WO2013027362A1 - Zoom lens system, interchangeable lens device, and camera system - Google Patents

Zoom lens system, interchangeable lens device, and camera system Download PDF

Info

Publication number
WO2013027362A1
WO2013027362A1 PCT/JP2012/005098 JP2012005098W WO2013027362A1 WO 2013027362 A1 WO2013027362 A1 WO 2013027362A1 JP 2012005098 W JP2012005098 W JP 2012005098W WO 2013027362 A1 WO2013027362 A1 WO 2013027362A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom
group
zoom lens
Prior art date
Application number
PCT/JP2012/005098
Other languages
French (fr)
Japanese (ja)
Inventor
俊一郎 吉永
恭一 宮崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013027362A1 publication Critical patent/WO2013027362A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present disclosure relates to a zoom lens system, an interchangeable lens device, and a camera system.
  • the interchangeable-lens digital camera system (hereinafter also simply referred to as “camera system”) can shoot high-quality images with high sensitivity, and has high-speed focusing and post-shooting image processing. There is an advantage that the interchangeable lens device can be easily replaced, and it has been rapidly spread in recent years.
  • an interchangeable lens device including a zoom lens system that forms an optical image so as to be variable in magnification is popular in that the focal length can be freely changed without exchanging lenses.
  • zoom lens systems having high optical performance from the wide-angle end to the telephoto end have been proposed as zoom lens systems used for interchangeable lens devices.
  • Patent Document 1 discloses a projection lens in which, among at least two moving lens groups that move at the time of zooming, the maximum moving lens group that has the maximum movement amount has at least one positive lens.
  • Patent Document 2 discloses a zoom lens having a first lens group having a negative power and a second lens group having a positive power, and the first lens group having a composite optical element including a lens element and a resin layer laminated thereon. Is disclosed.
  • the present disclosure provides a zoom lens system that has a short overall lens length, is small and lightweight, and is particularly excellent in optical performance with sufficiently corrected chromatic aberration.
  • the present disclosure also provides an interchangeable lens apparatus and a camera system including the zoom lens system.
  • the zoom lens system in the present disclosure is: Having a plurality of lens groups composed of at least one lens element; From the object side to the image side, A first lens group having negative power; A second lens group having positive power; A rear lens group comprising at least one lens group, Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group, Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2): 0.660327 ⁇ ⁇ (ng ⁇ nF) + 0.001802 ⁇ (nd ⁇ 1) ⁇ / (nF ⁇ nC) ⁇ 0.730327 (1) (Nd-1) / (nF-nC) ⁇ 50 (2) (here, ng: refractive index with respect to g-line (wavelength: 435.84 nm) of the lens elements constituting the second lens group, nF: refractive index with respect to F-line (wavelength: 486.13 nm) of the lens elements constituting the second lens
  • the interchangeable lens device in the present disclosure is: Having a plurality of lens groups composed of at least one lens element; From the object side to the image side, A first lens group having negative power; A second lens group having positive power; A rear lens group comprising at least one lens group, Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group, Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2): 0.660327 ⁇ ⁇ (ng ⁇ nF) + 0.001802 ⁇ (nd ⁇ 1) ⁇ / (nF ⁇ nC) ⁇ 0.730327 (1) (Nd-1) / (nF-nC) ⁇ 50 (2) (here, ng: refractive index with respect to g-line of lens elements constituting the second lens group, nF: refractive index with respect to the F line of the lens elements constituting the second lens group, nd: refractive index with respect to d-line of lens elements constituting the second
  • the camera system in the present disclosure is: Having a plurality of lens groups composed of at least one lens element; From the object side to the image side, A first lens group having negative power; A second lens group having positive power; A rear lens group comprising at least one lens group, Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group, Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2): 0.660327 ⁇ ⁇ (ng ⁇ nF) + 0.001802 ⁇ (nd ⁇ 1) ⁇ / (nF ⁇ nC) ⁇ 0.730327 (1) (Nd-1) / (nF-nC) ⁇ 50 (2) (here, ng: refractive index with respect to g-line of lens elements constituting the second lens group, nF: refractive index with respect to the F line of the lens elements constituting the second lens group, nd: refractive index with respect to d-line of lens elements constituting the second lens group
  • the zoom lens system according to the present disclosure has a short overall lens length, is small and lightweight, and is particularly excellent in optical performance because chromatic aberration is sufficiently corrected.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
  • FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2.
  • FIG. FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3.
  • FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4.
  • FIG. FIG. 13 is a schematic configuration diagram of an interchangeable lens digital camera system according to the fifth embodiment.
  • Embodiments 1 to 4) 1, 4, 7, and 10 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 4, 7, and 10 show the direction in which a third lens group G3, which will be described later, moves during focusing from an infinite focus state to a close object focus state.
  • the zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having negative power, a second lens group G2 having positive power, and a first lens group having negative power. 3 lens group G3.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, and the second lens group G2 and the third lens group G3. All the lens groups move in the direction along the optical axis so that the distance between them changes.
  • the zoom lens system according to Embodiment 1 by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
  • the zoom lens systems according to Embodiments 2 to 4 in order from the object side to the image side, the first lens group G1 having negative power, the second lens group G2 having positive power, and the negative power And a fourth lens group G4 having a positive power.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3,
  • the first lens group G1, the second lens group G2, and the third lens group G3 are in a direction along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 changes. Move to each.
  • the zoom lens systems according to Embodiments 3 and 4 during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group. All the lens groups are moved in the direction along the optical axis so that both the distance from G3 and the distance between the third lens group G3 and the fourth lens group G4 change.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5 in the second lens group G2.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a positive meniscus fourth lens element L4 with a convex surface facing the object side, and a negative meniscus fifth lens element L5 with a convex surface facing the object side. And a sixth lens element L6 having a biconvex shape and a seventh lens element L7 having a positive meniscus shape having a convex surface facing the object side.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces, and the seventh lens element L7 has an aspheric image side surface.
  • an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5.
  • the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
  • the third lens group G3 includes only a biconcave eighth lens element L8.
  • the eighth lens element L8 has two aspheric surfaces.
  • the zoom lens system according to Embodiment 1 during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously to the object side, and the third lens group G3 moves substantially monotonically to the object side. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 changes. Move along each.
  • the third lens group G3 is a focusing lens group that moves along the optical axis during focusing from an infinitely focused state to a close object focused state, The third lens group G3 moves toward the image side along the optical axis during focusing.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
  • the second lens group G2 in order from the object side to the image side, includes a biconvex fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an object. And a plano-convex seventh lens element L7 having a convex surface directed to the side.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5.
  • the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
  • the third lens group G3 includes only a biconcave eighth lens element L8.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a biconvex ninth lens element L9.
  • the ninth lens element L9 has two aspheric surfaces.
  • the zoom lens system according to Embodiment 2 during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously toward the object side, the third lens group G3 moves along a locus convex toward the object side, and the fourth lens group G4 is fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, and the third lens group G3 move along the optical axis so that the distance from the group G4 changes.
  • the third lens group G3 is a focusing lens group that moves along the optical axis during focusing from an infinity in-focus state to a close object in-focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
  • the second lens group G2 in order from the object side to the image side, includes a biconvex fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an object. And a plano-convex seventh lens element L7 having a convex surface directed to the side.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5.
  • the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
  • the third lens group G3 includes only a biconcave eighth lens element L8.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a positive meniscus ninth lens element L9 with the convex surface facing the object side.
  • the ninth lens element L9 has two aspheric surfaces.
  • the zoom lens system according to Embodiment 3 during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves monotonously to the image side, and the second lens group G2 monotonously Moving to the object side, the third lens group G3 monotonously moves to the image side, and the fourth lens group G4 monotonously moves to the image side. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 decreases, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 changes.
  • the third lens group G3 is a focusing lens group that moves along an optical axis in focusing from an infinite focus state to a close object focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the image side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side.
  • the first lens element L1 has an aspheric image side surface
  • the second lens element L2 has both aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex fourth lens element L4, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a biconvex second lens element L5. 6 lens elements L6 and a biconvex seventh lens element L7. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5. In the second lens group G2, the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
  • the third lens group G3 comprises solely a negative meniscus eighth lens element L8 with the convex surface facing the object side.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a biconvex ninth lens element L9.
  • the ninth lens element L9 has two aspheric surfaces.
  • the zoom lens system according to Embodiment 4 during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously to the object side, the third lens group G3 monotonously moves to the object side, and the fourth lens group G4 monotonously moves to the image side. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 increases.
  • the third lens group G3 is a focusing lens group that moves along an optical axis during focusing from an infinity in-focus state to a close object in-focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most useful. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • the first lens has a plurality of lens groups each including at least one lens element, and has negative power in order from the object side to the image side.
  • this lens configuration is referred to as a basic configuration of the embodiment
  • at least two of all lens elements constituting the second lens group must satisfy the following condition (1) and Satisfy (2).
  • ng refractive index with respect to g-line of lens elements constituting the second lens group
  • nF refractive index with respect to the F line of the lens elements constituting the second lens group
  • nd refractive index with respect to d-line of lens elements constituting the second lens group
  • nC is the refractive index with respect to the C line of the lens elements constituting the second lens group.
  • the conditions (1) and (2) are conditions for defining partial dispersion of lens elements constituting the second lens group. If either one of the conditions (1) and (2) is not satisfied, it is difficult to correct chromatic aberration generated in the second lens group, and excellent optical performance cannot be ensured.
  • the said effect can be made more successful by satisfy
  • the zoom lens system has a basic configuration, and at least two of all the lens elements constituting the second lens group satisfy the conditions (1) and (2). It is beneficial for the zoom lens system to satisfy the following condition (3).
  • M imaging magnification at the d-line of the rear lens group at the telephoto end.
  • the condition (3) is a condition that defines the imaging magnification of the rear lens group. If the lower limit of the condition (3) is not reached, the focal lengths of the first lens group and the second lens group become longer, and the first lens group and the second lens group become larger, making it difficult to reduce the size of the zoom lens system. It becomes. On the contrary, if the upper limit of the condition (3) is exceeded, the aberration generated in the first lens group and the second lens group is excessively enlarged, and there is a possibility that excellent optical performance cannot be ensured.
  • the above effect can be further achieved by satisfying at least one of the following conditions (3-2) ′ and (3-2) ′′. 1.5 ⁇ M (3-2) ′ M ⁇ 2.0 (3-2) ''
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • FIG. 9 is a schematic configuration diagram of an interchangeable lens digital camera system according to the fifth embodiment.
  • the interchangeable lens digital camera system 100 includes a camera body 101 and an interchangeable lens apparatus 201 that is detachably connected to the camera body 101.
  • the camera body 101 receives an optical image formed by the zoom lens system 202 of the interchangeable lens apparatus 201 and converts it into an electrical image signal, and displays the image signal converted by the image sensor 102.
  • a liquid crystal monitor 103 and a camera mount unit 104 are included.
  • the interchangeable lens device 201 includes a zoom lens system 202 according to any of Embodiments 1 to 4, a lens barrel 203 that holds the zoom lens system 202, and a lens mount unit connected to the camera mount unit 104 of the camera body. 204.
  • the camera mount unit 104 and the lens mount unit 204 electrically connect not only a physical connection but also a controller (not shown) in the camera body 101 and a controller (not shown) in the interchangeable lens device 201. It also functions as an interface that enables mutual signal exchange.
  • FIG. 9 illustrates a case where the zoom lens system according to Embodiment 1 is used as the zoom lens system 202.
  • the zoom lens system 202 according to any one of the first to fourth embodiments is used, an interchangeable lens apparatus that is compact and excellent in imaging performance can be realized at low cost. Further, it is possible to reduce the size and cost of the entire camera system 100 according to the fifth embodiment. Note that the zoom lens systems according to Embodiments 1 to 4 do not have to use the entire zooming area. That is, a range in which the optical performance is ensured according to a desired zooming region may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the corresponding numerical examples 1 to 4 below. Good.
  • the fifth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • ⁇ d is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface
  • the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line) and the dashed line are the characteristics of the g-line.
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • FIGS. 3, 6, 9 and 12 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 4, respectively.
  • the upper three aberration diagrams show the basic state where image blur correction is not performed at the telephoto end
  • the lower three aberration diagrams show the seventh lens element L7 in the second lens group G2 perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end moved by a predetermined amount in a certain direction.
  • the upper row shows the lateral aberration at the image point of 70% of the maximum image height
  • the middle row shows the lateral aberration at the axial image point
  • the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
  • the upper stage is the lateral aberration at the image point of 70% of the maximum image height
  • the middle stage is the lateral aberration at the axial image point
  • the lower stage is at the image point of -70% of the maximum image height.
  • the horizontal axis represents the distance from the principal ray on the pupil plane
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line ( C-line)
  • the dashed line is the characteristic of the g-line.
  • the meridional plane is a plane including the optical axis of the first lens group G1.
  • the movement amount in the direction perpendicular to the optical axis of the seventh lens element L7 in the image blur correction state at the telephoto end is as follows.
  • Example 1 0.151 mm
  • Example 2 0.174 mm
  • Example 3 0.150 mm
  • Example 4 0.183 mm
  • the image decentering amount is obtained when the seventh lens element L7 is translated by the above values in the direction perpendicular to the optical axis. Equal to image eccentricity.
  • the zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG.
  • Table 1 shows surface data of the zoom lens system of Numerical Example 1
  • Table 2 shows aspheric data
  • Table 3 shows various data in the infinite focus state
  • Table 4 shows single lens data
  • zoom lens group data shows the zoom lens group magnification.
  • Table 5 (Zoom lens group data) Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -18.39787 7.73170 -0.16006 0.90319 2 7 14.64158 12.42220 4.05739 5.70624 3 15 -19.55244 0.63030 0.26989 0.48667
  • Table 11 (Zoom lens group data) Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -18.72489 7.36000 -0.15423 1.34643 2 7 16.10846 12.01000 2.54292 3.56847 3 15 -22.29843 0.60000 0.26954 0.47529 4 17 36.00993 3.15000 1.35608 2.74570
  • Table 12 (zoom lens group magnification) Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000 2 7 -0.53599 -0.83493 -1.37703 3 15 2.45050 2.60689 2.61978 4 17 0.59444 0.59446 0.59441
  • Table 17 (Zoom lens group data) Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -19.08671 7.36000 -0.13737 1.33919 2 7 14.91727 12.01000 3.01383 3.75944 3 15 -24.11738 0.60000 0.31829 0.52354 4 17 47.73449 3.15000 -1.18127 0.29425
  • Table 18 (zoom lens group magnification) Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000 2 7 -0.64516 -0.66597 -0.84522 3 15 2.58976 2.57669 2.50481 4 17 0.59494 0.59959 0.61956
  • Table 23 (Zoom lens group data) Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -15.88153 8.10560 2.22827 3.67295 2 7 13.54864 11.02090 2.65451 3.70332 3 15 -15.69064 0.40000 0.25696 0.43072 4 17 33.55220 3.19620 0.74950 2.11789
  • Table 24 (zoom lens group magnification) Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000 2 7 -0.51257 -0.84401 -1.35215 3 15 3.19164 3.18929 3.21812 4 17 0.55247 0.55915 0.57489
  • Table 25 shows corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure is applicable to, for example, a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a PDA (Personal Digital Assistance) camera, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like.
  • the present disclosure is suitable for a photographing optical system that requires high image quality, such as a digital still camera system and a digital video camera system.
  • the zoom lens system according to the present disclosure can be applied to an interchangeable lens device equipped with an electric zoom function for driving the zoom lens system with a motor, which is included in the digital video camera system, among the interchangeable lens devices according to the present disclosure. is there.
  • Aperture stop S Image surface 100 Lens interchangeable digital camera system 101 Camera body 102 Image sensor 103 Liquid crystal monitor 104 Camera mount unit 201 Interchangeable lens device 202 Zoom lens system 203 Lens tube 204 Lens mount

