d9 = (可変)
10= 19.045 (非球面) d10= 1.00 nd6 =1.52511 νd6 =56.23
11= -241.584 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.42
16= ∞(像面)
非球面係数
第2面
K = -0.788
4 = 5.88309×10-4
6 = 1.25094×10-5
8 = -6.84764×10-8
10= 1.92475×10-9
第3面
K = 0.000
4 = 2.80805×10-10
6 = 7.99547×10-7
8 = -3.58622×10-12
10= 0
第6面
K = -1.016
4 = 2.19556×10-3
6 = 9.52058×10-5
8 = 2.20537×10-6
10= -7.19757×10-8
第9面
K = 0.000
4 = 6.49949×10-3
6 = 6.51196×10-4
8 = 8.19880×10-5
10= 1.62716×10-5
第10面
K = 0.000
4 = -8.16440×10-11
6 = 4.00208×10-5
8 = 1.51332×10-5
10= 2.94028×10-6
第11面
K = 0.000
4 = 7.72945×10-7
6 = 5.03191×10-5
8 = -1.14557×10-5
10= 4.64487×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.530 10.000 16.036
NO 3.48 4.49 5.80
4 12.20 4.63 0.95
9 2.50 3.01 2.50
11 4.47 7.38 12.10 。

Example 11
r 1 = 31.493 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 4.015 (aspherical surface) d 2 = 1.36
r 3 = 6.467 (aspherical surface) d 3 = 1.80 n d2 = 1.84666 ν d2 = 23.78
r 4 = 13.950 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.45
r 6 = 3.743 (aspherical surface) d 6 = 1.30 n d3 = 1.74320 ν d3 = 49.34
r 7 = 20.976 d 7 = 0.50 n d4 = 1.71736 ν d4 = 29.52
r 8 = 3.002 d 8 = 2.03 n d5 = 1.51633 ν d5 = 64.14
r 9 = 9.297 (aspherical surface) d 9 = (variable)
r 10 = 19.045 (aspherical surface) d 10 = 1.00 n d6 = 1.52511 ν d6 = 56.23
r 11 = -241.584 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.42
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.788
A 4 = 5.88309 × 10 -4
A 6 = 1.25094 × 10 -5
A 8 = -6.84764 × 10 -8
A 10 = 1.92475 × 10 -9
Third side K = 0.000
A 4 = 2.80805 × 10 -10
A 6 = 7.99547 × 10 -7
A 8 = -3.58622 × 10 -12
A 10 = 0
6th surface K = -1.016
A 4 = 2.19556 × 10 -3
A 6 = 9.52058 × 10 -5
A 8 = 2.20537 × 10 -6
A 10 = -7.19757 × 10 -8
Surface 9 K = 0.000
A 4 = 6.49949 × 10 -3
A 6 = 6.51196 × 10 -4
A 8 = 8.19880 × 10 -5
A 10 = 1.62716 × 10 -5
10th surface K = 0.000
A 4 = -8.16440 × 10 -11
A 6 = 4.00208 × 10 -5
A 8 = 1.51332 × 10 -5
A 10 = 2.94028 × 10 -6
11th surface K = 0.000
A 4 = 7.72945 × 10 -7
A 6 = 5.03191 × 10 -5
A 8 = -1.14557 × 10 -5
A 10 = 4.64487 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.530 10.000 16.036
F NO 3.48 4.49 5.80
d 4 12.20 4.63 0.95
d 9 2.50 3.01 2.50
d 11 4.47 7.38 12.10.


実施例12
1 = -64.454 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 8.621 (非球面) d2 = 1.73
3 = 11.128 d3 = 2.00 nd2 =1.92286 νd2 =20.88
4 = 19.611 d4 = (可変)
5 = ∞(絞り) d5 = -0.60
6 = 6.134 (非球面) d6 = 2.80 nd3 =1.80610 νd3 =40.92
7 = -9.307 d7 = 0.50 nd4 =1.67270 νd4 =32.10
8 = 3.844 d8 = 2.63 nd5 =1.48749 νd5 =70.23
9 = 10.458 (非球面) d9 = (可変)
10= 11.453 d10= 1.80 nd6 =1.52542 νd6 =55.78
11= 28.905 d11= (可変)
12= ∞ d12= 0.60 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.60
14= ∞ d14= 0.60 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.56
16= ∞(像面)
非球面係数
第2面
K = -0.790
4 = 1.13709×10-4
6 = 1.36096×10-6
8 = -5.03816×10-8
10= 1.20255×10-9
第6面
K = -0.006
4 = -1.89441×10-4
6 = -6.95916×10-6
8 = 1.29909×10-7
10= -1.96262×10-8
第9面
K = -2.043
4 = 1.74384×10-3
6 = 3.87068×10-5
8 = 2.76989×10-6
10= -2.97263×10-8
ズームデータ(∞)
WE ST TE
f (mm) 8.257 11.083 23.726
NO 2.85 3.22 4.89
4 14.53 9.25 1.00
9 3.91 4.26 6.65
11 5.62 7.45 15.70 。

Example 12
r 1 = -64.454 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 8.621 (aspherical surface) d 2 = 1.73
r 3 = 11.128 d 3 = 2.00 n d2 = 1.92286 ν d2 = 20.88
r 4 = 19.611 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.60
r 6 = 6.134 (aspherical surface) d 6 = 2.80 n d3 = 1.80610 ν d3 = 40.92
r 7 = -9.307 d 7 = 0.50 n d4 = 1.67270 ν d4 = 32.10
r 8 = 3.844 d 8 = 2.63 n d5 = 1.48749 ν d5 = 70.23
r 9 = 10.458 (aspherical surface) d 9 = (variable)
r 10 = 11.453 d 10 = 1.80 n d6 = 1.52542 ν d6 = 55.78
r 11 = 28.905 d 11 = (variable)
r 12 = ∞ d 12 = 0.60 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.60
r 14 = ∞ d 14 = 0.60 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.56
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.790
A 4 = 1.13709 × 10 -4
A 6 = 1.36096 × 10 -6
A 8 = -5.03816 × 10 -8
A 10 = 1.20255 × 10 -9
6th surface K = -0.006
A 4 = -1.89441 × 10 -4
A 6 = -6.95916 × 10 -6
A 8 = 1.29909 × 10 -7
A 10 = -1.96262 × 10 -8
The ninth side K = -2.043
A 4 = 1.74384 × 10 -3
A 6 = 3.87068 × 10 -5
A 8 = 2.76989 × 10 -6
A 10 = -2.97263 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 8.257 11.083 23.726
F NO 2.85 3.22 4.89
d 4 14.53 9.25 1.00
d 9 3.91 4.26 6.65
d 11 5.62 7.45 15.70.


実施例13
1 = -120.395 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 7.653 (非球面) d2 = 1.60
3 = 10.272 d3 = 1.60 nd2 =1.92286 νd2 =20.88
4 = 19.021 d4 = (可変)
5 = ∞(絞り) d5 = -0.60
6 = 6.092 (非球面) d6 = 2.70 nd3 =1.80610 νd3 =40.92
7 = -8.957 d7 = 0.50 nd4 =1.67270 νd4 =32.10
8 = 3.826 d8 = 2.00 nd5 =1.49700 νd5 =81.54
9 = 9.512 (非球面) d9 = (可変)
10= 14.529 d10= 1.60 nd6 =1.51633 νd6 =64.14
11= 507.947 d11= (可変)
12= ∞ d12= 0.60 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.60
14= ∞ d14= 0.60 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.53
16= ∞(像面)
非球面係数
第2面
K = -0.481
4 = 5.33432×10-5
6 = 1.31789×10-6
8 = -1.87256×10-8
10= -4.79094×10-11
第6面
K = -0.117
4 = -9.87240×10-5
6 = -5.15054×10-6
8 = 1.80533×10-7
10= -2.13356×10-8
第9面
K = -0.377
4 = 1.63400×10-3
6 = 3.97670×10-5
8 = 2.09267×10-6
10= 1.70358×10-7
ズームデータ(∞)
WE ST TE
f (mm) 7.793 13.201 22.406
NO 2.85 3.55 4.74
4 15.60 6.42 1.00
9 3.96 4.68 7.13
11 6.15 9.71 15.76 。

Example 13
r 1 = -120.395 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 7.653 (aspherical surface) d 2 = 1.60
r 3 = 10.272 d 3 = 1.60 n d2 = 1.92286 ν d2 = 20.88
r 4 = 19.021 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.60
r 6 = 6.092 (aspherical surface) d 6 = 2.70 n d3 = 1.80610 ν d3 = 40.92
r 7 = -8.957 d 7 = 0.50 n d4 = 1.67270 ν d4 = 32.10
r 8 = 3.826 d 8 = 2.00 n d5 = 1.49700 ν d5 = 81.54
r 9 = 9.512 (aspherical surface) d 9 = (variable)
r 10 = 14.529 d 10 = 1.60 n d6 = 1.51633 ν d6 = 64.14
r 11 = 507.947 d 11 = (variable)
r 12 = ∞ d 12 = 0.60 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.60
r 14 = ∞ d 14 = 0.60 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.53
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.481
A 4 = 5.33432 × 10 -5
A 6 = 1.31789 × 10 -6
A 8 = -1.87256 × 10 -8
A 10 = -4.79094 × 10 -11
6th surface K = -0.117
A 4 = -9.87240 × 10 -5
A 6 = -5.15054 × 10 -6
A 8 = 1.80533 × 10 -7
A 10 = -2.13356 × 10 -8
Surface 9 K = -0.377
A 4 = 1.63400 × 10 -3
A 6 = 3.97670 × 10 -5
A 8 = 2.09267 × 10 -6
A 10 = 1.70358 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 7.793 13.201 22.406
F NO 2.85 3.55 4.74
d 4 15.60 6.42 1.00
d 9 3.96 4.68 7.13
d 11 6.15 9.71 15.76.


実施例14
1 = 69.726 d1 = 0.50 nd1 =1.69350 νd1 =53.21
2 = 4.746 d2 = 1.96
3 = 12.885 (非球面) d3 = 1.36 nd2 =1.84666 νd2 =23.78
4 = 25.844 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = -0.50
6 = 4.943 (非球面) d6 = 3.04 nd3 =1.74320 νd3 =49.34
7 = 25.950 d7 = 0.50 nd4 =1.71736 νd4 =29.52
8 = 3.545 d8 = 1.57 nd5 =1.51633 νd5 =64.14
9 = -140.225 (非球面) d9 = (可変)
10= 36.103 d10= 1.08 nd6 =1.58393 νd6 =30.21
11= 157.196 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.60
16= ∞(像面)
非球面係数
第3面
K = 2.135
4 = -3.15464×10-4
6 = -1.04123×10-5
8 = -2.90693×10-7
10= 0
第4面
K = -1.605
4 = -6.13441×10-4
6 = -1.89803×10-5
8 = -5.74661×10-7
10= 0
第6面
K = -1.070
4 = 9.28135×10-4
6 = 1.60749×10-5
8 = 9.55801×10-7
10= 0
第9面
K = 0.000
4 = 2.77025×10-3
6 = 8.45677×10-5
8 = 2.81700×10-5
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.108 11.768 17.644
NO 3.24 4.42 5.65
4 10.68 3.49 0.90
9 3.68 3.69 3.68
11 4.04 8.76 13.77 。

Example 14
r 1 = 69.726 d 1 = 0.50 n d1 = 1.69350 ν d1 = 53.21
r 2 = 4.746 d 2 = 1.96
r 3 = 12.885 (aspherical surface) d 3 = 1.36 n d2 = 1.84666 ν d2 = 23.78
r 4 = 25.844 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.50
r 6 = 4.943 (aspherical surface) d 6 = 3.04 n d3 = 1.74320 ν d3 = 49.34
r 7 = 25.950 d 7 = 0.50 n d4 = 1.71736 ν d4 = 29.52
r 8 = 3.545 d 8 = 1.57 n d5 = 1.51633 ν d5 = 64.14
r 9 = -140.225 (aspherical surface) d 9 = (variable)
r 10 = 36.103 d 10 = 1.08 n d6 = 1.58393 ν d6 = 30.21
r 11 = 157.196 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.60
r 16 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 2.135
A 4 = -3.15464 × 10 -4
A 6 = -1.04123 × 10 -5
A 8 = -2.90693 × 10 -7
A 10 = 0
4th surface K = -1.605
A 4 = -6.13441 × 10 -4
A 6 = -1.89803 × 10 -5
A 8 = -5.74661 × 10 -7
A 10 = 0
6th surface K = -1.070
A 4 = 9.28135 × 10 -4
A 6 = 1.60749 × 10 -5
A 8 = 9.55801 × 10 -7
A 10 = 0
Surface 9 K = 0.000
A 4 = 2.77025 × 10 -3
A 6 = 8.45677 × 10 -5
A 8 = 2.81700 × 10 -5
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.108 11.768 17.644
F NO 3.24 4.42 5.65
d 4 10.68 3.49 0.90
d 9 3.68 3.69 3.68
d 11 4.04 8.76 13.77.


実施例15
1 = 19.064 d1 = 0.80 nd1 =1.77250 νd1 =49.60
2 = 5.104 d2 = 1.87
3 = 10.613 (非球面) d3 = 1.50 nd2 =1.82114 νd2 =24.06
4 = 17.740 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = -0.50
6 = 4.218 (非球面) d6 = 1.25 nd3 =1.80610 νd3 =40.92
7 = 16.475 d7 = 0.50 nd4 =1.72825 νd4 =28.46
8 = 3.000 d8 = 1.98 nd5 =1.58313 νd5 =59.38
9 = 6.705 (非球面) d9 = (可変)
10= 15.406 (非球面) d10= 1.20 nd6 =1.52511 νd6 =56.22
11= 679.942 (非球面) d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.40
16= ∞(像面)
非球面係数
第3面
K = -13.399
4 = 1.00692×10-3
6 = -5.17345×10-5
8 = 2.70682×10-6
10= -8.69858×10-8
第4面
K = 4.762
4 = -9.39622×10-4
6 = 1.08563×10-5
8 = -5.52833×10-7
10= -3.72262×10-8
第6面
K = -1.661
4 = 2.81854×10-3
6 = 3.99977×10-5
8 = 1.43030×10-6
10= 1.39779×10-7
第9面
K = -1.556
4 = 5.79158×10-3
6 = 5.27276×10-4
8 = 2.64149×10-7
10= 1.62265×10-5
第10面
K = -14.699
4 = 1.27364×10-3
6 = 1.39733×10-4
8 = 2.54309×10-5
10= -7.92228×10-7
第11面
K = 0.000
4 = 6.13478×10-4
6 = 1.52095×10-4
8 = 7.94767×10-6
10= 1.36613×10-6
ズームデータ(∞)
WE ST TE
f (mm) 6.610 12.752 19.108
NO 3.48 4.64 5.80
4 13.97 4.45 0.90
9 2.98 3.71 3.63
11 5.54 9.39 13.94 。

Example 15
r 1 = 19.064 d 1 = 0.80 n d1 = 1.77250 ν d1 = 49.60
r 2 = 5.104 d 2 = 1.87
r 3 = 10.613 (aspherical surface) d 3 = 1.50 n d2 = 1.82114 ν d2 = 24.06
r 4 = 17.740 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.50
r 6 = 4.218 (aspherical surface) d 6 = 1.25 n d3 = 1.80610 ν d3 = 40.92
r 7 = 16.475 d 7 = 0.50 n d4 = 1.72825 ν d4 = 28.46
r 8 = 3.000 d 8 = 1.98 n d5 = 1.58313 ν d5 = 59.38
r 9 = 6.705 (aspherical surface) d 9 = (variable)
r 10 = 15.406 (aspherical surface) d 10 = 1.20 n d6 = 1.52511 ν d6 = 56.22
r 11 = 679.942 (aspherical surface) d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.40
r 16 = ∞ (image plane)
Aspheric coefficient 3rd surface K = -13.399
A 4 = 1.00692 × 10 -3
A 6 = -5.17345 × 10 -5
A 8 = 2.70682 × 10 -6
A 10 = -8.69858 × 10 -8
4th surface K = 4.762
A 4 = -9.39622 × 10 -4
A 6 = 1.08563 × 10 -5
A 8 = -5.52833 × 10 -7
A 10 = -3.72262 × 10 -8
6th surface K = -1.661
A 4 = 2.81854 × 10 -3
A 6 = 3.99977 × 10 -5
A 8 = 1.43030 × 10 -6
A 10 = 1.39779 × 10 -7
Surface 9 K = -1.556
A 4 = 5.79158 × 10 -3
A 6 = 5.27276 × 10 -4
A 8 = 2.64149 × 10 -7
A 10 = 1.62265 × 10 -5
Surface 10 K = -14.699
A 4 = 1.27364 × 10 -3
A 6 = 1.39733 × 10 -4
A 8 = 2.54309 × 10 -5
A 10 = -7.92228 × 10 -7
11th surface K = 0.000
A 4 = 6.13478 × 10 -4
A 6 = 1.52095 × 10 -4
A 8 = 7.94767 × 10 -6
A 10 = 1.36613 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 6.610 12.752 19.108
F NO 3.48 4.64 5.80
d 4 13.97 4.45 0.90
d 9 2.98 3.71 3.63
d 11 5.54 9.39 13.94.


実施例16
1 = 23.044 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 4.637 (非球面) d2 = 1.67
3 = 6.786 d3 = 1.58 nd2 =2.00069 νd2 =25.46
4 = 10.000 d4 = (可変)
5 = ∞(絞り) d5 = -0.50
6 = 4.414 (非球面) d6 = 2.63 nd3 =1.74320 νd3 =49.34
7 = 10.000 d7 = 0.50 nd4 =1.80518 νd4 =25.42
8 = 3.572 d8 = 1.06 nd5 =1.58313 νd5 =59.38
9 = 9.779 (非球面) d9 = (可変)
10= 12.767 (非球面) d10= 1.20 nd6 =1.52511 νd6 =56.22
11= 450.005 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.40
16= ∞(像面)
非球面係数
第2面
K = -1.086
4 = 9.62928×10-4
6 = 5.95705×10-6
8 = 3.29554×10-7
10= 1.16736×10-9
第6面
K = -0.954
4 = 1.31409×10-3
6 = 2.98474×10-5
8 = 4.67221×10-6
10= -3.77040×10-7
第9面
K = 0.000
4 = 3.73309×10-3
6 = 5.31664×10-4
8 = -3.88576×10-5
10= 1.32383×10-5
第10面
K = 0.000
4 = -2.15582×10-4
6 = 2.64093×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.615 12.686 19.116
NO 3.48 4.58 5.79
4 13.28 4.15 0.90
9 3.16 3.09 3.96
11 5.29 9.64 13.97 。

Example 16
r 1 = 23.044 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 4.637 (aspherical surface) d 2 = 1.67
r 3 = 6.786 d 3 = 1.58 n d2 = 2.00069 ν d2 = 25.46
r 4 = 10.000 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.50
r 6 = 4.414 (aspherical surface) d 6 = 2.63 n d3 = 1.74320 ν d3 = 49.34
r 7 = 10.000 d 7 = 0.50 n d4 = 1.80518 ν d4 = 25.42
r 8 = 3.572 d 8 = 1.06 n d5 = 1.58313 ν d5 = 59.38
r 9 = 9.779 (aspherical surface) d 9 = (variable)
r 10 = 12.767 (aspherical surface) d 10 = 1.20 n d6 = 1.52511 ν d6 = 56.22
r 11 = 450.005 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.40
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -1.086
A 4 = 9.62928 × 10 -4
A 6 = 5.95705 × 10 -6
A 8 = 3.29554 × 10 -7
A 10 = 1.16736 × 10 -9
6th surface K = -0.954
A 4 = 1.31409 × 10 -3
A 6 = 2.98474 × 10 -5
A 8 = 4.67221 × 10 -6
A 10 = -3.77040 × 10 -7
Surface 9 K = 0.000
A 4 = 3.73309 × 10 -3
A 6 = 5.31664 × 10 -4
A 8 = -3.88576 × 10 -5
A 10 = 1.32383 × 10 -5
10th surface K = 0.000
A 4 = -2.15582 × 10 -4
A 6 = 2.64093 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.615 12.686 19.116
F NO 3.48 4.58 5.79
d 4 13.28 4.15 0.90
d 9 3.16 3.09 3.96
d 11 5.29 9.64 13.97.


実施例17
1 = 23.249 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 4.545 (非球面) d2 = 1.68
3 = 6.745 d3 = 1.62 nd2 =2.00069 νd2 =25.46
4 = 10.000 d4 = (可変)
5 = ∞(絞り) d5 = -0.50
6 = 4.591 (非球面) d6 = 1.98 nd3 =1.80610 νd3 =40.92
7 = 50.000 d7 = 0.55 nd4 =1.74000 νd4 =28.30
8 = 3.147 d8 = 1.75 nd5 =1.58313 νd5 =59.38
9 = 8.300 (非球面) d9 = (可変)
10= 11.436 (非球面) d10= 1.20 nd6 =1.52511 νd6 =56.22
11= 85.514 d11= (可変)
12= ∞ d12= 0.50 nd7 =1.51633 νd7 =64.14
13= ∞ d13= 0.50
14= ∞ d14= 0.50 nd8 =1.51633 νd8 =64.14
15= ∞ d15= 0.40
16= ∞(像面)
非球面係数
第2面
K = -1.069
4 = 9.82367×10-4
6 = 6.13229×10-6
8 = 4.16082×10-7
10= -1.47859×10-9
第6面
K = -1.111
4 = 1.36092×10-3
6 = 2.46840×10-5
8 = 1.69262×10-6
10= -1.16420×10-7
第9面
K = 0.000
4 = 3.53310×10-3
6 = 2.64589×10-4
8 = 2.99098×10-5
10= 2.87001×10-6
第10面
K = 0.000
4 = -2.73474×10-4
6 = 2.44609×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.621 12.744 19.118
NO 3.44 4.57 5.76
4 12.85 4.04 0.90
9 3.39 3.50 4.15
11 5.08 9.49 13.99 。

Example 17
r 1 = 23.249 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 4.545 (aspherical surface) d 2 = 1.68
r 3 = 6.745 d 3 = 1.62 n d2 = 2.00069 ν d2 = 25.46
r 4 = 10.000 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.50
r 6 = 4.591 (aspherical surface) d 6 = 1.98 n d3 = 1.80610 ν d3 = 40.92
r 7 = 50.000 d 7 = 0.55 n d4 = 1.74000 ν d4 = 28.30
r 8 = 3.147 d 8 = 1.75 n d5 = 1.58313 ν d5 = 59.38
r 9 = 8.300 (aspherical surface) d 9 = (variable)
r 10 = 11.436 (aspherical surface) d 10 = 1.20 n d6 = 1.52511 ν d6 = 56.22
r 11 = 85.514 d 11 = (variable)
r 12 = ∞ d 12 = 0.50 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = 0.50
r 14 = ∞ d 14 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 15 = ∞ d 15 = 0.40
r 16 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -1.069
A 4 = 9.82367 × 10 -4
A 6 = 6.13229 × 10 -6
A 8 = 4.16082 × 10 -7
A 10 = -1.47859 × 10 -9
6th surface K = -1.111
A 4 = 1.36092 × 10 -3
A 6 = 2.46840 × 10 -5
A 8 = 1.69262 × 10 -6
A 10 = -1.16420 × 10 -7
Surface 9 K = 0.000
A 4 = 3.53310 × 10 -3
A 6 = 2.64589 × 10 -4
A 8 = 2.99098 × 10 -5
A 10 = 2.87001 × 10 -6
10th surface K = 0.000
A 4 = -2.73474 × 10 -4
A 6 = 2.44609 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.621 12.744 19.118
F NO 3.44 4.57 5.76
d 4 12.85 4.04 0.90
d 9 3.39 3.50 4.15
d 11 5.08 9.49 13.99.

以上の実施例1〜17の無限遠物点合焦時の収差図をそれぞれ図18〜図34に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。各図中、“FIY”は最大像高を示す。   Aberration diagrams of Examples 1 to 17 at the time of focusing on an object point at infinity are shown in FIGS. In these aberration diagrams, (a) is the wide angle end, (b) is the intermediate state, (c) is the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the telephoto end. ). In each figure, “FIY” indicates the maximum image height.

次に、上記各実施例における画角、条件式(1)〜(B−2)に関するパラメータ値とレンズタイプ等を示す。   Next, the angle of view, the parameter values regarding the conditional expressions (1) to (B-2), the lens type, and the like in each of the above embodiments will be shown.


条件式・パワー配置 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6
(1) 0.495 0.507 0.471 0.557 0.508 0.521
(2) 0.18 0.22 0.02 0.15 0.07 0.04
(3) 1.33 1.60 1.44 1.31 1.26 1.21
(4) − − − − − −
(5) 1.84 5.18 2.11 3.83 2.76 2.33
(6) − − − − − −
(7) 0.041 0.044 0.050 0.041 0.041 0.034
(A) 2.89 2.90 2.91 2.90 2.90 2.88
(B−1) − − − − − −
(B−2) -3.15 -1.26 -2.22 -0.95 -1.76 -1.71
群タイプ 負正負 負正負 負正負 負正負 負正負 負正負
第2群接合構成 正負正 正負 正負正 正負正 正負負 正負負

条件式・パワー配置 実施例7 実施例8 実施例9 実施例10 実施例11 実施例12
(1) 0.505 0.481 0.496 0.487 0.427 0.476
(2) 0.15 0.21 0.04 0.06 0.00 0.33
(3) 1.42 1.62 1.60 1.55 1.62 1.58
(4) − 3.41 6.29 5.30 6.09 4.22
(5) 4.41 − − − − −
(6) − 0.066 0.057 0.057 0.062 0.076
(7) 0.034 − − − − −
(A) 2.88 2.89 2.88 2.88 2.90 2.87
(B−1) − 0.94 0.65 0.71 0.67 0.81
(B−2) -1.25 − − − − −
群タイプ 負正負 負正正 負正正 負正正 負正正 負正正
第2群接合構成 正負正 正負正 正負正 正負正 正負正 正負正

条件式・パワー配置 実施例13 実施例14 実施例15 実施例16 実施例17
(1) 0.473 0.511 0.410 0.435 0.437
(2) 0.41 0.00 0.10 0.12 0.12
(3) 1.63 1.67 1.52 1.56 1.58
(4) 3.71 13.10 4.54 3.78 3.78
(5) − − − − −
(6) 0.071 0.061 0.063 0.063 0.063
(7) − − − − −
(A) 2.88 2.89 2.89 2.89 2.89
(B−1) 0.88 0.37 0.79 0.88 0.88
(B−2) − − − − −
群タイプ 負正正 負正正 負正正 負正正 負正正
第2群接合構成 正負正 正負正 正負正 正負正 正負正

Conditional Expression / Power Arrangement Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
(1) 0.495 0.507 0.471 0.557 0.508 0.521
(2) 0.18 0.22 0.02 0.15 0.07 0.04
(3) 1.33 1.60 1.44 1.31 1.26 1.21
(4)------
(5) 1.84 5.18 2.11 3.83 2.76 2.33
(6)------
(7) 0.041 0.044 0.050 0.041 0.041 0.034
(A) 2.89 2.90 2.91 2.90 2.90 2.88
(B-1) − − − − − −
(B-2) -3.15 -1.26 -2.22 -0.95 -1.76 -1.71
Group Type Negative Positive Negative Negative Positive Negative Negative Positive Negative Negative Positive Negative Negative Positive Negative Negative Positive Negative Second Group Junction Configuration Positive Negative Positive Positive Negative Positive Negative Positive Positive Negative Positive Positive Negative Negative Positive Negative Negative

Conditional Expression / Power Arrangement Example 7 Example 8 Example 9 Example 10 Example 11 Example 12
(1) 0.505 0.481 0.496 0.487 0.427 0.476
(2) 0.15 0.21 0.04 0.06 0.00 0.33
(3) 1.42 1.62 1.60 1.55 1.62 1.58
(4)-3.41 6.29 5.30 6.09 4.22
(5) 4.41 − − − − −
(6)-0.066 0.057 0.057 0.062 0.076
(7) 0.034 − − − − −
(A) 2.88 2.89 2.88 2.88 2.90 2.87
(B-1)-0.94 0.65 0.71 0.67 0.81
(B-2) -1.25-----
Group type Negative positive negative Negative positive positive Negative positive positive Negative positive positive Negative positive positive Second group junction configuration Positive negative positive Positive negative positive Positive negative positive Positive negative positive Positive negative positive Positive negative

Conditional Expression / Power Arrangement Example 13 Example 14 Example 15 Example 16 Example 17
(1) 0.473 0.511 0.410 0.435 0.437
(2) 0.41 0.00 0.10 0.12 0.12
(3) 1.63 1.67 1.52 1.56 1.58
(4) 3.71 13.10 4.54 3.78 3.78
(5)-----
(6) 0.071 0.061 0.063 0.063 0.063
(7)-----
(A) 2.88 2.89 2.89 2.89 2.89
(B-1) 0.88 0.37 0.79 0.88 0.88
(B-2)-----
Group type Negative positive positive Negative positive positive Negative positive positive Negative positive positive Negative positive positive Second group junction configuration Positive negative positive Positive negative positive Positive negative positive Positive negative positive
.

図35〜図37は、以上のようなズームレンズを撮影光学系41に組み込んだ本発明によるデジタルカメラの構成の概念図を示す。図35はデジタルカメラ40の外観を示す前方斜視図、図36は同後方正面図、図37はデジタルカメラ40の構成を示す模式的な断面図である。ただし、図35と図37においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図37の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、波長域制限コートを施したローパスフィルターFとカバーガラスCを介してCCD49の撮像面(光電変換面)上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   35 to 37 are conceptual diagrams of the configuration of the digital camera according to the present invention in which the zoom lens as described above is incorporated in the photographing optical system 41. FIG. FIG. 35 is a front perspective view showing the external appearance of the digital camera 40, FIG. 36 is a rear front view thereof, and FIG. 37 is a schematic cross-sectional view showing the configuration of the digital camera 40. However, in FIGS. 35 and 37, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, When the photographing optical system 41 is retracted, including the setting change switch 62, the photographing optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60 by sliding the cover 60. When the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state shown in FIG. 37. When the shutter button 45 disposed on the upper part of the camera 40 is pressed, the photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface (photoelectric conversion surface) of the CCD 49 via a low-pass filter F and a cover glass C that are provided with a wavelength band limiting coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と2つのプリズムからなり、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and two prisms, and includes a zoom optical system whose focal length changes in conjunction with the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 that is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

このように構成されたデジタルカメラ40は、撮影光学系41が、本発明により、十分な広角域を有し、コンパクトな構成としながら、高変倍で全変倍域で結像性能が極めて安定的であるので、高性能・小型化・広角化が実現できる。   In the digital camera 40 configured in this manner, the imaging optical system 41 has a sufficiently wide angle range according to the present invention, and a compact configuration, while the imaging performance is extremely stable at a high zoom ratio and in a full zoom ratio range. Therefore, high performance, downsizing, and wide angle can be realized.

本発明は、以上のような一般的な被写体を撮影する所謂コンパクトデジタルカメラだけでなく、広い画角が必要な監視カメラや、レンズ交換式のカメラに適用してもよい。   The present invention may be applied not only to a so-called compact digital camera that captures a general subject as described above, but also to a surveillance camera that requires a wide angle of view and an interchangeable lens camera.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 本発明のズームレンズの実施例2の図1と同様の図である。It is the same figure as FIG. 1 of Example 2 of the zoom lens of this invention. 本発明のズームレンズの実施例3の図1と同様の図である。It is the same figure as FIG. 1 of Example 3 of the zoom lens of this invention. 本発明のズームレンズの実施例4の図1と同様の図である。It is the same figure as FIG. 1 of Example 4 of the zoom lens of this invention. 本発明のズームレンズの実施例5の図1と同様の図である。It is the same figure as FIG. 1 of Example 5 of the zoom lens of this invention. 本発明のズームレンズの実施例6の図1と同様の図である。It is the same figure as FIG. 1 of Example 6 of the zoom lens of this invention. 本発明のズームレンズの実施例7の図1と同様の図である。It is the same figure as FIG. 1 of Example 7 of the zoom lens of this invention. 本発明のズームレンズの実施例8の図1と同様の図である。It is a figure similar to FIG. 1 of Example 8 of the zoom lens of this invention. 本発明のズームレンズの実施例9の図1と同様の図である。It is the same figure as FIG. 1 of Example 9 of the zoom lens of this invention. 本発明のズームレンズの実施例10の図1と同様の図である。It is a figure similar to FIG. 1 of Example 10 of the zoom lens of this invention. 本発明のズームレンズの実施例11の図1と同様の図である。It is the same figure as FIG. 1 of Example 11 of the zoom lens of this invention. 本発明のズームレンズの実施例12の図1と同様の図である。It is the same figure as FIG. 1 of Example 12 of the zoom lens of this invention. 本発明のズームレンズの実施例13の図1と同様の図である。It is the same figure as FIG. 1 of Example 13 of the zoom lens of this invention. 本発明のズームレンズの実施例14の図1と同様の図である。It is the same figure as FIG. 1 of Example 14 of the zoom lens of this invention. 本発明のズームレンズの実施例15の図1と同様の図である。It is the same figure as FIG. 1 of Example 15 of the zoom lens of this invention. 本発明のズームレンズの実施例16の図1と同様の図である。It is the same figure as FIG. 1 of Example 16 of the zoom lens of this invention. 本発明のズームレンズの実施例17の図1と同様の図である。It is a figure similar to FIG. 1 of Example 17 of the zoom lens of this invention. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 実施例8の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 8 upon focusing on an object point at infinity. 実施例9の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 9 upon focusing on an object point at infinity. 実施例10の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 10 upon focusing on an object point at infinity. 実施例11の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 11 upon focusing on an object point at infinity. 実施例12の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 12 upon focusing on an object point at infinity. 実施例13の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 13 upon focusing on an object point at infinity. 実施例14の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 14 upon focusing on an object point at infinity. 実施例15の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 15 upon focusing on an object point at infinity. 実施例16の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 16 upon focusing on an object point at infinity. 実施例17の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 17 upon focusing on an object point at infinity. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図35のデジタルカメラの後方斜視図である。FIG. 36 is a rear perspective view of the digital camera of FIG. 35. 図35のデジタルカメラの断面図である。FIG. 36 is a cross-sectional view of the digital camera of FIG. 35.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
F…ローパスフィルター
C…カバーガラス
I…像面
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group S ... Aperture stop F ... Low pass filter C ... Cover glass I ... Image plane E ... Observer eyeball 40 ... Digital camera 41 ... Shooting optical system 42 ... Optical path for photographing 43 ... finder optical system 44 ... optical path for finder 45 ... shutter button 46 ... flash 47 ... liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Viewfinder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch

Claims (21)

物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正又は負屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、
前記第3レンズ群は1枚のレンズからなり、
以下の条件式(1)、(2)’、(A)を満足することを特徴とするズームレンズ。
0.4<Dce/D123G<0.6 ・・・(1)
0.00≦(D 2 (t)−D 2 (w))/f w <0.5 ・・・(2)
2.5≦f t /f w <5.5 ・・・(A)
ただし、Dce:第2レンズ群内の接合レンズの光軸上での肉厚、
123G:各レンズ群の光軸上の厚さを加算した値、
2 (w):広角端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
2 (t):望遠端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
w :ズームレンズの広角端状態での焦点距離、
t :ズームレンズの望遠端状態での焦点距離、
である。
In order from the object side, the first lens group includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A zoom lens in which an interval between two lens groups changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation,
At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
The third lens group consists of one lens,
A zoom lens satisfying the following conditional expressions (1) , (2) ′, and (A):
0.4 <D ce / D 123G <0.6 (1)
0.00 ≦ (D 2 (t) −D 2 (w)) / f w <0.5 (2)
2.5 ≦ f t / f w <5.5 (A)
Where D ce is the thickness of the cemented lens in the second lens group on the optical axis,
D 123G : Value obtained by adding the thickness on the optical axis of each lens group,
D 2 (w): an air space on the optical axis between the second lens unit and the third lens unit at the wide-angle end,
D 2 (t): an air interval on the optical axis between the second lens group and the third lens group at the telephoto end,
f w : Focal length at the wide-angle end of the zoom lens,
f t : focal length of the zoom lens in the telephoto end state,
It is.
物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正又は負屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、In order from the object side, the first lens group includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A zoom lens in which an interval between two lens groups changes during zooming, and an interval between the second lens group and the third lens group changes during a focusing operation,
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
前記第2レンズ群は、物体側から順に、正レンズ、負レンズ、正レンズの3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side, and a cemented lens in which each lens is cemented on the optical axis.
前記第3レンズ群は1枚のレンズからなり、The third lens group consists of one lens,
以下の条件式(1)を満足することを特徴とするズームレンズ。A zoom lens satisfying the following conditional expression (1):
0.4<D0.4 <D cece /D/ D 123G123G <0.6 ・・・(1)<0.6 (1)
ただし、DHowever, D cece :第2レンズ群内の接合レンズの光軸上での肉厚、: Thickness on the optical axis of the cemented lens in the second lens group,
D 123G123G :各レンズ群の光軸上の厚さを加算した値、: Value obtained by adding the thickness on the optical axis of each lens group,
である。It is.
物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、In order from the object side, the lens unit includes three lens groups, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. A zoom lens in which an interval between the second lens group and the third lens group is changed at the time of zooming, and an interval between the second lens group and the third lens group is changed during a focusing operation;
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
前記第3レンズ群は1枚の正レンズからなり、The third lens group is composed of one positive lens,
前記第3レンズ群はフォーカシングのために移動し、The third lens group moves for focusing;
以下の条件式(1)、(4) を満足することを特徴とするズームレンズ。A zoom lens satisfying the following conditional expressions (1) and (4):
0.4<D0.4 <D cece /D/ D 123G123G <0.6 ・・・(1)<0.6 (1)
3.0<f3.0 <f 3 Three /f/ F w w <15.0 ・・・(4)<15.0 (4)
ただし、DHowever, D cece :第2レンズ群内の接合レンズの光軸上での肉厚、: Thickness on the optical axis of the cemented lens in the second lens group,
D 123G123G :各レンズ群の光軸上の厚さを加算した値、: Value obtained by adding the thickness on the optical axis of each lens group,
f 3 Three :第3レンズ群の焦点距離、: Focal length of the third lens group,
f w w :ズームレンズの広角端状態での焦点距離、: Focal length at the wide-angle end of the zoom lens,
である。It is.
物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、In order from the object side, the lens unit includes three lens groups, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. A zoom lens in which an interval between the second lens group and the third lens group is changed at the time of zooming, and an interval between the second lens group and the third lens group is changed during a focusing operation;
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
前記第3レンズ群は1枚の正レンズからなり、The third lens group is composed of one positive lens,
以下の条件式(1)、(6)を満足することを特徴とするズームレンズ。A zoom lens satisfying the following conditional expressions (1) and (6):
0.4<D0.4 <D cece /D/ D 123G123G <0.6 ・・・(1)<0.6 (1)
0.03<D0.03 <D 3G3G /f/ F t t <0.09 ・・・(6)<0.09 (6)
ただし、DHowever, D cece :第2レンズ群内の接合レンズの光軸上での肉厚、: Thickness on the optical axis of the cemented lens in the second lens group,
D 123G123G :各レンズ群の光軸上の厚さを加算した値、: Value obtained by adding the thickness on the optical axis of each lens group,
D 3G3G :第3レンズ群の軸上での肉厚、: Thickness on the axis of the third lens group,
f t t :ズームレンズの望遠端状態での焦点距離、: Focal length at the telephoto end of the zoom lens,
である。It is.
物体側より順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、正屈折力の第3レンズ群の3つのレンズ群で構成され、前記第1レンズ群と前記第2レンズ群との間隔が変倍時に変化し、前記第2レンズ群と前記第3レンズ群との間隔が合焦動作時に変化するズームレンズであって、In order from the object side, the lens unit includes three lens groups, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. A zoom lens in which an interval between the second lens group and the third lens group is changed at the time of zooming, and an interval between the second lens group and the third lens group is changed during a focusing operation;
広角端状態に対して望遠端状態にて、前記第1レンズ群と前記第2レンズ群との間隔が狭くなるように、少なくとも前記第2レンズ群、前記第3レンズ群が広角端から望遠端への変倍時に物体側にのみ移動し、At least the second lens group and the third lens group from the wide-angle end to the telephoto end so that the distance between the first lens group and the second lens group becomes narrower in the telephoto end state than in the wide-angle end state. Move only to the object side when scaling to
前記第2レンズ群は、正レンズと負レンズを備え、2枚若しくは3枚のレンズから構成され、かつ、光軸上にてそれぞれのレンズが接合された接合レンズで構成され、The second lens group includes a positive lens and a negative lens, is composed of two or three lenses, and is composed of a cemented lens in which each lens is cemented on the optical axis,
前記第3レンズ群は1枚の正レンズからなり、The third lens group is composed of one positive lens,
前記第3レンズ群はフォーカシングのために移動し、The third lens group moves for focusing;
以下の条件式(1)、(B−1)を満足することを特徴とするズームレンズ。A zoom lens satisfying the following conditional expressions (1) and (B-1):
0.4<D0.4 <D cece /D/ D 123G123G <0.6 ・・・(1)<0.6 (1)
0.35<1−β0.35 <1-β 3T3T 2 2 <0.98 ・・・(B−1)<0.98 (B-1)
ただし、DHowever, D cece :第2レンズ群内の接合レンズの光軸上での肉厚、: Thickness on the optical axis of the cemented lens in the second lens group,
D 123G123G :各レンズ群の光軸上の厚さを加算した値、: Value obtained by adding the thickness on the optical axis of each lens group,
ββ 3T3T :第3レンズ群の望遠端での横倍率、: Lateral magnification at the telephoto end of the third lens group,
である。It is.
前記第3レンズ群のみがフォーカシング時に移動することを特徴とする請求項1から5の何れか1項記載のズームレンズ。 6. The zoom lens according to claim 1, wherein only the third lens group moves during focusing. 7 . 変倍時に前記第2レンズ群と前記第3レンズ群との間隔が変化することを特徴とする請求項1から6の何れか1項記載のズームレンズ。 The zoom lens according to any one of claims 1 to 6, wherein an interval between the second lens group and the third lens group changes at the time of zooming. 前記第1レンズ群が変倍時に往復移動することを特徴とする請求項1からの何れか1項記載のズームレンズ。 Any one zoom lens according to claim 1 to 7, wherein the first lens group reciprocates in zooming. 前記第1レンズ群は、物体側から順に、負レンズ、正レンズの2枚のレンズからなることを特徴とする請求項1からの何れか1項記載のズームレンズ。 Wherein the first lens group comprises, in order from the object side, a negative lens, any one of claims zoom lens of claims 1 to 8, characterized in that it consists of a positive lens. 以下の条件式(2)を満足することを特徴とする請求項1からの何れか1項記載のズームレンズ。
−0.005<(D2 (t)−D2 (w))/fw <0.5 ・・・(2)
ただし、D2 (w):広角端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
2 (t):望遠端における第2レンズ群と第3レンズ群との光軸上での空気間隔、
w :ズームレンズの広角端状態での焦点距離、
である。
The zoom lens according to any one of claims 1 to 9 , wherein the following conditional expression (2) is satisfied.
−0.005 <(D 2 (t) −D 2 (w)) / f w <0.5 (2)
Where D 2 (w): the air spacing on the optical axis between the second lens group and the third lens group at the wide-angle end,
D 2 (t): an air interval on the optical axis between the second lens group and the third lens group at the telephoto end,
f w : Focal length at the wide-angle end of the zoom lens,
It is.
前記第2レンズ群は、物体側から順に、正レンズ、負レンズ、正レンズの3枚のレンズにて構成された1つの接合レンズからなることを特徴とする請求項1から10の何れか1項記載のズームレンズ。 The second lens group includes, in order from the object side, a positive lens, a negative lens, any one of claims 1 to 10, characterized in that it consists of three one cemented lens constructed by a positive lens 1 Zoom lens described in the item. 以下の条件式(3)を満足することを特徴とする請求項1から11の何れか1項記載のズームレンズ。
1.2<Cj (t)/ft <1.8 ・・・(3)
ただし、Cj (t):望遠端における第1レンズ群の入射面から像面までの距離、
t :ズームレンズの望遠端での焦点距離、
である。
The zoom lens according to any one of claims 1 to 11 , wherein the following conditional expression (3) is satisfied.
1.2 <C j (t) / ft <1.8 (3)
Where C j (t): distance from the entrance surface of the first lens group to the image plane at the telephoto end,
f t : focal length at the telephoto end of the zoom lens,
It is.
前記第3レンズ群はフォーカシングのために移動し、前記第3レンズ群が以下の条件式(4)を満足する正レンズであることを特徴とする請求項1から12の何れか1項記載のズームレンズ。
3.0<f3 /fw <15.0 ・・・(4)
ただし、f3 :第3レンズ群の焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
The third lens group is moved for focusing, according to any one of claims 1 to 12, wherein the third lens group is a positive lens that satisfies the conditional expression (4) below Zoom lens.
3.0 <f 3 / f w <15.0 (4)
Where f 3 is the focal length of the third lens group,
f w : Focal length at the wide-angle end of the zoom lens,
It is.
前記第3レンズ群はフォーカシングのために移動し、前記第3レンズ群が以下の条件式(5)を満足する負レンズであることを特徴とする請求項1又は2記載のズームレンズ。
1.5<|f3 /fw |<15.0 ・・・(5)
ただし、f3 :第3レンズ群の焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
The third lens group is moved for focusing, according to claim 1 or 2, wherein the zoom lens, wherein the third lens group is a negative lens that satisfies a conditional expression (5).
1.5 <| f 3 / f w | <15.0 (5)
Where f 3 is the focal length of the third lens group,
f w : Focal length at the wide-angle end of the zoom lens,
It is.
前記第3レンズ群が以下の条件式(6)を満足する正レンズであることを特徴とする請求項1から13の何れか1項記載のズームレンズ。
0.03<D3G/ft <0.09 ・・・(6)
ただし、D3G:第3レンズ群の軸上での肉厚、
t :ズームレンズの望遠端状態での焦点距離、
である。
The zoom lens according to any one of claims 1 to 13 , wherein the third lens group is a positive lens that satisfies the following conditional expression (6).
0.03 <D 3G / ft <0.09 (6)
D 3G : Thickness on the axis of the third lens group,
f t : focal length of the zoom lens in the telephoto end state,
It is.
前記第3レンズ群が以下の条件式(7)を満足する負レンズであることを特徴とする請求項1、2、14の何れか1項記載のズームレンズ。
0.01<D3G/ft <0.09 ・・・(7)
ただし、D3G:第3レンズ群の軸上での肉厚、
t :ズームレンズの望遠端状態での焦点距離、
である。
The zoom lens according to claim 1 , wherein the third lens group is a negative lens that satisfies the following conditional expression (7).
0.01 <D 3G / ft <0.09 (7)
D 3G : Thickness on the axis of the third lens group,
f t : focal length of the zoom lens in the telephoto end state,
It is.
前記第3レンズ群はフォーカシングのために移動し、前記第3レンズ群が以下の条件式(B−1)を満足する正レンズであることを特徴とする請求項1から13、15の何れか1項記載のズームレンズ。
0.35<1−β3T 2 <0.98 ・・・(B−1)
ただし、β3T:第3レンズ群の望遠端での横倍率、
である。
The third lens group moves for focusing, and the third lens group is a positive lens that satisfies the following conditional expression (B-1): 16 . The zoom lens according to item 1.
0.35 <1-β 3T 2 <0.98 (B-1)
Where β 3T : lateral magnification at the telephoto end of the third lens group,
It is.
前記第3レンズ群はフォーカシングのために移動し、前記第3レンズ群が以下の条件式(B−2)を満足する負レンズであることを特徴とする請求項1、2、14、16の何れか1項記載のズームレンズ。
−3.5<1−β3T 2 <−0.6 ・・・(B−2)
ただし、β3T:第3レンズ群の望遠端での横倍率、
である。
The third lens group is moved for focusing, and the third lens group is a negative lens that satisfies the following conditional expression (B-2) : 17 . Any one of the zoom lenses.
−3.5 <1-β 3T 2 <−0.6 (B-2)
Where β 3T : lateral magnification at the telephoto end of the third lens group,
It is.
以下の条件を満足することを特徴とする請求項1から18の何れか1項記載のズームレンズ。
2.5≦ft /fw <5.5 ・・・(A)
ただし、ft :ズームレンズの望遠端状態での焦点距離、
w :ズームレンズの広角端状態での焦点距離、
である。
Any one of claims zoom lens according to claim 1 to 18, characterized in that the following condition is satisfied.
2.5 ≦ f t / f w <5.5 (A)
Where f t : focal length of the zoom lens in the telephoto end state,
f w : Focal length at the wide-angle end of the zoom lens,
It is.
前記第2レンズ群の直前に配されると共に、変倍の際に前記第2レンズ群と一体で移動する明るさ絞りを有することを特徴とする請求項1から19の何れか1項記載のズームレンズ。 Together is disposed immediately before the second lens group, said any one of claims 1 to 19, characterized in that it comprises an aperture stop that moves in the second lens group and integrally during zooming Zoom lens. 請求項1から20の何れか1項記載のズームレンズと、前記ズームレンズの像側に配され、光学像を電気信号に変換する撮像素子とを備えたことを特徴とする撮像装置。 A zoom lens according to any one of claims 1 20, arranged on the image side of the zoom lens, an imaging apparatus characterized by comprising an imaging device that converts an optical image into an electrical signal.
JP2005325911A 2005-11-10 2005-11-10 Zoom lens and image pickup apparatus including the same Expired - Fee Related JP4859186B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005325911A JP4859186B2 (en) 2005-11-10 2005-11-10 Zoom lens and image pickup apparatus including the same
US11/594,506 US7471459B2 (en) 2005-11-10 2006-11-07 Zoom lens system and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325911A JP4859186B2 (en) 2005-11-10 2005-11-10 Zoom lens and image pickup apparatus including the same

Publications (2)

Publication Number Publication Date
JP2007133133A JP2007133133A (en) 2007-05-31
JP4859186B2 true JP4859186B2 (en) 2012-01-25

Family

ID=38154855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325911A Expired - Fee Related JP4859186B2 (en) 2005-11-10 2005-11-10 Zoom lens and image pickup apparatus including the same

Country Status (1)

Country Link
JP (1) JP4859186B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870527B2 (en) * 2005-11-30 2012-02-08 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4552872B2 (en) * 2006-02-28 2010-09-29 カシオ計算機株式会社 Zoom lens and camera
JP4913634B2 (en) * 2006-03-09 2012-04-11 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4917922B2 (en) * 2006-03-09 2012-04-18 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4916198B2 (en) * 2006-03-20 2012-04-11 株式会社リコー Zoom lens, imaging device having zoom lens, camera device, and portable information terminal device
JP5040289B2 (en) * 2006-12-15 2012-10-03 カシオ計算機株式会社 Zoom lens and camera
JP5009051B2 (en) * 2007-05-28 2012-08-22 オリンパスイメージング株式会社 Three-group zoom lens and image pickup apparatus including the same
JP5167724B2 (en) * 2007-08-21 2013-03-21 株式会社ニコン Optical system
JP5164504B2 (en) * 2007-10-01 2013-03-21 キヤノン株式会社 Imaging device
JP5501022B2 (en) 2009-05-09 2014-05-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US9182575B2 (en) 2009-07-02 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device and camera
JP5079134B2 (en) * 2010-12-28 2012-11-21 キヤノン株式会社 Developing roller, process cartridge, and electrophotographic apparatus
WO2013027362A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP6467804B2 (en) * 2013-08-09 2019-02-13 株式会社ニコン Zoom lens and optical apparatus
JP6545021B2 (en) * 2015-07-02 2019-07-17 キヤノン株式会社 Zoom lens and imaging device having the same
JP7449075B2 (en) 2019-11-13 2024-03-13 東京晨美光学電子株式会社 imaging lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275280A (en) * 2004-03-26 2005-10-06 Canon Inc Optical equipment having zoom lens

Also Published As

Publication number Publication date
JP2007133133A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4859186B2 (en) Zoom lens and image pickup apparatus including the same
JP4840909B2 (en) Zoom lens and image pickup apparatus including the same
JP4936437B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4900924B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4690069B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4766933B2 (en) Optical path folding zoom lens and image pickup apparatus having the same
JP4900923B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2007327991A (en) Zoom lens and imaging apparatus with the same
JP2009036961A (en) Two-group zoom lens and imaging device using the same
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP4766929B2 (en) Image pickup apparatus having an optical path folding zoom lens
JP4906439B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2007156385A (en) Zoom optical system and image taking apparatus using the same
JP2006301154A (en) Zoom lens and electronic imaging apparatus using the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP2006220715A (en) Zoom lens and imaging apparatus using the same
JP2008292911A (en) Three-group zoom lens and imaging apparatus equipped with the same
JP4873937B2 (en) Three-group zoom lens and image pickup apparatus including the same
JP2002023053A (en) Zoom lens and image pickup device equipped with the same
JP4948027B2 (en) Zoom lens and image pickup apparatus including the same
JP2006337592A (en) Zoom lens and information apparatus
JP4321850B2 (en) Zoom lens, camera, and portable information terminal device
JP4947992B2 (en) Zoom lens and imaging apparatus using the same
JP2006194975A (en) Zoom lens and imaging apparatus using the same
JP2003287679A (en) Zoom lens and camera device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4859186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees