JP2006220715A - Zoom lens and imaging apparatus using the same - Google Patents

Zoom lens and imaging apparatus using the same Download PDF

Info

Publication number
JP2006220715A
JP2006220715A JP2005031560A JP2005031560A JP2006220715A JP 2006220715 A JP2006220715 A JP 2006220715A JP 2005031560 A JP2005031560 A JP 2005031560A JP 2005031560 A JP2005031560 A JP 2005031560A JP 2006220715 A JP2006220715 A JP 2006220715A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
zoom
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005031560A
Other languages
Japanese (ja)
Inventor
Masahiro Katakura
正弘 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005031560A priority Critical patent/JP2006220715A/en
Priority to US11/328,348 priority patent/US7339749B2/en
Publication of JP2006220715A publication Critical patent/JP2006220715A/en
Priority to US11/983,499 priority patent/US7529037B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a satisfactorily compact zoom lens of excellent optical characteristics, the lens which has a power variation ratio of about 3, and is improved in terms of a manufacturing error and reduced in manufacturing cost. <P>SOLUTION: The zoom lens is constituted of a 1st negative lens group G1, a 2nd positive lens group G2 and a 3rd positive lens group G3, wherein the power is varied by varying a distance between respective lens groups. The 1st lens group G1 is constituted of two negative and positive lenses, the 2nd lens group G2 is constituted of two positive lenses and one negative lens, the 3rd lens group G3 is constituted of one positive lens. Provided that n<SB>1</SB>denotes the refractive index of the negative lens in the 1st lens group G1, n<SB>2</SB>denotes the refractive index of the positive lens in the 1st lens group G1, n<SB>1</SB>>1.8 and n<SB>2</SB>>1.8 are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ズームレンズ及びそれを用いた撮像装置に関し、特に、コンパクトなデジタルカメラに好適な固体撮像素子を有する3群ズームレンズとそれを用いた撮像装置に関するものである。   The present invention relates to a zoom lens and an imaging apparatus using the same, and more particularly to a three-group zoom lens having a solid-state imaging element suitable for a compact digital camera and an imaging apparatus using the same.

従来より、デジタルカメラやビデオカメラにおいては、一般のカメラに用いられるものと同様に、高画質、低コストが要求される。例えば固体撮像素子に好適なズームレンズとしては、特許文献1に3群ズームレンズとして開示されており、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群の3つのレンズ群を有し、広角端から望遠端に向けて第1レンズ群と第2レンズ群を移動させて変倍を行う3群ズームレンズ系である。   Conventionally, digital cameras and video cameras are required to have high image quality and low cost, similar to those used for general cameras. For example, a zoom lens suitable for a solid-state imaging device is disclosed in Patent Document 1 as a three-group zoom lens, and in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power. A three-group zoom lens system having three lens groups of a third lens group having a positive refractive power and performing zooming by moving the first lens group and the second lens group from the wide-angle end to the telephoto end is there.

しかしながら、特許文献1に開示された光学系は、レンズ枚数が7枚と比較的多いこと、第2レンズ群の接合レンズの肉厚が少しでも変化すると像面湾曲が発生すること、製造コストが高いこと等の欠点を有している。   However, the optical system disclosed in Patent Document 1 has a relatively large number of lenses, such as seven, and curvature of field occurs when the thickness of the cemented lens of the second lens group changes even a little, and the manufacturing cost is low. It has disadvantages such as high.

別のズームレンズとして、特許文献2に3群ズームレンズとして開示されており、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群の3つのレンズ群を有し、広角端から望遠端に向けて第1レンズ群と第2レンズ群を移動させて変倍を行う3群ズームレンズ系である。このズームレンズ系は3倍程度の変倍比を有しながらも、5群6枚とレンズ枚数が少なく、なおも広角端で口径比1:2.8以上の明るさを有するという点でかなり優れている。   Another zoom lens is disclosed in Patent Document 2 as a three-group zoom lens. In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a positive refractive power. This is a three-group zoom lens system that has three lens groups of the third lens group and performs zooming by moving the first lens group and the second lens group from the wide-angle end to the telephoto end. Although this zoom lens system has a zoom ratio of about 3 times, the number of lenses is small as 6 elements in 5 groups and still has a brightness of an aperture ratio of 1: 2.8 or more at the wide angle end. Are better.

しかしながら、特許文献2に開示された光学系は、レンズ単体での肉厚が厚い上、焦点距離に対する全長も長く、レンズ収納時のコンパクト性という点でまだ満足できるものとは言い難い。
特開2001−318311号公報 特開2003−140041号公報
However, the optical system disclosed in Patent Document 2 has a thick lens alone and a long total length with respect to the focal length, and is still not satisfactory in terms of compactness when the lens is housed.
JP 2001-318311 A JP 2003-140041 A

本発明は従来技術のこのような問題点に鑑みてなされたものであり、適度な変倍比を有し、十分コンパクトで、かつ優れた光学特性を有するズームレンズを提供することを第1の目的とする。また、製造誤差に強くすることにより、製造コストを低く保ち、十分コンパクトで、かつ優れた光学特性を有するズームレンズを提供すること第2の目的とする。   The present invention has been made in view of such problems of the prior art, and it is a first object to provide a zoom lens having an appropriate zoom ratio, sufficiently compact and having excellent optical characteristics. Objective. It is a second object of the present invention to provide a zoom lens that is low in manufacturing cost, sufficiently compact, and has excellent optical characteristics by making it resistant to manufacturing errors.

上記目的を達する本発明の第1のズームレンズは、物体側より順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群と正の屈折力の第3レンズ群からなり、前記各レンズ群の間隔を変化させて変倍を行うズームレンズにおいて、
前記第1レンズ群が負レンズと正レンズの2枚で構成され、前記第2レンズ群が2枚の正レンズと1枚の負レンズから構成され、前記第3レンズ群が1枚の正レンズで構成されると共に、以下の条件式を満たすことを特徴とするものである。
The first zoom lens of the present invention that achieves the above object comprises, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In the zoom lens that changes the magnification by changing the interval between the lens groups,
The first lens group includes two negative lenses and a positive lens, the second lens group includes two positive lenses and one negative lens, and the third lens group includes one positive lens. And satisfying the following conditional expression.

1 >1.8 ・・・(1−1)
2 >1.8 ・・・(1−2)
ただし、n1 は第1レンズ群の負レンズの屈折率、n2 は第1レンズ群の正レンズの屈折率である。
n 1 > 1.8 (1-1)
n 2 > 1.8 (1-2)
Here, n 1 is the refractive index of the negative lens of the first lens group, and n 2 is the refractive index of the positive lens of the first lens group.

以下に本発明の第1のズームレンズにおいて上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the first zoom lens of the present invention will be described.

負正正の屈折力配置の3群ズームレンズタイプとし、各レンズ群の構成を上述の構成にすることにより、薄型で十分なテレセントリック性を保った3倍程度の変倍比を持つズームレンズに有利となる。   By adopting a three-group zoom lens type with negative and positive refractive power arrangement and the above-mentioned configuration of each lens group, a thin zoom lens with a zoom ratio of about 3 times maintaining sufficient telecentricity can be obtained. It will be advantageous.

第1レンズ群は、負レンズと正レンズの2枚とすることで、小型化と収差補正が行いやすくなる。   By making the first lens group into two lenses, a negative lens and a positive lens, it becomes easier to reduce the size and correct the aberration.

第2レンズ群は、屈折力が強くなりやすい群であるので、2枚の正レンズと1枚の負レンズの3枚構成とすることで、第2レンズ群の小型化と収差補正が行いやすくなる。   Since the second lens group is a group that tends to have a strong refractive power, it is easy to reduce the size of the second lens group and correct aberrations by adopting a three-lens configuration of two positive lenses and one negative lens. Become.

また、適度な変倍比を得つつ、コンパクトにまとめるために、第3レンズ群に1枚の正レンズを用いることで、テレセントリック性の確保と像面の補正が行いやすくなる。   In addition, in order to make the lens compact in a compact manner while obtaining an appropriate zoom ratio, it is easy to ensure telecentricity and correct the image plane by using a single positive lens in the third lens group.

条件式(1−1)、(1−2)は、第1レンズ群の屈折力を確保しつつ、収差発生を抑え、小型化するための条件である。   Conditional expressions (1-1) and (1-2) are conditions for reducing the size of the first lens unit while suppressing the occurrence of aberrations while ensuring the refractive power.

第1レンズ群は、広角端にて軸外光線が広い画角で入射する。そのため、負レンズと正レンズを物体側に強い凸面を向けたメニスカス形状とする方が収差補正上は好ましい。一方、このような形状をとると、第1レンズ群の厚みが大きくなりやすい。   In the first lens group, off-axis rays are incident at a wide angle at the wide angle end. Therefore, it is preferable in terms of aberration correction that the negative lens and the positive lens have a meniscus shape with a strong convex surface facing the object side. On the other hand, when such a shape is taken, the thickness of the first lens group tends to increase.

そのため、条件式(1−1)、(1−2)を同時に満たすように、第1レンズ群を構成する2枚のレンズの屈折率を高くして、第1レンズ群の厚さを小さくしている。   Therefore, the refractive index of the two lenses constituting the first lens group is increased and the thickness of the first lens group is decreased so that the conditional expressions (1-1) and (1-2) are simultaneously satisfied. ing.

条件式(1−1)と(1−2)の下限の1.8を越えると、十分なパワーを得るために、レンズに大きな曲率をつけなければならないため、コンパクト化といった観点から好ましくない。   Exceeding the lower limit of 1.8 to the conditional expressions (1-1) and (1-2) is not preferable from the viewpoint of compactness because a large curvature must be given to the lens in order to obtain sufficient power.

条件式(1−1)、(1−2)に上限値2.3(<2.3)を特定し、レンズ材料が高価になることを防ぐことがより好ましい。   It is more preferable to specify an upper limit value 2.3 (<2.3) in conditional expressions (1-1) and (1-2) to prevent the lens material from becoming expensive.

本発明の第2のズームレンズは、第1のズームレンズにおいて、前記第1レンズ群が、物体側から順に、像面側に凹面を向けた負レンズと物体側に凸面を向けた正レンズとで構成され、以下の条件を満足することを特徴とするものである。   According to a second zoom lens of the present invention, in the first zoom lens, the first lens group includes, in order from the object side, a negative lens having a concave surface on the image surface side and a positive lens having a convex surface on the object side. And satisfies the following conditions.

0.3<|f1G/R1 +f1G/R3 +f1G/R4 |<1.9 ・・・(A)
ただし、f1Gは第1レンズ群の焦点距離、
1 は第1レンズ群負レンズの物体側面の近軸曲率半径絶対値、
3 は第1レンズ群正レンズの物体側面の近軸曲率半径絶対値、
4 は第1レンズ群正レンズの像面側面の近軸曲率半径絶対値、
である。
0.3 <| f 1G / R 1 + f 1G / R 3 + f 1G / R 4 | <1.9 (A)
Where f 1G is the focal length of the first lens group,
R 1 is the absolute value of the paraxial radius of curvature of the object side surface of the first lens unit negative lens;
R 3 is the absolute value of the paraxial radius of curvature of the object side surface of the first lens unit positive lens;
R 4 is the absolute value of the paraxial radius of curvature of the image side surface of the first lens unit positive lens;
It is.

以下に本発明の第2のズームレンズにおいて上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the second zoom lens according to the present invention having the above configuration will be described.

第1レンズ群が、物体側から順に、像面側に凹面を向けた負レンズと物体側に凸面を向けた正レンズとで構成されることで、これらの面での軸外光の入射角を小さくできるので、軸外の収差補正に有利となる。   The first lens group includes, in order from the object side, a negative lens having a concave surface facing the image surface side and a positive lens having a convex surface facing the object side, so that the incident angles of off-axis light on these surfaces Can be reduced, which is advantageous for off-axis aberration correction.

条件式(A)は、第1レンズ群負レンズの物体側面、正レンズの物体側面、像面側面の曲率半径を特定するものである。   Conditional expression (A) specifies the radius of curvature of the object side surface of the first lens group negative lens, the object side surface of the positive lens, and the image surface side surface.

条件式(A)の下限値0.3を越えると、上述の3面の曲率が小さくなりすぎ、広角端での軸外収差の補正が難しくなる。   If the lower limit of 0.3 in conditional expression (A) is exceeded, the curvature of the three surfaces will be too small, and it will be difficult to correct off-axis aberrations at the wide-angle end.

条件式(A)の上限値1.9を越えると、第1レンズ群の第1、第3、第4何れかのレンズ面のパワーが強くなり、第1レンズ群の小型化に不利となり、また、偏心による収差変動が大きくなる。   If the upper limit value 1.9 of conditional expression (A) is exceeded, the power of any one of the first, third, and fourth lens surfaces of the first lens group becomes strong, which is disadvantageous for downsizing of the first lens group. In addition, aberration fluctuations due to decentration increase.

さらに、下限値を0.5、さらには0.7とすると、収差補正上好ましい。   Furthermore, it is preferable in terms of aberration correction that the lower limit value is 0.5, and further 0.7.

また、上限値を1.6、さらには1.4とすると、小型化や偏心による収差変動を抑える上で好ましい。   Further, when the upper limit is set to 1.6, and further to 1.4, it is preferable for reducing aberration variation due to downsizing and decentration.

本発明の第3のズームレンズは、第1、第2のズームレンズにおいて、前記第1レンズ群中の2枚のレンズは相互のレンズの相対的な位置決めを行う位置決め部分を持ち、前記位置決め部分において前記レンズ相互が接し、かつ、有効径内では空間を挟んでいることを特徴とするものである。   According to a third zoom lens of the present invention, in the first and second zoom lenses, the two lenses in the first lens group have a positioning portion for relative positioning of the lenses, and the positioning portion. In the above, the lenses are in contact with each other and a space is sandwiched within the effective diameter.

以下に本発明の第3のズームレンズにおいて上記構成をとる理由と作用を説明する。   The reason and operation of the third zoom lens according to the present invention will be described below.

2枚のレンズが位置決め部分において接していることにより、レンズを固定する枠が不要になるため、枠の製造誤差がレンズの相対関係に影響を及ぼすことがなくなる。その結果、レンズのスラスト方向の誤差と、チルト方向の誤差を小さくすることができる。特に条件式(1−1)、(1−2)と合わせることで、高性能で組み立て性の良い光学系が可能となる。   Since the two lenses are in contact with each other at the positioning portion, a frame for fixing the lens is not necessary, so that a manufacturing error of the frame does not affect the relative relationship between the lenses. As a result, the error in the thrust direction of the lens and the error in the tilt direction can be reduced. In particular, by combining with conditional expressions (1-1) and (1-2), an optical system with high performance and good assemblability becomes possible.

本発明の第4のズームレンズは、第1〜第3のズームレンズにおいて、前記第1レンズ群は、物体側に凸の負のメニスカスレンズと正レンズから構成され、前記第2レンズ群は、物体側より順に、正レンズ、正レンズと負レンズの接合レンズから構成されていることを特徴とするものである。   According to a fourth zoom lens of the present invention, in the first to third zoom lenses, the first lens group includes a negative meniscus lens convex to the object side and a positive lens, and the second lens group includes: It is composed of a positive lens and a cemented lens of a positive lens and a negative lens in order from the object side.

以下に本発明の第4のズームレンズにおいて上記構成をとる理由と作用を説明すると、このような構成により、第1レンズ群、第2レンズ群での枚数を抑え、第2レンズ群の構成長を短くし、レンズ収納時にコンパクトにすることができる。   The reason and action of the fourth zoom lens according to the present invention having the above configuration will be described below. With such a configuration, the number of lenses in the first lens group and the second lens group is suppressed, and the configuration length of the second lens group is reduced. Can be shortened and made compact when the lens is stored.

本発明の第5のズームレンズは、第1〜第4のズームレンズにおいて、前記第1レンズ群の正レンズが両面非球面であり、前記第3レンズ群が1枚の正レンズからなり、その像面側の面が非球面であることを特徴とするものである。   According to a fifth zoom lens of the present invention, in the first to fourth zoom lenses, the positive lens of the first lens group is a double-sided aspheric surface, and the third lens group is composed of one positive lens, The image side surface is an aspherical surface.

以下に本発明の第5のズームレンズにおいて上記構成をとる理由と作用を説明する。   The reason and operation of the fifth zoom lens according to the present invention will be described below.

第1レンズ群の正レンズ両面に非球面を用いることにより、ディストーションや像面湾曲を良好に補正することができる。さらに、第3レンズ群の後側に非球面を用いることにより、像面湾曲やコマ収差の良好な補正が得られる。   By using aspherical surfaces on both surfaces of the positive lens in the first lens group, distortion and field curvature can be corrected well. Further, by using an aspheric surface on the rear side of the third lens group, it is possible to correct field curvature and coma favorably.

本発明の第6のズームレンズは、第4のズームレンズにおいて、前記第2レンズ群中の接合レンズの負レンズが以下の条件式を満たすことを特徴とするものである。   According to a sixth zoom lens of the present invention, in the fourth zoom lens, the negative lens of the cemented lens in the second lens group satisfies the following conditional expression.

2 /fw <0.2 ・・・(2)
ただし、D2 は第2レンズ群中の接合レンズの負レンズの中肉厚(光軸上の厚さ)、
w は広角端での全系焦点距離、
である。
D 2 / f w <0.2 (2)
Where D 2 is the thickness of the negative lens of the cemented lens in the second lens group (thickness on the optical axis),
f w is the focal length of the entire system at the wide-angle end,
It is.

以下に本発明の第6のズームレンズにおいて上記構成をとる理由と作用を説明する。   The reason and action of the sixth zoom lens according to the present invention will be described below.

条件式(2)を満足することにより、第2レンズ群の総肉厚が薄くなり、沈胴厚を小さく抑えることができる。   By satisfying conditional expression (2), the total thickness of the second lens group is reduced, and the collapsed thickness can be kept small.

さらには、条件式(2)の上限値を0.15としてもよい。   Furthermore, the upper limit value of conditional expression (2) may be set to 0.15.

条件式(2)に代えて、以下の条件式(2−1)を満足する構成としてもよい。   Instead of conditional expression (2), the following conditional expression (2-1) may be satisfied.

2 /f2G<0.15 ・・・(2−1)
ただし、D2 は第2レンズ群中の接合レンズの負レンズの中肉厚(光軸上の厚さ)、
2Gは第2レンズ群の焦点距離、
である。
D 2 / f 2G <0.15 (2-1)
Where D 2 is the thickness of the negative lens of the cemented lens in the second lens group (thickness on the optical axis),
f 2G is the focal length of the second lens group,
It is.

条件式(2−1)を満足することにより、第2レンズ群の総肉厚が薄くなり、沈胴厚を小さく抑えることができる。   By satisfying conditional expression (2-1), the total thickness of the second lens group is reduced, and the retractable thickness can be kept small.

さらには、条件式(2−1)の上限値を0.1とするとよい。   Furthermore, the upper limit value of conditional expression (2-1) is preferably 0.1.

本発明の第7のズームレンズは、第1〜第6のズームレンズにおいて、前記第1レンズ群の負レンズが以下の条件式を満足することを特徴とするものである。   According to a seventh zoom lens of the present invention, in the first to sixth zoom lenses, the negative lens of the first lens group satisfies the following conditional expression.

0.9<R2 /fw <1.03 ・・・(3)
ただし、R2 は第1レンズ群中の負レンズの像面側の近軸曲率半径、
w は広角端での全系焦点距離、
である。
0.9 <R 2 / f w <1.03 (3)
Where R 2 is the paraxial radius of curvature on the image plane side of the negative lens in the first lens group,
f w is the focal length of the entire system at the wide-angle end,
It is.

以下に本発明の第7のズームレンズにおいて上記構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the seventh zoom lens according to the present invention will be described.

条件式(3)の下限の0.9を越えると、第1レンズ群に含まれるレンズの曲率が強くなりすぎ、それに伴う中心厚や縁厚の増大で、ズームレンズ全系が大型化してしまう。また、上限の1.03を越えると、第1レンズ群の屈折力が小さくなりすぎ、広角端状態で十分な画角を確保できなくなる。   If the lower limit of 0.9 in conditional expression (3) is exceeded, the curvature of the lens included in the first lens group becomes too strong, and the center thickness and edge thickness increase accordingly, resulting in an increase in the size of the entire zoom lens system. . On the other hand, if the upper limit of 1.03 is exceeded, the refractive power of the first lens group becomes too small, and a sufficient field angle cannot be secured in the wide-angle end state.

また、上記条件式(3)に代えて、以下の条件式(3−1)を満足する構成としてもよい。   Further, instead of the conditional expression (3), the following conditional expression (3-1) may be satisfied.

−0.48<R2 /f1G<−0.4 ・・・(3−1)
ただし、R2 は第1レンズ群中の負レンズの像面側の近軸曲率半径、
1Gは第1レンズ群の焦点距離、
である。
−0.48 <R 2 / f 1G <−0.4 (3-1)
Where R 2 is the paraxial radius of curvature on the image plane side of the negative lens in the first lens group,
f 1G is the focal length of the first lens group,
It is.

条件式(3−1)の下限の−0.48を越えると、第1レンズ群に含まれるレンズの曲率が強くなりすぎ、それに伴う中心厚や縁厚の増大で、ズームレンズ全系が大型化してしまう。また、上限の−0.4を越えると、第1レンズ群の屈折力が小さくなりすぎ、広角端状態で十分な画角を確保できなくなる。   If the lower limit of -0.48 of conditional expression (3-1) is exceeded, the curvature of the lens included in the first lens group becomes too strong, and the center thickness and edge thickness increase accordingly, resulting in a large zoom lens system. It will become. When the upper limit of −0.4 is exceeded, the refractive power of the first lens unit becomes too small, and a sufficient angle of view cannot be secured in the wide-angle end state.

本発明の第8のズームレンズは、第6のズームレンズにおいて、前記第3レンズ群の正レンズがプラスチックレンズであることを特徴とするものである。   The eighth zoom lens of the present invention is characterized in that, in the sixth zoom lens, the positive lens of the third lens group is a plastic lens.

以下に本発明の第8のズームレンズにおいて上記構成をとる理由と作用を説明すると、条件式(1−1)、(1−2)、及び、(2)又は(2−1)を満たした上で、第3レンズ群に屈折率の低い硝材を用いても、第1レンズ群、第2レンズ群、第3レンズ群トータルでの収差の発生を抑えることができ、かつ、プラスチックレンズを用いることができ、軽量で安価で高画質、高性能なズームレンズを構成することができる。   The reason and action of the above configuration in the eighth zoom lens of the present invention will be described below. Conditional expressions (1-1), (1-2), and (2) or (2-1) are satisfied. In the above, even when a glass material having a low refractive index is used for the third lens group, the occurrence of aberrations in the first lens group, the second lens group, and the third lens group can be suppressed, and a plastic lens is used. Thus, a lightweight, inexpensive, high-quality, high-performance zoom lens can be configured.

本発明の第9のズームレンズは、第1〜第8のズームレンズにおいて、前記第2レンズ群の最も物体側の正レンズが非球面レンズであることを特徴とするものである。   According to a ninth zoom lens of the present invention, in the first to eighth zoom lenses, a positive lens closest to the object side in the second lens group is an aspherical lens.

以下に本発明の第9のズームレンズにおいて上記構成をとる理由と作用を説明すると、第2レンズ群中の物体側正レンズは、第1レンズ群から発散する軸上光束が入射する。そのため、屈折力を強くして発散する光束に収斂作用を与えることで小型化に有利となる。一方、この正レンズでは、強い屈折力を与えるために球面収差が発生しやすくなる。そこで、物体側の正レンズを非球面レンズとすることで軸上収差の発生を低減させることができる。   The reason and operation of the ninth zoom lens according to the present invention will be described below. The object-side positive lens in the second lens group receives an axial light beam that diverges from the first lens group. For this reason, it is advantageous for miniaturization by increasing the refractive power and giving a converging action to the divergent light beam. On the other hand, in this positive lens, spherical aberration tends to occur due to the strong refractive power. Therefore, the occurrence of axial aberration can be reduced by using an aspherical lens as the positive lens on the object side.

本発明の第10のズームレンズは、第1〜第8のズームレンズにおいて、前記第2レンズ群の最も物体側のレンズよりもさらに物体側に、前記第2レンズ群と一体的に移動する絞りを有することを特徴とするものである。   The tenth zoom lens of the present invention is a diaphragm that moves integrally with the second lens group further to the object side than the lens closest to the object side of the second lens group in the first to eighth zoom lenses. It is characterized by having.

以下に本発明の第10のズームレンズにおいて上記構成をとる理由と作用を説明すると、このように構成すると、第2レンズ群の近くに絞りがあることになるので、第2レンズ群の小型化に有利となる。また、テレセントリック性も確保しやすくなる。また、第1レンズの軸外光線の入射高が高くなりすぎない点でも好ましい。   The reason and action of the tenth zoom lens according to the present invention will be described below. In this case, since there is a diaphragm near the second lens group, the second lens group can be downsized. Is advantageous. Moreover, it becomes easy to ensure telecentricity. Moreover, it is also preferable in that the incident height of the off-axis light beam of the first lens does not become too high.

本発明の第11のズームレンズは、最も物体側に配され負の屈折力を持つ第1レンズ群を含む複数のレンズ群からなり、各レンズ群間隔を変化させて変倍を行うズームレンズにおいて、
前記第1レンズ群は、物体側から順に、負屈折力の第1レンズと正屈折力の第2レンズで構成され、前記第1レンズの像面側面は有効径外に光軸と垂直な平面部を有し、前記第2レンズの物体側面は有効径外に光軸と垂直な平面部を有し、前記第1レンズの平面部と前記第2レンズ平面部はお互いに接することを特徴とするものである。
An eleventh zoom lens according to the present invention is a zoom lens that includes a plurality of lens groups including a first lens group that is disposed closest to the object side and has a negative refractive power, and performs zooming by changing the distance between the lens groups. ,
The first lens group includes, in order from the object side, a first lens having a negative refractive power and a second lens having a positive refractive power, and the image surface side surface of the first lens is a plane perpendicular to the optical axis outside the effective diameter. And the object side surface of the second lens has a plane part outside the effective diameter and perpendicular to the optical axis, and the plane part of the first lens and the second lens plane part are in contact with each other. To do.

以下に本発明の第11のズームレンズにおいて上記構成をとる理由と作用を説明する。   The reason and operation of the eleventh zoom lens according to the present invention will be described below.

2枚のレンズが光軸と垂直な平面部分において接していることにより、レンズを固定する枠が不要なため、枠の製造誤差がレンズの相対関係に影響を及ぼすことがなくなる。その結果、レンズのスラスト方向の誤差と、チルト方向の誤差を小さくすることができる。   Since the two lenses are in contact with each other at a plane portion perpendicular to the optical axis, a frame for fixing the lens is not necessary, so that the manufacturing error of the frame does not affect the relative relationship between the lenses. As a result, the error in the thrust direction of the lens and the error in the tilt direction can be reduced.

本発明の第12のズームレンズは、第11のズームレンズにおいて、前記第1レンズと前記第2レンズは何れか一方又は両方がガラスの成形レンズからなり、
前記第1レンズの像面側面は有効径外にその面と一体で成形された光軸と垂直な平面部を有し、前記第2レンズの物体側面は有効径外にその面と一体で成形された光軸と垂直な平面部を有し、前記第1レンズの平面部と前記第2レンズ平面部はお互いに接するように組み込まれていることを特徴とするものである。
In a twelfth zoom lens according to the present invention, in the eleventh zoom lens, one or both of the first lens and the second lens are formed of a molded lens made of glass.
The image lens side surface of the first lens has a plane portion perpendicular to the optical axis formed integrally with the surface outside the effective diameter, and the object side surface of the second lens is molded integrally with the surface outside the effective diameter. The planar portion of the first lens and the planar portion of the second lens are incorporated so as to be in contact with each other.

以下に本発明の第12のズームレンズにおいて上記構成をとる理由と作用を説明すると、有効径外の光軸と垂直な平面部をレンズ面と一体成形することによりその平面部を精度良く形成できる。   Hereinafter, the reason and action of the twelfth zoom lens according to the present invention will be described. The plane portion perpendicular to the optical axis outside the effective diameter is formed integrally with the lens surface so that the plane portion can be accurately formed. .

本発明の第13のズームレンズは、第11、第12のズームレンズにおいて、前記第2レンズの物体側の面が光軸から滑らかに連続した形状にて前記平面部が形成されていることを特徴とするものである。   According to a thirteenth zoom lens of the present invention, in the eleventh and twelfth zoom lenses, the planar portion is formed such that the object side surface of the second lens is smoothly continuous from the optical axis. It is a feature.

以下に本発明の第13のズームレンズにおいて上記構成をとる理由と作用を説明すると、このように構成すると、レンズを形成するに当たり平面部と有効部とが連続しているので、レンズの加工が容易となる。   In the following, the reason and action of the thirteenth zoom lens according to the present invention will be explained. In such a configuration, since the plane portion and the effective portion are continuous in forming the lens, the lens is processed. It becomes easy.

本発明の第14のズームレンズは、第11〜第13のズームレンズにおいて、前記第1レンズ群の負の第1レンズの屈折率をn1 、正の第2レンズの屈折力をn2 としたときに、以下の条件式を満足することを特徴とするものである。 In a fourteenth zoom lens according to the present invention, in the eleventh to thirteenth zoom lenses, the refractive index of the negative first lens in the first lens group is n 1 , and the refractive power of the positive second lens is n 2 . In this case, the following conditional expression is satisfied.

1 >1.8 ・・・(1−1)
2 >1.8 ・・・(1−2)
以下に本発明の第14のズームレンズにおいて上記構成をとる理由と作用を説明する。
n 1 > 1.8 (1-1)
n 2 > 1.8 (1-2)
The reason and action of the above-described configuration in the fourteenth zoom lens of the present invention will be described below.

全長の縮小と小径化のためには、第1レンズ群に屈折率が1.8以上のものを使うことが重要であるが、それにより両レンズの傾きとスラストの効きが大きくなる。そこで、上記のような第1レンズと第2レンズをレンズ平面部で接するように組み込むことにより、その効きを小さく抑えることができるため、n1 >1.8かつn2 >1.8という硝材の使用が可能となる。 In order to reduce the overall length and reduce the diameter, it is important to use a first lens unit having a refractive index of 1.8 or more, which increases the tilt and thrust effectiveness of both lenses. Therefore, by incorporating the first lens and the second lens as described above so as to be in contact with each other at the lens plane portion, the effect can be suppressed to a small value. Therefore, a glass material with n 1 > 1.8 and n 2 > 1.8. Can be used.

特に正レンズの屈折率を高くすると、第1レンズ群の正レンズの物体側面の曲率を小さくしやすくなるので、この正レンズを型による成形レンズとしたときに、有効部と平面部を滑らかにすると、作成が容易となる。   In particular, when the refractive index of the positive lens is increased, the curvature of the object side surface of the positive lens in the first lens group can be easily reduced. Therefore, when this positive lens is formed by a mold, the effective portion and the flat portion are smoothed. Then, creation becomes easy.

本発明の第15のズームレンズは、第11〜第14のズームレンズにおいて、物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群で構成されていることを特徴とするものである。   A fifteenth zoom lens according to the present invention includes, in order from the object side to the eleventh to fourteenth zoom lenses, a negative first lens group, a positive second lens group, and a positive third lens group. It is characterized by this.

以下に本発明の第15のズームレンズにおいて上記構成をとる理由と作用を説明すると、負正正の屈折力配置の3群ズームレンズにすることにより、薄型で十分なテレセントリック性を保った3倍程度の変倍比を持つズームレンズを得ることができる。2倍以上の変倍比を得つつ、コンパクトにまとめるために、第3レンズ群に正レンズを用い、テレセントリック性の確保と像面の補正と変倍を行っている。   The reason and operation of the fifteenth zoom lens according to the present invention will be described below. The three-times zoom lens having a negative and positive refractive power arrangement is thin, and the magnification is three times while maintaining sufficient telecentricity. A zoom lens having a zoom ratio of about a degree can be obtained. In order to make the zoom lens compact while obtaining a zoom ratio of 2 times or more, a positive lens is used in the third lens group to ensure telecentricity, correct the image plane, and zoom.

本発明の第16のズームレンズは、第15のズームレンズにおいて、前記第2レンズ群が2枚の正レンズと1枚の負レンズから構成され、前記第3レンズ群が1枚の正レンズで構成されると共に、前記第1レンズ群中の第2レンズが両面非球面であり、かつ、前記第3レンズ群中の正レンズが非球面レンズであることを特徴とするものである。   According to a sixteenth zoom lens of the present invention, in the fifteenth zoom lens, the second lens group includes two positive lenses and one negative lens, and the third lens group includes one positive lens. In addition, the second lens in the first lens group is a double-sided aspheric surface, and the positive lens in the third lens group is an aspherical lens.

以下に本発明の第16のズームレンズにおいて上記構成をとる理由と作用を説明すると、第1レンズ群に非球面を用いることにより、ディストーションや像面湾曲を良好に補正することができる。さらに、第3レンズ群の後側に非球面を用いることにより、像面湾曲やコマ収差の良好な補正が得られる。   The reason and action of the above configuration in the sixteenth zoom lens of the present invention will be described below. By using an aspherical surface for the first lens group, distortion and field curvature can be favorably corrected. Further, by using an aspheric surface on the rear side of the third lens group, it is possible to correct field curvature and coma favorably.

本発明の第17のズームレンズは、第11〜第16のズームレンズにおいて、前記第1レンズ群は、物体側に凸の負のメニスカスレンズと正レンズから構成され、前記第2レンズ群は、物体側より順に、正レンズ、正レンズと負レンズの接合レンズから構成されていることを特徴とするものである。   According to a seventeenth zoom lens of the present invention, in the eleventh to sixteenth zoom lenses, the first lens group includes a negative meniscus lens convex to the object side and a positive lens, and the second lens group includes: It is composed of a positive lens and a cemented lens of a positive lens and a negative lens in order from the object side.

以下に本発明の第17のズームレンズにおいて上記構成をとる理由と作用を説明すると、このような構成により、第1レンズ群、第2レンズ群での枚数を抑え、第2レンズ群の構成長を短くし、レンズ収納時にコンパクトにすることができる。   The reason and action of the above configuration in the seventeenth zoom lens of the present invention will be described below. With such a configuration, the number of lenses in the first lens group and the second lens group is suppressed, and the configuration length of the second lens group is reduced. Can be shortened and made compact when the lens is stored.

なお、上述した構成要件を複数同時に満足するように構成してもよい。   In addition, you may comprise so that several structural requirements mentioned above may be satisfied simultaneously.

以上の本発明によると、負レンズ群が先行するタイプのズームレンズにおいて、適度な変倍比を有し、十分コンパクトで、かつ優れた光学特性を有するズームレンズを提供することができる。   According to the present invention as described above, in the zoom lens of the type preceded by the negative lens group, it is possible to provide a zoom lens having an appropriate zoom ratio, sufficiently compact, and having excellent optical characteristics.

また、負レンズ群が先行するタイプのズームレンズにおいて、製造誤差に強くすることにより、製造コストを低く保ち、十分コンパクトで、かつ優れた光学特性を有するズームレンズを提供することができる。   Further, in a zoom lens of a type preceded by a negative lens group, it is possible to provide a zoom lens that is sufficiently compact and has excellent optical characteristics by keeping manufacturing cost low by making it strong against manufacturing errors.

以下、本発明のズームレンズの実施例1〜5について説明する。実施例1〜5の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図5に示す。図1〜図5中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、赤外光を制限する波長域制限コートを施したローパスフィルタを構成する平行平板はF、電子撮像素子のカバーガラスの平行平板はC、像面はIで示してある。なお、カバーガラスCの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCにローパスフィルタ作用を持たせるようにしてもよい。   Examples 1 to 5 of the zoom lens according to the present invention will be described below. FIGS. 1 to 5 show lens cross-sectional views of the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 5, respectively. 1 to 5, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, and a low-pass filter with a wavelength range limiting coat that limits infrared light is configured. The parallel flat plate is indicated by F, the parallel flat plate of the cover glass of the electronic image sensor is indicated by C, and the image plane is indicated by I. In addition, you may give the multilayer film for a wavelength range restriction | limiting to the surface of the cover glass C. FIG. Further, the cover glass C may have a low-pass filter action.

また、図1〜図5の実施例1〜5において、第1レンズ群G1の負レンズの像面側面の有効径外の光軸に垂直な平面部と、正レンズの物体側面の有効径外の光軸に垂直な平面部とが接してレンズ相互を固定している平面部はPで示してある。   In Examples 1 to 5 of FIGS. 1 to 5, the plane portion perpendicular to the optical axis outside the effective diameter of the image surface side surface of the negative lens of the first lens group G1 and the effective diameter outside the object side surface of the positive lens are used. The plane portion that is in contact with the plane portion perpendicular to the optical axis and that fixes the lenses is indicated by P.

実施例1のズームレンズは、図1に示すように、物体側から順に、負の屈折力の第1レンズ群G1と、開口絞りSと、正屈折力の第2レンズ群G2と、屈折力の第3レンズ群G3とから構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は、物体側に凹の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置し、開口絞りSと第2レンズ群G2は一体に物体側へ単調に移動し、第3レンズ群G3は像面側へ移動する。   As shown in FIG. 1, the zoom lens of Example 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a refractive power. The first lens group G1 moves along a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end, the wide-angle end is at the wide-angle end. Positioned slightly on the object side from the position, the aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves toward the image plane side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸正レンズとからなり、負メニスカスレンズと両凸正レンズとはそれぞれの像面側面と物体側面の有効径外に設けられた光軸に垂直な平面(両凸正レンズの物体側面の平面は有効面と滑らかに連続した形状で形成されている。)が相互に接した平坦部Pで相互に固定されており、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、像面側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, and a biconvex positive lens. The negative meniscus lens and the biconvex positive lens have respective image side surfaces and object side surfaces. The planes perpendicular to the optical axis provided outside the effective diameter (the plane of the object side surface of the biconvex positive lens are formed in a shape that is smoothly continuous with the effective surface) are mutually connected by the flat portions P that are in contact with each other. The second lens group G2 is composed of a biconvex positive lens, a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The group G3 includes one positive meniscus lens having a convex surface facing the image surface side.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの像面側の面の5面に用いている。   The aspherical surfaces are used for the five surfaces of the biconvex positive lens of the first lens group G1, the both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the positive meniscus lens of the third lens group G3. ing.

実施例2のズームレンズは、図2に示すように、物体側から順に、負の屈折力の第1レンズ群G1と、開口絞りSと、正屈折力の第2レンズ群G2と、屈折力の第3レンズ群G3とから構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は、物体側に凹の軌跡で移動し、望遠端では広角端の位置より若干像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側へ単調に移動し、第3レンズ群G3は像面側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 2, the zoom lens according to the second embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a refractive power. The first lens group G1 moves along a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end, the wide-angle end is at the wide-angle end. The aperture stop S and the second lens group G2 are monotonously moved toward the object side, and the third lens group G3 is moved along a locus convex toward the image plane side at the telephoto end. Located slightly closer to the object side than the wide-angle end position.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズとからなり、負メニスカスレンズと正メニスカスレンズとはそれぞれの像面側面と物体側面の有効径外に設けられた光軸に垂直な平面(正メニスカスレンズの物体側面の平面は有効面と滑らかに連続した形状で形成されている。)が相互に接した平坦部Pで相互に固定されており、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The negative meniscus lens and the positive meniscus lens are respectively images. A flat surface perpendicular to the optical axis provided outside the effective diameter of the surface side surface and the object side surface (the plane of the object side surface of the positive meniscus lens is formed in a shape that is smoothly continuous with the effective surface). The second lens group G2 includes a biconvex positive lens, and a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The third lens group G3 is composed of one biconvex positive lens.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像面側の面の5面に用いている。   The aspherical surfaces are used for the five surfaces of the positive meniscus lens of the first lens group G1, the double-sided positive lens of the second lens group G2, and the image side surface of the biconvex positive lens of the third lens group G3. ing.

実施例3のズームレンズは、図3に示すように、物体側から順に、負の屈折力の第1レンズ群G1と、開口絞りSと、正屈折力の第2レンズ群G2と、屈折力の第3レンズ群G3とから構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は、物体側に凹の軌跡で移動し、望遠端では広角端の位置より若干像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側へ単調に移動し、第3レンズ群G3は像面側に凸の軌跡で移動し、望遠端では広角端の位置より像面側に位置する。   As shown in FIG. 3, the zoom lens of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a refractive power. The first lens group G1 moves along a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end, the wide-angle end is at the wide-angle end. The aperture stop S and the second lens group G2 are monotonously moved toward the object side, and the third lens group G3 is moved along a locus convex toward the image plane side at the telephoto end. Located on the image plane side from the wide-angle end position.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズとからなり、負メニスカスレンズと正メニスカスレンズとはそれぞれの像面側面と物体側面の有効径外に設けられた光軸に垂直な平面(正メニスカスレンズの物体側面の平面は有効面と滑らかに連続した形状で形成されている。)が相互に接した平坦部Pで相互に固定されており、第2レンズ群G2は、両凸正レンズと、両凸正レンズと両凹負レンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The negative meniscus lens and the positive meniscus lens are respectively images. A flat surface perpendicular to the optical axis provided outside the effective diameter of the surface side surface and the object side surface (the plane of the object side surface of the positive meniscus lens is formed in a shape that is smoothly continuous with the effective surface). The second lens group G2 is composed of a biconvex positive lens and a cemented lens of a biconvex positive lens and a biconcave negative lens, and the third lens group G3 is a biconvex positive lens. It consists of one sheet.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像面側の面の5面に用いている。   The aspheric surfaces are 5 on the image plane side surfaces of the positive meniscus lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, and the biconvex positive lens of the third lens group G3. Used on the surface.

実施例4のズームレンズは、図4に示すように、物体側から順に、負の屈折力の第1レンズ群G1と、開口絞りSと、正屈折力の第2レンズ群G2と、屈折力の第3レンズ群G3とから構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は、物体側に凹の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置し、開口絞りSと第2レンズ群G2は一体に物体側へ単調に移動し、第3レンズ群G3は像面側へ移動する。   As shown in FIG. 4, the zoom lens of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a refractive power. The first lens group G1 moves along a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end, the wide-angle end is at the wide-angle end. Positioned slightly on the object side from the position, the aperture stop S and the second lens group G2 integrally move monotonically toward the object side, and the third lens group G3 moves toward the image plane side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸正レンズとからなり、負メニスカスレンズと両凸正レンズとはそれぞれの像面側面と物体側面の有効径外に設けられた光軸に垂直な平面(両凸正レンズの物体側面の平面は有効面と滑らかに連続した形状で形成されている。)が相互に接した平坦部Pで相互に固定されており、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、像面側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, and a biconvex positive lens. The negative meniscus lens and the biconvex positive lens have respective image side surfaces and object side surfaces. The planes perpendicular to the optical axis provided outside the effective diameter (the plane of the object side surface of the biconvex positive lens are formed in a shape that is smoothly continuous with the effective surface) are mutually connected by the flat portions P that are in contact with each other. The second lens group G2 is composed of a biconvex positive lens, a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The group G3 includes one positive meniscus lens having a convex surface facing the image surface side.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの像面側の面の5面に用いている。   The aspherical surfaces are used for the five surfaces of the biconvex positive lens of the first lens group G1, the both surfaces of the biconvex positive lens of the second lens group G2, and the image side surface of the positive meniscus lens of the third lens group G3. ing.

実施例5のズームレンズは、図5に示すように、物体側から順に、負の屈折力の第1レンズ群G1と、開口絞りSと、正屈折力の第2レンズ群G2と、屈折力の第3レンズ群G3とから構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は、物体側に凹の軌跡で移動し、望遠端では広角端の位置と同じ位置に位置し、開口絞りSと第2レンズ群G2は一体に物体側へ単調に移動し、第3レンズ群G3は像面側へ移動する。   As shown in FIG. 5, the zoom lens of Example 5 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, and a refractive power. The first lens group G1 moves along a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and at the telephoto end, the wide-angle end is at the wide-angle end. The aperture stop S and the second lens group G2 are integrally moved monotonically to the object side, and the third lens group G3 is moved to the image plane side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズとからなり、負メニスカスレンズと正メニスカスレンズとはそれぞれの像面側面と物体側面の有効径外に設けられた光軸に垂直な平面(正メニスカスレンズの物体側面の平面は有効面と滑らかに連続した形状で形成されている。)が相互に接した平坦部Pで相互に固定されており、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens having a convex surface directed toward the object side. The negative meniscus lens and the positive meniscus lens are respectively images. A flat surface perpendicular to the optical axis provided outside the effective diameter of the surface side surface and the object side surface (the plane of the object side surface of the positive meniscus lens is formed in a shape that is smoothly continuous with the effective surface). The second lens group G2 includes a biconvex positive lens, and a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The third lens group G3 is composed of one biconvex positive lens.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像面側の面の5面に用いている。   The aspherical surfaces are used for the five surfaces of the positive meniscus lens of the first lens group G1, the double-sided positive lens of the second lens group G2, and the image side surface of the biconvex positive lens of the third lens group G3. ing.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、ωは半画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 The numerical data of each of the above embodiments are shown below. Symbols are the above, f is the total focal length, FNO is the F number, ω is the half angle of view, WE is the wide angle end, ST is the intermediate state, TE telephoto end, r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, [nu d1 , Ν d2 ... Is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010+A1212
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10、A12はそれぞれ4次、6次、8次、10次、12次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12
Where r is the paraxial radius of curvature, K is the conic coefficient, and A 4 , A 6 , A 8 , A 10 , and A 12 are the fourth, sixth, eighth, tenth, and twelfth aspheric coefficients, respectively. .


実施例1
1 = 600.000 d1 = 0.90 nd1 =1.83481 νd1 =42.71
2 = 6.464 d2 = 2.09
3 = 25.787 (非球面) d3 = 2.29 nd2 =1.82114 νd2 =24.06
4 = -72.532 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = 0.52
6 = 9.186 (非球面) d6 = 2.10 nd3 =1.58913 νd3 =61.25
7 = -16.117 (非球面) d7 = 0.10
8 = 4.700 d8 = 2.01 nd4 =1.60311 νd4 =60.64
9 = 7.781 d9 = 0.70 nd5 =1.84666 νd5 =23.78
10= 3.277 d10= (可変)
11= -76.478 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -8.749 (非球面) d12= (可変)
13= ∞ d13= 0.96 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.60
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.80
17= ∞(像面)
非球面係数
第3面
K = 4.269
4 = -1.87599×10-4
6 = 7.64679×10-7
8 = -1.59780×10-7
10= -3.77931×10-9
第4面
K = 0.000
4 = -4.24687×10-4
6 = 2.52348×10-6
8 = -7.16449×10-7
10= 2.59036×10-8
12= -5.82742×10-10
第6面
K = 2.867
4 = -8.17109×10-4
6 = -2.79925×10-5
8 = -1.75116×10-6
10= 0
第7面
K = 8.841
4 = 3.16055×10-4
6 = -2.51075×10-5
8 = 1.10436×10-7
10= 0
第12面
K = 0.000
4 = 5.95690×10-4
6 = -1.46363×10-5
8 = 2.97205×10-7
10= 1.48953×10-9
ズームデータ(∞)
WE ST TE
f (mm) 6.450 11.020 18.590
NO 2.65 3.53 5.00
ω(°) 31.593 18.767 11.388
4 13.63 6.33 2.10
10 5.48 10.41 18.01
12 1.96 1.57 0.98 。

Example 1
r 1 = 600.000 d 1 = 0.90 n d1 = 1.83481 ν d1 = 42.71
r 2 = 6.464 d 2 = 2.09
r 3 = 25.787 (aspherical surface) d 3 = 2.29 n d2 = 1.82114 ν d2 = 24.06
r 4 = -72.532 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.52
r 6 = 9.186 (aspherical surface) d 6 = 2.10 n d3 = 1.58913 ν d3 = 61.25
r 7 = -16.117 (aspherical surface) d 7 = 0.10
r 8 = 4.700 d 8 = 2.01 n d4 = 1.60311 ν d4 = 60.64
r 9 = 7.781 d 9 = 0.70 n d5 = 1.84666 ν d5 = 23.78
r 10 = 3.277 d 10 = (variable)
r 11 = -76.478 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -8.749 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.96 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.60
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.80
r 17 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 4.269
A 4 = -1.87599 × 10 -4
A 6 = 7.64679 × 10 -7
A 8 = -1.59780 × 10 -7
A 10 = -3.77931 × 10 -9
4th surface K = 0.000
A 4 = -4.24687 × 10 -4
A 6 = 2.52348 × 10 -6
A 8 = -7.16449 × 10 -7
A 10 = 2.59036 × 10 -8
A 12 = -5.82742 × 10 -10
6th page K = 2.867
A 4 = -8.17109 × 10 -4
A 6 = -2.79925 × 10 -5
A 8 = -1.75116 × 10 -6
A 10 = 0
Surface 7 K = 8.841
A 4 = 3.16055 × 10 -4
A 6 = -2.51075 × 10 -5
A 8 = 1.10436 × 10 -7
A 10 = 0
Surface 12 K = 0.000
A 4 = 5.95690 × 10 -4
A 6 = -1.46363 × 10 -5
A 8 = 2.97205 × 10 -7
A 10 = 1.48953 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 6.450 11.020 18.590
F NO 2.65 3.53 5.00
ω (°) 31.593 18.767 11.388
d 4 13.63 6.33 2.10
d 10 5.48 10.41 18.01
d 12 1.96 1.57 0.98.


実施例2
1 = 40.804 d1 = 0.90 nd1 =1.80400 νd1 =46.57
2 = 6.218 d2 = 1.95
3 = 15.243 (非球面) d3 = 2.00 nd2 =1.84666 νd2 =23.78
4 = 43.725 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = 0.10
6 = 45.000 (非球面) d6 = 2.00 nd3 =1.58313 νd3 =59.38
7 = -7.732 (非球面) d7 = 0.20
8 = 4.026 d8 = 1.80 nd4 =1.60311 νd4 =60.64
9 = 6.815 d9 = 0.80 nd5 =1.84666 νd5 =23.78
10= 3.066 d10= (可変)
11= 60.253 d11= 2.51 nd6 =1.52542 νd6 =55.78
12= -10.285 (非球面) d12= (可変)
13= ∞ d13= 0.96 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.80
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.80
17= ∞(像面)
非球面係数
第3面
K = -0.838
4 = -6.54143×10-5
6 = -3.82957×10-5
8 = 2.14452×10-6
10= -4.23358×10-8
第4面
K = 0.000
4 = -3.73404×10-4
6 = -4.02332×10-5
8 = 2.38711×10-6
10= -5.34810×10-8
第6面
K = -4.773
4 = -1.63350×10-3
6 = -6.65602×10-5
8 = -2.50994×10-6
10= 0
第7面
K = 2.932
4 = -5.94103×10-5
6 = -2.65976×10-5
8 = 2.33540×10-6
10= 0
第12面
K = -0.704
4 = 1.73265×10-4
6 = 1.85462×10-6
8 = -1.45809×10-7
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.460 11.000 18.590
NO 3.00 3.91 5.33
ω(°) 30.396 18.131 10.907
4 14.25 6.40 1.40
10 5.76 10.11 16.81
12 1.18 1.00 1.56 。

Example 2
r 1 = 40.804 d 1 = 0.90 n d1 = 1.80400 ν d1 = 46.57
r 2 = 6.218 d 2 = 1.95
r 3 = 15.243 (aspherical surface) d 3 = 2.00 n d2 = 1.84666 ν d2 = 23.78
r 4 = 43.725 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.10
r 6 = 45.000 (aspherical surface) d 6 = 2.00 n d3 = 1.58313 ν d3 = 59.38
r 7 = -7.732 (aspherical surface) d 7 = 0.20
r 8 = 4.026 d 8 = 1.80 n d4 = 1.60311 ν d4 = 60.64
r 9 = 6.815 d 9 = 0.80 n d5 = 1.84666 ν d5 = 23.78
r 10 = 3.066 d 10 = (variable)
r 11 = 60.253 d 11 = 2.51 n d6 = 1.52542 ν d6 = 55.78
r 12 = -10.285 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.96 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.80
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.80
r 17 = ∞ (image plane)
Aspheric coefficient 3rd surface K = -0.838
A 4 = -6.54143 × 10 -5
A 6 = -3.82957 × 10 -5
A 8 = 2.14452 × 10 -6
A 10 = -4.23358 × 10 -8
4th surface K = 0.000
A 4 = -3.73404 × 10 -4
A 6 = -4.02332 × 10 -5
A 8 = 2.38711 × 10 -6
A 10 = -5.34810 × 10 -8
6th surface K = -4.773
A 4 = -1.63350 × 10 -3
A 6 = -6.65602 × 10 -5
A 8 = -2.50994 × 10 -6
A 10 = 0
Surface 7 K = 2.932
A 4 = -5.94103 × 10 -5
A 6 = -2.65976 × 10 -5
A 8 = 2.33540 × 10 -6
A 10 = 0
Surface 12 K = -0.704
A 4 = 1.73265 × 10 -4
A 6 = 1.85462 × 10 -6
A 8 = -1.45809 × 10 -7
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.460 11.000 18.590
F NO 3.00 3.91 5.33
ω (°) 30.396 18.131 10.907
d 4 14.25 6.40 1.40
d 10 5.76 10.11 16.81
d 12 1.18 1.00 1.56.


実施例3
1 = 300.050 d1 = 0.90 nd1 =1.80400 νd1 =46.57
2 = 6.450 d2 = 1.80
3 = 15.428 (非球面) d3 = 2.00 nd2 =1.82114 νd2 =24.06
4 = 90.475 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 31.500 (非球面) d6 = 1.80 nd3 =1.48749 νd3 =70.44
7 = -8.912 (非球面) d7 = 0.20
8 = 5.451 d8 = 2.51 nd4 =1.67790 νd4 =55.34
9 = -8.486 d9 = 0.80 nd5 =1.59270 νd5 =35.31
10= 3.360 d10= (可変)
11= 221.891 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -10.272 (非球面) d12= (可変)
13= ∞ d13= 0.96 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.80
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.76
17= ∞(像面)
非球面係数
第3面
K = -0.140
4 = -1.53377×10-4
6 = -4.69559×10-6
8 = -3.81572×10-7
10= 1.21558×10-8
第4面
K = 0.000
4 = -3.83875×10-4
6 = -1.32313×10-5
8 = 1.05382×10-7
10= -1.33184×10-9
第6面
K =-222.219
4 = -4.46470×10-4
6 = -1.56452×10-4
8 = 4.01062×10-6
10= 0
第7面
K = 2.239
4 = -2.75746×10-4
6 = -6.35509×10-5
8 = 2.00725×10-6
10= 0
第12面
K = -1.266
4 = 1.46615×10-4
6 = -1.81005×10-6
8 = -4.95228×10-8
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.447 10.973 18.553
NO 2.99 3.96 5.44
ω(°) 31.014 18.295 10.961
4 13.53 6.29 1.50
10 5.50 10.43 17.27
12 1.67 1.00 1.17 。

Example 3
r 1 = 300.050 d 1 = 0.90 n d1 = 1.80400 ν d1 = 46.57
r 2 = 6.450 d 2 = 1.80
r 3 = 15.428 (aspherical surface) d 3 = 2.00 n d2 = 1.82114 ν d2 = 24.06
r 4 = 90.475 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 31.500 (aspherical surface) d 6 = 1.80 n d3 = 1.48749 ν d3 = 70.44
r 7 = -8.912 (aspherical surface) d 7 = 0.20
r 8 = 5.451 d 8 = 2.51 n d4 = 1.67790 ν d4 = 55.34
r 9 = -8.486 d 9 = 0.80 n d5 = 1.59270 ν d5 = 35.31
r 10 = 3.360 d 10 = (variable)
r 11 = 221.891 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -10.272 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.96 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.80
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.76
r 17 = ∞ (image plane)
Aspheric coefficient 3rd surface K = -0.140
A 4 = -1.53377 × 10 -4
A 6 = -4.69559 × 10 -6
A 8 = -3.81572 × 10 -7
A 10 = 1.21558 × 10 -8
4th surface K = 0.000
A 4 = -3.83875 × 10 -4
A 6 = -1.32313 × 10 -5
A 8 = 1.05382 × 10 -7
A 10 = -1.33184 × 10 -9
6th surface K = -222.219
A 4 = -4.46470 × 10 -4
A 6 = -1.56452 × 10 -4
A 8 = 4.01062 × 10 -6
A 10 = 0
Surface 7 K = 2.239
A 4 = -2.75746 × 10 -4
A 6 = -6.35509 × 10 -5
A 8 = 2.00725 × 10 -6
A 10 = 0
Surface 12 K = -1.266
A 4 = 1.46615 × 10 -4
A 6 = -1.81005 × 10 -6
A 8 = -4.95228 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.447 10.973 18.553
F NO 2.99 3.96 5.44
ω (°) 31.014 18.295 10.961
d 4 13.53 6.29 1.50
d 10 5.50 10.43 17.27
d 12 1.67 1.00 1.17.


実施例4
1 = 268.142 d1 = 0.90 nd1 =1.83481 νd1 =42.71
2 = 6.466 d2 = 2.05
3 = 23.852 (非球面) d3 = 2.25 nd2 =1.84666 νd2 =23.78
4 = -115.636 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = 0.52
6 = 9.836 (非球面) d6 = 2.10 nd3 =1.58913 νd3 =61.14
7 = -14.876 (非球面) d7 = 0.10
8 = 4.700 d8 = 2.01 nd4 =1.60311 νd4 =60.64
9 = 7.840 d9 = 0.70 nd5 =1.84666 νd5 =23.78
10= 3.321 d10= (可変)
11= -234.912 d11= 2.23 nd6 =1.52542 νd6 =55.78
12= -9.384 (非球面) d12= (可変)
13= ∞ d13= 0.96 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.60
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.80
17= ∞(像面)
非球面係数
第3面
K = 4.986
4 = -1.57553×10-4
6 = -2.56359×10-6
8 = -2.06881×10-7
10= -1.96672×10-9
第4面
K = 0.000
4 = -3.80671×10-4
6 = -3.35620×10-7
8 = -7.60214×10-7
10= 2.91748×10-8
12= -6.16124×10-10
第6面
K = 2.683
4 = -7.48363×10-4
6 = -3.47002×10-5
8 = -1.28246×10-6
10= 0
第7面
K = 5.711
4 = 1.87600×10-4
6 = -3.25799×10-5
8 = -5.16557×10-8
10= 0
第12面
K = 0.000
4 = 6.90315×10-4
6 = -3.12977×10-5
8 = 1.51283×10-6
10= -3.12539×10-8
ズームデータ(∞)
WE ST TE
f (mm) 6.450 11.000 18.590
NO 2.66 3.53 5.00
ω(°) 30.383 17.966 10.838
4 13.70 6.34 2.10
10 5.60 10.43 18.08
12 1.90 1.60 1.04 。

Example 4
r 1 = 268.142 d 1 = 0.90 n d1 = 1.83481 ν d1 = 42.71
r 2 = 6.466 d 2 = 2.05
r 3 = 23.852 (aspherical surface) d 3 = 2.25 n d2 = 1.84666 ν d2 = 23.78
r 4 = -115.636 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.52
r 6 = 9.836 (aspherical surface) d 6 = 2.10 n d3 = 1.58913 ν d3 = 61.14
r 7 = -14.876 (aspherical surface) d 7 = 0.10
r 8 = 4.700 d 8 = 2.01 n d4 = 1.60311 ν d4 = 60.64
r 9 = 7.840 d 9 = 0.70 n d5 = 1.84666 ν d5 = 23.78
r 10 = 3.321 d 10 = (variable)
r 11 = -234.912 d 11 = 2.23 n d6 = 1.52542 ν d6 = 55.78
r 12 = -9.384 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.96 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.60
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.80
r 17 = ∞ (image plane)
Aspheric coefficient 3rd surface K = 4.986
A 4 = -1.57553 × 10 -4
A 6 = -2.56359 × 10 -6
A 8 = -2.06881 × 10 -7
A 10 = -1.96672 × 10 -9
4th surface K = 0.000
A 4 = -3.80671 × 10 -4
A 6 = -3.35620 × 10 -7
A 8 = -7.60214 × 10 -7
A 10 = 2.91748 × 10 -8
A 12 = -6.16124 × 10 -10
6th surface K = 2.683
A 4 = -7.48363 × 10 -4
A 6 = -3.47002 × 10 -5
A 8 = -1.28246 × 10 -6
A 10 = 0
Surface 7 K = 5.711
A 4 = 1.87600 × 10 -4
A 6 = -3.25799 × 10 -5
A 8 = -5.16557 × 10 -8
A 10 = 0
Surface 12 K = 0.000
A 4 = 6.90315 × 10 -4
A 6 = -3.12977 × 10 -5
A 8 = 1.51283 × 10 -6
A 10 = -3.12539 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 6.450 11.000 18.590
F NO 2.66 3.53 5.00
ω (°) 30.383 17.966 10.838
d 4 13.70 6.34 2.10
d 10 5.60 10.43 18.08
d 12 1.90 1.60 1.04.


実施例5
1 = 52.387 d1 = 0.80 nd1 =1.83481 νd1 =42.71
2 = 6.600 d2 = 1.90
3 = 18.650 (非球面) d3 = 2.25 nd2 =2.00170 νd2 =20.65
4 = 49.640 (非球面) d4 = (可変)
5 = ∞(絞り) d5 = 0.52
6 = 12.288 (非球面) d6 = 2.10 nd3 =1.58913 νd3 =61.24
7 = -12.431 (非球面) d7 = 0.10
8 = 4.700 d8 = 2.00 nd4 =1.60311 νd4 =60.64
9 = 7.433 d9 = 0.70 nd5 =1.84666 νd5 =23.78
10= 3.471 d10= (可変)
11= 590.423 d11= 2.20 nd6 =1.52542 νd6 =55.78
12= -9.819 (非球面) d12= (可変)
13= ∞ d13= 0.96 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.60
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.79
17= ∞(像面)
非球面係数
第3面
K =-17.705
4 = -7.27267×10-5
6 = -8.24112×10-6
8 = 7.94390×10-8
10= 8.88090×10-10
第4面
K = 0.000
4 = -6.44514×10-4
6 = 1.98569×10-6
8 = -2.56686×10-7
10= 1.44795×10-8
12= -3.41244×10-10
第6面
K = 2.651
4 = -4.50048×10-4
6 = -8.11323×10-5
8 = 2.50010×10-6
10= 0
第7面
K = 9.035
4 = 7.46290×10-4
6 = -7.81287×10-5
8 = 5.71733×10-6
10= 0
第12面
K = 0.000
4 = 3.35417×10-4
6 = -7.88925×10-6
8 = 2.00340×10-7
10= -8.39908×10-10
ズームデータ(∞)
WE ST TE
f (mm) 6.450 11.000 18.590
NO 2.69 3.55 5.00
ω(°) 31.677 18.372 11.052
4 14.08 6.77 2.59
10 5.56 10.33 17.91
12 1.94 1.65 1.08 。

Example 5
r 1 = 52.387 d 1 = 0.80 n d1 = 1.83481 ν d1 = 42.71
r 2 = 6.600 d 2 = 1.90
r 3 = 18.650 (aspherical surface) d 3 = 2.25 n d2 = 2.00170 ν d2 = 20.65
r 4 = 49.640 (aspherical surface) d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.52
r 6 = 12.288 (aspherical surface) d 6 = 2.10 n d3 = 1.58913 ν d3 = 61.24
r 7 = -12.431 (aspherical surface) d 7 = 0.10
r 8 = 4.700 d 8 = 2.00 n d4 = 1.60311 ν d4 = 60.64
r 9 = 7.433 d 9 = 0.70 n d5 = 1.84666 ν d5 = 23.78
r 10 = 3.471 d 10 = (variable)
r 11 = 590.423 d 11 = 2.20 n d6 = 1.52542 ν d6 = 55.78
r 12 = -9.819 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.96 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.60
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.79
r 17 = ∞ (image plane)
Aspheric coefficient 3rd surface K = -17.705
A 4 = -7.27267 × 10 -5
A 6 = -8.24112 × 10 -6
A 8 = 7.94390 × 10 -8
A 10 = 8.88090 × 10 -10
4th surface K = 0.000
A 4 = -6.44514 × 10 -4
A 6 = 1.98569 × 10 -6
A 8 = -2.56686 × 10 -7
A 10 = 1.44795 × 10 -8
A 12 = -3.41244 × 10 -10
6th page K = 2.651
A 4 = -4.50048 × 10 -4
A 6 = -8.11323 × 10 -5
A 8 = 2.50010 × 10 -6
A 10 = 0
Surface 7 K = 9.035
A 4 = 7.46290 × 10 -4
A 6 = -7.81287 × 10 -5
A 8 = 5.71733 × 10 -6
A 10 = 0
Surface 12 K = 0.000
A 4 = 3.35417 × 10 -4
A 6 = -7.88925 × 10 -6
A 8 = 2.00340 × 10 -7
A 10 = -8.39908 × 10 -10
Zoom data (∞)
WE ST TE
f (mm) 6.450 11.000 18.590
F NO 2.69 3.55 5.00
ω (°) 31.677 18.372 11.052
d 4 14.08 6.77 2.59
d 10 5.56 10.33 17.91
d 12 1.94 1.65 1.08.

以上の実施例1〜5の無限遠物点合焦時の収差図をそれぞれ図6〜図10に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。各図中、“FIY”は最大像高を示す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 5 are shown in FIGS. In these aberration diagrams, (a) is the wide angle end, (b) is the intermediate state, (c) is the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the telephoto end. ). In each figure, “FIY” indicates the maximum image height.

次に、上記各実施例における画角、条件式(1−1)〜(3−1)の値、及び、f1G、f2Gの値を示す。

条件式 実施例1 実施例2 実施例3 実施例4 実施例5
(1−1) 1.83481 1.80400 1.80400 1.83481 1.83481
(1−2) 1.82114 1.84666 1.82114 1.84666 2.00170
(A) 0.76 1.72 1.15 0.76 1.32
(2) 0.11 0.12 0.12 0.11 0.11
(2−1) 0.064 0.074 0.074 0.064 0.065
(3) 1.00 0.96 1.00 1.00 1.02
(3−1) -0.46 -0.41 -0.44 -0.46 -0.46
1G -13.93 -15.21 -14.58 -14.03 -14.20
2G 10.89 10.76 10.75 10.9 10.78
Next, the angle of view, the values of conditional expressions (1-1) to (3-1), and the values of f 1G and f 2G in each of the above embodiments will be shown.

Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5
(1-1) 1.83481 1.80400 1.80400 1.83481 1.83481
(1-2) 1.82114 1.84666 1.82114 1.84666 2.00170
(A) 0.76 1.72 1.15 0.76 1.32
(2) 0.11 0.12 0.12 0.11 0.11
(2-1) 0.064 0.074 0.074 0.064 0.065
(3) 1.00 0.96 1.00 1.00 1.02
(3-1) -0.46 -0.41 -0.44 -0.46 -0.46
f 1G -13.93 -15.21 -14.58 -14.03 -14.20
f 2G 10.89 10.76 10.75 10.9 10.78
.

図11〜図13は、以上のようなズームレンズを撮影光学系41に組み込んだ本発明によるデジタルカメラの構成の概念図を示す。図11はデジタルカメラ40の外観を示す前方斜視図、図12は同後方正面図、図13はデジタルカメラ40の構成を示す模式的な断面図である。ただし、図11と図13においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図13の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、波長域制限コートを施したローパスフィルタFとカバーガラスCを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   FIGS. 11 to 13 are conceptual diagrams of the configuration of a digital camera according to the present invention in which the zoom lens as described above is incorporated in the photographing optical system 41. FIG. 11 is a front perspective view showing the appearance of the digital camera 40, FIG. 12 is a rear front view thereof, and FIG. 13 is a schematic cross-sectional view showing the configuration of the digital camera 40. However, in FIGS. 11 and 13, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, When the photographing optical system 41 is retracted, including the setting change switch 62, the photographing optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60 by sliding the cover 60. When the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 is brought into the non-collapsed state of FIG. 13, and when the shutter button 45 disposed on the upper part of the camera 40 is pressed, the photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface of the CCD 49 through a low-pass filter F and a cover glass C that are provided with a wavelength band limiting coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と2つのプリズムからなり、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and two prisms, and includes a zoom optical system whose focal length changes in conjunction with the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 that is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

このように構成されたデジタルカメラ40は、撮影光学系41が 本発明により、沈胴時に厚みを極めて薄く、高変倍で全変倍域で結像性能を極めて安定的であるあるので、高性能・小型化・広角化が実現できる。   The digital camera 40 configured in this manner has a high performance because the photographing optical system 41 is extremely thin when retracted, and the imaging performance is extremely stable at high zooming and in all zooming ranges.・ Compact and wide angle can be realized.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 本発明のズームレンズの実施例2の図1と同様の図である。It is the same figure as FIG. 1 of Example 2 of the zoom lens of this invention. 本発明のズームレンズの実施例3の図1と同様の図である。It is the same figure as FIG. 1 of Example 3 of the zoom lens of this invention. 本発明のズームレンズの実施例4の図1と同様の図である。It is the same figure as FIG. 1 of Example 4 of the zoom lens of this invention. 本発明のズームレンズの実施例5の図1と同様の図である。It is the same figure as FIG. 1 of Example 5 of the zoom lens of this invention. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図11のデジタルカメラの後方斜視図である。FIG. 12 is a rear perspective view of the digital camera of FIG. 11. 図11のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
F…ローパスフィルタ
C…カバーガラス
I…像面
P…平面部
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group S ... Aperture stop F ... Low pass filter C ... Cover glass I ... Image plane P ... Plane part E ... Observer eyeball 40 ... Digital camera 41 ... Photography Optical system 42 ... Shooting optical path 43 ... Viewfinder optical system 44 ... Viewfinder optical path 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Viewfinder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch

Claims (18)

物体側より順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群と正の屈折力の第3レンズ群からなり、前記各レンズ群の間隔を変化させて変倍を行うズームレンズにおいて、
前記第1レンズ群が負レンズと正レンズの2枚で構成され、前記第2レンズ群が2枚の正レンズと1枚の負レンズから構成され、前記第3レンズ群が1枚の正レンズで構成されると共に、以下の条件式を満たすことを特徴とするズームレンズ。
1 >1.8 ・・・(1−1)
2 >1.8 ・・・(1−2)
ただし、n1 は第1レンズ群の負レンズの屈折率、n2 は第1レンズ群の正レンズの屈折率である。
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, and changing the distance between the lens groups, In the zoom lens to perform
The first lens group includes two negative lenses and a positive lens, the second lens group includes two positive lenses and one negative lens, and the third lens group includes one positive lens. And a zoom lens characterized by satisfying the following conditional expression:
n 1 > 1.8 (1-1)
n 2 > 1.8 (1-2)
Here, n 1 is the refractive index of the negative lens of the first lens group, and n 2 is the refractive index of the positive lens of the first lens group.
前記第1レンズ群が、物体側から順に、像面側に凹面を向けた負レンズと物体側に凸面を向けた正レンズとで構成され、以下の条件を満足することを特徴とする請求項1記載のズームレンズ。
0.3<|f1G/R1 +f1G/R3 +f1G/R4 |<1.9 ・・・(A)
ただし、f1Gは第1レンズ群の焦点距離、
1 は第1レンズ群負レンズの物体側面の近軸曲率半径絶対値、
3 は第1レンズ群正レンズの物体側面の近軸曲率半径絶対値、
4 は第1レンズ群正レンズの像面側面の近軸曲率半径絶対値、
である。
The first lens group includes, in order from the object side, a negative lens having a concave surface facing the image surface side and a positive lens having a convex surface facing the object side, and satisfies the following conditions: The zoom lens according to 1.
0.3 <| f 1G / R 1 + f 1G / R 3 + f 1G / R 4 | <1.9 (A)
Where f 1G is the focal length of the first lens group,
R 1 is the absolute value of the paraxial radius of curvature of the object side surface of the first lens unit negative lens;
R 3 is the absolute value of the paraxial radius of curvature of the object side surface of the first lens unit positive lens;
R 4 is the absolute value of the paraxial radius of curvature of the image side surface of the first lens unit positive lens;
It is.
前記第1レンズ群中の2枚のレンズは相互のレンズの相対的な位置決めを行う位置決め部分を持ち、前記位置決め部分において前記レンズ相互が接し、かつ、有効径内では空間を挟んでいることを特徴とする請求項1又は2記載のズームレンズ。 The two lenses in the first lens group have a positioning portion for positioning the lenses relative to each other, the lenses are in contact with each other at the positioning portion, and a space is sandwiched within the effective diameter. The zoom lens according to claim 1 or 2, characterized in that: 前記第1レンズ群は、物体側に凸の負のメニスカスレンズと正レンズから構成され、前記第2レンズ群は、物体側より順に、正レンズ、正レンズと負レンズの接合レンズから構成されていることを特徴とする請求項1〜3の何れか1項記載のズームレンズ。 The first lens group includes a negative meniscus lens convex to the object side and a positive lens, and the second lens group includes a positive lens and a cemented lens of a positive lens and a negative lens in order from the object side. The zoom lens according to claim 1, wherein the zoom lens is a zoom lens. 前記第1レンズ群の正レンズが両面非球面であり、前記第3レンズ群が1枚の正レンズからなり、その像面側の面が非球面であることを特徴とする請求項1〜4の何れか1項記載のズームレンズ。 5. The positive lens of the first lens group is a double-sided aspheric surface, the third lens group is composed of a single positive lens, and the image side surface thereof is an aspherical surface. The zoom lens according to any one of the above. 前記第2レンズ群中の接合レンズの負レンズが以下の条件式を満たすことを特徴とする請求項4記載のズームレンズ。
2 /fw <0.2 ・・・(2)
ただし、D2 は第2レンズ群中の接合レンズの負レンズの中肉厚、
w は広角端での全系焦点距離、
である。
The zoom lens according to claim 4, wherein the negative lens of the cemented lens in the second lens group satisfies the following conditional expression.
D 2 / f w <0.2 (2)
D 2 is the thickness of the negative lens of the cemented lens in the second lens group,
f w is the focal length of the entire system at the wide-angle end,
It is.
前記第1レンズ群の負レンズが以下の条件式を満足することを特徴とする請求項1〜6の何れか1項記載のズームレンズ。
0.9<R2 /fw <1.03 ・・・(3)
ただし、R2 は第1レンズ群中の負レンズの像面側の近軸曲率半径、
w は広角端での全系焦点距離、
である。
The zoom lens according to claim 1, wherein the negative lens of the first lens group satisfies the following conditional expression.
0.9 <R 2 / f w <1.03 (3)
Where R 2 is the paraxial radius of curvature on the image plane side of the negative lens in the first lens group,
f w is the focal length of the entire system at the wide-angle end,
It is.
前記第3レンズ群の正レンズがプラスチックレンズであることを特徴とする請求項6記載のズームレンズ。 The zoom lens according to claim 6, wherein the positive lens of the third lens group is a plastic lens. 前記第2レンズ群の最も物体側の正レンズが非球面レンズであることを特徴とする請求項1〜8の何れか1項記載のズームレンズ。 The zoom lens according to any one of claims 1 to 8, wherein a positive lens closest to the object side in the second lens group is an aspherical lens. 前記第2レンズ群の最も物体側のレンズよりもさらに物体側に、前記第2レンズ群と一体的に移動する絞りを有することを特徴とする請求項1〜9の何れか1項記載のズームレンズ。 The zoom according to any one of claims 1 to 9, further comprising a stop that moves integrally with the second lens group, further on the object side than the lens closest to the object side of the second lens group. lens. 最も物体側に配され負の屈折力を持つ第1レンズ群を含む複数のレンズ群からなり、各レンズ群間隔を変化させて変倍を行うズームレンズにおいて、
前記第1レンズ群は、物体側から順に、負屈折力の第1レンズと正屈折力の第2レンズで構成され、前記第1レンズの像面側面は有効径外に光軸と垂直な平面部を有し、前記第2レンズの物体側面は有効径外に光軸と垂直な平面部を有し、前記第1レンズの平面部と前記第2レンズ平面部はお互いに接することを特徴とするズームレンズ。
In a zoom lens that includes a plurality of lens groups including a first lens group that is disposed closest to the object side and has a negative refractive power, and performs zooming by changing the interval between the lens groups,
The first lens group includes, in order from the object side, a first lens having a negative refractive power and a second lens having a positive refractive power, and the image surface side surface of the first lens is a plane perpendicular to the optical axis outside the effective diameter. And the object side surface of the second lens has a plane part outside the effective diameter and perpendicular to the optical axis, and the plane part of the first lens and the second lens plane part are in contact with each other. Zoom lens to be used.
前記第1レンズと前記第2レンズは何れか一方又は両方がガラスの成形レンズからなり、
前記第1レンズの像面側面は有効径外にその面と一体で成形された光軸と垂直な平面部を有し、前記第2レンズの物体側面は有効径外にその面と一体で成形された光軸と垂直な平面部を有し、前記第1レンズの平面部と前記第2レンズ平面部はお互いに接するように組み込まれていることを特徴とする請求項11記載のズームレンズ。
One or both of the first lens and the second lens are formed of a glass molded lens,
The image lens side surface of the first lens has a plane portion perpendicular to the optical axis formed integrally with the surface outside the effective diameter, and the object side surface of the second lens is molded integrally with the surface outside the effective diameter. 12. The zoom lens according to claim 11, further comprising a plane portion perpendicular to the optical axis, wherein the plane portion of the first lens and the second lens plane portion are assembled so as to contact each other.
前記第2レンズの物体側の面が光軸から滑らかに連続した形状にて前記平面部が形成されていることを特徴とする請求項11又は12記載のズームレンズ。 13. The zoom lens according to claim 11, wherein the planar portion is formed such that the object-side surface of the second lens is smoothly continuous from the optical axis. 前記第1レンズ群の負の第1レンズの屈折率をn1 、正の第2レンズの屈折力をn2 としたときに、以下の条件式を満足することを特徴とする請求項11〜13の何れか1項記載のズームレンズ。
1 >1.8 ・・・(1−1)
2 >1.8 ・・・(1−2)
The following conditional expressions are satisfied, where n 1 is the refractive index of the negative first lens of the first lens group and n 2 is the refractive power of the positive second lens: 14. The zoom lens according to any one of items 13.
n 1 > 1.8 (1-1)
n 2 > 1.8 (1-2)
物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群で構成されていることを特徴とする請求項11〜14の何れか1項記載のズームレンズ。 The zoom lens according to claim 11, wherein the zoom lens includes a negative first lens group, a positive second lens group, and a positive third lens group in order from the object side. 前記第2レンズ群が2枚の正レンズと1枚の負レンズから構成され、前記第3レンズ群が1枚の正レンズで構成されると共に、前記第1レンズ群中の第2レンズが両面非球面であり、かつ、前記第3レンズ群中の正レンズが非球面レンズであることを特徴とする請求項15記載のズームレンズ。 The second lens group is composed of two positive lenses and one negative lens, the third lens group is composed of one positive lens, and the second lens in the first lens group is double-sided. 16. The zoom lens according to claim 15, wherein the zoom lens is an aspheric surface, and the positive lens in the third lens group is an aspheric lens. 前記第1レンズ群は、物体側に凸の負のメニスカスレンズと正レンズから構成され、前記第2レンズ群は、物体側より順に、正レンズ、正レンズと負レンズの接合レンズから構成されていることを特徴とする請求項11〜16の何れか1項記載のズームレンズ。 The first lens group includes a negative meniscus lens convex to the object side and a positive lens, and the second lens group includes a positive lens and a cemented lens of a positive lens and a negative lens in order from the object side. The zoom lens according to claim 11, wherein the zoom lens is a zoom lens. 請求項1から17の何れか1項記載のズームレンズと、その像側に配され、前記ズームレンズにより形成される像を電気信号に変換する撮像素子とを備えたことを特徴とする撮像装置。 18. An image pickup apparatus comprising: the zoom lens according to claim 1; and an image pickup element that is disposed on an image side of the zoom lens and converts an image formed by the zoom lens into an electric signal. .
JP2005031560A 2005-02-08 2005-02-08 Zoom lens and imaging apparatus using the same Pending JP2006220715A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005031560A JP2006220715A (en) 2005-02-08 2005-02-08 Zoom lens and imaging apparatus using the same
US11/328,348 US7339749B2 (en) 2005-02-08 2006-01-10 Zoom lens and imaging system incorporating it
US11/983,499 US7529037B2 (en) 2005-02-08 2007-11-09 Zoom lens and imaging system incorporating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031560A JP2006220715A (en) 2005-02-08 2005-02-08 Zoom lens and imaging apparatus using the same

Publications (1)

Publication Number Publication Date
JP2006220715A true JP2006220715A (en) 2006-08-24

Family

ID=36983109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031560A Pending JP2006220715A (en) 2005-02-08 2005-02-08 Zoom lens and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP2006220715A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179015A (en) * 2005-11-30 2007-07-12 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2007272216A (en) * 2006-03-09 2007-10-18 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2007272215A (en) * 2006-03-09 2007-10-18 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2008181118A (en) * 2006-12-28 2008-08-07 Hoya Corp Standard zoom lens system
JP2008233871A (en) * 2007-02-20 2008-10-02 Fujinon Corp Three-group zoom lens and imaging device
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010060903A (en) * 2008-09-04 2010-03-18 Olympus Imaging Corp Zoom lens and image pickup device including the same
JP2010122625A (en) * 2008-11-21 2010-06-03 Sony Corp Zoom lens and imaging apparatus
JP2010122457A (en) * 2008-11-19 2010-06-03 Sony Corp Zoom lens and image pickup device
US7742235B2 (en) 2007-05-29 2010-06-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7755847B2 (en) 2007-05-29 2010-07-13 Panasonic Corporation Zoom lens system, imaging device and camera

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
JP2003140046A (en) * 2001-10-30 2003-05-14 Nidec Copal Corp Zoom lens
JP2004004765A (en) * 2002-04-19 2004-01-08 Pentax Corp Zoom lens system
JP2004013169A (en) * 2003-08-08 2004-01-15 Ricoh Co Ltd Variable magnification group in zoom lens, zoom lens, and camera system
JP2004093647A (en) * 2002-08-29 2004-03-25 Fuji Photo Optical Co Ltd Zoom lens constituted of three groups
JP2004205813A (en) * 2002-12-25 2004-07-22 Nikon Corp Zoom lens
JP2004240222A (en) * 2003-02-06 2004-08-26 Fuji Photo Optical Co Ltd Zoom lens
JP2006078581A (en) * 2004-09-07 2006-03-23 Sony Corp Zoom lens and imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
JP2003140046A (en) * 2001-10-30 2003-05-14 Nidec Copal Corp Zoom lens
JP2004004765A (en) * 2002-04-19 2004-01-08 Pentax Corp Zoom lens system
JP2004093647A (en) * 2002-08-29 2004-03-25 Fuji Photo Optical Co Ltd Zoom lens constituted of three groups
JP2004205813A (en) * 2002-12-25 2004-07-22 Nikon Corp Zoom lens
JP2004240222A (en) * 2003-02-06 2004-08-26 Fuji Photo Optical Co Ltd Zoom lens
JP2004013169A (en) * 2003-08-08 2004-01-15 Ricoh Co Ltd Variable magnification group in zoom lens, zoom lens, and camera system
JP2006078581A (en) * 2004-09-07 2006-03-23 Sony Corp Zoom lens and imaging device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179015A (en) * 2005-11-30 2007-07-12 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2007272216A (en) * 2006-03-09 2007-10-18 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2007272215A (en) * 2006-03-09 2007-10-18 Matsushita Electric Ind Co Ltd Zoom lens system, imaging device and camera
JP2008181118A (en) * 2006-12-28 2008-08-07 Hoya Corp Standard zoom lens system
JP2008233871A (en) * 2007-02-20 2008-10-02 Fujinon Corp Three-group zoom lens and imaging device
US7948685B2 (en) 2007-05-29 2011-05-24 Panasonic Corporation Zoom lens system, imaging device and camera
US7742235B2 (en) 2007-05-29 2010-06-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7755847B2 (en) 2007-05-29 2010-07-13 Panasonic Corporation Zoom lens system, imaging device and camera
US7800831B2 (en) 2007-05-29 2010-09-21 Panasonic Corporation Zoom lens system, imaging device and camera
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7948684B2 (en) 2007-05-29 2011-05-24 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010060903A (en) * 2008-09-04 2010-03-18 Olympus Imaging Corp Zoom lens and image pickup device including the same
JP2010122457A (en) * 2008-11-19 2010-06-03 Sony Corp Zoom lens and image pickup device
JP4697555B2 (en) * 2008-11-19 2011-06-08 ソニー株式会社 Zoom lens and imaging device
US8218247B2 (en) 2008-11-19 2012-07-10 Sony Corporation Zoom lens and image pickup device
JP2010122625A (en) * 2008-11-21 2010-06-03 Sony Corp Zoom lens and imaging apparatus
US7957070B2 (en) 2008-11-21 2011-06-07 Sony Corporation Zoom lens and imaging apparatus
JP4697556B2 (en) * 2008-11-21 2011-06-08 ソニー株式会社 Zoom lens and imaging device

Similar Documents

Publication Publication Date Title
US7529037B2 (en) Zoom lens and imaging system incorporating it
JP5062734B2 (en) Image pickup apparatus provided with optical path reflection type zoom lens
JP2012208378A (en) Zoom lens and imaging apparatus using the same
JP4931121B2 (en) Zoom lens having a reflecting surface for reflecting an optical path and image pickup apparatus having the same
JP2006220715A (en) Zoom lens and imaging apparatus using the same
JP2009139701A (en) Zoom lens and imaging device using the same
JP2009276622A (en) Zoom lens and imaging apparatus equipped therewith
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP2007133133A (en) Zoom lens and imaging apparatus having the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP4766929B2 (en) Image pickup apparatus having an optical path folding zoom lens
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP2006301154A (en) Zoom lens and electronic imaging apparatus using the same
JP2010107566A (en) Imaging apparatus
JP2006308649A (en) Imaging apparatus
JP5067937B2 (en) Zoom lens and image pickup apparatus including the same
JP4605698B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP2002023053A (en) Zoom lens and image pickup device equipped with the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4624730B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP5186034B2 (en) Zoom lens and image pickup apparatus including the same
JP4947992B2 (en) Zoom lens and imaging apparatus using the same
JP2006194975A (en) Zoom lens and imaging apparatus using the same
JP2005024804A (en) Zoom lens, camera and personal digital assistance device
JP4605699B2 (en) Zoom lens and image pickup apparatus equipped with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Effective date: 20101116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330