Abstract

A zoom lens system provided with a first lens group having a negative power, a second lens group having a positive power, and a rear lens group comprising at least one lens group, wherein the zooming operation is performed by changing the distance between each lens group, and at least two lens elements among all the lens elements constituting the second lens group satisfies the following conditions: 0.660327≤{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≤0.730327 and (nd-1)/(nF-nC)≥50 (wherein ng, nF, nd, and nC respectively represents the refractive index of the g line, F line, d line, and C line of the lens elements constituting the second lens group).

Description

ズームレンズ系、交換レンズ装置及びカメラシステムZoom lens system, interchangeable lens device and camera system
 本開示は、ズームレンズ系、交換レンズ装置及びカメラシステムに関する。 The present disclosure relates to a zoom lens system, an interchangeable lens device, and a camera system.
 レンズ交換式デジタルカメラシステム(以下、単に「カメラシステム」ともいう)は、高感度で高画質な画像を撮影することができ、フォーカシングや撮影後の画像処理が高速で、撮りたい場面に合わせて手軽に交換レンズ装置を取り替えることができる等の利点があり、近年急速に普及している。また光学像を変倍可能に形成するズームレンズ系を備えた交換レンズ装置は、レンズ交換をすることなく焦点距離を自在に変化させることができる点で人気がある。 The interchangeable-lens digital camera system (hereinafter also simply referred to as “camera system”) can shoot high-quality images with high sensitivity, and has high-speed focusing and post-shooting image processing. There is an advantage that the interchangeable lens device can be easily replaced, and it has been rapidly spread in recent years. In addition, an interchangeable lens device including a zoom lens system that forms an optical image so as to be variable in magnification is popular in that the focal length can be freely changed without exchanging lenses.
 交換レンズ装置に用いるズームレンズ系として、広角端から望遠端まで高い光学性能を有する種々のズームレンズ系が提案されている。 Various zoom lens systems having high optical performance from the wide-angle end to the telephoto end have been proposed as zoom lens systems used for interchangeable lens devices.
 特許文献1は、変倍時に移動する少なくとも2つの移動レンズ群のうち、移動量が最大の最大移動レンズ群が少なくとも1つの正レンズを有する投影レンズを開示している。 Patent Document 1 discloses a projection lens in which, among at least two moving lens groups that move at the time of zooming, the maximum moving lens group that has the maximum movement amount has at least one positive lens.
 特許文献2は、負パワーの第1レンズ群及び正パワーの第2レンズ群を有し、第1レンズ群が、レンズ要素とこれに積層した樹脂層とからなる複合型光学素子を有するズームレンズを開示している。 Patent Document 2 discloses a zoom lens having a first lens group having a negative power and a second lens group having a positive power, and the first lens group having a composite optical element including a lens element and a resin layer laminated thereon. Is disclosed.
特開2010-008797号公報JP 2010-008797 A 特開2007-155836号公報JP 2007-155836 A
 本開示は、レンズ全長が短く小型で軽量であり、特に色収差が充分に補正されて光学性能に優れるズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む交換レンズ装置及びカメラシステムを提供する。 The present disclosure provides a zoom lens system that has a short overall lens length, is small and lightweight, and is particularly excellent in optical performance with sufficiently corrected chromatic aberration. The present disclosure also provides an interchangeable lens apparatus and a camera system including the zoom lens system.
 本開示におけるズームレンズ系は、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、
負のパワーを有する第1レンズ群と、
正のパワーを有する第2レンズ群と、
少なくとも1つのレンズ群からなる後方レンズ群と
を備え、
各レンズ群の光軸上での間隔を変化させて撮像時に広角端から望遠端へのズーミングを行い、
前記第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が以下の条件(1)及び(2):
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.730327 ・・・(1)
  (nd-1)/(nF-nC)≧50 ・・・(2)
(ここで、
 ng:第2レンズ群を構成するレンズ素子のg線(波長:435.84nm)に対する屈折率、
 nF:第2レンズ群を構成するレンズ素子のF線(波長:486.13nm)に対する屈折率、
 nd:第2レンズ群を構成するレンズ素子のd線(波長:587.56nm)に対する屈折率、
 nC:第2レンズ群を構成するレンズ素子のC線(波長:656.27nm)に対する屈折率
である)
を満足する。
The zoom lens system in the present disclosure is:
Having a plurality of lens groups composed of at least one lens element;
From the object side to the image side,
A first lens group having negative power;
A second lens group having positive power;
A rear lens group comprising at least one lens group,
Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group,
Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2):
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.730327 (1)
(Nd-1) / (nF-nC) ≧ 50 (2)
(here,
ng: refractive index with respect to g-line (wavelength: 435.84 nm) of the lens elements constituting the second lens group,
nF: refractive index with respect to F-line (wavelength: 486.13 nm) of the lens elements constituting the second lens group,
nd: refractive index with respect to d-line (wavelength: 587.56 nm) of lens elements constituting the second lens group;
nC: Refractive index with respect to C line (wavelength: 656.27 nm) of the lens elements constituting the second lens group)
Satisfied.
 本開示における交換レンズ装置は、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、
負のパワーを有する第1レンズ群と、
正のパワーを有する第2レンズ群と、
少なくとも1つのレンズ群からなる後方レンズ群と
を備え、
各レンズ群の光軸上での間隔を変化させて撮像時に広角端から望遠端へのズーミングを行い、
前記第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が以下の条件(1)及び(2):
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.730327 ・・・(1)
  (nd-1)/(nF-nC)≧50 ・・・(2)
(ここで、
 ng:第2レンズ群を構成するレンズ素子のg線に対する屈折率、
 nF:第2レンズ群を構成するレンズ素子のF線に対する屈折率、
 nd:第2レンズ群を構成するレンズ素子のd線に対する屈折率、
 nC:第2レンズ群を構成するレンズ素子のC線に対する屈折率
である)
を満足するズームレンズ系と、
前記ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体との接続が可能なレンズマウント部と
を備える。
The interchangeable lens device in the present disclosure is:
Having a plurality of lens groups composed of at least one lens element;
From the object side to the image side,
A first lens group having negative power;
A second lens group having positive power;
A rear lens group comprising at least one lens group,
Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group,
Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2):
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.730327 (1)
(Nd-1) / (nF-nC) ≧ 50 (2)
(here,
ng: refractive index with respect to g-line of lens elements constituting the second lens group,
nF: refractive index with respect to the F line of the lens elements constituting the second lens group,
nd: refractive index with respect to d-line of lens elements constituting the second lens group,
nC: Refractive index with respect to the C line of the lens elements constituting the second lens group)
Zoom lens system that satisfies
A lens mount unit that can be connected to a camera body including an image sensor that receives an optical image formed by the zoom lens system and converts the optical image into an electrical image signal.
 本開示におけるカメラシステムは、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、
負のパワーを有する第1レンズ群と、
正のパワーを有する第2レンズ群と、
少なくとも1つのレンズ群からなる後方レンズ群と
を備え、
各レンズ群の光軸上での間隔を変化させて撮像時に広角端から望遠端へのズーミングを行い、
前記第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が以下の条件(1)及び(2):
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.730327 ・・・(1)
  (nd-1)/(nF-nC)≧50 ・・・(2)
(ここで、
 ng:第2レンズ群を構成するレンズ素子のg線に対する屈折率、
 nF:第2レンズ群を構成するレンズ素子のF線に対する屈折率、
 nd:第2レンズ群を構成するレンズ素子のd線に対する屈折率、
 nC:第2レンズ群を構成するレンズ素子のC線に対する屈折率
である)
を満足するズームレンズ系、を含む交換レンズ装置と、
前記交換レンズ装置とカメラマウント部を介して着脱可能に接続され、前記ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体と
を備える。
The camera system in the present disclosure is:
Having a plurality of lens groups composed of at least one lens element;
From the object side to the image side,
A first lens group having negative power;
A second lens group having positive power;
A rear lens group comprising at least one lens group,
Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group,
Of all the lens elements constituting the second lens group, at least two lenses satisfy the following conditions (1) and (2):
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.730327 (1)
(Nd-1) / (nF-nC) ≧ 50 (2)
(here,
ng: refractive index with respect to g-line of lens elements constituting the second lens group,
nF: refractive index with respect to the F line of the lens elements constituting the second lens group,
nd: refractive index with respect to d-line of lens elements constituting the second lens group,
nC: Refractive index with respect to the C line of the lens elements constituting the second lens group)
An interchangeable lens apparatus including a zoom lens system satisfying
And a camera body including an image sensor that receives the optical image formed by the zoom lens system and converts the optical image into an electrical image signal.
 本開示におけるズームレンズ系は、レンズ全長が短く小型で軽量であり、特に色収差が充分に補正されて光学性能に優れる。 The zoom lens system according to the present disclosure has a short overall lens length, is small and lightweight, and is particularly excellent in optical performance because chromatic aberration is sufficiently corrected.
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1). 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity. 図3は、数値実施例1に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1. 図4は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2). 図5は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity. 図6は、数値実施例2に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2. FIG. 図7は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3). 図8は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity. 図9は、数値実施例3に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3. 図10は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4). 図11は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity. 図12は、数値実施例4に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4. FIG. 図13は、実施の形態5に係るレンズ交換式デジタルカメラシステムの概略構成図である。FIG. 13 is a schematic configuration diagram of an interchangeable lens digital camera system according to the fifth embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
(実施の形態1~4)
 図1、4、7及び10は、各々実施の形態1~4に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
(Embodiments 1 to 4)
1, 4, 7, and 10 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 In each figure, (a) shows a lens configuration at the wide angle end (shortest focal length state: focal length f W ), and (b) shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). Also, in each figure, the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、4、7及び10では、後述する第3レンズ群G3が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。 Further, in each figure, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIGS. 1, 4, 7, and 10 show the direction in which a third lens group G3, which will be described later, moves during focusing from an infinite focus state to a close object focus state.
 実施の形態1に係るズームレンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、負のパワーを有する第3レンズ群G3とを備える。実施の形態1に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、及び第2レンズ群G2と第3レンズ群G3との間隔がいずれも変化するように、全レンズ群が光軸に沿った方向にそれぞれ移動する。実施の形態1に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 The zoom lens system according to Embodiment 1 includes, in order from the object side to the image side, a first lens group G1 having negative power, a second lens group G2 having positive power, and a first lens group having negative power. 3 lens group G3. In the zoom lens system according to Embodiment 1, during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, and the second lens group G2 and the third lens group G3. All the lens groups move in the direction along the optical axis so that the distance between them changes. In the zoom lens system according to Embodiment 1, by making these lens groups have a desired power arrangement, the entire lens system can be reduced in size while maintaining high optical performance.
 実施の形態2~4に係るズームレンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、負のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4とを備える。実施の形態2に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、及び第3レンズ群G3と第4レンズ群G4との間隔がいずれも変化するように、第1レンズ群G1、第2レンズ群G2及び第3レンズ群G3が光軸に沿った方向にそれぞれ移動する。実施の形態3及び4に係るズームレンズ系では、ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、及び第3レンズ群G3と第4レンズ群G4との間隔がいずれも変化するように、全レンズ群が光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 In the zoom lens systems according to Embodiments 2 to 4, in order from the object side to the image side, the first lens group G1 having negative power, the second lens group G2 having positive power, and the negative power And a fourth lens group G4 having a positive power. In the zoom lens system according to Embodiment 2, during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group G3, The first lens group G1, the second lens group G2, and the third lens group G3 are in a direction along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 changes. Move to each. In the zoom lens systems according to Embodiments 3 and 4, during zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the second lens group G2 and the third lens group. All the lens groups are moved in the direction along the optical axis so that both the distance from G3 and the distance between the third lens group G3 and the fourth lens group G4 change. The zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
 図1、4、7及び10において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表す。 In FIGS. 1, 4, 7, and 10, an asterisk * attached to a specific surface indicates that the surface is aspherical. In each figure, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each figure, the straight line described on the rightmost side represents the position of the image plane S.
 図1、4、7及び10に示すように、第2レンズ群G2内の第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。 As shown in FIGS. 1, 4, 7 and 10, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5 in the second lens group G2.
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。
(Embodiment 1)
As shown in FIG. 1, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、物体側に凸面を向けた正メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されている。また、第4レンズ素子L4は、その両面が非球面であり、第7レンズ素子L7は、その像側面が非球面である。さらに、第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。第2レンズ群G2中、第6レンズ素子L6及び第7レンズ素子L7が、後述する条件(1)及び(2)を同時に満足する。 The second lens group G2 includes, in order from the object side to the image side, a positive meniscus fourth lens element L4 with a convex surface facing the object side, and a negative meniscus fifth lens element L5 with a convex surface facing the object side. And a sixth lens element L6 having a biconvex shape and a seventh lens element L7 having a positive meniscus shape having a convex surface facing the object side. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented. The fourth lens element L4 has two aspheric surfaces, and the seventh lens element L7 has an aspheric image side surface. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5. In the second lens group G2, the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
 第3レンズ群G3は、両凹形状の第8レンズ素子L8のみからなる。該第8レンズ素子L8は、その両面が非球面である。 The third lens group G3 includes only a biconcave eighth lens element L8. The eighth lens element L8 has two aspheric surfaces.
 実施の形態1に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて移動し、第2レンズ群G2は、単調に物体側へ移動し、第3レンズ群G3は、略単調に物体側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化するように、全レンズ群が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 1, during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously to the object side, and the third lens group G3 moves substantially monotonically to the object side. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 changes. Move along each.
 さらに実施の形態1に係るズームレンズ系において、第3レンズ群G3は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群であり、該第3レンズ群G3は、フォーカシングの際に光軸に沿って像側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 1, the third lens group G3 is a focusing lens group that moves along the optical axis during focusing from an infinitely focused state to a close object focused state, The third lens group G3 moves toward the image side along the optical axis during focusing.
 また、第2レンズ群G2中の第7レンズ素子L7を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。 Further, by moving the seventh lens element L7 in the second lens group G2 in a direction orthogonal to the optical axis, image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
(実施の形態2)
 図4に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。
(Embodiment 2)
As shown in FIG. 4, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、物体側に凸面を向けた平凸形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されている。また、第4レンズ素子L4は、その両面が非球面である。さらに、第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。第2レンズ群G2中、第6レンズ素子L6及び第7レンズ素子L7が、後述する条件(1)及び(2)を同時に満足する。 The second lens group G2, in order from the object side to the image side, includes a biconvex fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an object. And a plano-convex seventh lens element L7 having a convex surface directed to the side. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented. The fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5. In the second lens group G2, the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
 第3レンズ群G3は、両凹形状の第8レンズ素子L8のみからなる。該第8レンズ素子L8は、その両面が非球面である。 The third lens group G3 includes only a biconcave eighth lens element L8. The eighth lens element L8 has two aspheric surfaces.
 第4レンズ群G4は、両凸形状の第9レンズ素子L9のみからなる。該第9レンズ素子L9は、その両面が非球面である。 The fourth lens group G4 comprises solely a biconvex ninth lens element L9. The ninth lens element L9 has two aspheric surfaces.
 実施の形態2に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて移動し、第2レンズ群G2は、単調に物体側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて移動し、第4レンズ群G4は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化するように、第1レンズ群G1、第2レンズ群G2及び第3レンズ群G3が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 2, during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously toward the object side, the third lens group G3 moves along a locus convex toward the object side, and the fourth lens group G4 is fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens. The first lens group G1, the second lens group G2, and the third lens group G3 move along the optical axis so that the distance from the group G4 changes.
 さらに実施の形態2に係るズームレンズ系において、第3レンズ群G3は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群であり、該第3レンズ群G3は、フォーカシングの際に光軸に沿って像側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 2, the third lens group G3 is a focusing lens group that moves along the optical axis during focusing from an infinity in-focus state to a close object in-focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
 また、第2レンズ群G2中の第7レンズ素子L7を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。 Further, by moving the seventh lens element L7 in the second lens group G2 in a direction orthogonal to the optical axis, image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
(実施の形態3)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。
(Embodiment 3)
As shown in FIG. 7, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the second lens element L2 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、物体側に凸面を向けた平凸形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されている。また、第4レンズ素子L4は、その両面が非球面である。さらに、第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。第2レンズ群G2中、第6レンズ素子L6及び第7レンズ素子L7が、後述する条件(1)及び(2)を同時に満足する。 The second lens group G2, in order from the object side to the image side, includes a biconvex fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an object. And a plano-convex seventh lens element L7 having a convex surface directed to the side. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented. The fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5. In the second lens group G2, the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
 第3レンズ群G3は、両凹形状の第8レンズ素子L8のみからなる。該第8レンズ素子L8は、その両面が非球面である。 The third lens group G3 includes only a biconcave eighth lens element L8. The eighth lens element L8 has two aspheric surfaces.
 第4レンズ群G4は、物体側に凸面を向けた正メニスカス形状の第9レンズ素子L9のみからなる。該第9レンズ素子L9は、その両面が非球面である。 The fourth lens group G4 comprises solely a positive meniscus ninth lens element L9 with the convex surface facing the object side. The ninth lens element L9 has two aspheric surfaces.
 実施の形態3に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、単調に像側へ移動し、第2レンズ群G2は、単調に物体側へ移動し、第3レンズ群G3は、単調に像側へ移動し、第4レンズ群G4は、単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が減少し、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が変化するように、全レンズ群が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 3, during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves monotonously to the image side, and the second lens group G2 monotonously Moving to the object side, the third lens group G3 monotonously moves to the image side, and the fourth lens group G4 monotonously moves to the image side. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 decreases, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 changes.
 さらに実施の形態3に係るズームレンズ系において、第3レンズ群G3は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群であり、該第3レンズ群G3は、フォーカシングの際に光軸に沿って像側へ移動する。 In the zoom lens system according to Embodiment 3, the third lens group G3 is a focusing lens group that moves along an optical axis in focusing from an infinite focus state to a close object focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
 また、第2レンズ群G2中の第7レンズ素子L7を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。 Further, by moving the seventh lens element L7 in the second lens group G2 in a direction orthogonal to the optical axis, image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
(実施の形態4)
 図10に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、像側に凸面を向けた負メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1は、その像側面が非球面であり、第2レンズ素子L2は、その両面が非球面である。
(Embodiment 4)
As shown in FIG. 10, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a negative meniscus having a convex surface facing the image side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the first lens element L1 has an aspheric image side surface, and the second lens element L2 has both aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されている。また、第4レンズ素子L4は、その両面が非球面である。さらに、第4レンズ素子L4と第5レンズ素子L5との間には、開口絞りAが設けられている。第2レンズ群G2中、第6レンズ素子L6及び第7レンズ素子L7が、後述する条件(1)及び(2)を同時に満足する。 The second lens group G2 includes, in order from the object side to the image side, a biconvex fourth lens element L4, a negative meniscus fifth lens element L5 with a convex surface facing the object side, and a biconvex second lens element L5. 6 lens elements L6 and a biconvex seventh lens element L7. Among these, the fifth lens element L5 and the sixth lens element L6 are cemented. The fourth lens element L4 has two aspheric surfaces. Furthermore, an aperture stop A is provided between the fourth lens element L4 and the fifth lens element L5. In the second lens group G2, the sixth lens element L6 and the seventh lens element L7 simultaneously satisfy conditions (1) and (2) described later.
 第3レンズ群G3は、物体側に凸面を向けた負メニスカス形状の第8レンズ素子L8のみからなる。該第8レンズ素子L8は、その両面が非球面である。 The third lens group G3 comprises solely a negative meniscus eighth lens element L8 with the convex surface facing the object side. The eighth lens element L8 has two aspheric surfaces.
 第4レンズ群G4は、両凸形状の第9レンズ素子L9のみからなる。該第9レンズ素子L9は、その両面が非球面である。 The fourth lens group G4 comprises solely a biconvex ninth lens element L9. The ninth lens element L9 has two aspheric surfaces.
 実施の形態4に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて移動し、第2レンズ群G2は、単調に物体側へ移動し、第3レンズ群G3は、単調に物体側へ移動し、第4レンズ群G4は、単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 4, during zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves along a locus convex toward the image side, and the second lens group G2 Moves monotonously to the object side, the third lens group G3 monotonously moves to the object side, and the fourth lens group G4 monotonously moves to the image side. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 increases.
 さらに実施の形態4に係るズームレンズ系において、第3レンズ群G3は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群であり、該第3レンズ群G3は、フォーカシングの際に光軸に沿って像側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 4, the third lens group G3 is a focusing lens group that moves along an optical axis during focusing from an infinity in-focus state to a close object in-focus state, The third lens group G3 moves toward the image side along the optical axis during focusing.
 また、第2レンズ群G2中の第7レンズ素子L7を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。 Further, by moving the seventh lens element L7 in the second lens group G2 in a direction orthogonal to the optical axis, image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, or the like is corrected. It can be corrected optically.
 以上のように、本出願において開示する技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、例えば実施の形態1~4に係るズームレンズ系のごときズームレンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も有益である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。 Hereinafter, for example, conditions useful for satisfying a zoom lens system such as the zoom lens systems according to Embodiments 1 to 4 will be described. A plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most useful. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
 例えば実施の形態1~4に係るズームレンズ系のように、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、少なくとも1つのレンズ群からなる後方レンズ群とを備え、各レンズ群の光軸上での間隔を変化させて撮像時に広角端から望遠端へのズーミングを行う(以下、このレンズ構成を、実施の形態の基本構成という)ズームレンズ系では、前記第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が以下の条件(1)及び(2)を満足する。
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.730327 ・・・(1)
  (nd-1)/(nF-nC)≧50 ・・・(2)
ここで、
 ng:第2レンズ群を構成するレンズ素子のg線に対する屈折率、
 nF:第2レンズ群を構成するレンズ素子のF線に対する屈折率、
 nd:第2レンズ群を構成するレンズ素子のd線に対する屈折率、
 nC:第2レンズ群を構成するレンズ素子のC線に対する屈折率
である。
For example, as in the zoom lens systems according to Embodiments 1 to 4, the first lens has a plurality of lens groups each including at least one lens element, and has negative power in order from the object side to the image side. Group, a second lens group having a positive power, and a rear lens group composed of at least one lens group, and changing the distance on the optical axis of each lens group from the wide-angle end to the telephoto end during imaging In a zoom lens system that performs zooming (hereinafter, this lens configuration is referred to as a basic configuration of the embodiment), at least two of all lens elements constituting the second lens group must satisfy the following condition (1) and Satisfy (2).
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.730327 (1)
(Nd-1) / (nF-nC) ≧ 50 (2)
here,
ng: refractive index with respect to g-line of lens elements constituting the second lens group,
nF: refractive index with respect to the F line of the lens elements constituting the second lens group,
nd: refractive index with respect to d-line of lens elements constituting the second lens group,
nC is the refractive index with respect to the C line of the lens elements constituting the second lens group.
 前記条件(1)及び(2)は、第2レンズ群を構成するレンズ素子の部分分散を規定する条件である。条件(1)及び(2)のいずれか一方でも満足しない場合には、該第2レンズ群で発生する色収差の補正が困難となり、優れた光学性能を確保することができない。 The conditions (1) and (2) are conditions for defining partial dispersion of lens elements constituting the second lens group. If either one of the conditions (1) and (2) is not satisfied, it is difficult to correct chromatic aberration generated in the second lens group, and excellent optical performance cannot be ensured.
 なお、以下の条件(1)’及び(2)’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.710327 ・・・(1)’
  (nd-1)/(nF-nC)≧60 ・・・(2)’
In addition, the said effect can be made more successful by satisfy | filling at least 1 of the following conditions (1) 'and (2)'.
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.710327 (1) ′
(Nd-1) / (nF-nC) ≧ 60 (2) ′
 さらに、以下の条件(1)’’及び(2)’’の少なくとも1つを満足することにより、前記効果をより一層奏功させることができる。
  0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.690327 ・・・(1)’’
  (nd-1)/(nF-nC)≧65 ・・・(2)’’
Furthermore, by satisfying at least one of the following conditions (1) ″ and (2) ″, the above effect can be further achieved.
0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.690327 (1) ″
(Nd-1) / (nF-nC) ≧ 65 (2) ''
 例えば実施の形態1~4に係るズームレンズ系のように、基本構成を有し、第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が前記条件(1)及び(2)を満足するズームレンズ系は、以下の条件(3)を満足することが有益である。
  1.3≦M≦5.0 ・・・(3)
ここで、
 M:望遠端における後方レンズ群のd線での結像倍率
である。
For example, as in the zoom lens systems according to Embodiments 1 to 4, it has a basic configuration, and at least two of all the lens elements constituting the second lens group satisfy the conditions (1) and (2). It is beneficial for the zoom lens system to satisfy the following condition (3).
1.3 ≦ M ≦ 5.0 (3)
here,
M: imaging magnification at the d-line of the rear lens group at the telephoto end.
 前記条件(3)は、後方レンズ群の結像倍率を規定する条件である。条件(3)の下限を下回ると、第1レンズ群及び第2レンズ群の焦点距離が長くなり、これら第1レンズ群及び第2レンズ群が大型化するため、ズームレンズ系の小型化が困難となる。逆に条件(3)の上限を上回ると、第1レンズ群及び第2レンズ群で発生した収差が拡大され過ぎてしまい、優れた光学性能を確保することができない恐れがある。 The condition (3) is a condition that defines the imaging magnification of the rear lens group. If the lower limit of the condition (3) is not reached, the focal lengths of the first lens group and the second lens group become longer, and the first lens group and the second lens group become larger, making it difficult to reduce the size of the zoom lens system. It becomes. On the contrary, if the upper limit of the condition (3) is exceeded, the aberration generated in the first lens group and the second lens group is excessively enlarged, and there is a possibility that excellent optical performance cannot be ensured.
 なお、以下の条件(3-1)’及び(3-1)’’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  1.4≦M ・・・(3-1)’
  M≦3.0 ・・・(3-1)’’
It should be noted that the above effect can be further achieved by satisfying at least one of the following conditions (3-1) ′ and (3-1) ″.
1.4 ≦ M (3-1) ′
M ≦ 3.0 (3-1) ''
 さらに、以下の条件(3-2)’及び(3-2)’’の少なくとも1つを満足することにより、前記効果をより一層奏功させることができる。
  1.5≦M ・・・(3-2)’
  M≦2.0 ・・・(3-2)’’
Furthermore, the above effect can be further achieved by satisfying at least one of the following conditions (3-2) ′ and (3-2) ″.
1.5 ≦ M (3-2) ′
M ≦ 2.0 (3-2) ''
 実施の形態1~4に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。 Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes) However, the present invention is not limited to this. For example, a diffractive lens element that deflects incident light by diffraction, a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium Each lens group may be composed of a distributed lens element or the like. In particular, in a refractive / diffractive hybrid lens element, forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
(実施の形態5)
 図9は、実施の形態5に係るレンズ交換式デジタルカメラシステムの概略構成図である。
(Embodiment 5)
FIG. 9 is a schematic configuration diagram of an interchangeable lens digital camera system according to the fifth embodiment.
 本実施の形態5に係るレンズ交換式デジタルカメラシステム100は、カメラ本体101と、カメラ本体101に着脱自在に接続される交換レンズ装置201とを備える。 The interchangeable lens digital camera system 100 according to the fifth embodiment includes a camera body 101 and an interchangeable lens apparatus 201 that is detachably connected to the camera body 101.
 カメラ本体101は、交換レンズ装置201のズームレンズ系202によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102と、撮像素子102によって変換された画像信号を表示する液晶モニタ103と、カメラマウント部104とを含む。一方、交換レンズ装置201は、実施の形態1~4いずれかに係るズームレンズ系202と、ズームレンズ系202を保持する鏡筒203と、カメラ本体のカメラマウント部104に接続されるレンズマウント部204とを含む。カメラマウント部104及びレンズマウント部204は、物理的な接続のみならず、カメラ本体101内のコントローラ(図示せず)と交換レンズ装置201内のコントローラ(図示せず)とを電気的に接続し、相互の信号のやり取りを可能とするインターフェースとしても機能する。なお、図9においては、ズームレンズ系202として実施の形態1に係るズームレンズ系を用いた場合を図示している。 The camera body 101 receives an optical image formed by the zoom lens system 202 of the interchangeable lens apparatus 201 and converts it into an electrical image signal, and displays the image signal converted by the image sensor 102. A liquid crystal monitor 103 and a camera mount unit 104 are included. On the other hand, the interchangeable lens device 201 includes a zoom lens system 202 according to any of Embodiments 1 to 4, a lens barrel 203 that holds the zoom lens system 202, and a lens mount unit connected to the camera mount unit 104 of the camera body. 204. The camera mount unit 104 and the lens mount unit 204 electrically connect not only a physical connection but also a controller (not shown) in the camera body 101 and a controller (not shown) in the interchangeable lens device 201. It also functions as an interface that enables mutual signal exchange. Note that FIG. 9 illustrates a case where the zoom lens system according to Embodiment 1 is used as the zoom lens system 202.
 本実施の形態5では、実施の形態1~4いずれかに係るズームレンズ系202を用いているので、コンパクトで結像性能に優れた交換レンズ装置を低コストで実現することができる。また、本実施の形態5に係るカメラシステム100全体の小型化及び低コスト化も達成することができる。なお、これら実施の形態1~4に係るズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、以下の対応する数値実施例1~4で説明するズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。 In the fifth embodiment, since the zoom lens system 202 according to any one of the first to fourth embodiments is used, an interchangeable lens apparatus that is compact and excellent in imaging performance can be realized at low cost. Further, it is possible to reduce the size and cost of the entire camera system 100 according to the fifth embodiment. Note that the zoom lens systems according to Embodiments 1 to 4 do not have to use the entire zooming area. That is, a range in which the optical performance is ensured according to a desired zooming region may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the corresponding numerical examples 1 to 4 below. Good.
 以上のように、本出願において開示する技術の例示として、実施の形態5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the fifth embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、実施の形態1~4に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、νdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
Hereinafter, numerical examples in which the zoom lens systems according to Embodiments 1 to 4 are specifically implemented will be described. In each numerical example, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and νd is an Abbe number with respect to the d line. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
here,
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
An: n-order aspherical coefficient.
 図2、5、8及び11は、各々数値実施例1~4に係るズームレンズ系の無限遠合焦状態の縦収差図である。 2, 5, 8 and 11 are longitudinal aberration diagrams of the zoom lens system according to Numerical Examples 1 to 4 in an infinitely focused state, respectively.
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)、一点破線はg線(g-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line) and the dashed line are the characteristics of the g-line. In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
 また図3、6、9及び12は、各々数値実施例1~4に係るズームレンズ系の望遠端における横収差図である。 FIGS. 3, 6, 9 and 12 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 4, respectively.
 各横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、第2レンズ群G2中の第7レンズ素子L7を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)、一点破線はg線(g-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸を含む平面としている。 In each lateral aberration diagram, the upper three aberration diagrams show the basic state where image blur correction is not performed at the telephoto end, and the lower three aberration diagrams show the seventh lens element L7 in the second lens group G2 perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end moved by a predetermined amount in a certain direction. Of the lateral aberration diagrams in the basic state, the upper row shows the lateral aberration at the image point of 70% of the maximum image height, the middle row shows the lateral aberration at the axial image point, and the lower row shows the lateral aberration at the image point of -70% of the maximum image height. Respectively. Of each lateral aberration diagram in the image blur correction state, the upper stage is the lateral aberration at the image point of 70% of the maximum image height, the middle stage is the lateral aberration at the axial image point, and the lower stage is at the image point of -70% of the maximum image height. Each corresponds to lateral aberration. In each lateral aberration diagram, the horizontal axis represents the distance from the principal ray on the pupil plane, the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line ( C-line), the dashed line is the characteristic of the g-line. In each lateral aberration diagram, the meridional plane is a plane including the optical axis of the first lens group G1.
 なお、各数値実施例のズームレンズ系について、望遠端における、像ぶれ補正状態での第7レンズ素子L7の光軸と垂直な方向への移動量は、以下に示すとおりである。
実施例1 0.151mm 
実施例2 0.174mm 
実施例3 0.150mm 
実施例4 0.183mm 
For the zoom lens systems of the numerical examples, the movement amount in the direction perpendicular to the optical axis of the seventh lens element L7 in the image blur correction state at the telephoto end is as follows.
Example 1 0.151 mm
Example 2 0.174 mm
Example 3 0.150 mm
Example 4 0.183 mm
 撮影距離が∞で望遠端において、ズームレンズ系が0.3°だけ傾いた場合の像偏心量は、第7レンズ素子L7が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。 When the shooting distance is ∞ and the zoom lens system is tilted by 0.3 ° at the telephoto end, the image decentering amount is obtained when the seventh lens element L7 is translated by the above values in the direction perpendicular to the optical axis. Equal to image eccentricity.
 各横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に望ましい平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。 As is clear from each lateral aberration diagram, it is understood that the symmetry of the lateral aberration at the axial image point is good. In addition, when the lateral aberration at the + 70% image point and the lateral aberration at the −70% image point are compared in the basic state, the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state. Also, when the image blur correction angle of the zoom lens system is the same, the amount of parallel movement desirable for image blur correction decreases as the focal length of the entire zoom lens system decreases. Accordingly, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics for an image blur correction angle up to 0.3 °.
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、無限遠合焦状態での各種データを表3に、単レンズデータを表4に、ズームレンズ群データを表5に、ズームレンズ群倍率を表6に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, Table 3 shows various data in the infinite focus state, Table 4 shows single lens data, and zoom lens group data. Table 5 shows the zoom lens group magnification.
表 1(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         22.56500     0.60000     1.91082    35.2    
     2          8.87180     3.38880                        
     3*       161.15710     1.53960     1.54491    63.0    
     4*        25.45760     1.09000                        
     5         38.58320     1.11330     1.94595    18.0    
     6        368.16320        可変                        
     7*        12.90370     2.53650     1.77010    49.7    
     8*       174.20560     1.00000                        
   9(絞り)           ∞     1.01210                        
    10         52.20090     0.50000     1.80610    33.3    
    11          8.45000     5.00000     1.49700    81.6    
    12        -25.47590     0.97360                        
    13         21.73460     1.40000     1.59282    68.6    
    14*      1645.90510        可変                        
    15*       -29.24150     0.63030     1.51698    63.3    
    16*        15.56180        (BF)                        
    像面             ∞                                    
Table 1 (surface data)

Surface number r d nd vd
Object ∞
1 22.56500 0.60000 1.91082 35.2
2 8.87180 3.38880
3 * 161.15710 1.53960 1.54491 63.0
4 * 25.45760 1.09000
5 38.58320 1.11330 1.94595 18.0
6 368.16320 Variable
7 * 12.90370 2.53650 1.77010 49.7
8 * 174.20560 1.00000
9 (Aperture) ∞ 1.01210
10 52.20090 0.50000 1.80610 33.3
11 8.45000 5.00000 1.49700 81.6
12 -25.47590 0.97360
13 21.73460 1.40000 1.59282 68.6
14 * 1645.90510 variable
15 * -29.24 150 0.63030 1.51698 63.3
16 * 15.56180 (BF)
Image plane ∞
表 2(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-5.40561E-04, A6= 4.99889E-06, A8=-6.83627E-08 
   A10=-2.02222E-10, A12= 4.87115E-11, A14=-9.69574E-13 
  第4面
   K=-3.43984E+01, A4=-3.78566E-04, A6= 1.31116E-06, A8=-3.37486E-08 
   A10= 1.68554E-09, A12=-3.10322E-11, A14= 0.00000E+00 
  第7面
   K=-1.26224E+00, A4=-3.84985E-05, A6= 2.79594E-06, A8=-5.05066E-07 
   A10= 1.68520E-08, A12=-1.68971E-10, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4=-8.16943E-05, A6=-6.87729E-07, A8= 1.92480E-08 
   A10=-3.53871E-08, A12= 1.78570E-09, A14= 0.00000E+00 
  第14面
   K= 0.00000E+00, A4= 5.59374E-05, A6= 4.06840E-07, A8= 8.98299E-08 
   A10= 0.00000E+00, A12= 0.00000E+00, A14= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 8.10385E-04, A6=-5.52345E-06, A8=-1.44759E-06 
   A10=-6.02610E-08, A12= 8.48779E-09, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 9.08424E-04, A6=-1.48426E-05, A8=-6.19242E-07 
   A10=-5.84727E-08, A12= 5.79258E-09, A14= 0.00000E+00
Table 2 (Aspheric data)

3rd surface K = 0.00000E + 00, A4 = -5.40561E-04, A6 = 4.99889E-06, A8 = -6.83627E-08
A10 = -2.02222E-10, A12 = 4.87115E-11, A14 = -9.69574E-13
4th surface K = -3.43984E + 01, A4 = -3.78566E-04, A6 = 1.31116E-06, A8 = -3.37486E-08
A10 = 1.68554E-09, A12 = -3.10322E-11, A14 = 0.00000E + 00
7th surface K = -1.26224E + 00, A4 = -3.84985E-05, A6 = 2.79594E-06, A8 = -5.05066E-07
A10 = 1.68520E-08, A12 = -1.68971E-10, A14 = 0.00000E + 00
8th surface K = 0.00000E + 00, A4 = -8.16943E-05, A6 = -6.87729E-07, A8 = 1.92480E-08
A10 = -3.53871E-08, A12 = 1.78570E-09, A14 = 0.00000E + 00
14th surface K = 0.00000E + 00, A4 = 5.59374E-05, A6 = 4.06840E-07, A8 = 8.98299E-08
A10 = 0.00000E + 00, A12 = 0.00000E + 00, A14 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 8.10385E-04, A6 = -5.52345E-06, A8 = -1.44759E-06
A10 = -6.02610E-08, A12 = 8.48779E-09, A14 = 0.00000E + 00
16th surface K = 0.00000E + 00, A4 = 9.08424E-04, A6 = -1.48426E-05, A8 = -6.19242E-07
A10 = -5.84727E-08, A12 = 5.79258E-09, A14 = 0.00000E + 00
表 3(無限遠合焦状態での各種データ)
 
  ズーム比     2.65486
                広角      中間      望遠
  焦点距離      19.2763   30.9369   51.1760
 Fナンバー     7.98089  11.92627  11.97257
    画角        29.9768   18.9733   11.5973
    像高        10.8150   10.8150   10.8150
 レンズ全長     66.1204   63.7558   66.5606
    BF       24.75657  30.00006  36.17954
    d6          17.1286    7.4888    0.4000 
    d14          3.4510    5.4827    9.1969 
 入射瞳位置     10.7485    8.7180    6.3473
 射出瞳位置     -7.4886   -8.2324   -9.3812
 前側主点位置   18.5013   14.6214    0.0400
 後側主点位置   46.8440   32.8189   15.3847
Table 3 (Various data in focus at infinity)

Zoom ratio 2.65486
Wide angle Medium telephoto Focal length 19.2763 30.9369 51.1760
F number 7.98089 11.92627 11.97257
Angle of view 29.9768 18.9733 11.5973
Image height 10.8150 10.8150 10.8150
Total lens length 66.1204 63.7558 66.5606
BF 24.75657 30.00006 36.17954
d6 17.1286 7.4888 0.4000
d14 3.4510 5.4827 9.1969
Entrance pupil position 10.7485 8.7180 6.3473
Exit pupil position -7.4886 -8.2324 -9.3812
Front principal point position 18.5013 14.6214 0.0400
Rear principal point position 46.8440 32.8189 15.3847
表 4(単レンズデータ)
 
  レンズ     始面     焦点距離
     1         1      -16.3937
     2         3      -55.7063
     3         5       45.4883
     4         7       17.9733
     5        10      -12.5713
     6        11       13.4242
     7        13       37.1415
     8        15      -19.5524
Table 4 (Single lens data)

Lens Start surface Focal length 1 1 -16.3937
2 3 -55.7063
3 5 45.4883
4 7 17.9733
5 10 -12.5713
6 11 13.4242
7 13 37.1415
8 15 -19.5524
表 5(ズームレンズ群データ)
 
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -18.39787     7.73170        -0.16006       0.90319
   2      7    14.64158    12.42220         4.05739       5.70624
   3     15   -19.55244     0.63030         0.26989       0.48667
Table 5 (Zoom lens group data)

Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -18.39787 7.73170 -0.16006 0.90319
2 7 14.64158 12.42220 4.05739 5.70624
3 15 -19.55244 0.63030 0.26989 0.48667
表 6(ズームレンズ群倍率)
 
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.46085   -0.66159   -0.97337
   3     15    2.27351    2.54168    2.85773
Table 6 (zoom lens group magnification)

Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.46085 -0.66159 -0.97337
3 15 2.27351 2.54168 2.85773
(数値実施例2)
 数値実施例2のズームレンズ系は、図4に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表7に、非球面データを表8に、無限遠合焦状態での各種データを表9に、単レンズデータを表10に、ズームレンズ群データを表11に、ズームレンズ群倍率を表12に示す。
(Numerical example 2)
The zoom lens system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Table 7 shows surface data of the zoom lens system of Numerical Example 2, Table 8 shows aspheric data, Table 9 shows various data in the infinite focus state, Table 10 shows single lens data, and zoom lens group data. Table 11 shows the zoom lens group magnification.
表 7(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         57.68700     0.60000     1.91082    35.2    
     2         11.32300     2.68000                        
     3*        64.60800     1.40000     1.54360    56.0    
     4*        19.55300     1.02000                        
     5         17.35400     1.66000     1.94595    18.0    
     6         34.35900        可変                        
     7*        13.05900     2.41000     1.77010    49.7    
     8*       -74.90500     1.00000                        
   9(絞り)           ∞     3.13000                        
    10        -48.16600     0.50000     1.80610    33.3    
    11          7.94200     3.17000     1.49700    81.6    
    12        -18.12300     0.40000                        
    13         23.45900     1.40000     1.59282    68.6    
    14               ∞        可変                        
    15*       -36.52100     0.60000     1.51610    63.4    
    16*        16.89700        可変                        
    17*       125.12600     3.15000     1.80500    40.9    
    18*       -37.30500        (BF)                        
    像面             ∞                                    
Table 7 (surface data)

Surface number r d nd vd
Object ∞
1 57.68700 0.60000 1.91082 35.2
2 11.32300 2.68000
3 * 64.60800 1.40000 1.54360 56.0
4 * 19.55300 1.02000
5 17.35400 1.66000 1.94595 18.0
6 34.35900 Variable
7 * 13.05900 2.41000 1.77010 49.7
8 * -74.90500 1.00000
9 (Aperture) ∞ 3.13000
10 -48.16600 0.50000 1.80610 33.3
11 7.94200 3.17000 1.49700 81.6
12 -18.12300 0.40000
13 23.45900 1.40000 1.59282 68.6
14 ∞ Variable
15 * -36.52100 0.60000 1.51610 63.4
16 * 16.89700 variable
17 * 125.12600 3.15000 1.80500 40.9
18 * -37.30500 (BF)
Image plane ∞
表 8(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-1.42000E-04, A6= 5.00000E-06, A8=-8.99000E-08 
   A10= 9.97000E-10, A12=-5.23000E-12, A14= 4.61000E-15 
  第4面
   K=-2.33000E+00, A4=-1.26000E-04, A6= 5.07000E-06, A8=-1.01000E-07 
   A10= 1.13000E-09, A12=-5.73000E-12, A14= 0.00000E+00 
  第7面
   K=-1.00000E+00, A4=-2.00000E-05, A6=-4.20000E-07, A8=-1.16000E-07 
   A10= 4.20000E-09, A12=-1.37000E-10, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4=-3.68000E-05, A6=-1.62000E-06, A8=-3.10000E-08 
   A10= 3.12000E-11, A12=-6.14000E-11, A14= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 1.46000E-04, A6=-9.46000E-06, A8= 4.34000E-07 
   A10=-1.05000E-08, A12= 9.62000E-11, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 1.92000E-04, A6=-7.56000E-06, A8= 2.99000E-07 
   A10=-6.91000E-09, A12= 6.04000E-11, A14= 0.00000E+00 
  第17面
   K= 0.00000E+00, A4=-7.89000E-05, A6= 1.20000E-06, A8=-1.30000E-08 
   A10= 9.06000E-11, A12=-2.83000E-13, A14= 0.00000E+00 
  第18面
   K= 0.00000E+00, A4=-9.01000E-05, A6= 1.00000E-06, A8=-1.02000E-08 
   A10= 6.91000E-11, A12=-2.09000E-13, A14= 0.00000E+00
Table 8 (Aspherical data)

3rd surface K = 0.00000E + 00, A4 = -1.42000E-04, A6 = 5.00000E-06, A8 = -8.99000E-08
A10 = 9.97000E-10, A12 = -5.23000E-12, A14 = 4.61000E-15
4th surface K = -2.33000E + 00, A4 = -1.26000E-04, A6 = 5.07000E-06, A8 = -1.01000E-07
A10 = 1.13000E-09, A12 = -5.73000E-12, A14 = 0.00000E + 00
7th surface K = -1.00000E + 00, A4 = -2.00000E-05, A6 = -4.20000E-07, A8 = -1.16000E-07
A10 = 4.20000E-09, A12 = -1.37000E-10, A14 = 0.00000E + 00
8th surface K = 0.00000E + 00, A4 = -3.68000E-05, A6 = -1.62000E-06, A8 = -3.10000E-08
A10 = 3.12000E-11, A12 = -6.14000E-11, A14 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 1.46000E-04, A6 = -9.46000E-06, A8 = 4.34000E-07
A10 = -1.05000E-08, A12 = 9.62000E-11, A14 = 0.00000E + 00
16th surface K = 0.00000E + 00, A4 = 1.92000E-04, A6 = -7.56000E-06, A8 = 2.99000E-07
A10 = -6.91000E-09, A12 = 6.04000E-11, A14 = 0.00000E + 00
17th surface K = 0.00000E + 00, A4 = -7.89000E-05, A6 = 1.20000E-06, A8 = -1.30000E-08
A10 = 9.06000E-11, A12 = -2.83000E-13, A14 = 0.00000E + 00
18th surface K = 0.00000E + 00, A4 = -9.01000E-05, A6 = 1.00000E-06, A8 = -1.02000E-08
A10 = 6.91000E-11, A12 = -2.09000E-13, A14 = 0.00000E + 00
表 9(無限遠合焦状態での各種データ)
 
  ズーム比     2.74646
                広角      中間      望遠
  焦点距離      14.6197   24.2279   40.1524
 Fナンバー     3.65722   4.67234   6.12149
    画角        39.9158   24.6458   14.8124
    像高        10.8150   10.8150   10.8150
 レンズ全長     65.3281   62.3258   63.7051
    BF       14.19991  14.19922  14.20096
    d6          18.8807    8.1202    0.5251 
    d14          2.8325    7.1021   15.7923 
    d16          6.2950    9.7843   10.0667 
 入射瞳位置     11.0104    8.7262    6.0579
 射出瞳位置    -26.9751  -47.6999  -65.4139
 前側主点位置   20.4392   23.4711   25.9601
 後側主点位置   50.7084   38.0979   23.5526
Table 9 (Various data in infinite focus state)

Zoom ratio 2.74646
Wide angle Medium telephoto Focal length 14.6197 24.2279 40.1524
F number 3.65722 4.67234 6.12149
Angle of view 39.9158 24.6458 14.8124
Image height 10.8150 10.8150 10.8150
Total lens length 65.3281 62.3258 63.7051
BF 14.19991 14.19922 14.20096
d6 18.8807 8.1202 0.5251
d14 2.8325 7.1021 15.7923
d16 6.2950 9.7843 10.0667
Entrance pupil position 11.0104 8.7262 6.0579
Exit pupil position -26.9751 -47.6999 -65.4139
Front principal point position 20.4392 23.4711 25.9601
Rear principal point position 50.7084 38.0979 23.5526
表 10(単レンズデータ)
 
  レンズ     始面     焦点距離
     1         1      -15.5637
     2         3      -52.1502
     3         5       35.3886
     4         7       14.6142
     5        10       -8.4243
     6        11       11.5784
     7        13       39.5716
     8        15      -22.2984
     9        17       36.0099
Table 10 (Single lens data)

Lens Start surface Focal length 1 1 -15.5637
2 3 -52.1502
3 5 35.3886
4 7 14.6142
5 10 -8.4243
6 11 11.5784
7 13 39.5716
8 15 -22.2984
9 17 36.0099
表 11(ズームレンズ群データ)
 
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -18.72489     7.36000        -0.15423       1.34643
   2      7    16.10846    12.01000         2.54292       3.56847
   3     15   -22.29843     0.60000         0.26954       0.47529
   4     17    36.00993     3.15000         1.35608       2.74570
Table 11 (Zoom lens group data)

Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -18.72489 7.36000 -0.15423 1.34643
2 7 16.10846 12.01000 2.54292 3.56847
3 15 -22.29843 0.60000 0.26954 0.47529
4 17 36.00993 3.15000 1.35608 2.74570
表 12(ズームレンズ群倍率)
 
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.53599   -0.83493   -1.37703
   3     15    2.45050    2.60689    2.61978
   4     17    0.59444    0.59446    0.59441
Table 12 (zoom lens group magnification)

Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.53599 -0.83493 -1.37703
3 15 2.45050 2.60689 2.61978
4 17 0.59444 0.59446 0.59441
(数値実施例3)
 数値実施例3のズームレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表13に、非球面データを表14に、無限遠合焦状態での各種データを表15に、単レンズデータを表16に、ズームレンズ群データを表17に、ズームレンズ群倍率を表18に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Table 13 shows surface data of the zoom lens system of Numerical Example 3, Table 14 shows aspheric data, Table 15 shows various data in the infinite focus state, Table 16 shows single lens data, and zoom lens group data. Table 17 shows the zoom lens group magnification.
表 13(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         40.30130     0.60000     1.91082    35.2    
     2         10.71610     2.68000                        
     3*       204.92050     1.40000     1.54360    56.0    
     4*        24.83570     1.02000                        
     5         18.72090     1.66000     1.94595    18.0    
     6         37.96840        可変                        
     7*        12.69190     2.41000     1.77010    49.7    
     8*       -76.63950     1.00000                        
   9(絞り)           ∞     3.13000                        
    10        -68.70900     0.50000     1.80610    33.3    
    11          7.73520     3.17000     1.49700    81.6    
    12        -17.80350     0.40000                        
    13         17.91980     1.40000     1.49700    81.6    
    14               ∞        可変                        
    15*       -64.42640     0.60000     1.51610    63.4    
    16*        15.47640        可変                        
    17*        23.48230     3.15000     1.80500    40.9    
    18*        56.76900        (BF)                        
    像面             ∞                                    
Table 13 (surface data)

Surface number r d nd vd
Object ∞
1 40.30130 0.60000 1.91082 35.2
2 10.71610 2.68000
3 * 204.92050 1.40000 1.54360 56.0
4 * 24.83570 1.02000
5 18.72090 1.66000 1.94595 18.0
6 37.96840 Variable
7 * 12.69190 2.41000 1.77010 49.7
8 * -76.63950 1.00000
9 (Aperture) ∞ 3.13000
10 -68.70900 0.50000 1.80610 33.3
11 7.73520 3.17000 1.49700 81.6
12 -17.80350 0.40000
13 17.91980 1.40000 1.49700 81.6
14 ∞ Variable
15 * -64.42640 0.60000 1.51610 63.4
16 * 15.47640 variable
17 * 23.48230 3.15000 1.80500 40.9
18 * 56.76900 (BF)
Image plane ∞
表 14(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-1.42000E-04, A6= 5.00000E-06, A8=-8.99000E-08 
   A10= 9.97000E-10, A12=-5.23000E-12, A14= 4.61000E-15 
  第4面
   K=-2.33000E+00, A4=-1.26000E-04, A6= 5.07000E-06, A8=-1.01000E-07 
   A10= 1.13000E-09, A12=-5.73000E-12, A14= 0.00000E+00 
  第7面
   K=-1.00000E+00, A4=-2.00000E-05, A6=-4.20000E-07, A8=-1.16000E-07 
   A10= 4.20000E-09, A12=-1.37000E-10, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4=-3.68000E-05, A6=-1.62000E-06, A8=-3.10000E-08 
   A10= 3.12000E-11, A12=-6.14000E-11, A14= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 1.46000E-04, A6=-9.46000E-06, A8= 4.34000E-07 
   A10=-1.05000E-08, A12= 9.62000E-11, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 1.92000E-04, A6=-7.56000E-06, A8= 2.99000E-07 
   A10=-6.91000E-09, A12= 6.04000E-11, A14= 0.00000E+00 
  第17面
   K= 0.00000E+00, A4=-7.89000E-05, A6= 1.20000E-06, A8=-1.30000E-08 
   A10= 9.06000E-11, A12=-2.83000E-13, A14= 0.00000E+00 
  第18面
   K= 0.00000E+00, A4=-9.01000E-05, A6= 1.00000E-06, A8=-1.02000E-08 
   A10= 6.91000E-11, A12=-2.09000E-13, A14= 0.00000E+00
Table 14 (Aspherical data)

3rd surface K = 0.00000E + 00, A4 = -1.42000E-04, A6 = 5.00000E-06, A8 = -8.99000E-08
A10 = 9.97000E-10, A12 = -5.23000E-12, A14 = 4.61000E-15
4th surface K = -2.33000E + 00, A4 = -1.26000E-04, A6 = 5.07000E-06, A8 = -1.01000E-07
A10 = 1.13000E-09, A12 = -5.73000E-12, A14 = 0.00000E + 00
7th surface K = -1.00000E + 00, A4 = -2.00000E-05, A6 = -4.20000E-07, A8 = -1.16000E-07
A10 = 4.20000E-09, A12 = -1.37000E-10, A14 = 0.00000E + 00
8th surface K = 0.00000E + 00, A4 = -3.68000E-05, A6 = -1.62000E-06, A8 = -3.10000E-08
A10 = 3.12000E-11, A12 = -6.14000E-11, A14 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 1.46000E-04, A6 = -9.46000E-06, A8 = 4.34000E-07
A10 = -1.05000E-08, A12 = 9.62000E-11, A14 = 0.00000E + 00
16th surface K = 0.00000E + 00, A4 = 1.92000E-04, A6 = -7.56000E-06, A8 = 2.99000E-07
A10 = -6.91000E-09, A12 = 6.04000E-11, A14 = 0.00000E + 00
17th surface K = 0.00000E + 00, A4 = -7.89000E-05, A6 = 1.20000E-06, A8 = -1.30000E-08
A10 = 9.06000E-11, A12 = -2.83000E-13, A14 = 0.00000E + 00
18th surface K = 0.00000E + 00, A4 = -9.01000E-05, A6 = 1.00000E-06, A8 = -1.02000E-08
A10 = 6.91000E-11, A12 = -2.09000E-13, A14 = 0.00000E + 00
表 15(無限遠合焦状態での各種データ)
 
  ズーム比     1.31956
                広角      中間      望遠
  焦点距離      18.9726   19.6381   25.0356
 Fナンバー     3.81362   3.87315   4.31403
    画角        32.6837   31.6324   24.8350
    像高        10.8150   10.8150   10.8150
 レンズ全長     57.6309   57.3511   55.4228
    BF       16.47970  16.25775  15.30427
    d6           9.9179    9.1953    4.4450 
    d14          1.1676    1.5253    4.4678 
    d16          6.9457    7.2527    8.0857 
 入射瞳位置      9.3106    9.1228    7.6786
 射出瞳位置    -20.5364  -21.4582  -25.9118
 前側主点位置   18.5588   18.5356   17.5070
 後側主点位置   38.6583   37.7130   30.3872
Table 15 (Various data in focus at infinity)

Zoom ratio 1.31956
Wide angle Medium telephoto Focal length 18.9726 19.6381 25.0356
F number 3.81362 3.87315 4.31403
Angle of View 32.6837 31.6324 24.8350
Image height 10.8150 10.8150 10.8150
Total lens length 57.6309 57.3511 55.4228
BF 16.47970 16.25775 15.30427
d6 9.9179 9.1953 4.4450
d14 1.1676 1.5253 4.4678
d16 6.9457 7.2527 8.0857
Entrance pupil position 9.3106 9.1228 7.6786
Exit pupil position -20.5364 -21.4582 -25.9118
Front principal point position 18.5588 18.5356 17.5070
Rear principal point position 38.6583 37.7130 30.3872
表 16(単レンズデータ)
 
  レンズ     始面     焦点距離
     1         1      -16.1833
     2         3      -52.1310
     3         5       37.4690
     4         7       14.3072
     5        10       -8.5998
     6        11       11.3162
     7        13       36.0561
     8        15      -24.1174
     9        17       47.7345
Table 16 (single lens data)

Lens Start surface Focal length 1 1 -16.1833
2 3 -52.1310
3 5 37.4690
4 7 14.3072
5 10 -8.5998
6 11 11.3162
7 13 36.0561
8 15 -24.1174
9 17 47.7345
表 17(ズームレンズ群データ)
 
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -19.08671     7.36000        -0.13737       1.33919
   2      7    14.91727    12.01000         3.01383       3.75944
   3     15   -24.11738     0.60000         0.31829       0.52354
   4     17    47.73449     3.15000        -1.18127       0.29425
Table 17 (Zoom lens group data)

Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -19.08671 7.36000 -0.13737 1.33919
2 7 14.91727 12.01000 3.01383 3.75944
3 15 -24.11738 0.60000 0.31829 0.52354
4 17 47.73449 3.15000 -1.18127 0.29425
表 18(ズームレンズ群倍率)
 
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.64516   -0.66597   -0.84522
   3     15    2.58976    2.57669    2.50481
   4     17    0.59494    0.59959    0.61956
Table 18 (zoom lens group magnification)

Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.64516 -0.66597 -0.84522
3 15 2.58976 2.57669 2.50481
4 17 0.59494 0.59959 0.61956
(数値実施例4)
 数値実施例4のズームレンズ系は、図10に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表19に、非球面データを表20に、無限遠合焦状態での各種データを表21に、単レンズデータを表22に、ズームレンズ群データを表23に、ズームレンズ群倍率を表24に示す。
(Numerical example 4)
The zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG. Table 19 shows surface data of the zoom lens system in Numerical Example 4, Table 20 shows aspheric data, Table 21 shows various data in the infinite focus state, Table 22 shows single lens data, and zoom lens group data. Table 23 shows the zoom lens group magnification.
表 19(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         16.42280     0.80000     1.85400    40.4    
     2*         8.69880     5.35360                        
     3*       -16.24340     0.50000     1.58700    59.6    
     4*     -1000.00000     0.20000                        
     5         21.90190     1.25200     1.94595    18.0    
     6         40.03200        可変                        
     7*        11.89960     2.02150     1.77200    50.0    
     8*     -1000.00000     1.00000                        
   9(絞り)           ∞     2.00000                        
    10         25.47380     0.58990     1.90366    31.3    
    11          7.34840     2.70950     1.49700    81.6    
    12        -33.68110     1.50000                        
    13         33.63990     1.20000     1.59282    68.6    
    14        -86.34380        可変                        
    15*        89.01190     0.40000     1.77200    50.0    
    16*        10.64130        可変                        
    17*        43.32750     3.19620     1.77200    50.0    
    18*       -62.33520        (BF)                         9.654     
    像面             ∞                                               
Table 19 (surface data)

Surface number r d nd vd
Object ∞
1 16.42280 0.80000 1.85400 40.4
2 * 8.69880 5.35360
3 * -16.24340 0.50000 1.58700 59.6
4 * -1000.00000 0.20000
5 21.90190 1.25200 1.94595 18.0
6 40.03200 Variable
7 * 11.89960 2.02150 1.77200 50.0
8 * -1000.00000 1.00000
9 (Aperture) ∞ 2.00000
10 25.47380 0.58990 1.90366 31.3
11 7.34840 2.70950 1.49700 81.6
12 -33.68110 1.50000
13 33.63990 1.20000 1.59282 68.6
14 -86.34380 Variable
15 * 89.01190 0.40000 1.77200 50.0
16 * 10.64130 variable
17 * 43.32750 3.19620 1.77200 50.0
18 * -62.33520 (BF) 9.654
Image plane ∞
表 20(非球面データ)
 
  第2面
   K= 0.00000E+00, A4=-3.04224E-05, A6=-3.39736E-07, A8= 0.00000E+00 
   A10= 0.00000E+00 
  第3面
   K= 0.00000E+00, A4= 8.94998E-05, A6=-1.77785E-06, A8= 3.92646E-08 
   A10=-3.91376E-10 
  第4面
   K= 0.00000E+00, A4= 7.11423E-05, A6=-1.79171E-06, A8= 2.82400E-08 
   A10=-2.93586E-10 
  第7面
   K= 0.00000E+00, A4=-4.57043E-05, A6=-8.52737E-08, A8= 3.62974E-09 
   A10=-1.40385E-09 
  第8面
   K= 0.00000E+00, A4= 4.15779E-05, A6=-2.33061E-07, A8=-3.98850E-09 
   A10=-1.29915E-09 
  第15面
   K= 0.00000E+00, A4= 1.00000E-04, A6=-1.10837E-05, A8= 2.79906E-07 
   A10=-2.65808E-09 
  第16面
   K= 0.00000E+00, A4= 1.21515E-04, A6=-1.15513E-05, A8= 1.97566E-07 
   A10=-9.89769E-10 
  第17面
   K= 0.00000E+00, A4= 7.90705E-05, A6=-1.03130E-06, A8= 1.21938E-08 
   A10=-8.96221E-11 
  第18面
   K= 0.00000E+00, A4= 5.73840E-05, A6=-1.13324E-06, A8= 1.43220E-08 
   A10=-1.00247E-10
Table 20 (Aspheric data)

2nd surface K = 0.00000E + 00, A4 = -3.04224E-05, A6 = -3.39736E-07, A8 = 0.00000E + 00
A10 = 0.00000E + 00
3rd surface K = 0.00000E + 00, A4 = 8.94998E-05, A6 = -1.77785E-06, A8 = 3.92646E-08
A10 = -3.91376E-10
4th surface K = 0.00000E + 00, A4 = 7.11423E-05, A6 = -1.79171E-06, A8 = 2.82400E-08
A10 = -2.93586E-10
7th surface K = 0.00000E + 00, A4 = -4.57043E-05, A6 = -8.52737E-08, A8 = 3.62974E-09
A10 = -1.40385E-09
8th surface K = 0.00000E + 00, A4 = 4.15779E-05, A6 = -2.33061E-07, A8 = -3.98850E-09
A10 = -1.29915E-09
15th surface K = 0.00000E + 00, A4 = 1.00000E-04, A6 = -1.10837E-05, A8 = 2.79906E-07
A10 = -2.65808E-09
16th surface K = 0.00000E + 00, A4 = 1.21515E-04, A6 = -1.15513E-05, A8 = 1.97566E-07
A10 = -9.89769E-10
17th surface K = 0.00000E + 00, A4 = 7.90705E-05, A6 = -1.03130E-06, A8 = 1.21938E-08
A10 = -8.96221E-11
18th surface K = 0.00000E + 00, A4 = 5.73840E-05, A6 = -1.13324E-06, A8 = 1.43220E-08
A10 = -1.00247E-10
表 21(無限遠合焦状態での各種データ)
 
  ズーム比     2.76784
                広角      中間      望遠
  焦点距離      14.3537   23.9034   39.7286
 Fナンバー     3.62506   4.47999   5.94685
    画角        41.1121   24.5308   14.9900
    像高        10.8150   10.8150   10.8150
 レンズ全長     62.3073   56.8859   59.2609
    BF       13.93740  13.71325  13.18514
    d6          17.0129    6.6327    0.6000 
    d14          2.1442    6.6384   13.4790 
    d16          6.4901    7.1788    9.2741 
 入射瞳位置     11.7748    9.5407    7.3316
 射出瞳位置    -23.0429  -29.5489  -44.9601
 前側主点位置   20.5572   20.2369   19.9151
 後側主点位置   47.9536   32.9825   19.5323
Table 21 (Various data in focus at infinity)

Zoom ratio 2.76784
Wide angle Medium telephoto Focal length 14.3537 23.9034 39.7286
F number 3.62506 4.47999 5.94685
Angle of view 41.1121 24.5308 14.9900
Image height 10.8150 10.8150 10.8150
Total lens length 62.3073 56.8859 59.2609
BF 13.93740 13.71325 13.18514
d6 17.0129 6.6327 0.6000
d14 2.1442 6.6384 13.4790
d16 6.4901 7.1788 9.2741
Entrance pupil position 11.7748 9.5407 7.3316
Exit pupil position -23.0429 -29.5489 -44.9601
Front principal point position 20.5572 20.2369 19.9151
Rear principal point position 47.9536 32.9825 19.5323
表 22(単レンズデータ)
 
  レンズ     始面     焦点距離
     1         1      -22.7424
     2         3      -28.1341
     3         5       49.4633
     4         7       15.2461
     5        10      -11.6080
     6        11       12.4096
     7        13       40.9881
     8        15      -15.6906
     9        17       33.5522
Table 22 (Single lens data)

Lens Start surface Focal length 1 1 -22.7424
2 3 -28.1341
3 5 49.4633
4 7 15.2461
5 10 -11.6080
6 11 12.4096
7 13 40.9881
8 15 -15.6906
9 17 33.5522
表 23(ズームレンズ群データ)
 
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -15.88153     8.10560         2.22827       3.67295
   2      7    13.54864    11.02090         2.65451       3.70332
   3     15   -15.69064     0.40000         0.25696       0.43072
   4     17    33.55220     3.19620         0.74950       2.11789
Table 23 (Zoom lens group data)

Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -15.88153 8.10560 2.22827 3.67295
2 7 13.54864 11.02090 2.65451 3.70332
3 15 -15.69064 0.40000 0.25696 0.43072
4 17 33.55220 3.19620 0.74950 2.11789
表 24(ズームレンズ群倍率)
 
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.51257   -0.84401   -1.35215
   3     15    3.19164    3.18929    3.21812
   4     17    0.55247    0.55915    0.57489
Table 24 (zoom lens group magnification)

Group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.51257 -0.84401 -1.35215
3 15 3.19164 3.18929 3.21812
4 17 0.55247 0.55915 0.57489
 以下の表25に、各数値実施例のズームレンズ系における各条件の対応値を示す。 Table 25 below shows corresponding values for each condition in the zoom lens system of each numerical example.
表 25(条件の対応値)
Figure JPOXMLDOC01-appb-T000001
Table 25 (corresponding values of conditions)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、例えばデジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯情報端末のカメラ、PDA(Personal Digital Assistance)のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用可能である。特に本開示は、デジタルスチルカメラシステム、デジタルビデオカメラシステムといった高画質が要求される撮影光学系に好適である。 The present disclosure is applicable to, for example, a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a PDA (Personal Digital Assistance) camera, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like. In particular, the present disclosure is suitable for a photographing optical system that requires high image quality, such as a digital still camera system and a digital video camera system.
 また本開示におけるズームレンズ系は、本開示における交換レンズ装置の中でも、デジタルビデオカメラシステムに備えられる、ズームレンズ系をモータにより駆動する電動ズーム機能を搭載した交換レンズ装置に適用することが可能である。 In addition, the zoom lens system according to the present disclosure can be applied to an interchangeable lens device equipped with an electric zoom function for driving the zoom lens system with a motor, which is included in the digital video camera system, among the interchangeable lens devices according to the present disclosure. is there.
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
A   開口絞り
S   像面
100 レンズ交換式デジタルカメラシステム
101 カメラ本体
102 撮像素子
103 液晶モニタ
104 カメラマウント部
201 交換レンズ装置
202 ズームレンズ系
203 鏡筒
204 レンズマウント部
 
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element A Aperture stop S Image surface 100 Lens interchangeable digital camera system 101 Camera body 102 Image sensor 103 Liquid crystal monitor 104 Camera mount unit 201 Interchangeable lens device 202 Zoom lens system 203 Lens tube 204 Lens mount

Claims (5)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するズームレンズ系であって、
    物体側から像側へと順に、
    負のパワーを有する第1レンズ群と、
    正のパワーを有する第2レンズ群と、
    少なくとも1つのレンズ群からなる後方レンズ群と
    を備え、
    各レンズ群の光軸上での間隔を変化させて撮像時に広角端から望遠端へのズーミングを行い、
    前記第2レンズ群を構成する全レンズ素子のうち、少なくとも2枚が以下の条件(1)及び(2)を満足する、ズームレンズ系:
      0.660327≦{(ng-nF)+0.001802×(nd-1)}/(nF-nC)≦0.730327 ・・・(1)
      (nd-1)/(nF-nC)≧50 ・・・(2)
    ここで、
     ng:第2レンズ群を構成するレンズ素子のg線に対する屈折率、
     nF:第2レンズ群を構成するレンズ素子のF線に対する屈折率、
     nd:第2レンズ群を構成するレンズ素子のd線に対する屈折率、
     nC:第2レンズ群を構成するレンズ素子のC線に対する屈折率
    である。
    A zoom lens system having a plurality of lens groups each composed of at least one lens element,
    From the object side to the image side,
    A first lens group having negative power;
    A second lens group having positive power;
    A rear lens group comprising at least one lens group,
    Zooming from the wide-angle end to the telephoto end during imaging by changing the interval on the optical axis of each lens group,
    A zoom lens system in which at least two of the lens elements constituting the second lens group satisfy the following conditions (1) and (2):
    0.660327 ≦ {(ng−nF) + 0.001802 × (nd−1)} / (nF−nC) ≦ 0.730327 (1)
    (Nd-1) / (nF-nC) ≧ 50 (2)
    here,
    ng: refractive index with respect to g-line of lens elements constituting the second lens group,
    nF: refractive index with respect to the F line of the lens elements constituting the second lens group,
    nd: refractive index with respect to d-line of lens elements constituting the second lens group,
    nC is the refractive index with respect to the C line of the lens elements constituting the second lens group.
  2.  以下の条件(3)を満足する、請求項1に記載のズームレンズ系:
      1.3≦M≦5.0 ・・・(3)
    ここで、
     M:望遠端における後方レンズ群のd線での結像倍率
    である。
    The zoom lens system according to claim 1, wherein the zoom lens system satisfies the following condition (3):
    1.3 ≦ M ≦ 5.0 (3)
    here,
    M: imaging magnification at the d-line of the rear lens group at the telephoto end.
  3.  後方レンズ群が、
    第2レンズ群の像側に隣接して配置され、負のパワーを有する第3レンズ群と、
    該第3レンズ群の像側に隣接して配置され、正のパワーを有する第4レンズ群と
    を有する、請求項1に記載のズームレンズ系。
    The rear lens group
    A third lens group disposed adjacent to the image side of the second lens group and having negative power;
    The zoom lens system according to claim 1, further comprising a fourth lens group that is disposed adjacent to the image side of the third lens group and has a positive power.
  4.  請求項1に記載のズームレンズ系と、
    前記ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体との接続が可能なレンズマウント部と
    を備える、交換レンズ装置。
    A zoom lens system according to claim 1;
    An interchangeable lens apparatus comprising: a lens mount unit that can be connected to a camera body including an imaging element that receives an optical image formed by the zoom lens system and converts the optical image into an electrical image signal.
  5.  請求項1に記載のズームレンズ系を含む交換レンズ装置と、
    前記交換レンズ装置とカメラマウント部を介して着脱可能に接続され、前記ズームレンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子を含むカメラ本体と
    を備える、カメラシステム。
     
    An interchangeable lens device comprising the zoom lens system according to claim 1;
    A camera system comprising: the interchangeable lens device and a camera main body including an image sensor that is detachably connected via a camera mount unit and receives an optical image formed by the zoom lens system and converts the optical image into an electrical image signal. .
PCT/JP2012/005098 2011-08-25 2012-08-10 Zoom lens system, interchangeable lens device, and camera system WO2013027362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-184163 2011-08-25
JP2011184163 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027362A1 true WO2013027362A1 (en) 2013-02-28

Family

ID=47746134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005098 WO2013027362A1 (en) 2011-08-25 2012-08-10 Zoom lens system, interchangeable lens device, and camera system

Country Status (1)

Country Link
WO (1) WO2013027362A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162013A (en) * 1984-09-03 1986-03-29 Nippon Kogaku Kk <Nikon> Zoom lens
JPS63241511A (en) * 1987-03-30 1988-10-06 Nikon Corp Zoom lens
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH05134184A (en) * 1991-11-13 1993-05-28 Minolta Camera Co Ltd Zoom lens
JP2002277739A (en) * 2001-03-21 2002-09-25 Fuji Photo Optical Co Ltd Wide-angle three-group zoom lens
JP2006309049A (en) * 2005-05-02 2006-11-09 Olympus Imaging Corp Imaging apparatus using zoom lens system
JP2006308929A (en) * 2005-04-28 2006-11-09 Olympus Imaging Corp Compact zoom photographing optical system and electronic imaging apparatus using the same
JP2007133133A (en) * 2005-11-10 2007-05-31 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2010181787A (en) * 2009-02-09 2010-08-19 Olympus Imaging Corp Zoom lens and image pickup apparatus using the same
JP2011237737A (en) * 2010-05-13 2011-11-24 Olympus Imaging Corp Image forming optical system and imaging apparatus having the same
JP2012027262A (en) * 2010-07-23 2012-02-09 Olympus Imaging Corp Zoom lens and imaging device having the same
JP2012181350A (en) * 2011-03-01 2012-09-20 Olympus Imaging Corp Zoom lens

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162013A (en) * 1984-09-03 1986-03-29 Nippon Kogaku Kk <Nikon> Zoom lens
JPS63241511A (en) * 1987-03-30 1988-10-06 Nikon Corp Zoom lens
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH05134184A (en) * 1991-11-13 1993-05-28 Minolta Camera Co Ltd Zoom lens
JP2002277739A (en) * 2001-03-21 2002-09-25 Fuji Photo Optical Co Ltd Wide-angle three-group zoom lens
JP2006308929A (en) * 2005-04-28 2006-11-09 Olympus Imaging Corp Compact zoom photographing optical system and electronic imaging apparatus using the same
JP2006309049A (en) * 2005-05-02 2006-11-09 Olympus Imaging Corp Imaging apparatus using zoom lens system
JP2007133133A (en) * 2005-11-10 2007-05-31 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2010181787A (en) * 2009-02-09 2010-08-19 Olympus Imaging Corp Zoom lens and image pickup apparatus using the same
JP2011237737A (en) * 2010-05-13 2011-11-24 Olympus Imaging Corp Image forming optical system and imaging apparatus having the same
JP2012027262A (en) * 2010-07-23 2012-02-09 Olympus Imaging Corp Zoom lens and imaging device having the same
JP2012181350A (en) * 2011-03-01 2012-09-20 Olympus Imaging Corp Zoom lens

Similar Documents

Publication Publication Date Title
JP5816845B2 (en) Zoom lens system, interchangeable lens device and camera system
JP6210208B2 (en) Inner focus lens system, interchangeable lens device and camera system
JP6253012B2 (en) Inner focus lens system, interchangeable lens device and camera system
JP5577309B2 (en) Zoom lens system, lens barrel, interchangeable lens device, and camera system
JP5891447B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5891448B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5649252B2 (en) Zoom lens system, interchangeable lens device and camera system
JP2012212106A (en) Zoom lens system, interchangeable lens apparatus, and camera system
JP2012133230A (en) Zoom lens system, interchangeable lens device and camera system
JP2011197472A (en) Zoom lens system, interchangeable lens device, and camera system
JP2011197470A (en) Zoom lens system, interchangeable lens device, and camera system
JP6099022B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2013218291A (en) Zoom lens system, interchangeable lens apparatus and camera system
JP2011197469A (en) Zoom lens system, interchangeable lens device, and camera system
JP2012047813A (en) Zoom lens system, interchangeable lens device and camera system
JP5891452B2 (en) Zoom lens system, interchangeable lens device and camera system
JP2011197471A (en) Zoom lens system, interchangeable lens device, and camera system
WO2012086154A1 (en) Zoom lens system, interchangeable lens device, and camera system
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2012037869A (en) Zoom lens system, interchangeable lens device and camera system
JP6355076B2 (en) Zoom lens system, interchangeable lens device and camera system
WO2014013648A1 (en) Zoom lens system, imaging device and camera
JP2012063661A (en) Zoom lens system, lens barrel, interchangeable lens device, and camera system
JP2012063663A (en) Zoom lens system, lens barrel, interchangeable lens device, and camera system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP