JP2007327991A - Zoom lens and imaging apparatus with the same - Google Patents

Zoom lens and imaging apparatus with the same Download PDF

Info

Publication number
JP2007327991A
JP2007327991A JP2006156979A JP2006156979A JP2007327991A JP 2007327991 A JP2007327991 A JP 2007327991A JP 2006156979 A JP2006156979 A JP 2006156979A JP 2006156979 A JP2006156979 A JP 2006156979A JP 2007327991 A JP2007327991 A JP 2007327991A
Authority
JP
Japan
Prior art keywords
lens group
lens
zoom
distance
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156979A
Other languages
Japanese (ja)
Inventor
Tsunaki Hozumi
綱樹 穂積
Masato Miyata
正人 宮田
Kouyuki Sabe
校之 左部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2006156979A priority Critical patent/JP2007327991A/en
Priority to US11/810,362 priority patent/US7474472B2/en
Publication of JP2007327991A publication Critical patent/JP2007327991A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144515Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens advantageous for satisfying both of the thinning of a lens system when being collapsed and housed and the securement of an f-number showing a bright condition. <P>SOLUTION: When varying power from a wide angle end to a telephoto end, space between first and second lens groups G1 and G2 is narrowed and space between the second and the third lens groups G2 and G3 is widened. The first lens group G1 comprises one single lens, which is a biconcave negative lens, or two lenses, that is, a biconcave negative lens and a positive lens, and the second lens group comprises two positive lenses and one negative lens. At least either of the two positive lenses of the second lens group has an aspherical lens surface. The zoom lens satisfies a conditional expression (1): 16<C<SB>jw</SB>/h<SB>1w</SB><23 (provided that h<SB>1w</SB>means the height of an axial marginal light beam on the incident surface of the first lens group at the wide angle end in the longest distance focused state, and C<SB>jw</SB>means length on an optical axis to an image surface from the incident surface of the first lens group at the wide angle end in the longest distance focused state). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ズームレンズ及びそれを備えた撮像装置に関するものでり、特に、沈胴収納時における薄型化に有利となる明るいズームレンズに関するものである。また、撮像面上に形成された像を電気信号に変換する電子撮像素子を備えたデジタルカメラやビデオカメラ等の撮像装置に関するものである。   The present invention relates to a zoom lens and an image pickup apparatus including the same, and more particularly to a bright zoom lens that is advantageous for thinning when retracted. The present invention also relates to an imaging apparatus such as a digital camera or a video camera provided with an electronic imaging element that converts an image formed on an imaging surface into an electrical signal.

近年のデジタルカメラのコンパクト化により、未使用時のサイズがコンパクトになることが必須となり、特に、厚み方向のサイズの小型化が求められている。そのため、カメラの撮像光学系も、未使用時に厚さ方向に薄く沈胴収納できることが求められている。   Due to the recent downsizing of digital cameras, it is essential that the size when not in use is reduced. In particular, the size in the thickness direction is required to be reduced. Therefore, the imaging optical system of the camera is also required to be retractable and retractable in the thickness direction when not in use.

一方、カメラの小型化及び撮像素子の高画素数化が進むにつれ、撮像素子の画素ピッチの細分化が進み、SN比の低下から感度が制限され、被写体ブレや手ブレが起こりやすくなるといった課題がある。   On the other hand, as the miniaturization of the camera and the increase in the number of pixels of the image sensor progress, the pixel pitch of the image sensor progresses further, the sensitivity is limited due to the decrease in the SN ratio, and subject blurring and camera shake are likely to occur. There is.

また、市場からもこれらのブレに対応するのみではなく、従来のカメラに対してより撮影可能な環境を増やし、低照度の被写体の撮影にも対応できることが求められている。   In addition, the market demands not only to cope with these blurs, but also to increase the environment in which photographing can be performed with respect to a conventional camera and to cope with photographing low-illuminance subjects.

これらに対応する方法として、機械的な補正機構を用いて手ブレを低減させる方法、撮像素子の感度を上げてシャッタースピードを速くする等の対応方法がある。   As a method corresponding to these, there are a method for reducing camera shake using a mechanical correction mechanism, a method for increasing the sensitivity of the image sensor and increasing the shutter speed, and the like.

しかし、撮影レンズの一部若しくは撮像素子を機械的に動かしてブレを補正する方法では、露光時間が長くなり、被写体のブレには対応できず、これに対応するには複雑な制御機構(例えば、被写体の移動に合わせて撮影位置を移動させたり、撮影後の電気的な演算処理による画像の補正)を必要とする。   However, in the method of correcting blur by mechanically moving a part of the photographic lens or the image sensor, the exposure time becomes long and cannot cope with the blur of the subject. To cope with this, a complicated control mechanism (for example, Therefore, it is necessary to move the shooting position in accordance with the movement of the subject or to correct the image by electrical calculation after shooting).

一方、撮像素子の高感度化は、被写体ブレ、手ブレの両方に対応できる反面、撮像素子のノイズによる画質低下が生じやすい。   On the other hand, higher sensitivity of the image sensor can cope with both subject blur and camera shake, but image quality is likely to deteriorate due to noise of the image sensor.

そこで、撮影レンズのFナンバーを小さく(明るく)して、撮像素子への入射光量を増やすことがこれらの課題解決に有効となる。   Therefore, it is effective for solving these problems to reduce (brighten) the F-number of the photographing lens and increase the amount of incident light to the image sensor.

しかしながら、従来の最小Fナンバーが1.8クラスの明るいズームレンズでは、レンズ構成が複雑であり、コンパクトカメラに搭載するのに十分な沈胴時の薄さを確保することが難しかった。   However, a conventional bright zoom lens having a minimum F-number of 1.8 class has a complicated lens configuration, and it has been difficult to ensure a sufficient thinness when retracted to be mounted on a compact camera.

そこで、後記の本発明では、薄型コンパクトカメラに搭載可能な小さいFナンバーを持つ明るいズームレンズレを提供することを目的としている。   Accordingly, an object of the present invention, which will be described later, is to provide a bright zoom lens having a small F number that can be mounted on a thin compact camera.

一般に、明るいFナンバーのズームレンズを構成するには、第1レンズ群が正の屈折力を持つタイプのズームレンズが有利であることが知られている。しかしながら、第1レンズ群が径方向に大きくなること、レンズの構成枚数が多くなりやすいことから、未使用時に沈胴して薄く収納するには不向きである。   In general, it is known that a zoom lens of a type in which the first lens unit has a positive refractive power is advantageous for constituting a bright F-number zoom lens. However, since the first lens group becomes large in the radial direction and the number of lenses is likely to increase, it is unsuitable for retracting and storing thinly when not in use.

一方、未使用時にコンパクトに収納できる光学系の構成として、第1レンズ群が負の屈折力を持つタイプのズームレンズが知られている。   On the other hand, as a configuration of an optical system that can be stored compactly when not in use, a zoom lens of a type in which a first lens unit has a negative refractive power is known.

このタイプのズームレンズは、正の屈折力のレンズ群が先行するタイプのズームレンズよりも薄く沈胴収納が行えるため、多くの薄型カメラで採用されている。   This type of zoom lens is used in many thin cameras because it can be retracted and retracted more thinly than a zoom lens of the type preceded by a lens unit having a positive refractive power.

しかしながら、従来の負の屈折力のレンズ群が先行するタイプのズームレンズは、沈胴時の薄型化と明るいFナンバーの確保の両立がなされていない。   However, a conventional zoom lens preceded by a lens unit having a negative refractive power does not achieve both a reduction in thickness when retracted and a bright F number.

例えば、レンズ構成枚数が少なく、薄型鏡枠を構成可能と思われる、特許文献1に記載されたズームレンズでは、Fナンバーが何れも2.9程度と暗いものである。そのため、十分な光量を得ることに不利なものである。   For example, in the zoom lens described in Patent Document 1 in which the number of lenses is small and a thin lens frame can be configured, the F number is as dark as about 2.9. Therefore, it is disadvantageous for obtaining a sufficient amount of light.

一方、明るいFナンバーを実現した特許文献2、特許文献3、特許文献4、特許文献5に記載されたズームレンズは、何れもレンズの構成枚数が多く、コンパクトに沈胴することが難しいものである。
特開2004−318099号公報 特開平4−114116号公報 特開平1−40913号公報 特開2001−42218号公報 特開2001−208969号公報
On the other hand, the zoom lenses described in Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 that realize a bright F-number have a large number of lenses and are difficult to retract compactly. .
JP 2004-318099 A JP-A-4-114116 Japanese Patent Laid-Open No. 1-40913 JP 2001-42218 A JP 2001-208969 A

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、沈胴収納時のレンズ系の薄型化と明るいFナンバーの確保の両立に有利なズームレンズを提供することである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a zoom lens that is advantageous in achieving both a reduction in the thickness of the lens system when retracted and securing a bright F number. It is.

さらには、ズームレンズの沈胴時の薄型化による小型の撮像装置を提供することである。   It is another object of the present invention to provide a small-sized imaging device that is thinned when the zoom lens is retracted.

上記目的を達成する本発明の第1の側面のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするものである。
The zoom lens according to the first aspect of the present invention that achieves the above object, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a positive refractive power. Each of the first lens group, the second lens group, and the third lens group moves along the optical axis during zooming from the wide-angle end to the telephoto end, The distance between the first lens group and the second lens group is narrowed, the distance between the second lens group and the third lens group is widened, and the first lens group is a biconcave negative lens 1 The second lens group is composed of two positive lenses and one negative lens, and the two positive lenses of the second lens group. Among the lenses, at least one positive lens has an aspheric lens surface,
The following conditional expression is satisfied.

16<Cjw/h1w<23 ・・・(1)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
jwは広角端かつ最遠距離合焦状態における第1レンズ群入射面から像面までの光軸上での長さ、
である。
16 <C jw / h 1w <23 (1)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
C jw is the length on the optical axis from the first lens group entrance surface to the image plane in the wide-angle end and the farthest distance in-focus state,
It is.

本発明の第2の側面のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするものである。
The zoom lens according to the second aspect of the present invention includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens having positive refractive power. Each of the first lens group, the second lens group, and the third lens group moves along an optical axis during zooming from the wide-angle end to the telephoto end, and the first lens group The distance between the second lens group is narrowed, the distance between the second lens group and the third lens group is widened, and the first lens group is a single lens that is a biconcave negative lens, or both The second lens group is composed of two positive lenses and one negative lens, and at least of the two positive lenses in the second lens group. One positive lens has an aspheric lens surface,
The following conditional expression is satisfied.

1.5<f2 /fw <1.9 ・・・(5)
ただし、f2 は第2レンズ群の焦点距離、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
1.5 <f 2 / f w <1.9 (5)
Where f 2 is the focal length of the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.

本発明の第3の側面のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするものである。
The zoom lens according to the third aspect of the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a positive refractive power. Each of the first lens group, the second lens group, and the third lens group moves along an optical axis during zooming from the wide-angle end to the telephoto end, and the first lens group The distance between the second lens group is narrowed, the distance between the second lens group and the third lens group is widened, and the first lens group is a single lens that is a biconcave negative lens, or both The second lens group is composed of two positive lenses and one negative lens, and at least of the two positive lenses in the second lens group. One positive lens has an aspheric lens surface,
The following conditional expression is satisfied.

0.4<h1w/IH<0.5 ・・・(8)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
IHは最大像高、
である。
0.4 <h 1w /IH<0.5 (8)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
IH is the maximum image height,
It is.

以下に、本発明において上記構成をとる理由と作用を説明する。   Below, the reason and effect | action which take the said structure in this invention are demonstrated.

本発明のズームレンズは第1〜第3の側面共通で、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有するレンズタイプとしている。   The zoom lens of the present invention is common to the first to third side surfaces, and in order from the object side, the first lens group having a negative refractive power, the second lens group having a positive refractive power, and the positive refractive power. The third lens group has a lens type.

そして、広角端から望遠端へのズーミング時に、第1レンズ群、第2レンズ群、第3レンズ群の各々が光軸に沿って移動し、第1レンズ群と第2レンズ群との間の間隔が狭まり、第2レンズ群と第3レンズ群との間隔が広がズーミング移動方式としている。   Then, during zooming from the wide-angle end to the telephoto end, each of the first lens group, the second lens group, and the third lens group moves along the optical axis, and between the first lens group and the second lens group. The zooming movement method is such that the distance is narrow and the distance between the second lens group and the third lens group is wide.

そして、第1レンズ群を両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズから構成し、第2レンズ群は2枚の正レンズと1枚の負レンズから構成し、その上で、第2レンズ群の2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持つ構成としている。   The first lens group includes one single lens that is a biconcave negative lens, or two lenses, a biconcave negative lens and a positive lens, and the second lens group includes two positive lenses and one lens. A negative lens is formed, and at least one of the two positive lenses of the second lens group has an aspheric lens surface.

このように、負のレンズ群を第1レンズ群として、負の屈折力が先行するタイプ構成とすることで、第1レンズ群の径を小さくし小型化を行いやすくしている。   In this way, the negative lens group is used as the first lens group, and the negative refractive power precedes the type configuration, thereby reducing the diameter of the first lens group and facilitating downsizing.

そして、第1レンズ群に続いて配置される、正の屈折力を持つ2つのレンズ群を上述の移動方式とすることで、第2レンズ群にズーミング時の変倍機能を持たせ、第3レンズ群に結像位置を調整する機能を持たせられる。   Then, the two lens groups having a positive refractive power, which are arranged subsequent to the first lens group, have the above-described movement method, so that the second lens group has a zooming function during zooming. The lens group can have a function of adjusting the imaging position.

このとき、第1、第2、第3レンズ群をそれぞれ移動させることで、Fナンバーを明るく構成した際のレンズ面への光線入射高が高くなることによる高次の球面収差やコマ収差の影響を調整しやすくできる。   At this time, by moving the first, second, and third lens groups, respectively, the influence of higher-order spherical aberration and coma aberration due to the increased light incident height on the lens surface when the F number is made brighter. Can be adjusted easily.

そして、第1レンズ群を、両凹負レンズの単レンズ、若しくは、両凹負レンズと正レンズの2枚からなる構成としたことで、沈胴時の小型化と収差バランスを良好に保つことに有利となる。   The first lens group is composed of a single lens of a double-concave negative lens or a double lens of a double-concave negative lens and a positive lens, so that the size reduction and the aberration balance can be maintained well when retracted. It will be advantageous.

第1レンズ群は広角端付近での軸外光束の光線高が高くなる。そこで、第1レンズ群の構成レンズ枚数を極力減らして光軸上での厚みを抑えることにより、小型化に有利となる。つまり、第1レンズ群のレンズ枚数が増えた場合を考えると、広角側での光線高が一層高くなり、第1レンズ群の物体側の有効径がより大きくなるため、レンズや空気レンズの光軸上での厚みや軸外での厚みが大きくなりやすく、小型化に不利となる。   In the first lens group, the height of the off-axis light beam near the wide-angle end increases. Therefore, it is advantageous for miniaturization by reducing the number of constituent lenses of the first lens group as much as possible to suppress the thickness on the optical axis. In other words, considering the case where the number of lenses in the first lens group is increased, the light beam height on the wide-angle side becomes higher and the effective diameter on the object side of the first lens group becomes larger. The on-axis thickness and off-axis thickness tend to increase, which is disadvantageous for downsizing.

また、負レンズの形状を両凹形状とすることで、レンズ中心部に対するレンズ周辺部での出っ張りを抑えて、第1レンズ群の厚みの増加を抑えやすくなる。また、Fナンバーの小さい(明るい)レンズ構成とすると、軸上マージナル光線の光線高が大きくなる。このような場合、球面収差やコマ収差の影響が目立やすくなる。そこで、第1レンズ群の負レンズの入射面が凹面となるよう上述の構成とすることで、第1レンズ群の負レンズの入射面と射出面に負のパワーを分担し、負パワーの面の曲率が大きくなる(曲率半径が小さくなる)ことを緩和して、球面収差、コマ収差の発生を抑えることで、全体の収差バランスを良好にしやすくなる。   Moreover, by making the shape of the negative lens a biconcave shape, it is possible to suppress the protrusion at the lens peripheral portion with respect to the lens central portion and to suppress the increase in the thickness of the first lens group. Further, when the lens configuration is small (bright) with a small F number, the height of the on-axis marginal ray increases. In such a case, the influence of spherical aberration and coma becomes conspicuous. Therefore, by adopting the above-described configuration so that the entrance surface of the negative lens of the first lens group is concave, negative power is shared between the entrance surface and the exit surface of the negative lens of the first lens group, and a negative power surface. Is reduced (the radius of curvature is reduced) to suppress the occurrence of spherical aberration and coma, thereby making it easy to improve the overall aberration balance.

第1レンズ群を両凹単レンズ1枚の構成とすれば、沈胴時の小型化に有利となる。   If the first lens unit is composed of a single biconcave single lens, it is advantageous for miniaturization when retracted.

第1レンズ群を両凹負レンズと正レンズの2枚の構成とすれば、色収差の影響を低減できる(この正レンズは負レンズ側に凸面を向けたメニスカス形状とすると、第1レンズ群の厚さを薄くでき、収差補正上も有利となる。)。   If the first lens group is composed of a biconcave negative lens and a positive lens, the influence of chromatic aberration can be reduced (if this positive lens has a meniscus shape with a convex surface facing the negative lens side, The thickness can be reduced, which is advantageous for aberration correction.)

そして、第2レンズ群は正レンズ2枚と負レンズ1枚で構成し、少なくとも一方の正レンズは非球面のレンズ面を持つ構成としている。このような構成により、第2レンズ群で主に結像作用と変倍作用を担当させることに有利となる。つまり、第2レンズ群での正のパワーを2つのレンズに分担させることで、球面収差等の発生を抑えやすくなる。そして、第2レンズ群に負レンズを配置することで、2枚の正レンズにより発生する球面収差や軸上色収差等をキャンセルし補正しやすくなる。また、正レンズに非球面を用いることにより、明るいFナンバーでありながら、球面収差とコマ収差の補正に有利となる(この非球面は光軸付近よりも周辺で屈折力が小さくなる形状とすると、球面収差やコマ収差の補正に有利となる。非球面は、第2レンズ群の正レンズの凸面に用いることが好ましい。特に複数の凸面に用いることがより好ましい。)。   The second lens group includes two positive lenses and one negative lens, and at least one positive lens has an aspheric lens surface. With such a configuration, it is advantageous for the second lens group to be mainly responsible for the imaging action and the zooming action. That is, it is easy to suppress the occurrence of spherical aberration and the like by sharing the positive power in the second lens group between the two lenses. By disposing a negative lens in the second lens group, it becomes easy to cancel and correct spherical aberration, axial chromatic aberration, and the like generated by the two positive lenses. In addition, using an aspherical surface for the positive lens is advantageous in correcting spherical aberration and coma aberration while having a bright F-number (if this aspherical surface has a smaller refractive power in the periphery than near the optical axis). The aspherical surface is preferably used for the convex surface of the positive lens of the second lens group, and more preferably used for a plurality of convex surfaces).

そして、本発明の第1の側面のズームレンズは、次の条件式を満足することを特徴としている。   The zoom lens according to the first aspect of the present invention satisfies the following conditional expression.

16<Cjw/h1w<23 ・・・(1)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
jwは広角端かつ最遠距離合焦状態における第1レンズ群入射面から像面までの光軸上での長さ、
である。
16 <C jw / h 1w <23 (1)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
C jw is the length on the optical axis from the first lens group entrance surface to the image plane in the wide-angle end and the farthest distance in-focus state,
It is.

この条件は、広角端での良好な結像性能を保ちつつコンパクトに沈胴するための適切なレンズ系の全長と第1レンズ群の入射面のマージナル光線の光線高との関係を規定するものである。本発明のような負の屈折力のレンズ群が先行する(最も物体側に位置する)タイプのズームレンズでは、第2レンズ群以降のレンズ群での軸上マージナル光線高が高くなる。条件式(1)の下限の16を下回らないようにすることで、軸上マージナル光線高を抑える、若しくは、広角端でのズームレンズ全長を確保して各レンズ群での屈折力を抑えることで、第1レンズ群、第2レンズ群双方での球面収差発生量を小さくし、軸上収差と軸外収差との双方の収差を良好に設計しやすくなる。若しくは、第2レンズ群による所望の変倍効果を得るために第2レンズ群が物体側に移動する量を小さくでき、望遠端でのズームレンズ全長を抑えやすくなる。   This condition defines the relationship between the total length of an appropriate lens system for collapsing in a compact manner while maintaining good imaging performance at the wide-angle end and the height of the marginal ray on the entrance surface of the first lens group. is there. In a zoom lens of a type preceded by a lens unit having a negative refractive power as in the present invention (positioned closest to the object side), the on-axis marginal ray height in the second lens unit and subsequent lens units becomes high. By avoiding falling below the lower limit of 16 in the conditional expression (1), the axial marginal ray height can be suppressed, or the entire zoom lens length at the wide angle end can be secured to suppress the refractive power in each lens group. The amount of spherical aberration generated in both the first lens group and the second lens group is reduced, and it becomes easy to design both the on-axis aberration and the off-axis aberration well. Alternatively, in order to obtain a desired zooming effect by the second lens group, the amount of movement of the second lens group to the object side can be reduced, and the overall length of the zoom lens at the telephoto end can be easily suppressed.

また、条件式(1)の上限の23を上回らないようにして、広角端でのFナンバーが大きくなりすぎることを抑え、明るさの確保を行うことが好ましい。若しくは、広角端撮影時での全長が抑えられ、第1レンズ群を沈胴状態から使用状態への切り替えにて繰り出す量が小さくなり、沈胴のための鏡枠を薄くできる。   In addition, it is preferable not to exceed the upper limit of 23 in the conditional expression (1) so as to prevent the F-number at the wide-angle end from becoming too large and to ensure brightness. Alternatively, the total length at the time of wide-angle end photography can be suppressed, the amount of the first lens group that is fed out by switching from the retracted state to the used state can be reduced, and the lens frame for the retracting can be made thin.

さらには、以下の条件式を満足することが好ましい。   Furthermore, it is preferable that the following conditional expression is satisfied.

16<Cjmax/h1w<23 ・・・(2)
ただし、Cjmaxは全使用状態における第1レンズ群入射面から像面までの光軸上での長さが最も長くなるときの長さ、
である。
16 <C jmax / h 1w <23 (2)
Where C jmax is the length when the length on the optical axis from the first lens group entrance surface to the image plane in the entire use state is the longest,
It is.

鏡枠の最大繰り出し量は、全使用状態におけるレンズ全長(第1レンズ群入射面から像面までの光軸上での長さ)が最も長くなるときの長さに依存する。沈胴収納のために必要な鏡枠の環数や光軸方向の寸法を適度に抑えるために、上述の条件を満足することが好ましい。   The maximum extension amount of the lens frame depends on the length when the lens total length (the length on the optical axis from the first lens group incident surface to the image plane) is the longest in all use states. It is preferable to satisfy the above-mentioned conditions in order to moderately suppress the number of lens frames and the size in the optical axis direction necessary for retracting housing.

条件式(2)の下限の16を下回らないようにして、全使用状態にて全長が小さくなることを抑え、変倍比の確保や、光学性能(収差補正)の確保に有利とすることが好ましい。条件式(2)の上限の23を上回らないようにして、レンズ全長の最大値を抑え、鏡枠の環数の増加を抑え、若しくは、光軸方向の寸法を抑えることが好ましい。   The lower limit 16 of the conditional expression (2) is not reduced, and the overall length is prevented from becoming smaller in all use conditions, which is advantageous for securing a zoom ratio and optical performance (aberration correction). preferable. It is preferable not to exceed the upper limit of 23 in the conditional expression (2) so as to suppress the maximum value of the total lens length, suppress the increase in the number of rings of the lens frame, or suppress the dimension in the optical axis direction.

なお、広角端最遠距離合焦状態にてレンズ全長(第1レンズ群入射面から像面までの光軸上での長さ)が最も長くなるときは、条件式(1)と同じ意味となる。   When the entire lens length (the length on the optical axis from the first lens group incident surface to the image plane) is the longest in the state of focusing at the farthest distance at the wide-angle end, it has the same meaning as conditional expression (1). Become.

また、さらには、上述のズームレンズの何れかにて、第2レンズ群の直前の空間から第2レンズ群の直後の空間までの何れかの位置に配置された明るさ絞りを有し、その明るさ絞りは、ズーミング時に第2レンズ群と一体となって光軸方向に移動する構成とすることが好ましい。これにより、ズームレンズの径の小型化や、射出瞳を像面から遠くすること、収差バランスを良好とすることに有利となる。   Further, in any one of the zoom lenses described above, there is an aperture stop disposed at any position from the space immediately before the second lens group to the space immediately after the second lens group. It is preferable that the aperture stop be configured to move in the optical axis direction integrally with the second lens group during zooming. This is advantageous in reducing the diameter of the zoom lens, moving the exit pupil away from the image plane, and improving the aberration balance.

例えば、明るさ絞りが第3レンズ群以降にある場合、広角端付近での入射瞳位置が深くなる(第1レンズ群の入射面から入射瞳までの距離が長くなる)。そのため、画角と像面内の周辺光量を確保しようとすると、第1レンズ群を構成するレンズの径が大きくなって、第1レンズ群の厚み(光軸上の厚みや周辺での厚み)を増大させ、コンパクトに沈胴することが難しくなってくる。また、射出瞳が像面に近づきやすくなり、撮像素子に入射する軸外光束の入射角が大きくなるため、シェーディングを招きやすくなる。   For example, when the aperture stop is located after the third lens group, the entrance pupil position near the wide-angle end becomes deep (the distance from the entrance surface of the first lens group to the entrance pupil becomes long). For this reason, when it is attempted to secure the angle of view and the amount of peripheral light within the image plane, the diameter of the lens constituting the first lens group becomes large, and the thickness of the first lens group (thickness on the optical axis and the thickness at the periphery). And it becomes difficult to retract in a compact manner. In addition, the exit pupil is likely to approach the image plane, and the incident angle of the off-axis light beam incident on the image sensor increases, so that shading is likely to occur.

反対に、明るさ絞りを第1レンズ群付近に配置すると、結像作用の一部を負担する第2レンズ群への軸外光束の入射位置が高くなり、変倍操作によって入射位置が大きく変化することになる。そのため、第2レンズ群での収差変動が大きくなり、広角端から望遠端までのズーム全域にわたって明るいFナンバーを維持したまま良好な結像性能を得ることが難しくなる。   On the other hand, when the aperture stop is arranged near the first lens group, the incident position of the off-axis light beam on the second lens group, which bears a part of the imaging function, is increased, and the incident position is greatly changed by the zooming operation. Will do. For this reason, the aberration variation in the second lens group becomes large, and it becomes difficult to obtain good imaging performance while maintaining a bright F number over the entire zoom range from the wide-angle end to the telephoto end.

また、上述のズームレンズの何れかにて、以下の条件式を満足することが好ましい。   In any one of the zoom lenses described above, it is preferable that the following conditional expression is satisfied.

0.25<h1'w /fw <0.4 ・・・(3)
ただし、h1'w は広角端かつ最遠距離合焦状態における第1レンズ群の射出面での軸上マージナル光線の光線高、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
0.25 <h 1'w / f w <0.4 (3)
Where h 1′w is the height of the axial marginal ray at the exit surface of the first lens group at the wide-angle end and in the farthest distance focus state,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.

この条件式は、広角端かつ最遠距離合焦状態での焦点距離と、第1レンズ群の射出面での適切な軸上マージナル光線の高さとの関係を規定するものである。条件式(3)の上限の0.4を上回らないようにして、第1レンズ群の射出側の面での軸上マージナル光線高を抑え、第1レンズ群で発生する球面収差を抑えることが好ましい。条件式(3)の下限の0.25を下回らないようにして、十分な明るさを確保することが好ましい。   This conditional expression defines the relationship between the focal length at the wide-angle end and the farthest distance in-focus state and the appropriate height of the on-axis marginal ray on the exit surface of the first lens group. The axial marginal ray height on the exit side surface of the first lens group is suppressed so as not to exceed the upper limit of 0.4 of the conditional expression (3), and spherical aberration generated in the first lens group is suppressed. preferable. It is preferable to ensure sufficient brightness so as not to fall below the lower limit of 0.25 of the conditional expression (3).

また、第1レンズ群中に非球面を設けて球面収差の発生を抑えることがより好ましい。第1レンズ群は、ズーミングによる光線入射高や入射角の変動が大きくなる群であるため、像面湾曲とディストーションへの影響を抑えるように非球面を配置し、ズームレンズ全系にて良好な収差バランスとすることが好ましい。   More preferably, an aspheric surface is provided in the first lens group to suppress the occurrence of spherical aberration. Since the first lens group is a group in which the variation of the incident light height and the incident angle due to zooming is large, an aspherical surface is arranged so as to suppress the influence on the curvature of field and the distortion, which is favorable in the entire zoom lens system. It is preferable to have an aberration balance.

具体的には、光軸付近での負の屈折力よりも周辺で屈折力が大きく(より弱い負や正の屈折力)なる形状の非球面とすることが好ましい。この非球面は、両凹負レンズの物体側面に設けることで、広角側でのディストーションの発生を低減でき好ましい。さらには、非球面を第1レンズ群の複数の凹面に設けると、非球面形状が極端な形状となることを抑え、偏心による結像性能の劣化を抑えやすくなりより好ましい。   Specifically, it is preferable that the aspherical surface has a shape in which the refractive power is larger in the vicinity (weaker negative or positive refractive power) than the negative refractive power in the vicinity of the optical axis. This aspherical surface is preferably provided on the object side surface of the biconcave negative lens, so that the occurrence of distortion on the wide angle side can be reduced. Furthermore, it is more preferable to provide an aspherical surface on the plurality of concave surfaces of the first lens group, since the aspherical shape can be prevented from becoming an extreme shape, and deterioration of imaging performance due to decentering can be easily suppressed.

また、上述の何れかのズームレンズにて、以下の条件式を満足することが好ましい。   In any one of the zoom lenses described above, it is preferable that the following conditional expression is satisfied.

1.0<Σd/fw <2.2 ・・・(4)
ただし、Σdはズームレンズ全系の各レンズ群の光軸上での厚みの総和、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
1.0 <Σd / f w <2.2 (4)
Where Σd is the sum of the thickness on the optical axis of each lens group of the entire zoom lens system,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.

この条件式は、コンパクトな沈胴厚さを実現するための各レンズ群の厚みの和を規定するものである。条件式(4)の上限の2.2を上回らないようにして、各レンズ群の光軸上での厚みの和を抑え、沈胴したときの鏡枠の厚みを抑えることが好ましい。条件式(4)の下限の1.0を下回らないようにして、各々のレンズ群での光軸上での厚みを適度に確保し、第2、第3レンズ群の正の屈折力の確保を容易とすることが好ましい。それにより、所望の変倍比を得るための各レンズ群の移動量を抑えやすくなる。その結果、移動のための鏡枠部品の小型化に有利となる。   This conditional expression prescribes the sum of the thicknesses of the respective lens groups for realizing a compact collapsed thickness. It is preferable not to exceed the upper limit of 2.2 of conditional expression (4) so as to suppress the sum of the thicknesses of the lens groups on the optical axis and to suppress the thickness of the lens frame when retracted. The thickness on the optical axis of each lens group is appropriately secured so as not to fall below 1.0, which is the lower limit of conditional expression (4), and the positive refractive power of the second and third lens groups is secured. It is preferable to facilitate. This makes it easy to suppress the amount of movement of each lens group for obtaining a desired zoom ratio. As a result, it is advantageous for downsizing the lens barrel part for movement.

また、上述の何れかのズームレンズにて、第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を配置することが好ましい。   In any one of the zoom lenses described above, it is preferable that the fourth lens group including one aspherical lens is disposed on the image side of the third lens group.

本発明のズームレンズは、第1レンズ群をシンプルな構成とするために、両凹負レンズ1枚又はそれに正レンズを加えた2枚のレンズ構成としている。両凹形状とすることで、沈胴時の小型化と共に、レンズ群の負の屈折力を維持しつつ球面収差の影響を抑えやすくしている。そのため、明るいFナンバーにしたときに重要となる球面収差の補正に有利となる。一方、歪曲収差や像面湾曲の補正については、球面収差の補正と同時に行うことが難しくなる。そのため、第3レンズ群の像側に1枚の非球面レンズからなる第4レンズ群を導入することよって、第4レンズ群で軸外収差の歪曲収差と像面湾曲の補正を負担することで全体の収差バランスを良好にできる。   The zoom lens according to the present invention has a single-concave negative lens or a two-lens configuration in which a positive lens is added to the first lens group in a simple configuration. By adopting the biconcave shape, it is easy to suppress the influence of spherical aberration while maintaining the negative refractive power of the lens group as well as downsizing when retracting. This is advantageous for correcting spherical aberration, which is important when a bright F number is used. On the other hand, it is difficult to correct distortion and field curvature simultaneously with correction of spherical aberration. Therefore, by introducing a fourth lens group consisting of one aspherical lens on the image side of the third lens group, the fourth lens group bears the correction of the distortion aberration of off-axis aberration and the curvature of field. The overall aberration balance can be improved.

さらには、その第4レンズ群は、近軸的に正若しくは負の屈折力を持たせることが、収差の微調整を行う上でより好ましい(具体的には、この非球面は、光軸付近の屈折力よりも周辺で屈折力が小さくなる形状とすることで、第1レンズ群が負のパワーであることに起因する軸外収差の補正に効果的である。このような非球面の形状は、光軸付近の屈折力が正の凸面である場合は周辺では屈折力が弱い正や負となる形状であり、光軸付近の屈折力が負の凹面である場合は周辺では屈折力が強い負となる形状を意味する。)。   Furthermore, it is more preferable for the fourth lens group to have a positive or negative refractive power paraxially for fine adjustment of the aberration (specifically, this aspherical surface is near the optical axis. By making the shape in which the refractive power is smaller in the periphery than the refractive power, it is effective in correcting off-axis aberrations caused by the negative power of the first lens group. Is a positive or negative shape with a weak refractive power near the optical axis when the refractive power near the optical axis is a positive convex surface, and a refractive power around the optical axis when the refractive power near the optical axis is a negative concave surface Means a strongly negative shape).

また、上述の何れかのズームレンズにて、第3レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うようにすることが好ましい。第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化も少なく好ましい。   Further, it is preferable to perform a focusing operation from the farthest distance focus state to the short distance focus state by moving the third lens group in the optical axis direction with any of the zoom lenses described above. . By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable that the angle of view change in the focusing operation is smaller than when the second lens group is a focus group.

さらには、第3レンズ群を、正レンズ1枚、若しくは、正レンズと負レンズの2枚の構成とすることが、沈胴時の薄型化とフォーカシング駆動の重量負担を少なくでき好ましい。   Furthermore, it is preferable that the third lens group has one positive lens or two positive lenses and a negative lens because the thickness can be reduced when the lens barrel is retracted and the weight burden of focusing drive can be reduced.

また、第4レンズ群を配置する場合、互いの間隔を一定、若しくは、互いの間隔を変化させて第3レンズ群及び第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことが好ましい。第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化も少なく好ましい。   Further, when the fourth lens group is arranged, the farthest distance focusing is achieved by moving the third lens group and the fourth lens group in the optical axis direction with the mutual distance being constant or changing the mutual distance. It is preferable to perform a focusing operation from the state to the short distance in-focus state. By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable that the angle of view change in the focusing operation is smaller than when the second lens group is a focus group.

さらには、第3レンズ群を、正レンズ1枚、若しくは、正レンズと負レンズの2枚の構成とすることが、沈胴時の薄型化とフォーカシング駆動の重量負担を少なくでき好ましい。   Furthermore, it is preferable that the third lens group has one positive lens or two positive lenses and a negative lens because the thickness can be reduced when the lens barrel is retracted and the weight burden of focusing drive can be reduced.

また、物体距離の変動によって発生する像面湾曲を、第3レンズ群の移動に伴う第4レンズ群の移動により補正しながらフォーカス駆動させることができ、至近まで良好な結像特性が得られ好ましい。   Further, it is possible to drive the focus while correcting the curvature of field caused by the fluctuation of the object distance by the movement of the fourth lens group accompanying the movement of the third lens group, and it is preferable because good imaging characteristics can be obtained up to the closest distance. .

さらには、第3レンズ群を、正レンズ1枚、若しくは、正レンズと負レンズの2枚の構成とすることが、沈胴時の薄型化とフォーカシング駆動の負担を少なくでき好ましい。   Furthermore, it is preferable that the third lens group has one positive lens or two positive lenses and a negative lens, which can reduce the thickness when retracted and reduce the burden of focusing driving.

上述の第1の側面におけるズームレンズの構成、括弧内に記載したより好ましい構成は、以下に示す第2、第3の側面等のズームレンズにおいても同時に満足することで、より効果を得ることができ好ましい。   The zoom lens configuration of the first aspect described above, and the more preferable configuration described in parentheses, can be more effective by satisfying the zoom lens of the second and third aspects shown below at the same time. This is preferable.

本発明の第2の側面のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
広角端から望遠端へのズーミング時に、第1レンズ群、第2レンズ群、第3レンズ群の各々が光軸に沿って移動し、第1レンズ群と第2レンズ群との間の間隔が狭まり、第2レンズ群と第3レンズ群との間隔が広がり、
第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、第2レンズ群は2枚の正レンズと1枚の負レンズからなり、第2レンズ群の2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持つ。
The zoom lens according to the second aspect of the present invention includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens having positive refractive power. And having a group
During zooming from the wide-angle end to the telephoto end, each of the first lens group, the second lens group, and the third lens group moves along the optical axis, and the distance between the first lens group and the second lens group is increased. The distance between the second lens group and the third lens group increases,
The first lens group consists of a single lens that is a biconcave negative lens, or two lenses, a biconcave negative lens and a positive lens, and the second lens group consists of two positive lenses and one negative lens. Thus, at least one of the two positive lenses in the second lens group has an aspheric lens surface.

これらの点の技術的効果は前述の通りである。   The technical effects of these points are as described above.

そして、以下の条件式を満足することを特徴としている。   And it is characterized by satisfying the following conditional expression.

1.5<f2 /fw <1.9 ・・・(5)
ただし、f2 は第2レンズ群の焦点距離、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
1.5 <f 2 / f w <1.9 (5)
Where f 2 is the focal length of the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.

この条件式(5)は、コンパクトな全長を維持しつつ、良好な結像性能を得るため、適切な第2レンズ群の屈折力を規定するものである。条件式(6)の上限の1.9を上回らないようにして、第2レンズ群での屈折力を確保することで、レンズ系の全長を抑えやすくなる。また、第2レンズ群における変倍効果の確保に有利となり、変倍時の移動量を抑えやすく、移動のための鏡枠を小型にでき、沈胴時のコンパクト化に有利となる。   Conditional expression (5) defines an appropriate refractive power of the second lens group in order to obtain good imaging performance while maintaining a compact overall length. By ensuring that the refractive power of the second lens group is not exceeded so as not to exceed the upper limit of 1.9 of conditional expression (6), it becomes easy to suppress the overall length of the lens system. In addition, it is advantageous for securing the zooming effect in the second lens group, it is easy to suppress the movement amount at the time of zooming, the lens frame for movement can be reduced in size, and it is advantageous for downsizing when retracted.

条件式(6)の下限の1.5を下回らないようにすることで、第2レンズ群で発生する収差量を抑えやすくなり、明るいFナンバーを維持したまま良好な結像性能をズーム全域にわたって確保することに有利となる。   By making sure that the lower limit of 1.5 of the conditional expression (6) is not exceeded, it is easy to suppress the amount of aberration generated in the second lens group, and good imaging performance is maintained over the entire zoom range while maintaining a bright F number. It is advantageous to ensure.

さらには、以下の条件を満足することが好ましい。   Furthermore, it is preferable to satisfy the following conditions.

1.09<|f1 |/(fw ・FNOw )<1.7 ・・・(6)
ただし、f1 は第1レンズ群の焦点距離、
NOw は広角端かつ最遠距離合焦状態におけるFナンバー、
である。
1.09 <| f 1 | / (f w · F NOw ) <1.7 (6)
Where f 1 is the focal length of the first lens group,
F NOw is the F number at the wide-angle end and at the farthest distance.
It is.

条件式(6)は、明るいFナンバーにするための第1レンズ群の適切な屈折力を規定するものである。その上限の1.7を上回らないようにすることで、第1レンズ群の負の屈折力を確保し、広角端でのズームレンズ全長を抑えやすくなる。沈胴時のコンパクト化にも有利となる。その下限の1.09を下回らないようにして、第1レンズ群の軸上マージナル光線高に対する屈折力の増大を抑えることで、球面収差と他の収差とのバランスをとりやすくなる。   Conditional expression (6) defines an appropriate refractive power of the first lens unit for obtaining a bright F number. By making sure that the upper limit of 1.7 is not exceeded, the negative refractive power of the first lens group is secured, and the overall length of the zoom lens at the wide-angle end can be easily suppressed. It is also advantageous for downsizing when retracted. By preventing the lowering of the lower limit of 1.09 and suppressing the increase in refractive power with respect to the axial marginal ray height of the first lens group, it becomes easy to balance spherical aberration with other aberrations.

また、以下の条件式を満足すことが好ましい。   Moreover, it is preferable that the following conditional expressions are satisfied.

0.28<h2w/f2 <0.35 ・・・(7)
ただし、h2wは広角端かつ最遠距離合焦状態における第2レンズ群入射面での軸上マージナル光線の光線高、
である。
0.28 <h 2w / f 2 <0.35 (7)
Where h 2w is the height of the on-axis marginal ray at the entrance surface of the second lens group at the wide-angle end and at the farthest distance focus state,
It is.

条件式(7)は、適切な第2レンズ群のマージナル光線高と第2レンズ群の焦点距離の比を規定するものである。その上限の0.35を上回らないようにすることで、第2レンズ群の径のサイズを抑えられ、第2レンズ群の厚み、沈胴時の厚みを小さくすることに有利となる。また、その下限の0.28を下回らないようにすることで、第2レンズ群での屈折力を確保しズームレンズの全長の増大を抑えやすくなる。また、沈胴させるためのレンズ移動量が抑えられる。例えば、枠部材の構成数を減らして、鏡枠の径方向を小さくできる。   Conditional expression (7) defines an appropriate ratio between the marginal ray height of the second lens group and the focal length of the second lens group. By not exceeding the upper limit of 0.35, the size of the diameter of the second lens group can be suppressed, and it is advantageous to reduce the thickness of the second lens group and the thickness when retracted. Further, by making it not below the lower limit of 0.28, it becomes easy to secure the refractive power in the second lens group and suppress the increase in the total length of the zoom lens. Further, the amount of lens movement for retracting can be suppressed. For example, the radial direction of the lens frame can be reduced by reducing the number of frame members.

また、第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を有することが好ましい。   In addition, it is preferable that the fourth lens group including one aspherical lens is provided on the image side of the third lens group.

本発明のズームレンズは、第1レンズ群をシンプルな構成とするために、両凹負レンズ1枚又はそれに正レンズを加えた2枚のレンズ構成としている。両凹形状とすることで、沈胴時の小型化と共に、レンズ群の負の屈折力を維持しつつ球面収差の影響を抑えやすくしている。そのため、明るいFナンバーにしたときに重要となる球面収差の補正に有利となる。一方、歪曲収差や像面湾曲の補正については、球面収差の補正と同時に行うことが難しくなる。そのため、第3レンズ群の像側に1枚の非球面レンズからなる第4レンズ群を導入して、第4レンズ群で軸外収差の歪曲収差と像面湾曲の補正を負担することで全体の収差バランスを良好にできる。   The zoom lens according to the present invention has a single-concave negative lens or a two-lens configuration in which a positive lens is added to the first lens group in a simple configuration. By adopting the biconcave shape, it is easy to suppress the influence of spherical aberration while maintaining the negative refractive power of the lens group as well as downsizing when retracting. This is advantageous for correcting spherical aberration, which is important when a bright F number is used. On the other hand, it is difficult to correct distortion and field curvature simultaneously with correction of spherical aberration. Therefore, by introducing a fourth lens group consisting of one aspherical lens on the image side of the third lens group, the fourth lens group bears the correction of off-axis aberration distortion and field curvature. Aberration balance can be improved.

さらには、第4レンズ群には、近軸的に正若しくは負の屈折力を持たせることが収差の微調整を行う上でより好ましい(具体的には、この非球面は、光軸付近の屈折力よりも周辺で屈折力が小さくなる形状とすることで、第1レンズ群が負のパワーであることに起因する軸外収差の補正に効果的である。このような非球面の形状は、光軸付近の屈折力が正の凸面である場合は周辺では屈折力が弱い正や負となる形状であり、光軸付近の屈折力が負の凹面である場合は周辺では屈折力が強い負となる形状を意味する。)。   Furthermore, it is more preferable for the fourth lens group to have a positive or negative refractive power paraxially in order to finely adjust the aberration (specifically, this aspherical surface is located near the optical axis. The shape in which the refractive power is smaller in the periphery than the refractive power is effective in correcting off-axis aberrations caused by the negative power of the first lens group. When the refractive power near the optical axis is a positive convex surface, the shape has a negative or negative refractive power around the optical axis. When the refractive power near the optical axis is a negative concave surface, the refractive power is strong around the optical axis. Means a negative shape).

また、第3レンズ群を光軸方向の移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことが好ましい。   Further, it is preferable to perform a focusing operation from the farthest distance focusing state to the short distance focusing state by moving the third lens group in the optical axis direction.

第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化も少なく好ましい。   By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable that the angle of view change in the focusing operation is smaller than when the second lens group is a focus group.

また、互いの間隔を一定、若しくは、互いの間隔を変化させて第3レンズ群及び第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことが好ましい。   In addition, by moving the third lens group and the fourth lens group in the optical axis direction with the mutual interval being constant or changing the mutual interval, the farthest distance focusing state is changed to the short-distance focusing state. It is preferable to perform a focusing operation.

第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化も少なく好ましい。   By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable that the angle of view change in the focusing operation is smaller than when the second lens group is a focus group.

本発明の第3の側面のズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持つ。   The zoom lens according to the third aspect of the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a positive refractive power. Each of the first lens group, the second lens group, and the third lens group moves along an optical axis during zooming from the wide-angle end to the telephoto end, and the first lens group The distance between the second lens group is narrowed, the distance between the second lens group and the third lens group is widened, and the first lens group is a single lens that is a biconcave negative lens, or both The second lens group is composed of two positive lenses and one negative lens, and at least of the two positive lenses in the second lens group. One positive lens has an aspheric lens surface.

これらの点の技術的効果は前述の通りである。   The technical effects of these points are as described above.

そして、以下の条件式を満足することを特徴としている。
持ち、
0.4<h1w/IH<0.5 ・・・(8)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
IHは最大像高、
である。
And it is characterized by satisfying the following conditional expression.
Have
0.4 <h 1w /IH<0.5 (8)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
IH is the maximum image height,
It is.

この条件式(8)は、明るいFナンバーと良好な結像性能を維持するための、最大像高に対する適切な入射瞳の大きさを規定するものである。本発明のような負の屈折力のレンズ群が先行する(最も物体側に位置する)タイプのズームレンズでは、第2レンズ群以降のレンズ群での軸上マージナル光線高が高くなる。   Conditional expression (8) defines an appropriate entrance pupil size with respect to the maximum image height in order to maintain a bright F-number and good imaging performance. In a zoom lens of a type preceded by a lens unit having a negative refractive power as in the present invention (positioned closest to the object side), the on-axis marginal ray height in the second lens unit and subsequent lens units becomes high.

条件式(8)の下限の0.4を下回らないようにすることで、明るいFナンバーの確保に有利となる。若しくは、像高を抑えることで、第1レンズ群での歪曲収差の発生量を抑えやすくなる。条件式(8)の上限の0.5を上回らないようにすることで、軸上光束径を抑え、第1レンズ群での球面収差を抑えやすくなり、像面湾曲との収差補正のバランスをとりやすくなり、ズーム全域にわたって良好な結像性能を維持する設計を行いやすくなる。また、広角端での画角の確保に有利となる。   By making sure that the lower limit of 0.4 of conditional expression (8) is not exceeded, it is advantageous for securing a bright F number. Alternatively, by suppressing the image height, it becomes easy to suppress the amount of distortion generated in the first lens group. By avoiding exceeding the upper limit of 0.5 of the conditional expression (8), it is possible to suppress the axial light beam diameter, to easily suppress spherical aberration in the first lens group, and to balance aberration correction with curvature of field. This makes it easier to design to maintain good imaging performance over the entire zoom range. Further, it is advantageous for securing the angle of view at the wide angle end.

なお、撮像面直前の視野絞りや、撮像素子の撮像領域が変更できる場合があるが、そのような撮像領域が変化する場合は、撮像領域とし得る範囲の中最も大きくなる像高を最大像高IHとする。   In some cases, the field stop just before the imaging surface or the imaging area of the imaging device can be changed. When such an imaging area changes, the largest image height in the range that can be taken as the imaging area is set to the maximum image height. IH.

また、撮像素子として、CCD、CMOSといった光電変換により画像情報を得る撮像素子を用いる場合、最大像高IHは有効撮像領域内における最大像高とする。   When an image sensor that obtains image information by photoelectric conversion such as CCD or CMOS is used as the image sensor, the maximum image height IH is the maximum image height in the effective image area.

有効撮像領域は、撮像素子の光電変換面の配される領域の中、撮影画像の再生、印刷に用いるための領域を意味する。   The effective imaging area means an area used for reproducing and printing a captured image in an area where the photoelectric conversion surface of the imaging element is arranged.

さらには、以下の条件式を満足することが好ましい。   Furthermore, it is preferable that the following conditional expression is satisfied.

0.8<h2w/IH<1.2 ・・・(9)
ただし、h2wは広角端かつ最遠距離合焦状態における第2レンズ群入射面での軸上マージナル光線の光線高、
である。
0.8 <h 2w /IH<1.2 (9)
Where h 2w is the height of the on-axis marginal ray at the entrance surface of the second lens group at the wide-angle end and at the farthest distance focus state,
It is.

この条件式(9)は、良好な結像性能と、レンズの大きさを維持するために適切な第2レンズ群でのマージナル光線高を規定するものである。第2レンズ群は、本発明のレンズ構成とすると主たる結像作用を持たせやすくなる。そのために、軸上マージナル光線の第2レンズ群への入射高が第2レンズ群にて最も高くなりやすい。そのため、条件式(9)の上限の1.2を上回らないようにして、撮像面、撮像素子の大きさに対するズームレンズの径方向の太さの増大を抑え、鏡枠の径を抑えることが好ましい。また、第2レンズ群の光軸上の厚みを抑えることにもつながるため、沈胴時にコンパクト化に有利となる。   Conditional expression (9) defines the marginal ray height in the second lens group appropriate for maintaining good imaging performance and the size of the lens. When the second lens group has the lens configuration of the present invention, it is easy to have a main image forming function. For this reason, the incident height of the on-axis marginal ray on the second lens group is likely to be highest in the second lens group. Therefore, it is possible to suppress an increase in the diameter of the zoom lens in the radial direction with respect to the size of the imaging surface and the imaging element, and to suppress the diameter of the lens frame without exceeding the upper limit of 1.2 of the conditional expression (9). preferable. In addition, the thickness of the second lens group on the optical axis is suppressed, which is advantageous for downsizing when retracted.

条件式(9)の下限の0.8を下回らないようにして、第2レンズ群での結像作用を確保し、第3レンズ群以降の結像機能の負担を抑えることで、レンズ枚数を低減しやすくして沈胴時の厚みの短縮に有利となる。若しくは、Fナンバーの確保に有利となる。   By ensuring that the lower limit of 0.8 in conditional expression (9) is not exceeded, the image forming action of the second lens group is ensured, and the burden of the image forming function after the third lens group is suppressed, thereby reducing the number of lenses. It is easy to reduce and is advantageous for shortening the thickness when retracted. Or, it is advantageous for securing the F number.

また、以下の条件式を満足することが好ましい。   Moreover, it is preferable that the following conditional expressions are satisfied.

0.4<D2w/fw <1.0 ・・・(10)
ただし、D2wは広角端かつ最遠距離合焦状態における第2レンズ群と第3レンズ群との光軸上での間隔、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
0.4 <D 2w / f w <1.0 (10)
Where D 2w is the distance on the optical axis between the second lens group and the third lens group at the wide-angle end and in the farthest distance focusing state,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.

この条件式(10)は、広角端における適切な第2−第3レンズ群間隔を設定するものである。その上限の1.0を上回らないようにすることで、広角端でのズームレンズの全長を抑えやすくなる。若しくは、明るさ確保のために第2レンズ群のマージナル光線高が高くなることを抑えやすくなり、第2レンズ群のレンズ肉厚の増大を抑えやすくなる。また、その下限の0.4を下回らないようにすることで、像面湾曲の補正に有利となる。さらには、第3レンズ群でフォーカシング動作をさせる際の移動スペースの確保に有利となる。   Conditional expression (10) sets an appropriate distance between the second and third lens units at the wide angle end. By making sure that the upper limit of 1.0 is not exceeded, the total length of the zoom lens at the wide-angle end can be easily suppressed. Alternatively, it is easy to suppress an increase in the marginal ray height of the second lens group in order to ensure brightness, and it is easy to suppress an increase in the lens thickness of the second lens group. Also, by making sure that the lower limit of 0.4 is not exceeded, it is advantageous for correcting curvature of field. Furthermore, it is advantageous for securing a moving space when the third lens group performs a focusing operation.

また、以下の条件式を満足することが好ましい。   Moreover, it is preferable that the following conditional expressions are satisfied.

0.4<g3w/g3t<0.88 ・・・(11)
ただし、g3wは広角端かつ最遠距離合焦状態における第3レンズ群入射面での最軸外主光線の光線高、
3tは望遠端かつ最遠距離合焦状態における第3レンズ群入射面での最軸外主光線の光線高、
である。
0.4 <g 3w / g 3t <0.88 (11)
Where g 3w is the height of the most off-axis principal ray at the entrance surface of the third lens group at the wide-angle end and the farthest distance in-focus state,
g 3t is the height of the most off-axis principal ray at the entrance surface of the third lens group at the telephoto end and at the farthest distance focused state;
It is.

この条件式(11)は、適切な軸外光線の第3レンズ群への入射光線高を設定するものである。本発明の構成では、沈胴時の薄型化等のため、第1レンズ群を可能な限りシンプルな構成としている。このような構成の場合、第1レンズ群における歪曲収差及び像面湾曲のズーミングによる変動の補正を第1レンズ群自体で良好に行うことが難しくなってくる。そのため、第3レンズ群に入射する軸外主光線の光線高をズーム状態によって適切に変動させることにより、第1レンズ群で生じた補正不足の歪曲収差、像面湾曲を補正しやすくなる。条件式(11)の上限0.88、下限0.4を越えないようにすることで、歪曲収差や像面湾曲のズーミングによる変動を補正しやすくなる。   Conditional expression (11) sets the appropriate incident light height of the off-axis light beam to the third lens group. In the configuration of the present invention, the first lens unit is made as simple as possible in order to reduce the thickness when retracted. In the case of such a configuration, it becomes difficult to satisfactorily correct the distortion due to the distortion and the curvature of field in the first lens group by the first lens group itself. Therefore, by appropriately varying the height of the off-axis chief ray incident on the third lens group depending on the zoom state, it becomes easy to correct uncorrected distortion and curvature of field generated in the first lens group. By avoiding exceeding the upper limit of 0.88 and the lower limit of 0.4 in the conditional expression (11), it becomes easy to correct fluctuation due to distortion and zooming of the field curvature.

さらには、この補正効果をより良好に得られるようにするために、第3レンズ群が非球面を含むことがより好ましい。   Furthermore, it is more preferable that the third lens group includes an aspherical surface in order to obtain this correction effect more satisfactorily.

また、第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を有する構成とすることがより好ましい。   It is more preferable that the fourth lens group including one aspherical lens is provided on the image side of the third lens group.

本発明のズームレンズは、第1レンズ群をシンプルな構成とするために、両凹負レンズ1枚又はそれに正レンズを加えた2枚のレンズ構成としている。両凹形状とすることで、沈胴時の小型化と共に、レンズ群の負の屈折力を維持しつつ球面収差の影響を抑えやすくしている。そのため、明るいFナンバーにしたときに重要となる球面収差の補正に有利となる。一方、歪曲収差や像面湾曲の補正については、球面収差の補正と同時に行うことが難しくなる。そのため、第3レンズ群の像側に1枚の非球面レンズからなる第4レンズ群を導入することよって、第4レンズ群で軸外収差の歪曲収差と像面湾曲の補正を負担することで全体の収差バランスを良好にできる。   The zoom lens according to the present invention has a single-concave negative lens or a two-lens configuration in which a positive lens is added to the first lens group in a simple configuration. By adopting the biconcave shape, it is easy to suppress the influence of spherical aberration while maintaining the negative refractive power of the lens group as well as downsizing when retracting. This is advantageous for correcting spherical aberration, which is important when a bright F number is used. On the other hand, it is difficult to correct distortion and field curvature simultaneously with correction of spherical aberration. Therefore, by introducing a fourth lens group consisting of one aspherical lens on the image side of the third lens group, the fourth lens group bears the correction of the distortion aberration of off-axis aberration and the curvature of field. The overall aberration balance can be improved.

さらには、その第4レンズ群は、近軸的に正若しくは負の屈折力を持たせることが、収差の微調整を行う上でより好ましい(具体的には、この非球面は、光軸付近の屈折力よりも周辺で屈折力が小さくなる形状とすることで、第1レンズ群が負のパワーであることに起因する軸外収差の補正に効果的である。このような非球面の形状は、光軸付近の屈折力が正の凸面である場合は周辺では屈折力が弱い正や負となる形状であり、光軸付近の屈折力が負の凹面である場合は周辺では屈折力が強い負となる形状を意味する。)。   Furthermore, it is more preferable for the fourth lens group to have a positive or negative refractive power paraxially for fine adjustment of the aberration (specifically, this aspherical surface is near the optical axis. By making the shape in which the refractive power is smaller in the periphery than the refractive power, it is effective in correcting off-axis aberrations caused by the negative power of the first lens group. Is a positive or negative shape with a weak refractive power near the optical axis when the refractive power near the optical axis is a positive convex surface, and a refractive power around the optical axis when the refractive power near the optical axis is a negative concave surface Means a strongly negative shape).

また、第3レンズ群を光軸方向の移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことが好ましい。   Further, it is preferable to perform a focusing operation from the farthest distance focusing state to the short distance focusing state by moving the third lens group in the optical axis direction.

第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化や、駆動量の変化も少なく好ましい。   By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable to reduce the change in the angle of view and the change in the driving amount in the focusing operation, compared with the case where the second lens group is the focus group.

また、互いの間隔を一定、若しくは、互いの間隔を変化させて第3レンズ群及び第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことが好ましい。   In addition, by moving the third lens group and the fourth lens group in the optical axis direction with the mutual interval being constant or changing the mutual interval, the farthest distance focusing state is changed to the short-distance focusing state. It is preferable to perform a focusing operation.

第3レンズ群の移動によるインナーフォーカス方式とすることで、径が大きくなる第1レンズ群を駆動させる場合よりも駆動レンズの重量を軽量化でき、高速なフォーカス動作を可能とする。また、第2レンズ群をフォーカス群とする場合よりも、フォーカシング動作における画角の変化や、駆動量の変化も少なく好ましい。   By adopting the inner focus method by moving the third lens group, the weight of the driving lens can be reduced compared with the case where the first lens group having a large diameter is driven, and a high-speed focusing operation is possible. Further, it is preferable to reduce the change in the angle of view and the change in the driving amount in the focusing operation, compared with the case where the second lens group is the focus group.

また、本発明の第1〜第3の側面のズームレンズにおいて、以下の条件式を満足することが好ましい。   In the zoom lens according to the first to third aspects of the present invention, it is preferable that the following conditional expressions are satisfied.

2.3<ft /fw <6.0 ・・・(12)
ただし、fw は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
t は望遠端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
2.3 <f t / f w <6.0 (12)
Where fw is the focal length of the entire zoom lens system at the wide-angle end and the farthest distance focus state,
ft is the focal length of the entire zoom lens system at the telephoto end and in the farthest distance focusing state,
It is.

条件式(12)の下限の2.3を下回らないようにして画角変更による自由度を確保することが好ましい。また、その上限の6.0を上回らないようにして望遠端での明るさ確保に有利とすることが好ましい。   It is preferable to ensure the degree of freedom by changing the angle of view so as not to fall below the lower limit of 2.3 in conditional expression (12). In addition, it is preferable to ensure brightness at the telephoto end so as not to exceed the upper limit of 6.0.

また、本発明の第1〜第3の側面のズームレンズは以下の条件式を満足することが好ましい。   In addition, it is preferable that the zoom lenses according to the first to third aspects of the present invention satisfy the following conditional expressions.

56°<2ωw <86° ・・・(13)
ただし、ωw は広角端かつ最遠距離合焦状態でのズームレンズ全系の半画角、
である。
56 ° <2ω w <86 ° (13)
However, ω w is the half angle of view of the entire zoom lens system at the wide-angle end and in the farthest distance focus state,
It is.

条件式(13)の下限の56°を下回らないようにして画角を確保し、広角端での手ブレの影響を抑えることが好ましい。また、その上限の86°を上回らないようにして第1レンズ群の径の大型化を抑え、沈胴時の小型化を行うことが好ましい。若しくは、各レンズ群の屈折力が強くなりすぎることが抑えられ、収差の影響を抑えやすくすることができ好ましい。   It is preferable that the angle of view is secured so as not to fall below the lower limit of 56 ° of conditional expression (13), and the influence of camera shake at the wide-angle end is suppressed. In addition, it is preferable that the diameter of the first lens unit is prevented from being increased so as not to exceed the upper limit of 86 °, and the size of the first lens unit is reduced. Alternatively, it is preferable that the refractive power of each lens unit is not too strong, and the influence of aberration can be easily suppressed.

また、本発明の第1〜第3の側面のズームレンズは以下の条件式を満足することが好ましい。   In addition, it is preferable that the zoom lenses according to the first to third aspects of the present invention satisfy the following conditional expressions.

1.2<D12w /D23w <20.0 ・・・(14)
ただし、D12w は広角端かつ最遠距離合焦状態での第1レンズ群と第2レンズ群との光軸上での間隔、
23w は広角端かつ最遠距離合焦状態での第2レンズ群と第3レンズ群との光軸上での間隔、
である。
1.2 <D 12w / D 23w <20.0 (14)
Where D 12w is the distance on the optical axis between the first lens group and the second lens group at the wide-angle end and in the farthest distance focus state,
D 23w is the distance on the optical axis between the second lens group and the third lens group at the wide-angle end and in the farthest distance focus state;
It is.

条件式(14)の下限の1.2を下回らないようにして、第1、第2、第3レンズ群でのレトロフォーカスタイプのような配置による広い画角の確保や、間隔変化量の確保により変倍比の確保を行うことが好ましい。また、その上限の20.0を上回らないようにして、第2、第3レンズ群間が小さくなりすぎることを抑え、第3レンズ群による射出瞳を遠くする機能を確保することが好ましい。若しくは、第1、第2レンズ群間が長くなりすぎることを抑え、広角端全長の大型化や、第1レンズ群の径の増大を抑えることが好ましい。   Ensuring a wide angle of view and ensuring the amount of change in the distance by arranging the first, second, and third lens groups like the retrofocus type so that the lower limit of 1.2 of conditional expression (14) is not exceeded. Therefore, it is preferable to secure a zoom ratio. In addition, it is preferable not to exceed the upper limit of 20.0, to prevent the distance between the second and third lens groups from becoming too small, and to ensure the function of moving the exit pupil away by the third lens group. Alternatively, it is preferable to prevent the distance between the first and second lens groups from becoming too long, and to suppress the increase in the overall length of the wide-angle end and the increase in the diameter of the first lens group.

以上の構成、条件式は、それぞれ個別に満たすことで個別の効果を奏するが、複数を同時に満足すれば、明るさの確保、小型化、高性能化等の点でより好ましく、適宜組み合わせて満足させることが好ましい。   The above configurations and conditional expressions achieve individual effects by satisfying each individually, but satisfying a plurality at the same time is more preferable in terms of ensuring brightness, downsizing, high performance, etc. It is preferable to make it.

各条件式の範囲はより限定することが好ましい。   It is preferable to limit the range of each conditional expression.

条件式(1)について、
下限値を17.5とするとより好ましい。
上限値を22.5とするとより好ましい。
For conditional expression (1),
The lower limit is more preferably 17.5.
The upper limit is more preferably 22.5.

条件式(2)について、
下限値を17.5とするとより好ましい。
上限値を22.5とするとより好ましい。
For conditional expression (2),
The lower limit is more preferably 17.5.
The upper limit is more preferably 22.5.

条件式(3)について、
下限値を0.254とするとより好ましい。
上限値を0.37とするとより好ましい。
Conditional expression (3)
The lower limit is more preferably 0.254.
More preferably, the upper limit value is 0.37.

条件式(4)について、
下限値を1.20とするとより好ましい。
上限値を2.1とするとより好ましい。
For conditional expression (4),
The lower limit is more preferably 1.20.
More preferably, the upper limit value is 2.1.

条件式(5)について、
下限値を1.55とするとより好ましい。
Conditional expression (5)
The lower limit is more preferably 1.55.

条件式(8)について、
下限値を0.45とするとより好ましい。
Conditional expression (8)
The lower limit value is more preferably 0.45.

条件式(9)について、
下限値を0.85とするとより好ましい。
上限値を1.15とするとより好ましい。
Conditional expression (9)
More preferably, the lower limit is 0.85.
The upper limit is more preferably 1.15.

条件式(10)について、
下限値を0.45とするとより好ましい。
上限値を0.98とするとより好ましい。
For conditional expression (10),
The lower limit value is more preferably 0.45.
More preferably, the upper limit is 0.98.

条件式(11)について、
上限値を0.8とするとより好ましい。
For conditional expression (11),
More preferably, the upper limit value is 0.8.

条件式(12)について、
下限値を2.8とするとより好ましい。
上限値を5.0とするとより好ましい。
Conditional expression (12)
The lower limit is more preferably 2.8.
The upper limit is more preferably 5.0.

条件式(13)について、
下限値を60°とするとより好ましい。
上限値を70°とするとより好ましい。
For conditional expression (13),
The lower limit is more preferably 60 °.
More preferably, the upper limit is 70 °.

条件式(14)について、
下限値を2.0とするとより好ましい。
上限値を8.0とするとより好ましい。
For conditional expression (14),
More preferably, the lower limit is 2.0.
It is more preferable that the upper limit value is 8.0.

上述の条件も、複数同時に満足することがより好ましい。   It is more preferable that a plurality of the above conditions are satisfied simultaneously.

また、上述何れかのズームレンズと、そのズームレンズの像側に配され、ズームレンズにより形成された像を電気信号に変換する撮像素子とを備えた撮像装置とすることができる。   In addition, an image pickup apparatus including any one of the zoom lenses described above and an image pickup element that is disposed on the image side of the zoom lens and converts an image formed by the zoom lens into an electric signal can be provided.

本発明により、沈胴収納時のレンズ系の薄型化と明るいFナンバーの確保の両立に有利なズームレンズを提供することができる。さらには、ズームレンズの沈胴時の薄型化による小型の撮像装置を提供することができる。   According to the present invention, it is possible to provide a zoom lens that is advantageous in achieving both a reduction in the thickness of the lens system when retracted and securing a bright F number. Furthermore, it is possible to provide a small-sized imaging device by reducing the thickness when the zoom lens is retracted.

以下、本発明のズームレンズの実施例1〜15について説明する。実施例1〜15の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図をそれぞれ図1〜図15に示す。各図中、第1レンズ群はG1、明るさ絞りはS、第2レンズ群はG2、第3レンズ群はG3、第4レンズ群はG4、赤外線カットコートを施した光学的ローパスフィルターはF、電子撮像素子(CCDやCMOS)のカバーガラスはC、像面(電子撮像素子の受光面)はIで示してある。なお、赤外線カットコートについては、別に赤外カット吸収フィルターを配置してもよく、あるいは、カバーガラスCの表面に波長域制限用の多層膜を施したものを用いてもよい。なお、図1〜図15中には、広角端、中間焦点距離状態、望遠端それぞれでの軸上マージナル光線、最軸外主光線も図示してある。   Examples 1 to 15 of the zoom lens according to the present invention will be described below. Lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) during focusing on an object point at infinity in Examples 1 to 15 are shown in FIGS. In each figure, the first lens group is G1, the aperture stop is S, the second lens group is G2, the third lens group is G3, the fourth lens group is G4, and the optical low-pass filter with infrared cut coat is F. The cover glass of the electronic image sensor (CCD or CMOS) is indicated by C, and the image plane (light receiving surface of the electronic image sensor) is indicated by I. In addition, about an infrared cut coat, you may arrange | position an infrared cut absorption filter separately, or you may use what gave the multilayer film for a wavelength range restriction | limiting on the surface of the cover glass C. FIG. 1 to 15 also show the on-axis marginal ray and the most off-axis chief ray at the wide-angle end, the intermediate focal length state, and the telephoto end, respectively.

実施例1のズームレンズは、図1に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら像側に移動する。第4レンズ群G4は固定である。   As shown in FIG. 1, the zoom lens of Example 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the image side while widening the distance from the second lens group G2. The fourth lens group G4 is fixed.

物体側から順に、第1レンズ群G1は、両凹負レンズと、両凸正レンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a biconvex positive lens, and the second lens group G2 includes a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and an object. The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is one positive meniscus lens having a convex surface facing the object side. Consists of.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像側の面、第4レンズ群G4の正メニスカスレンズの物体側の面の6面に用いている。   The aspheric surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the second lens group G2, the image side surface of the biconvex positive lens of the third lens group G3, and the fourth lens group. It is used for six surfaces on the object side of the G4 positive meniscus lens.

実施例2のズームレンズは、図2に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら像側に移動する。   As shown in FIG. 2, the zoom lens according to the second embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The aperture stop S is arranged integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves to the image side while widening the distance from the second lens group G2.

物体側から順に、第1レンズ群G1は、両凹負レンズと、両凸正レンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a biconvex positive lens, and the second lens group G2 includes a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and an object. The third lens group G3 is composed of one biconvex positive lens. The cemented lens is a negative meniscus lens having a convex surface facing the side.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像側の面の5面に用いている。   The aspheric surfaces are used for the five surfaces of the double-concave negative lens of the first lens group G1, the double-convex positive lens of the second lens group G2, and the image side surface of the biconvex positive lens of the third lens group G3. ing.

実施例3のズームレンズは、図3に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 3, the zoom lens of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves along a locus convex toward the object side while increasing the distance from the second lens group G2, and is located closer to the image side than the wide-angle end position at the telephoto end.

物体側から順に、第1レンズ群G1は、両凹負レンズと、両凸正レンズからなり、第2レンズ群G2は、両凸正レンズと、両凸正レンズと両凹負レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた凸平正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a biconvex positive lens, and the second lens group G2 includes a biconvex positive lens, and a cemented lens of a biconvex positive lens and a biconcave negative lens. The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is composed of one convex flat positive lens having a convex surface facing the object side.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像側の面、第4レンズ群G4の凸平正レンズの物体側の面の6面に用いている。   The aspheric surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the image side surface of the biconvex positive lens of the third lens group G3, It is used for six surfaces on the object side of the convex flat positive lens of the four lens group G4.

実施例4のズームレンズは、図4に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態までは広げながら、中間状態から望遠端にかけて縮めながら像側に移動する。   As shown in FIG. 4, the zoom lens of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves along a locus convex toward the object side while increasing the distance from the second lens group G2, and is located closer to the image side than the wide-angle end position at the telephoto end. The fourth lens group G4 moves to the image side while being narrowed from the intermediate state to the telephoto end while increasing the distance from the third lens group G3 from the wide-angle end to the intermediate state.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと、両凸正レンズと両凹負レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 includes a biconvex positive lens, a biconvex positive lens, and both The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is composed of one positive meniscus lens having a convex surface facing the image side.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像側の面、第4レンズ群G4の正メニスカスレンズの物体側の面の6面に用いている。   The aspheric surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the image side surface of the biconvex positive lens of the third lens group G3, It is used for six surfaces on the object side of the positive meniscus lens of the four lens group G4.

実施例5のズームレンズは、図5に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2中に一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広角端から中間状態までは若干縮めながら、中間状態から望遠端にかけて広げながら物体側へ移動する。第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 5, the zoom lens of Example 5 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a negative refractive power, and the aperture stop S is integrally disposed in the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening from the intermediate state to the telephoto end while slightly reducing the distance from the second lens group G2 from the wide-angle end to the intermediate state. The fourth lens group G4 moves along a locus convex toward the object side while increasing the distance from the third lens group G3, and is located closer to the image side than the wide-angle end position at the telephoto end.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと、明るさ絞りSと、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、像側に凸面を向けた負メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 is composed of a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 is a positive meniscus lens having a convex surface facing the object side. And an aperture stop S, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the object side. The fourth lens group G4 is composed of a single negative meniscus lens having a convex surface facing the image side.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面、第2レンズ群G2の単レンズの正メニスカスレンズの両面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の負メニスカスレンズの像側の面の6面に用いている。   The aspherical surfaces are the most object side surface of the cemented lens of the first lens group G1, both surfaces of a single positive meniscus lens of the second lens group G2, both surfaces of the positive meniscus lens of the third lens group G3, and the fourth lens group. It is used for six surfaces on the image side of the negative meniscus lens of G4.

実施例6のズームレンズは、図6に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の像側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第2レンズ群G2と明るさ絞りSは一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広角端から中間状態までは若干縮めながら、中間状態から望遠端にかけて広げながら物体側へ移動する。第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 6, the zoom lens of Example 6 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a negative refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the image side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The second lens group G2 and the aperture stop S move monotonously toward the object side while reducing the distance between the first lens group G1 and the first lens group G2. The third lens group G3 moves toward the object side while widening from the intermediate state to the telephoto end while slightly reducing the distance from the second lens group G2 from the wide-angle end to the intermediate state. The fourth lens group G4 moves along a locus convex toward the object side while increasing the distance from the third lens group G3, and is located closer to the image side than the wide-angle end position at the telephoto end.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズの3枚接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、像側に凸面を向けた負メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 is composed of a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 is a positive meniscus lens having a convex surface facing the object side. And a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a cemented third lens. The third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the object side. G4 includes one negative meniscus lens having a convex surface facing the image side.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面、第2レンズ群G2の3枚接合レンズの最も物体側の面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の負メニスカスレンズの像側の面の5面に用いている。   The aspherical surface is the most object side surface of the cemented lens of the first lens group G1, the most object side surface of the three-unit cemented lens of the second lens group G2, both surfaces of the positive meniscus lens of the third lens group G3, and the fourth. It is used on the five image-side surfaces of the negative meniscus lens in the lens group G4.

実施例7のズームレンズは、図7に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2中に一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側へ移動する。第4レンズ群G4は固定である。   As shown in FIG. 7, the zoom lens according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a negative refractive power, and the aperture stop S is integrally disposed in the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2. The fourth lens group G4 is fixed.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、明るさ絞りSと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and an aperture stop S. And a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and the third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the object side. The fourth lens group G4 includes one negative meniscus lens having a convex surface directed toward the object side.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の負メニスカスレンズの物体側の面の7面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, both surfaces of a single biconvex positive lens of the second lens group G2, and a positive meniscus lens of the third lens group G3. And 7 surfaces of the object side surface of the negative meniscus lens of the fourth lens group G4.

実施例8のズームレンズは、図8に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態までは広げながら、中間状態から望遠端にかけて若干縮めながら像側に移動する。   As shown in FIG. 8, the zoom lens of Example 8 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves along a locus convex toward the object side while increasing the distance from the second lens group G2, and is located closer to the image side than the wide-angle end position at the telephoto end. The fourth lens group G4 moves toward the image side while being slightly contracted from the intermediate state to the telephoto end while increasing the distance from the third lens group G3 from the wide-angle end to the intermediate state.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and a convex surface facing the object side. A positive meniscus lens having a convex surface and a negative meniscus lens having a convex surface facing the object side. The third lens group G3 includes one biconvex positive lens, and the fourth lens group G4 has a convex surface on the image side. It consists of a single positive meniscus lens.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の両凸正レンズの像側の面、第4レンズ群G4の正メニスカスレンズの物体側の面の6面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, the double-convex positive lens of the single lens of the second lens group G2, and the biconvex positive of the third lens group G3. It is used for 6 surfaces of the image side surface of the lens and the object side surface of the positive meniscus lens of the fourth lens group G4.

実施例9のズームレンズは、図9に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の像側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第2レンズ群G2と明るさ絞りSは一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側へ移動する。第4レンズ群G4は固定である。   As shown in FIG. 9, the zoom lens of Example 9 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the image side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The second lens group G2 and the aperture stop S move monotonously toward the object side while reducing the distance between the first lens group G1 and the first lens group G2. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2. The fourth lens group G4 is fixed.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、両凸正レンズと両凹負レンズの接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and a biconvex positive lens. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side, and the fourth lens group G4 is composed of one biconvex positive lens.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の7面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, both surfaces of a single biconvex positive lens of the second lens group G2, and a positive meniscus lens of the third lens group G3. And 7 surfaces of the object side surface of the biconvex positive lens of the fourth lens group G4.

実施例10のズームレンズは、図10に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の物体側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側へ移動する。第4レンズ群G4は第3レンズ群G3との間隔を広げながら像側に若干移動する。   As shown in FIG. 10, the zoom lens of Example 10 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a negative refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the object side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus that is convex toward the image side, and is located closer to the image side than the wide-angle end position at the telephoto end. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2. The fourth lens group G4 moves slightly toward the image side while widening the distance from the third lens group G3.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、凸平正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and a convex surface facing the object side. The third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side, and a fourth lens group G4. Consists of a convex positive lens.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の凸平正レンズの物体側の面の7面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, both surfaces of a single biconvex positive lens of the second lens group G2, and a positive meniscus lens of the third lens group G3. And 7 surfaces of the object-side surface of the convex positive lens of the fourth lens group G4.

実施例11のズームレンズは、図11に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2中に一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側へ移動する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側へ移動する。第4レンズ群G4は像側へ移動する。   As shown in FIG. 11, the zoom lens of Example 11 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a positive refractive power, and the brightness stop S is integrally disposed in the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the image side. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2. The fourth lens group G4 moves to the image side.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、明るさ絞りSと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and an aperture stop S. And a cemented lens of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and the third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the image side. The fourth lens group G4 is composed of one biconvex positive lens.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の8面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the most image-side surface of the cemented lens, It is used on both surfaces of the positive meniscus lens of the third lens group G3 and on the object side surface of the biconvex positive lens of the fourth lens group G4.

実施例12のズームレンズは、図12に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の像側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干物体側に位置する。第2レンズ群G2と明るさ絞りSは一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側へ移動する。第4レンズ群G4は像側へ移動する。   As shown in FIG. 12, the zoom lens of Example 12 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the image side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and at the telephoto end is located slightly closer to the object side than the wide-angle end position. The second lens group G2 and the aperture stop S move monotonously toward the object side while reducing the distance between the first lens group G1 and the first lens group G2. The third lens group G3 moves toward the object side while widening the distance from the second lens group G2. The fourth lens group G4 moves to the image side.

物体側から順に、第1レンズ群G1は、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、像側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and a convex surface facing the object side. The third lens group G3 is composed of a negative meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the image side, and a biconvex positive lens. The four lens group G4 is composed of one positive meniscus lens having a convex surface facing the image side.

非球面は、第1レンズ群G1の接合レンズの最も物体側の面と最も像側の面、第2レンズ群G2の単レンズの両凸正レンズの両面、接合レンズの最も物体側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の正メニスカスレンズの両面の9面に用いている。   The aspherical surfaces are the most object-side surface and the most image-side surface of the cemented lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the most object-side surface of the cemented lens, It is used on both surfaces of the biconvex positive lens of the third lens group G3 and on both surfaces of the positive meniscus lens of the fourth lens group G4.

実施例13のズームレンズは、図13に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2中に一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側へ移動する。明るさ絞りSと第2レンズ群G2は一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広角端から中間状態までは若干縮めながら、中間状態から望遠端にかけて広げながら物体側に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。   As shown in FIG. 13, the zoom lens of Example 13 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a negative refractive power, and the aperture stop S is integrally disposed in the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the image side. The aperture stop S and the second lens group G2 monotonously move toward the object side while integrally reducing the distance between the first lens group G1. The third lens group G3 moves toward the object side while widening from the intermediate state to the telephoto end while slightly reducing the distance from the second lens group G2 from the wide-angle end to the intermediate state. The fourth lens group G4 moves along a locus convex toward the object side while increasing the distance from the third lens group G3, and is located closer to the image side than the wide-angle end position at the telephoto end.

物体側から順に、第1レンズ群G1は、両凹負レンズ1枚からなり、第2レンズ群G2は、両凸正レンズと、明るさ絞りSと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、像側に凸面を向けた負メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes one biconcave negative lens, and the second lens group G2 includes a biconvex positive lens, an aperture stop S, and a positive meniscus lens having a convex surface facing the object side. And a negative meniscus lens having a convex surface facing the object side, the third lens group G3 is composed of one positive meniscus lens having a convex surface facing the object side, and the fourth lens group G4 is a convex surface facing the image side. It consists of one negative meniscus lens.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、第3レンズ群G3の正メニスカスレンズの両面、第4レンズ群G4の負メニスカスレンズの像側の面の7面に用いている。   The aspheric surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, both surfaces of the positive meniscus lens of the third lens group G3, and the fourth lens group G4. 7 are used on the image side surface of the negative meniscus lens.

実施例14のズームレンズは、図14に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の像側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干像側に位置する。第2レンズ群G2と明るさ絞りSは一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広角端から中間状態までは若干縮めながら、中間状態から望遠端にかけて広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第4レンズ群G4は像側へ移動する。   As shown in FIG. 14, in the zoom lens of Example 14, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the image side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and is slightly closer to the image side than the wide-angle end position at the telephoto end. The second lens group G2 and the aperture stop S move monotonously toward the object side while reducing the distance between the first lens group G1 and the first lens group G2. The third lens group G3 moves while drawing a convex locus toward the object side while widening from the intermediate state to the telephoto end while slightly reducing the distance from the second lens group G2 from the wide-angle end to the intermediate state. Located on the object side from the edge position. The fourth lens group G4 moves to the image side.

物体側から順に、第1レンズ群G1は、両凹負レンズ1枚からなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、像側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes one biconcave negative lens, and the second lens group G2 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a convex surface on the object side. The third lens group G3 is composed of a negative meniscus lens having a convex surface facing the image side and a biconvex positive lens, and the fourth lens group G4 has a convex surface facing the image side. It consists of one positive meniscus lens.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の正メニスカスレンズの両面の9面に用いている。   The aspherical surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the most image side surface of the cemented lens, and the biconvex of the third lens group G3. It is used on both surfaces of the positive lens and on both surfaces of the positive meniscus lens of the fourth lens group G4.

実施例15のズームレンズは、図15に示すように、物体側から順に、負屈折力の第1レンズ群G1、正屈折力の第2レンズ群G2、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、明るさ絞りSは第2レンズ群G2の像側に第2レンズ群G2と一体に配置されている。広角端から望遠端への変倍をする際には、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干像側に位置する。第2レンズ群G2と明るさ絞りSは一体に第1レンズ群G1との間隔を縮めながら物体側に単調に移動する。第3レンズ群G3は第2レンズ群G2との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態までは広げながら、中間状態から望遠端にかけて若干縮めながら像側へ移動する。   As shown in FIG. 15, the zoom lens of Example 15 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. The fourth lens group G4 has a positive refractive power, and the brightness stop S is disposed integrally with the second lens group G2 on the image side of the second lens group G2. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves along a locus convex toward the image side, and is slightly closer to the image side than the wide-angle end position at the telephoto end. The second lens group G2 and the aperture stop S move monotonously toward the object side while reducing the distance between the first lens group G1 and the first lens group G2. The third lens group G3 moves along a locus convex toward the object side while increasing the distance from the second lens group G2, and is located closer to the object side at the telephoto end than at the wide-angle end. The fourth lens group G4 moves toward the image side while being slightly contracted from the intermediate state to the telephoto end while increasing the distance from the third lens group G3 from the wide-angle end to the intermediate state.

物体側から順に、第1レンズ群G1は、両凹負レンズ1枚からなり、第2レンズ群G2は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第3レンズ群G3は、像側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes one biconcave negative lens, and the second lens group G2 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a convex surface on the object side. The third lens group G3 is composed of a negative meniscus lens having a convex surface facing the image side and a biconvex positive lens, and the fourth lens group G4 has a convex surface facing the image side. It consists of one positive meniscus lens.

非球面は、第1レンズ群G1の両凹負レンズの両面、第2レンズ群G2の単レンズの両凸正レンズの両面、接合レンズの最も物体側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の正メニスカスレンズの両面の9面に用いている。   The aspheric surfaces are both surfaces of the biconcave negative lens of the first lens group G1, both surfaces of the biconvex positive lens of the single lens of the second lens group G2, the most object side surface of the cemented lens, and the biconvex of the third lens group G3. It is used on both surfaces of the positive lens and on both surfaces of the positive meniscus lens of the fourth lens group G4.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, 2 [omega is field angle, WE denotes a wide angle end, ST intermediate state, TE is The telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 are the refractive index of the d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010+A1212+A1414
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10、A12、A14はそれぞれ4次、6次、8次、10次、12次、14次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12 + A 14 y 14
Where r is a paraxial radius of curvature, K is a conic coefficient, A 4 , A 6 , A 8 , A 10 , A 12 , A 14 are 4th, 6th, 8th, 10th, 12th, 14th, respectively. Is the aspheric coefficient.


実施例1
1 = -20.591 (非球面) d1 = 0.85 nd1 =1.74320 νd1 =49.34
2 = 11.203 (非球面) d2 = 1.99
3 = 22.665 d3 = 2.40 nd2 =2.00330 νd2 =28.27
4 = -1878.730 d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 8.370 (非球面) d6 = 2.80 nd3 =1.59201 νd3 =67.02
7 = -38.980 (非球面) d7 = 0.10
8 = 9.076 d8 = 2.40 nd4 =1.88300 νd4 =40.76
9 = 159.652 d9 = 0.50 nd5 =1.76182 νd5 =26.52
10= 4.770 d10= (可変)
11= 163.107 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -13.302 (非球面) d12= (可変)
13= 47.335 (非球面) d13= 0.80 nd7 =1.52542 νd7 =55.78
14= 157.532 d14= 0.50
15= ∞ d15= 0.74 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.50
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞ d18= 1.00
19= ∞(像面)
非球面係数
第1面
K = -4.857
4 = 1.91170×10-5
6 = -7.93990×10-7
8 = 1.25291×10-8
10= 0
第2面
K = -0.331
4 = -4.83010×10-5
6 = -1.87391×10-6
8 = 9.14916×10-8
10= -2.06253×10-9
12= 1.96883×10-11
第6面
K = -0.325
4 = -1.08286×10-4
6 = 5.17066×10-7
8 = -7.59167×10-8
10= 3.18869×10-9
第7面
K = -18.058
4 = 7.08103×10-5
6 = 5.33584×10-7
8 = -6.05038×10-8
10= 3.22384×10-9
第12面
K = 0.000
4 = 2.25205×10-4
6 = 1.09111×10-5
8 = -1.45088×10-6
10= 2.99941×10-8
第13面
K = 0.000
4 = -3.95988×10-4
6 = 5.73474×10-5
8 = -4.14057×10-6
10= 6.74351×10-8
ズームデータ(∞)
WE ST TE
f (mm) 7.98 12.38 22.98
NO 1.84 2.30 3.45
2ω(°) 62.01 39.12 21.14
4 17.81 9.15 1.30
10 6.49 11.36 21.21
12 2.51 1.87 1.55 。

Example 1
r 1 = -20.591 (aspherical surface) d 1 = 0.85 n d1 = 1.74320 ν d1 = 49.34
r 2 = 11.203 (aspherical surface) d 2 = 1.99
r 3 = 22.665 d 3 = 2.40 n d2 = 2.00330 ν d2 = 28.27
r 4 = -1878.730 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 8.370 (aspherical surface) d 6 = 2.80 n d3 = 1.59201 ν d3 = 67.02
r 7 = -38.980 (aspherical surface) d 7 = 0.10
r 8 = 9.076 d 8 = 2.40 n d4 = 1.88300 ν d4 = 40.76
r 9 = 159.652 d 9 = 0.50 n d5 = 1.76182 ν d5 = 26.52
r 10 = 4.770 d 10 = (variable)
r 11 = 163.107 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -13.302 (aspherical surface) d 12 = (variable)
r 13 = 47.335 (aspherical surface) d 13 = 0.80 n d7 = 1.52542 ν d7 = 55.78
r 14 = 157.532 d 14 = 0.50
r 15 = ∞ d 15 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.50
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞ d 18 = 1.00
r 19 = ∞ (image plane)
Aspheric coefficient 1st surface K = -4.857
A 4 = 1.91170 × 10 -5
A 6 = -7.93990 × 10 -7
A 8 = 1.25291 × 10 -8
A 10 = 0
Second side K = -0.331
A 4 = -4.83010 × 10 -5
A 6 = -1.87391 × 10 -6
A 8 = 9.14916 × 10 -8
A 10 = -2.06253 × 10 -9
A 12 = 1.96883 × 10 -11
6th surface K = -0.325
A 4 = -1.08286 × 10 -4
A 6 = 5.17066 × 10 -7
A 8 = -7.59167 × 10 -8
A 10 = 3.18869 × 10 -9
Surface 7 K = -18.058
A 4 = 7.08103 × 10 -5
A 6 = 5.33584 × 10 -7
A 8 = -6.05038 × 10 -8
A 10 = 3.22384 × 10 -9
Surface 12 K = 0.000
A 4 = 2.25205 × 10 -4
A 6 = 1.09111 × 10 -5
A 8 = -1.45088 × 10 -6
A 10 = 2.99941 × 10 -8
Surface 13 K = 0.000
A 4 = -3.95988 × 10 -4
A 6 = 5.73474 × 10 -5
A 8 = -4.14057 × 10 -6
A 10 = 6.74351 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 7.98 12.38 22.98
F NO 1.84 2.30 3.45
2ω (°) 62.01 39.12 21.14
d 4 17.81 9.15 1.30
d 10 6.49 11.36 21.21
d 12 2.51 1.87 1.55.


実施例2
1 = -24.369 (非球面) d1 = 0.85 nd1 =1.74320 νd1 =49.34
2 = 9.860 (非球面) d2 = 2.17
3 = 23.496 d3 = 2.40 nd2 =2.00330 νd2 =28.27
4 = -235.853 d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 7.700 (非球面) d6 = 2.80 nd3 =1.59201 νd3 =67.02
7 = -37.265 (非球面) d7 = 0.10
8 = 9.047 d8 = 2.40 nd4 =1.88300 νd4 =40.76
9 = 52.604 d9 = 0.50 nd5 =1.78472 νd5 =25.68
10= 4.574 d10= (可変)
11= 171.626 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -11.651 (非球面) d12= (可変)
13= ∞ d13= 0.74 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.50
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 1.00
17= ∞(像面)
非球面係数
第1面
K = -1.139
4 = 2.02421×10-5
6 = -9.60379×10-7
8 = 1.58142×10-8
10= 0
第2面
K = -0.491
4 = -1.25226×10-4
6 = -2.13739×10-6
8 = 7.45918×10-8
10= -1.10786×10-9
12= 9.55589×10-12
第6面
K = -0.367
4 = -1.10084×10-4
6 = -2.26216×10-6
8 = 7.28014×10-8
10= -4.77178×10-10
第7面
K = -9.634
4 = 9.98274×10-5
6 = -2.11753×10-6
8 = 9.22826×10-8
10= -7.79379×10-10
第12面
K = -1.098
4 = 6.82670×10-4
6 = -3.32068×10-5
8 = 1.32590×10-6
10= -2.29769×10-8
ズームデータ(∞)
WE ST TE
f (mm) 7.89 12.63 22.74
NO 1.84 2.36 3.54
2ω(°) 61.68 38.23 21.61
4 17.52 8.34 1.30
10 6.12 11.18 20.44
12 3.22 2.52 1.44 。

Example 2
r 1 = -24.369 (aspherical surface) d 1 = 0.85 n d1 = 1.74320 ν d1 = 49.34
r 2 = 9.860 (aspherical surface) d 2 = 2.17
r 3 = 23.496 d 3 = 2.40 n d2 = 2.00330 ν d2 = 28.27
r 4 = -235.853 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 7.700 (aspherical surface) d 6 = 2.80 n d3 = 1.59201 ν d3 = 67.02
r 7 = -37.265 (aspherical surface) d 7 = 0.10
r 8 = 9.047 d 8 = 2.40 n d4 = 1.88300 ν d4 = 40.76
r 9 = 52.604 d 9 = 0.50 n d5 = 1.78472 ν d5 = 25.68
r 10 = 4.574 d 10 = (variable)
r 11 = 171.626 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -11.651 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.74 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.50
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 1.00
r 17 = ∞ (image plane)
Aspheric coefficient 1st surface K = -1.139
A 4 = 2.02421 × 10 -5
A 6 = -9.60379 × 10 -7
A 8 = 1.58142 × 10 -8
A 10 = 0
Second side K = -0.491
A 4 = -1.25226 × 10 -4
A 6 = -2.13739 × 10 -6
A 8 = 7.45918 × 10 -8
A 10 = -1.10786 × 10 -9
A 12 = 9.55589 × 10 -12
6th surface K = -0.367
A 4 = -1.10084 × 10 -4
A 6 = -2.26216 × 10 -6
A 8 = 7.28014 × 10 -8
A 10 = -4.77178 × 10 -10
Surface 7 K = -9.634
A 4 = 9.98274 × 10 -5
A 6 = -2.11753 × 10 -6
A 8 = 9.22826 × 10 -8
A 10 = -7.79379 × 10 -10
Surface 12 K = -1.098
A 4 = 6.82670 × 10 -4
A 6 = -3.32068 × 10 -5
A 8 = 1.32590 × 10 -6
A 10 = -2.29769 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 7.89 12.63 22.74
F NO 1.84 2.36 3.54
2ω (°) 61.68 38.23 21.61
d 4 17.52 8.34 1.30
d 10 6.12 11.18 20.44
d 12 3.22 2.52 1.44.


実施例3
1 = -32.805 (非球面) d1 = 0.85 nd1 =1.74320 νd1 =49.34
2 = 8.821 (非球面) d2 = 2.37
3 = 21.367 d3 = 2.40 nd2 =2.00330 νd2 =28.27
4 = -990.027 d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 8.138 (非球面) d6 = 2.80 nd3 =1.59201 νd3 =67.02
7 = -49.623 (非球面) d7 = 0.10
8 = 9.644 d8 = 2.40 nd4 =1.88300 νd4 =40.76
9 = -398.189 d9 = 0.50 nd5 =1.76182 νd5 =26.52
10= 4.845 d10= (可変)
11= 23.104 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -25.555 (非球面) d12= (可変)
13= 37.552 (非球面) d13= 0.80 nd7 =1.52542 νd7 =55.78
14= ∞ d14= 0.50
15= ∞ d15= 0.74 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.50
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞ d18= 0.93
19= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -7.23340×10-5
6 = 7.82522×10-7
8 = 1.74057×10-8
10= -2.80490×10-10
第2面
K = -0.680
4 = -2.17245×10-4
6 = 9.78691×10-7
8 = 2.15020×10-8
10= -7.54735×10-12
12= -6.96482×10-12
第6面
K = -0.211
4 = -1.08462×10-4
6 = -6.11103×10-7
8 = -4.74554×10-8
10= 2.70946×10-9
第7面
K = 0.000
4 = 1.17441×10-4
6 = -1.80136×10-7
8 = -2.26721×10-8
10= 2.61135×10-9
第12面
K = 0.000
4 = -4.78766×10-5
6 = 3.82653×10-6
8 = -1.68282×10-7
10= 2.74886×10-9
第13面
K = 0.000
4 = -5.40034×10-4
6 = 1.23392×10-5
8 = -2.71717×10-7
10= 3.52095×10-9
ズームデータ(∞)
WE ST TE
f (mm) 8.01 13.61 23.18
NO 1.84 2.41 3.45
2ω(°) 60.98 36.09 21.26
4 18.24 6.57 1.23
10 7.26 12.17 23.55
12 2.58 3.38 1.71 。

Example 3
r 1 = -32.805 (aspherical surface) d 1 = 0.85 n d1 = 1.74320 ν d1 = 49.34
r 2 = 8.821 (aspherical surface) d 2 = 2.37
r 3 = 21.367 d 3 = 2.40 n d2 = 2.00330 ν d2 = 28.27
r 4 = -990.027 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 8.138 (aspherical surface) d 6 = 2.80 n d3 = 1.59201 ν d3 = 67.02
r 7 = -49.623 (aspherical surface) d 7 = 0.10
r 8 = 9.644 d 8 = 2.40 n d4 = 1.88300 ν d4 = 40.76
r 9 = -398.189 d 9 = 0.50 n d5 = 1.76182 ν d5 = 26.52
r 10 = 4.845 d 10 = (variable)
r 11 = 23.104 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -25.555 (aspherical surface) d 12 = (variable)
r 13 = 37.552 (aspherical surface) d 13 = 0.80 n d7 = 1.52542 ν d7 = 55.78
r 14 = ∞ d 14 = 0.50
r 15 = ∞ d 15 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.50
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞ d 18 = 0.93
r 19 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -7.23340 × 10 -5
A 6 = 7.82522 × 10 -7
A 8 = 1.74057 × 10 -8
A 10 = -2.80490 × 10 -10
Second side K = -0.680
A 4 = -2.17245 × 10 -4
A 6 = 9.78691 × 10 -7
A 8 = 2.15020 × 10 -8
A 10 = -7.54735 × 10 -12
A 12 = -6.96482 × 10 -12
6th surface K = -0.211
A 4 = -1.08462 × 10 -4
A 6 = -6.11103 × 10 -7
A 8 = -4.74554 × 10 -8
A 10 = 2.70946 × 10 -9
Surface 7 K = 0.000
A 4 = 1.17441 × 10 -4
A 6 = -1.80136 × 10 -7
A 8 = -2.26721 × 10 -8
A 10 = 2.61135 × 10 -9
Surface 12 K = 0.000
A 4 = -4.78766 × 10 -5
A 6 = 3.82653 × 10 -6
A 8 = -1.68282 × 10 -7
A 10 = 2.74886 × 10 -9
Surface 13 K = 0.000
A 4 = -5.40034 × 10 -4
A 6 = 1.23392 × 10 -5
A 8 = -2.71717 × 10 -7
A 10 = 3.52095 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 8.01 13.61 23.18
F NO 1.84 2.41 3.45
2ω (°) 60.98 36.09 21.26
d 4 18.24 6.57 1.23
d 10 7.26 12.17 23.55
d 12 2.58 3.38 1.71.


実施例4
1 = -32.705 (非球面) d1 = 0.85 nd1 =1.74320 νd1 =49.34
2 = 8.879 (非球面) d2 = 2.38
3 = 21.569 d3 = 2.30 nd2 =2.00330 νd2 =28.27
4 =202364.298 d4 = (可変)
5 = ∞(絞り) d5 = 0.00
6 = 8.220 (非球面) d6 = 2.80 nd3 =1.59201 νd3 =67.02
7 = -47.063 (非球面) d7 = 0.10
8 = 9.799 d8 = 2.40 nd4 =1.88300 νd4 =40.76
9 = -111.185 d9 = 0.53 nd5 =1.76182 νd5 =26.52
10= 4.926 d10= (可変)
11= 25.699 d11= 2.30 nd6 =1.52542 νd6 =55.78
12= -22.867 (非球面) d12= (可変)
13= -34.483 (非球面) d13= 0.80 nd7 =1.52542 νd7 =55.78
14= -21.613 d14= (可変)
15= ∞ d15= 0.74 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.20
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞ d18= 1.00
19= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -3.37307×10-5
6 = -9.72817×10-7
8 = 4.31496×10-8
10= -4.11460×10-10
第2面
K = -0.674
4 = -1.76528×10-4
6 = -1.06503×10-6
8 = 4.02343×10-8
10= 2.29184×10-10
12= -1.01966×10-11
第6面
K = -0.210
4 = -1.21130×10-4
6 = -8.55663×10-7
8 = -3.16534×10-8
10= 1.27827×10-9
第7面
K = 0.000
4 = 1.09439×10-4
6 = -8.89418×10-7
8 = 7.17937×10-9
10= 8.91942×10-10
第12面
K = 0.000
4 = -8.69778×10-5
6 = 8.22798×10-6
8 = -3.15609×10-7
10= 4.70020×10-9
第13面
K = 0.000
4 = -7.46044×10-4
6 = 2.71091×10-5
8 = -7.30692×10-7
10= 9.34974×10-9
ズームデータ(∞)
WE ST TE
f (mm) 8.01 13.55 23.21
NO 1.84 2.41 3.45
2ω(°) 60.75 36.12 21.27
4 18.51 7.09 1.60
10 7.22 12.00 23.05
12 1.35 3.07 2.29
14 2.03 1.09 0.52 。

Example 4
r 1 = -32.705 (aspherical surface) d 1 = 0.85 n d1 = 1.74320 ν d1 = 49.34
r 2 = 8.879 (aspherical surface) d 2 = 2.38
r 3 = 21.569 d 3 = 2.30 n d2 = 2.00330 ν d2 = 28.27
r 4 = 202364.298 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = 0.00
r 6 = 8.220 (aspherical surface) d 6 = 2.80 n d3 = 1.59201 ν d3 = 67.02
r 7 = -47.063 (aspherical surface) d 7 = 0.10
r 8 = 9.799 d 8 = 2.40 n d4 = 1.88300 ν d4 = 40.76
r 9 = -111.185 d 9 = 0.53 n d5 = 1.76182 ν d5 = 26.52
r 10 = 4.926 d 10 = (variable)
r 11 = 25.699 d 11 = 2.30 n d6 = 1.52542 ν d6 = 55.78
r 12 = -22.867 (aspherical surface) d 12 = (variable)
r 13 = -34.483 (aspherical surface) d 13 = 0.80 n d7 = 1.52542 ν d7 = 55.78
r 14 = -21.613 d 14 = (variable)
r 15 = ∞ d 15 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.20
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞ d 18 = 1.00
r 19 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -3.37307 × 10 -5
A 6 = -9.72817 × 10 -7
A 8 = 4.31496 × 10 -8
A 10 = -4.11460 × 10 -10
Second side K = -0.674
A 4 = -1.76528 × 10 -4
A 6 = -1.06503 × 10 -6
A 8 = 4.02343 × 10 -8
A 10 = 2.29184 × 10 -10
A 12 = -1.01966 × 10 -11
6th surface K = -0.210
A 4 = -1.21130 × 10 -4
A 6 = -8.55663 × 10 -7
A 8 = -3.16534 × 10 -8
A 10 = 1.27827 × 10 -9
Surface 7 K = 0.000
A 4 = 1.09439 × 10 -4
A 6 = -8.89418 × 10 -7
A 8 = 7.17937 × 10 -9
A 10 = 8.91942 × 10 -10
Surface 12 K = 0.000
A 4 = -8.69778 × 10 -5
A 6 = 8.22798 × 10 -6
A 8 = -3.15609 × 10 -7
A 10 = 4.70020 × 10 -9
Surface 13 K = 0.000
A 4 = -7.46044 × 10 -4
A 6 = 2.71091 × 10 -5
A 8 = -7.30692 × 10 -7
A 10 = 9.34974 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 8.01 13.55 23.21
F NO 1.84 2.41 3.45
2ω (°) 60.75 36.12 21.27
d 4 18.51 7.09 1.60
d 10 7.22 12.00 23.05
d 12 1.35 3.07 2.29
d 14 2.03 1.09 0.52.


実施例5
1 = -145.383 (非球面) d1 = 0.90 nd1 =1.69350 νd1 =53.21
2 = 8.650 d2 = 2.00 nd2 =2.00069 νd2 =25.46
3 = 10.651 d3 = (可変)
4 = 12.185 (非球面) d4 = 2.26 nd3 =1.74320 νd3 =49.34
5 = 81.448 (非球面) d5 = 0.80
6 = ∞(絞り) d6 = 0.20
7 = 111.218 d7 = 0.55 nd4 =1.84666 νd4 =23.78
8 = 8.992 d8 = 2.50 nd5 =1.88300 νd5 =40.76
9 = -45.340 d9 = (可変)
10= 11.124 (非球面) d10= 2.00 nd6 =1.69350 νd6 =53.21
11= 21.087 (非球面) d11= (可変)
12= -13.435 d12= 1.00 nd7 =1.68893 νd7 =31.07
13= -21.718 (非球面) d13= (可変)
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.50
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 1.25228×10-5
6 = -1.68857×10-7
8 = 5.23426×10-9
10= -1.91214×10-11
12= -2.14972×10-12
14= 2.50471×10-14
第4面
K = -2.274
4 = -1.31273×10-4
6 = -6.67025×10-6
8 = 3.40034×10-8
10= -7.37366×10-9
第5面
K = 0.000
4 = -2.71343×10-4
6 = -3.88226×10-6
8 = -1.41496×10-7
10= -1.80000×10-9
第10面
K = -2.888
4 = -3.04589×10-4
6 = -1.11767×10-5
8 = -5.04355×10-7
10= 0
第11面
K = 0.000
4 = -7.15384×10-4
6 = -1.94625×10-5
8 = 0
10= 0
第13面
K = 0.000
4 = 8.96159×10-4
6 = 5.87184×10-6
8 = -2.49866×10-7
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.99 12.35 22.99
NO 1.86 2.14 2.84
2ω(°) 62.43 39.90 21.32
3 16.93 8.07 1.10
9 6.36 6.18 14.52
11 1.95 3.61 8.43
13 2.95 4.14 1.79 。

Example 5
r 1 = -145.383 (aspherical surface) d 1 = 0.90 n d1 = 1.69350 ν d1 = 53.21
r 2 = 8.650 d 2 = 2.00 n d2 = 2.00069 ν d2 = 25.46
r 3 = 10.651 d 3 = (variable)
r 4 = 12.185 (aspherical surface) d 4 = 2.26 n d3 = 1.74320 ν d3 = 49.34
r 5 = 81.448 (aspherical surface) d 5 = 0.80
r 6 = ∞ (aperture) d 6 = 0.20
r 7 = 111.218 d 7 = 0.55 n d4 = 1.84666 ν d4 = 23.78
r 8 = 8.992 d 8 = 2.50 n d5 = 1.88300 ν d5 = 40.76
r 9 = -45.340 d 9 = (variable)
r 10 = 11.124 (aspherical surface) d 10 = 2.00 n d6 = 1.69350 ν d6 = 53.21
r 11 = 21.087 (aspherical surface) d 11 = (variable)
r 12 = -13.435 d 12 = 1.00 n d7 = 1.68893 ν d7 = 31.07
r 13 = -21.718 (aspherical surface) d 13 = (variable)
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.50
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 1.25228 × 10 -5
A 6 = -1.68857 × 10 -7
A 8 = 5.23426 × 10 -9
A 10 = -1.91214 × 10 -11
A 12 = -2.14972 × 10 -12
A 14 = 2.50471 × 10 -14
4th surface K = -2.274
A 4 = -1.31273 × 10 -4
A 6 = -6.67025 × 10 -6
A 8 = 3.40034 × 10 -8
A 10 = -7.37366 × 10 -9
Fifth side K = 0.000
A 4 = -2.71343 × 10 -4
A 6 = -3.88226 × 10 -6
A 8 = -1.41496 × 10 -7
A 10 = -1.80000 × 10 -9
Surface 10 K = -2.888
A 4 = -3.04589 × 10 -4
A 6 = -1.11767 × 10 -5
A 8 = -5.04355 × 10 -7
A 10 = 0
11th surface K = 0.000
A 4 = -7.15384 × 10 -4
A 6 = -1.94625 × 10 -5
A 8 = 0
A 10 = 0
Surface 13 K = 0.000
A 4 = 8.96159 × 10 -4
A 6 = 5.87184 × 10 -6
A 8 = -2.49866 × 10 -7
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.99 12.35 22.99
F NO 1.86 2.14 2.84
2ω (°) 62.43 39.90 21.32
d 3 16.93 8.07 1.10
d 9 6.36 6.18 14.52
d 11 1.95 3.61 8.43
d 13 2.95 4.14 1.79.


実施例6
1 = -78.142 (非球面) d1 = 0.90 nd1 =1.74320 νd1 =49.34
2 = 8.767 d2 = 2.00 nd2 =2.00170 νd2 =20.64
3 = 12.214 d3 = (可変)
4 = 11.533 (非球面) d4 = 2.27 nd3 =1.74320 νd3 =49.34
5 = 40.855 d5 = 0.55 nd4 =1.84666 νd4 =23.78
6 = 7.068 d6 = 3.30 nd5 =1.88300 νd5 =40.76
7 = -115.072 d7 = 0.00
8 = ∞(絞り) d8 = (可変)
9 = 12.459 (非球面) d9 = 2.00 nd6 =1.69350 νd6 =53.21
10= 30.922 (非球面) d10= (可変)
11= -14.299 d11= 1.00 nd7 =1.68893 νd7 =31.07
12= -18.793 (非球面) d12= (可変)
13= ∞ d13= 0.74 nd8 =1.54771 νd8 =62.84
14= ∞ d14= 0.50
15= ∞ d15= 0.50 nd9 =1.51633 νd9 =64.14
16= ∞ d16= 0.50
17= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 1.56906×10-5
6 = -1.29413×10-6
8 = 8.45917×10-8
10= -2.66460×10-9
12= 3.93437×10-11
14= -2.22233×10-13
第4面
K = 1.054
4 = -1.58746×10-4
6 = -3.45221×10-6
8 = 8.56173×10-8
10= -1.87648×10-9
第9面
K = -1.904
4 = -4.66723×10-4
6 = -1.21485×10-5
8 = -5.97308×10-7
10= 0
第10面
K = 0.000
4 = -7.04701×10-4
6 = -2.17479×10-5
8 = 0
10= 0
第12面
K = 0.000
4 = 9.63721×10-4
6 = -3.46884×10-6
8 = 2.58483×10-8
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.06 12.46 22.88
NO 1.86 2.17 2.99
2ω(°) 62.14 39.39 21.48
3 16.66 7.71 1.10
8 7.78 7.73 15.29
10 1.87 4.02 9.10
12 2.27 3.11 1.55 。

Example 6
r 1 = -78.142 (aspherical surface) d 1 = 0.90 n d1 = 1.74320 ν d1 = 49.34
r 2 = 8.767 d 2 = 2.00 n d2 = 2.00170 ν d2 = 20.64
r 3 = 12.214 d 3 = (variable)
r 4 = 11.533 (aspherical surface) d 4 = 2.27 n d3 = 1.74320 ν d3 = 49.34
r 5 = 40.855 d 5 = 0.55 n d4 = 1.84666 ν d4 = 23.78
r 6 = 7.068 d 6 = 3.30 n d5 = 1.88300 ν d5 = 40.76
r 7 = -115.072 d 7 = 0.00
r 8 = ∞ (aperture) d 8 = (variable)
r 9 = 12.459 (aspherical surface) d 9 = 2.00 n d6 = 1.69350 ν d6 = 53.21
r 10 = 30.922 (aspherical surface) d 10 = (variable)
r 11 = -14.299 d 11 = 1.00 n d7 = 1.68893 ν d7 = 31.07
r 12 = -18.793 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 14 = ∞ d 14 = 0.50
r 15 = ∞ d 15 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 16 = ∞ d 16 = 0.50
r 17 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 1.56906 × 10 -5
A 6 = -1.29413 × 10 -6
A 8 = 8.45917 × 10 -8
A 10 = -2.66460 × 10 -9
A 12 = 3.93437 × 10 -11
A 14 = -2.22233 × 10 -13
4th surface K = 1.054
A 4 = -1.58746 × 10 -4
A 6 = -3.45221 × 10 -6
A 8 = 8.56173 × 10 -8
A 10 = -1.87648 × 10 -9
Surface 9 K = -1.904
A 4 = -4.66723 × 10 -4
A 6 = -1.21485 × 10 -5
A 8 = -5.97308 × 10 -7
A 10 = 0
10th surface K = 0.000
A 4 = -7.04701 × 10 -4
A 6 = -2.17479 × 10 -5
A 8 = 0
A 10 = 0
Surface 12 K = 0.000
A 4 = 9.63721 × 10 -4
A 6 = -3.46884 × 10 -6
A 8 = 2.58483 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.06 12.46 22.88
F NO 1.86 2.17 2.99
2ω (°) 62.14 39.39 21.48
d 3 16.66 7.71 1.10
d 8 7.78 7.73 15.29
d 10 1.87 4.02 9.10
d 12 2.27 3.11 1.55.


実施例7
1 = -29.732 (非球面) d1 = 0.90 nd1 =1.69350 νd1 =53.21
2 = 14.601 d2 = 1.80 nd2 =1.83918 νd2 =23.85
3 = 27.894 (非球面) d3 = (可変)
4 = 12.843 (非球面) d4 = 2.20 nd3 =1.74320 νd3 =49.34
5 = -99.138 (非球面) d5 = 0.80
6 = ∞(絞り) d6 = 0.20
7 = 7.183 d7 = 2.15 nd4 =1.88300 νd4 =40.76
8 = 29.767 d8 = 0.50 nd5 =1.80810 νd5 =22.76
9 = 5.037 d9 = (可変)
10= 10.779 (非球面) d10= 2.57 nd6 =1.69350 νd6 =53.21
11= 42.476 (非球面) d11= (可変)
12= 40.000 (非球面) d12= 1.00 nd7 =1.52542 νd7 =55.78
13= 30.242 d13= 1.00
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.41
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 1.70392×10-4
6 = -2.36418×10-6
8 = 1.14962×10-8
10= 3.13033×10-10
12= -5.19506×10-12
14= 2.48049×10-14
第3面
K = 0.000
4 = 1.33513×10-4
6 = -1.87741×10-6
8 = 1.49663×10-8
10= 3.63709×10-11
第4面
K = 0.597
4 = -1.74298×10-4
6 = -1.34175×10-6
8 = -8.12069×10-8
10= -2.96234×10-9
第5面
K = 0.000
4 = -7.76740×10-5
6 = -8.18520×10-7
8 = -1.51793×10-7
10= -4.25649×10-10
第10面
K = 0.000
4 = -3.34112×10-4
6 = 1.72489×10-6
8 = -1.12625×10-7
10= 0
第11面
K = 0.000
4 = -6.82941×10-4
6 = 3.40824×10-6
8 = -5.60943×10-8
10= 0
第12面
K = 0.000
4 = -1.84764×10-3
6 = 5.24923×10-5
8 = -3.73324×10-6
10= 1.00779×10-7
ズームデータ(∞)
WE ST TE
f (mm) 7.86 12.38 22.52
NO 1.86 2.18 3.04
2ω(°) 63.24 39.99 22.67
3 21.80 9.68 1.69
9 6.30 7.92 17.36
11 1.64 3.31 4.99 。

Example 7
r 1 = -29.732 (aspherical surface) d 1 = 0.90 n d1 = 1.69350 ν d1 = 53.21
r 2 = 14.601 d 2 = 1.80 n d2 = 1.83918 ν d2 = 23.85
r 3 = 27.894 (aspherical surface) d 3 = (variable)
r 4 = 12.843 (aspherical surface) d 4 = 2.20 n d3 = 1.74320 ν d3 = 49.34
r 5 = -99.138 (aspherical surface) d 5 = 0.80
r 6 = ∞ (aperture) d 6 = 0.20
r 7 = 7.183 d 7 = 2.15 n d4 = 1.88300 ν d4 = 40.76
r 8 = 29.767 d 8 = 0.50 n d5 = 1.80810 ν d5 = 22.76
r 9 = 5.037 d 9 = (variable)
r 10 = 10.779 (aspherical surface) d 10 = 2.57 n d6 = 1.69350 ν d6 = 53.21
r 11 = 42.476 (aspherical surface) d 11 = (variable)
r 12 = 40.000 (aspherical surface) d 12 = 1.00 n d7 = 1.52542 ν d7 = 55.78
r 13 = 30.242 d 13 = 1.00
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.41
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 1.70392 × 10 -4
A 6 = -2.36418 × 10 -6
A 8 = 1.14962 × 10 -8
A 10 = 3.13033 × 10 -10
A 12 = -5.19506 × 10 -12
A 14 = 2.48049 × 10 -14
Third side K = 0.000
A 4 = 1.33513 × 10 -4
A 6 = -1.87741 × 10 -6
A 8 = 1.49663 × 10 -8
A 10 = 3.63709 × 10 -11
4th surface K = 0.597
A 4 = -1.74298 × 10 -4
A 6 = -1.34175 × 10 -6
A 8 = -8.12069 × 10 -8
A 10 = -2.96234 × 10 -9
Fifth side K = 0.000
A 4 = -7.76740 × 10 -5
A 6 = -8.18520 × 10 -7
A 8 = -1.51793 × 10 -7
A 10 = -4.25649 × 10 -10
10th surface K = 0.000
A 4 = -3.34112 × 10 -4
A 6 = 1.72489 × 10 -6
A 8 = -1.12625 × 10 -7
A 10 = 0
11th surface K = 0.000
A 4 = -6.82941 × 10 -4
A 6 = 3.40824 × 10 -6
A 8 = -5.60943 × 10 -8
A 10 = 0
Surface 12 K = 0.000
A 4 = -1.84764 × 10 -3
A 6 = 5.24923 × 10 -5
A 8 = -3.73324 × 10 -6
A 10 = 1.00779 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 7.86 12.38 22.52
F NO 1.86 2.18 3.04
2ω (°) 63.24 39.99 22.67
d 3 21.80 9.68 1.69
d 9 6.30 7.92 17.36
d 11 1.64 3.31 4.99.


実施例8
1 = -20.204 (非球面) d1 = 0.90 nd1 =1.49700 νd1 =81.54
2 = 17.545 d2 = 1.80 nd2 =1.84666 νd2 =23.78
3 = 23.794 (非球面) d3 = (可変)
4 = ∞(絞り) d4 = 0.10 r5 = 18.034 (非球面) d5 = 2.20 nd3 =1.69350 νd3 =53.21
6 = -27.012 (非球面) d6 = 0.10
7 = 6.333 d7 = 2.60 nd4 =1.88300 νd4 =40.76
8 = 12.298 d8 = 0.60 nd5 =1.92286 νd5 =20.88
9 = 4.561 d9 = (可変)
10= 53.796 d10= 2.80 nd6 =1.74320 νd6 =49.34
11= -14.000 (非球面) d11= (可変)
12= -24.948 (非球面) d12= 1.00 nd7 =1.52542 νd7 =55.78
13= -14.904 d13= (可変)
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.63
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 4.98101×10-5
6 = 2.62991×10-7
8 = -1.54568×10-8
10= 5.46523×10-10
12= -8.17649×10-12
14= 3.64148×10-14
第3面
K = 0.000
4 = -1.34508×10-5
6 = 8.32834×10-8
8 = 2.05078×10-8
10= -3.59245×10-10
第5面
K = -2.484
4 = -4.56019×10-5
6 = 1.56225×10-7
8 = -5.92118×10-8
10= -5.94787×10-11
第6面
K = -1.006
4 = -7.09011×10-7
6 = -5.19547×10-7
8 = -3.21483×10-8
10= -3.47781×10-10
第11面
K = -3.068
4 = -1.15031×10-4
6 = -1.41621×10-6
8 = 2.96767×10-8
10= 0
第12面
K = 0.000
4 = -1.17795×10-3
6 = 1.48055×10-5
8 = -1.81960×10-8
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.17 12.51 23.49
NO 1.86 2.25 3.35
2ω(°) 61.31 38.70 20.79
3 18.23 9.18 2.05
9 5.72 9.27 19.64
11 1.47 2.41 2.19
13 1.20 0.54 0.30 。

Example 8
r 1 = -20.204 (aspherical surface) d 1 = 0.90 n d1 = 1.49700 ν d1 = 81.54
r 2 = 17.545 d 2 = 1.80 n d2 = 1.84666 ν d2 = 23.78
r 3 = 23.794 (aspherical surface) d 3 = (variable)
r 4 = ∞ (aperture) d 4 = 0.10 r 5 = 18.034 (aspherical surface) d 5 = 2.20 n d3 = 1.69350 ν d3 = 53.21
r 6 = -27.012 (aspherical surface) d 6 = 0.10
r 7 = 6.333 d 7 = 2.60 n d4 = 1.88300 ν d4 = 40.76
r 8 = 12.298 d 8 = 0.60 n d5 = 1.92286 ν d5 = 20.88
r 9 = 4.561 d 9 = (variable)
r 10 = 53.796 d 10 = 2.80 n d6 = 1.74320 ν d6 = 49.34
r 11 = -14.000 (aspherical surface) d 11 = (variable)
r 12 = -24.948 (aspherical surface) d 12 = 1.00 n d7 = 1.52542 ν d7 = 55.78
r 13 = -14.904 d 13 = (variable)
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.63
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 4.98101 × 10 -5
A 6 = 2.62991 × 10 -7
A 8 = -1.54568 × 10 -8
A 10 = 5.46523 × 10 -10
A 12 = -8.17649 × 10 -12
A 14 = 3.64148 × 10 -14
Third side K = 0.000
A 4 = -1.34508 × 10 -5
A 6 = 8.32834 × 10 -8
A 8 = 2.05078 × 10 -8
A 10 = -3.59245 × 10 -10
Fifth side K = -2.484
A 4 = -4.56019 × 10 -5
A 6 = 1.56225 × 10 -7
A 8 = -5.92118 × 10 -8
A 10 = -5.94787 × 10 -11
6th surface K = -1.006
A 4 = -7.09011 × 10 -7
A 6 = -5.19547 × 10 -7
A 8 = -3.21483 × 10 -8
A 10 = -3.47781 × 10 -10
11th surface K = -3.068
A 4 = -1.15031 × 10 -4
A 6 = -1.41621 × 10 -6
A 8 = 2.96767 × 10 -8
A 10 = 0
Surface 12 K = 0.000
A 4 = -1.17795 × 10 -3
A 6 = 1.48055 × 10 -5
A 8 = -1.81960 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.17 12.51 23.49
F NO 1.86 2.25 3.35
2ω (°) 61.31 38.70 20.79
d 3 18.23 9.18 2.05
d 9 5.72 9.27 19.64
d 11 1.47 2.41 2.19
d 13 1.20 0.54 0.30.


実施例9
1 = -28.866 (非球面) d1 = 0.90 nd1 =1.58313 νd1 =59.38
2 = 12.613 d2 = 1.80 nd2 =1.83918 νd2 =23.85
3 = 17.351 (非球面) d3 = (可変)
4 = 10.328 (非球面) d4 = 2.14 nd3 =1.69350 νd3 =53.21
5 = -125.640 (非球面) d5 = 0.20
6 = 7.249 d6 = 2.60 nd4 =1.88300 νd4 =40.76
7 = -63.997 d7 = 0.40 nd5 =1.78472 νd5 =25.68
8 = 4.607 d8 = 1.50
9 = ∞(絞り) d9 = (可変)
10= 10.095 (非球面) d10= 2.20 nd6 =1.74320 νd6 =49.34
11= 18.794 (非球面) d11= (可変)
12= 33.259 (非球面) d12= 1.00 nd7 =1.52542 νd7 =55.78
13= -645.512 d13= 1.14
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.46
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 6.38764×10-5
6 = -1.09687×10-6
8 = 2.22426×10-8
10= 1.99264×10-11
12= -2.98978×10-12
14= 1.81600×10-14
第3面
K = 0.000
4 = 2.14506×10-5
6 = -4.03380×10-7
8 = 2.18349×10-8
10= 5.77518×10-12
第4面
K = -0.161
4 = -1.43882×10-4
6 = -1.09831×10-7
8 = -8.65978×10-9
10= -3.29195×10-10
第5面
K = 0.000
4 = -2.18434×10-5
6 = 2.23702×10-7
8 = -9.89591×10-9
10= -1.54656×10-10
第10面
K = 0.000
4 = -5.79354×10-4
6 = 1.20789×10-5
8 = -2.73123×10-7
10= 0
第11面
K = 0.000
4 = -1.07181×10-3
6 = 2.06212×10-5
8 = -3.85314×10-7
10= 0
第12面
K = 0.000
4 = -1.57377×10-3
6 = 0
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.99 12.24 22.75
NO 1.86 2.29 3.46
2ω(°) 62.67 40.39 22.11
3 17.00 8.17 1.43
9 3.90 5.09 13.29
11 1.51 3.27 5.31 。

Example 9
r 1 = -28.866 (aspherical surface) d 1 = 0.90 n d1 = 1.58313 ν d1 = 59.38
r 2 = 12.613 d 2 = 1.80 n d2 = 1.83918 ν d2 = 23.85
r 3 = 17.351 (aspherical surface) d 3 = (variable)
r 4 = 10.328 (aspherical surface) d 4 = 2.14 n d3 = 1.69350 ν d3 = 53.21
r 5 = -125.640 (aspherical surface) d 5 = 0.20
r 6 = 7.249 d 6 = 2.60 n d4 = 1.88300 ν d4 = 40.76
r 7 = -63.997 d 7 = 0.40 n d5 = 1.78472 ν d5 = 25.68
r 8 = 4.607 d 8 = 1.50
r 9 = ∞ (aperture) d 9 = (variable)
r 10 = 10.095 (aspherical surface) d 10 = 2.20 n d6 = 1.74320 ν d6 = 49.34
r 11 = 18.794 (aspherical surface) d 11 = (variable)
r 12 = 33.259 (aspherical surface) d 12 = 1.00 n d7 = 1.52542 ν d7 = 55.78
r 13 = -645.512 d 13 = 1.14
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.46
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 6.38764 × 10 -5
A 6 = -1.09687 × 10 -6
A 8 = 2.22426 × 10 -8
A 10 = 1.99264 × 10 -11
A 12 = -2.98978 × 10 -12
A 14 = 1.81600 × 10 -14
Third side K = 0.000
A 4 = 2.14506 × 10 -5
A 6 = -4.03380 × 10 -7
A 8 = 2.18349 × 10 -8
A 10 = 5.77518 × 10 -12
4th surface K = -0.161
A 4 = -1.43882 × 10 -4
A 6 = -1.09831 × 10 -7
A 8 = -8.65978 × 10 -9
A 10 = -3.29195 × 10 -10
Fifth side K = 0.000
A 4 = -2.18434 × 10 -5
A 6 = 2.23702 × 10 -7
A 8 = -9.89591 × 10 -9
A 10 = -1.54656 × 10 -10
10th surface K = 0.000
A 4 = -5.79354 × 10 -4
A 6 = 1.20789 × 10 -5
A 8 = -2.73123 × 10 -7
A 10 = 0
11th surface K = 0.000
A 4 = -1.07181 × 10 -3
A 6 = 2.06212 × 10 -5
A 8 = -3.85314 × 10 -7
A 10 = 0
Surface 12 K = 0.000
A 4 = -1.57377 × 10 -3
A 6 = 0
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.99 12.24 22.75
F NO 1.86 2.29 3.46
2ω (°) 62.67 40.39 22.11
d 3 17.00 8.17 1.43
d 9 3.90 5.09 13.29
d 11 1.51 3.27 5.31.


実施例10
1 = -45.206 (非球面) d1 = 0.90 nd1 =1.69350 νd1 =53.21
2 = 11.291 d2 = 1.80 nd2 =1.84666 νd2 =23.78
3 = 17.553 (非球面) d3 = (可変)
4 = ∞(絞り) d4 = 0.10 r5 = 9.783 (非球面) d5 = 2.26 nd3 =1.74320 νd3 =49.34
6 = -107.620 (非球面) d6 = 0.10
7 = 6.333 d7 = 2.00 nd4 =1.72916 νd4 =54.68
8 = 9.228 d8 = 0.60 nd5 =2.00170 νd5 =20.64
9 = 4.744 d9 = (可変)
10= 14.018 (非球面) d10= 2.72 nd6 =1.69350 νd6 =53.21
11= 260.132 (非球面) d11= (可変)
12= 130.344 (非球面) d12= 1.00 nd7 =1.52542 νd7 =55.78
13= ∞ d13= (可変)
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.90
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 1.90374×10-6
6 = -3.84263×10-7
8 = 8.63693×10-9
10= 6.67354×10-12
12= -1.53332×10-12
14= 1.13376×10-14
第3面
K = 0.000
4 = -2.63248×10-5
6 = 2.90936×10-7
8 = -1.20811×10-8
10= 1.85370×10-10
第5面
K = -0.263
4 = -5.86359×10-5
6 = 2.39004×10-7
8 = 2.34845×10-8
10= 5.34915×10-10
第6面
K = -234.189
4 = 2.88968×10-5
6 = 1.01712×10-6
8 = 9.63087×10-9
10= 7.64550×10-10
第10面
K = -6.835
4 = 1.00639×10-6
6 = -4.88584×10-6
8 = 0
10= 0
第11面
K = 0.000
4 = -4.99152×10-4
6 = -9.09044×10-7
8 = 0
10= 0
第12面
K = 0.000
4 = -1.55873×10-3
6 = 5.84821×10-6
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.87 12.54 22.67
NO 1.86 2.14 2.93
2ω(°) 63.07 38.84 21.80
3 19.50 8.63 1.90
9 5.74 6.07 14.93
11 2.05 4.80 8.03
13 0.48 0.41 0.29 。

Example 10
r 1 = -45.206 (aspherical surface) d 1 = 0.90 n d1 = 1.69350 ν d1 = 53.21
r 2 = 11.291 d 2 = 1.80 n d2 = 1.84666 ν d2 = 23.78
r 3 = 17.553 (aspherical surface) d 3 = (variable)
r 4 = ∞ (aperture) d 4 = 0.10 r 5 = 9.783 (aspheric surface) d 5 = 2.26 n d3 = 1.74320 ν d3 = 49.34
r 6 = -107.620 (aspherical surface) d 6 = 0.10
r 7 = 6.333 d 7 = 2.00 n d4 = 1.72916 ν d4 = 54.68
r 8 = 9.228 d 8 = 0.60 n d5 = 2.00170 ν d5 = 20.64
r 9 = 4.744 d 9 = (variable)
r 10 = 14.018 (aspherical surface) d 10 = 2.72 n d6 = 1.69350 ν d6 = 53.21
r 11 = 260.132 (aspherical surface) d 11 = (variable)
r 12 = 130.344 (aspherical surface) d 12 = 1.00 n d7 = 1.52542 ν d7 = 55.78
r 13 = ∞ d 13 = (variable)
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.90
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 1.90374 × 10 -6
A 6 = -3.84263 × 10 -7
A 8 = 8.63693 × 10 -9
A 10 = 6.67354 × 10 -12
A 12 = -1.53332 × 10 -12
A 14 = 1.13376 × 10 -14
Third side K = 0.000
A 4 = -2.63248 × 10 -5
A 6 = 2.90936 × 10 -7
A 8 = -1.20811 × 10 -8
A 10 = 1.85370 × 10 -10
Fifth side K = -0.263
A 4 = -5.86359 × 10 -5
A 6 = 2.39004 × 10 -7
A 8 = 2.34845 × 10 -8
A 10 = 5.34915 × 10 -10
6th surface K = -234.189
A 4 = 2.88968 × 10 -5
A 6 = 1.01712 × 10 -6
A 8 = 9.63087 × 10 -9
A 10 = 7.64550 × 10 -10
10th surface K = -6.835
A 4 = 1.00639 × 10 -6
A 6 = -4.88584 × 10 -6
A 8 = 0
A 10 = 0
11th surface K = 0.000
A 4 = -4.99152 × 10 -4
A 6 = -9.09044 × 10 -7
A 8 = 0
A 10 = 0
Surface 12 K = 0.000
A 4 = -1.55873 × 10 -3
A 6 = 5.84821 × 10 -6
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.87 12.54 22.67
F NO 1.86 2.14 2.93
2ω (°) 63.07 38.84 21.80
d 3 19.50 8.63 1.90
d 9 5.74 6.07 14.93
d 11 2.05 4.80 8.03
d 13 0.48 0.41 0.29.


実施例11
1 = -13.852 (非球面) d1 = 0.90 nd1 =1.49700 νd1 =81.54
2 = 24.684 d2 = 1.59 nd2 =1.83918 νd2 =23.85
3 = 43.897 (非球面) d3 = (可変)
4 = 10.521 (非球面) d4 = 1.82 nd3 =1.69350 νd3 =53.21
5 = -77.251 (非球面) d5 = 0.80
6 = ∞(絞り) d6 = 0.00
7 = 6.907 d7 = 2.53 nd4 =1.88300 νd4 =40.76
8 = 87.359 d8 = 0.59 nd5 =1.83918 νd5 =23.85
9 = 4.354 (非球面) d9 = (可変)
10= -30.574 (非球面) d10= 1.99 nd6 =1.80610 νd6 =40.92
11= -12.104 (非球面) d11= (可変)
12= 40.000 (非球面) d12= 0.80 nd7 =1.52542 νd7 =55.78
13= -73.398 d13= (可変)
14= ∞ d14= 0.74 nd8 =1.54771 νd8 =62.84
15= ∞ d15= 0.50
16= ∞ d16= 0.50 nd9 =1.51633 νd9 =64.14
17= ∞ d17= 0.51
18= ∞(像面)
非球面係数
第1面
K = 0.000
4 = 4.06059×10-4
6 = -6.07979×10-6
8 = 5.43296×10-8
10= 3.25528×10-11
12= -2.48489×10-12
14= -2.01707×10-15
第3面
K = 0.000
4 = 1.68867×10-4
6 = -1.12760×10-6
8 = -1.24654×10-7
10= 4.77759×10-9
12= -6.82004×10-11
14= 3.36755×10-13
第4面
K = 0.172
4 = -1.43531×10-4
6 = 2.42963×10-7
8 = -8.81758×10-8
10= 2.81587×10-9
第5面
K = 0.000
4 = -2.60495×10-5
6 = 7.62112×10-7
8 = -2.59097×10-9
10= 1.04283×10-9
第9面
K = 0.000
4 = 2.21869×10-4
6 = -5.83726×10-6
8 = 2.76274×10-7
10= -1.82983×10-8
第10面
K = 0.000
4 = -5.33927×10-4
6 = 1.39916×10-5
8 = -1.37267×10-7
10= 4.11809×10-9
第11面
K = 0.000
4 = -5.20824×10-4
6 = 1.11823×10-5
8 = -1.36807×10-7
10= 3.68016×10-9
第12面
K = 0.000
4 = -1.22480×10-3
6 = 4.02065×10-5
8 = -1.24733×10-6
10= 1.99247×10-8
ズームデータ(∞)
WE ST TE
f (mm) 8.10 10.89 23.55
NO 1.86 2.11 3.21
2ω(°) 61.86 44.92 21.09
3 19.16 11.95 0.50
9 3.97 4.97 12.74
11 2.16 4.03 6.90
13 1.80 0.81 0.19 。

Example 11
r 1 = -13.852 (aspherical surface) d 1 = 0.90 n d1 = 1.49700 ν d1 = 81.54
r 2 = 24.684 d 2 = 1.59 n d2 = 1.83918 ν d2 = 23.85
r 3 = 43.897 (aspherical surface) d 3 = (variable)
r 4 = 10.521 (aspherical surface) d 4 = 1.82 n d3 = 1.69350 ν d3 = 53.21
r 5 = -77.251 (aspherical surface) d 5 = 0.80
r 6 = ∞ (aperture) d 6 = 0.00
r 7 = 6.907 d 7 = 2.53 n d4 = 1.88300 ν d4 = 40.76
r 8 = 87.359 d 8 = 0.59 n d5 = 1.83918 ν d5 = 23.85
r 9 = 4.354 (aspherical surface) d 9 = (variable)
r 10 = -30.574 (aspherical surface) d 10 = 1.99 n d6 = 1.80610 ν d6 = 40.92
r 11 = -12.104 (aspherical surface) d 11 = (variable)
r 12 = 40.000 (aspherical surface) d 12 = 0.80 n d7 = 1.52542 ν d7 = 55.78
r 13 = -73.398 d 13 = (variable)
r 14 = ∞ d 14 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 15 = ∞ d 15 = 0.50
r 16 = ∞ d 16 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 17 = ∞ d 17 = 0.51
r 18 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = 4.06059 × 10 -4
A 6 = -6.07979 × 10 -6
A 8 = 5.43296 × 10 -8
A 10 = 3.25528 × 10 -11
A 12 = -2.48489 × 10 -12
A 14 = -2.01707 × 10 -15
Third side K = 0.000
A 4 = 1.68867 × 10 -4
A 6 = -1.12760 × 10 -6
A 8 = -1.24654 × 10 -7
A 10 = 4.77759 × 10 -9
A 12 = -6.82004 × 10 -11
A 14 = 3.36755 × 10 -13
4th surface K = 0.172
A 4 = -1.43531 × 10 -4
A 6 = 2.42963 × 10 -7
A 8 = -8.81758 × 10 -8
A 10 = 2.81587 × 10 -9
Fifth side K = 0.000
A 4 = -2.60495 × 10 -5
A 6 = 7.62112 × 10 -7
A 8 = -2.59097 × 10 -9
A 10 = 1.04283 × 10 -9
Surface 9 K = 0.000
A 4 = 2.21869 × 10 -4
A 6 = -5.83726 × 10 -6
A 8 = 2.76274 × 10 -7
A 10 = -1.82983 × 10 -8
10th surface K = 0.000
A 4 = -5.33927 × 10 -4
A 6 = 1.39916 × 10 -5
A 8 = -1.37267 × 10 -7
A 10 = 4.11809 × 10 -9
11th surface K = 0.000
A 4 = -5.20824 × 10 -4
A 6 = 1.11823 × 10 -5
A 8 = -1.36807 × 10 -7
A 10 = 3.68016 × 10 -9
Surface 12 K = 0.000
A 4 = -1.22480 × 10 -3
A 6 = 4.02065 × 10 -5
A 8 = -1.24733 × 10 -6
A 10 = 1.99247 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 8.10 10.89 23.55
F NO 1.86 2.11 3.21
2ω (°) 61.86 44.92 21.09
d 3 19.16 11.95 0.50
d 9 3.97 4.97 12.74
d 11 2.16 4.03 6.90
d 13 1.80 0.81 0.19.


実施例12
1 = -18.164 (非球面) d1 = 0.90 nd1 =1.51633 νd1 =64.14
2 = 13.285 d2 = 1.80 nd2 =1.83918 νd2 =23.85
3 = 17.066 (非球面) d3 = (可変)
4 = 13.962 (非球面) d4 = 2.20 nd3 =1.74320 νd3 =49.34
5 = -25.345 (非球面) d5 = 0.10
6 = 6.022 (非球面) d6 = 2.90 nd4 =1.80610 νd4 =40.92
7 = 119.085 d7 = 0.50 nd5 =2.00069 νd5 =25.46
8 = 4.353 d8 = 1.72
9 = ∞(絞り) d9 = (可変)
10= -8.900 d10= 2.20 nd6 =1.92286 νd6 =18.90
11= -12.685 d11= 2.20
12= 64.569 (非球面) d12= 2.20 nd7 =1.80610 νd7 =40.92
13= -13.461 (非球面) d13= (可変)
14= -11.384 (非球面) d14= 1.00 nd8 =1.52542 νd8 =55.78
15= -6.418 (非球面) d15= (可変)
16= ∞ d16= 0.74 nd9 =1.54771 νd9 =62.84
17= ∞ d17= 0.50
18= ∞ d18= 0.50 nd10=1.51633 νd10=64.14
19= ∞ d19= 0.46
20= ∞(像面)
非球面係数
第1面
K = -0.690
4 = 1.00171×10-4
6 = -1.63342×10-7
8 = 0.000
10= 2.47553×10-12
第3面
K = -2.051
4 = 8.63337×10-5
6 = -3.14892×10-8
8 = 7.47008×10-9
10= 0.000
第4面
K = -0.478
4 = -1.21096×10-4
6 = 2.15656×10-6
8 = -1.23897×10-7
10= 1.80977×10-9
第5面
K = -8.737
4 = -3.31436×10-5
6 = -1.24138×10-6
8 = -6.21293×10-9
10= 5.65326×10-10
第6面
K = 0.224
4 = -2.71845×10-5
6 = -6.16672×10-6
8 = 1.14404×10-7
10= -6.55772×10-9
第12面
K = -511.997
4 = -1.35640×10-4
6 = -9.45635×10-6
8 = -1.55393×10-7
10= 0
第13面
K = 0.910
4 = -1.71590×10-4
6 = -7.55572×10-6
8 = -1.11729×10-8
10= -1.29134×10-9
第14面
K = -0.773
4 = -1.36202×10-3
6 = 7.62379×10-5
8 = 0
10= 0
第15面
K = 0.000
4 = 0.000
6 = 7.95903×10-5
8 = 1.49209×10-7
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 7.33 12.42 21.06
NO 1.86 2.57 3.86
2ω(°) 66.51 38.99 23.65
3 19.41 10.28 5.74
9 2.74 5.59 14.38
13 1.12 4.30 5.22
15 2.44 1.20 0.49 。

Example 12
r 1 = -18.164 (aspherical surface) d 1 = 0.90 n d1 = 1.51633 ν d1 = 64.14
r 2 = 13.285 d 2 = 1.80 n d2 = 1.83918 ν d2 = 23.85
r 3 = 17.066 (aspherical surface) d 3 = (variable)
r 4 = 13.962 (aspherical surface) d 4 = 2.20 n d3 = 1.74320 ν d3 = 49.34
r 5 = -25.345 (aspherical surface) d 5 = 0.10
r 6 = 6.022 (aspherical surface) d 6 = 2.90 n d4 = 1.80610 ν d4 = 40.92
r 7 = 119.085 d 7 = 0.50 n d5 = 2.00069 ν d5 = 25.46
r 8 = 4.353 d 8 = 1.72
r 9 = ∞ (aperture) d 9 = (variable)
r 10 = -8.900 d 10 = 2.20 n d6 = 1.92286 ν d6 = 18.90
r 11 = -12.685 d 11 = 2.20
r 12 = 64.569 (aspherical surface) d 12 = 2.20 n d7 = 1.80610 ν d7 = 40.92
r 13 = -13.461 (aspherical surface) d 13 = (variable)
r 14 = -11.384 (aspherical surface) d 14 = 1.00 n d8 = 1.52542 ν d8 = 55.78
r 15 = -6.418 (aspherical surface) d 15 = (variable)
r 16 = ∞ d 16 = 0.74 n d9 = 1.54771 ν d9 = 62.84
r 17 = ∞ d 17 = 0.50
r 18 = ∞ d 18 = 0.50 n d10 = 1.51633 ν d10 = 64.14
r 19 = ∞ d 19 = 0.46
r 20 = ∞ (image plane)
Aspheric coefficient 1st surface K = -0.690
A 4 = 1.00171 × 10 -4
A 6 = -1.63342 × 10 -7
A 8 = 0.000
A 10 = 2.47553 × 10 -12
Third side K = -2.051
A 4 = 8.63337 × 10 -5
A 6 = -3.14892 × 10 -8
A 8 = 7.47008 × 10 -9
A 10 = 0.000
4th surface K = -0.478
A 4 = -1.21096 × 10 -4
A 6 = 2.15656 × 10 -6
A 8 = -1.23897 × 10 -7
A 10 = 1.80977 × 10 -9
Fifth side K = -8.737
A 4 = -3.31436 × 10 -5
A 6 = -1.24138 × 10 -6
A 8 = -6.21293 × 10 -9
A 10 = 5.65326 × 10 -10
6th surface K = 0.224
A 4 = -2.71845 × 10 -5
A 6 = -6.16672 × 10 -6
A 8 = 1.14404 × 10 -7
A 10 = -6.55772 × 10 -9
Surface 12 K = -511.997
A 4 = -1.35640 × 10 -4
A 6 = -9.45635 × 10 -6
A 8 = -1.55393 × 10 -7
A 10 = 0
13th surface K = 0.910
A 4 = -1.71590 × 10 -4
A 6 = -7.55572 × 10 -6
A 8 = -1.11729 × 10 -8
A 10 = -1.29134 × 10 -9
Surface 14 K = -0.773
A 4 = -1.36202 × 10 -3
A 6 = 7.62379 × 10 -5
A 8 = 0
A 10 = 0
15th face K = 0.000
A 4 = 0.000
A 6 = 7.95903 × 10 -5
A 8 = 1.49209 × 10 -7
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 7.33 12.42 21.06
F NO 1.86 2.57 3.86
2ω (°) 66.51 38.99 23.65
d 3 19.41 10.28 5.74
d 9 2.74 5.59 14.38
d 13 1.12 4.30 5.22
d 15 2.44 1.20 0.49.


実施例13
1 = -24.536 (非球面) d1 = 0.90 nd1 =1.43875 νd1 =94.93
2 = 19.004 (非球面) d2 = (可変)
3 = 10.959 (非球面) d3 = 2.40 nd2 =1.69350 νd2 =53.21
4 = -86.829 (非球面) d4 = 0.80
5 = ∞(絞り) d5 = 0.20 r6 = 7.563 d6 = 2.00 nd3 =1.81600 νd3 =46.62
7 = 11.746 d7 = 0.55 nd4 =1.92286 νd4 =20.88
8 = 5.783 d8 = (可変) r9 = 8.932 (非球面) d9 = 2.20 nd5 =1.59201 νd5 =67.02
10= 28.850 (非球面) d10= (可変)
11= -16.006 d11= 1.00 nd6 =1.68893 νd6 =31.07
12= -19.735 (非球面) d12= (可変)
13= ∞ d13= 0.74 nd7 =1.54771 νd7 =62.84
14= ∞ d14= 0.50
15= ∞ d15= 0.50 nd8 =1.51633 νd8 =64.14
16= ∞ d16= 0.50
17= ∞(像面) 非球面係数
第1面
K = 0.000
4 = 3.31292×10-4
6 = -1.13962×10-5
8 = 2.47541×10-7
10= -3.22394×10-9
12= 2.47078×10-11
14= -8.24959×10-14
第2面
K = 0.936
4 = 2.51032×10-4
6 = -7.12570×10-6
8 = 7.42959×10-8
10= 0
第3面
K = -0.469
4 = -8.90377×10-5
6 = -2.70516×10-6
8 = 1.34920×10-7
10= -6.48691×10-9
第4面
K = 0.000
4 = -4.79022×10-5
6 = -2.20902×10-6
8 = 5.88068×10-8
10= -4.52956×10-9
第9面
K = -0.354
4 = -1.20596×10-4
6 = -4.73292×10-6
8 = -2.19357×10-7
10= 0
第10面
K = 0.000
4 = -2.02080×10-4
6 = -1.42932×10-5
8 = 0
10= 0
第12面
K = 0.000
4 = 1.30109×10-3
6 = -2.61566×10-5
8 = 1.01606×10-6
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.04 11.69 22.91
NO 1.79 1.99 2.75
2ω(°) 62.15 41.58 21.63
2 23.22 11.29 0.40
8 5.20 4.91 12.25
10 1.71 2.91 6.99
12 1.58 2.27 0.76 。

Example 13
r 1 = -24.536 (aspherical surface) d 1 = 0.90 n d1 = 1.43875 ν d1 = 94.93
r 2 = 19.004 (aspherical surface) d 2 = (variable)
r 3 = 10.959 (aspherical surface) d 3 = 2.40 n d2 = 1.69350 ν d2 = 53.21
r 4 = -86.829 (aspherical surface) d 4 = 0.80
r 5 = ∞ (aperture) d 5 = 0.20 r 6 = 7.563 d 6 = 2.00 n d3 = 1.81600 ν d3 = 46.62
r 7 = 11.746 d 7 = 0.55 n d4 = 1.92286 ν d4 = 20.88
r 8 = 5.783 d 8 = (variable) r 9 = 8.932 (aspherical surface) d 9 = 2.20 n d5 = 1.59201 ν d5 = 67.02
r 10 = 28.850 (aspherical surface) d 10 = (variable)
r 11 = -16.006 d 11 = 1.00 n d6 = 1.68893 ν d6 = 31.07
r 12 = -19.735 (aspherical surface) d 12 = (variable)
r 13 = ∞ d 13 = 0.74 n d7 = 1.54771 ν d7 = 62.84
r 14 = ∞ d 14 = 0.50
r 15 = ∞ d 15 = 0.50 n d8 = 1.51633 ν d8 = 64.14
r 16 = ∞ d 16 = 0.50
r 17 = ∞ (image plane) aspherical coefficient first surface K = 0.000
A 4 = 3.31292 × 10 -4
A 6 = -1.13962 × 10 -5
A 8 = 2.47541 × 10 -7
A 10 = -3.22394 × 10 -9
A 12 = 2.47078 × 10 -11
A 14 = -8.24959 × 10 -14
Second side K = 0.936
A 4 = 2.51032 × 10 -4
A 6 = -7.12570 × 10 -6
A 8 = 7.42959 × 10 -8
A 10 = 0
Third side K = -0.469
A 4 = -8.90377 × 10 -5
A 6 = -2.70516 × 10 -6
A 8 = 1.34920 × 10 -7
A 10 = -6.48691 × 10 -9
4th surface K = 0.000
A 4 = -4.79022 × 10 -5
A 6 = -2.20902 × 10 -6
A 8 = 5.88068 × 10 -8
A 10 = -4.52956 × 10 -9
Surface 9 K = -0.354
A 4 = -1.20596 × 10 -4
A 6 = -4.73292 × 10 -6
A 8 = -2.19357 × 10 -7
A 10 = 0
10th surface K = 0.000
A 4 = -2.02080 × 10 -4
A 6 = -1.42932 × 10 -5
A 8 = 0
A 10 = 0
Surface 12 K = 0.000
A 4 = 1.30109 × 10 -3
A 6 = -2.61566 × 10 -5
A 8 = 1.01606 × 10 -6
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.04 11.69 22.91
F NO 1.79 1.99 2.75
2ω (°) 62.15 41.58 21.63
d 2 23.22 11.29 0.40
d 8 5.20 4.91 12.25
d 10 1.71 2.91 6.99
d 12 1.58 2.27 0.76.


実施例14
1 = -28.621 (非球面) d1 = 0.90 nd1 =1.43875 νd1 =94.93
2 = 13.270 (非球面) d2 = (可変)
3 = 18.910 (非球面) d3 = 1.83 nd2 =1.76802 νd2 =49.24
4 = -52.548 (非球面) d4 = 0.10
5 = 7.084 d5 = 2.90 nd3 =1.88300 νd3 =40.76
6 = 27.980 d6 = 0.55 nd4 =1.83918 νd4 =23.85
7 = 5.338 (非球面) d7 = 1.72
8 = ∞(絞り) d8 = (可変)
9 = -7.790 d9 = 0.80 nd5 =1.92286 νd5 =18.90
10= -11.396 d10= 0.15
11= 60.657 (非球面) d11= 2.34 nd6 =1.76802 νd6 =49.24
12= -11.972 (非球面) d12= (可変)
13= -26.874 (非球面) d13= 1.00 nd7 =1.69350 νd7 =53.20
14= -17.612 (非球面) d14= (可変)
15= ∞ d15= 0.74 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.50
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞ d18= 0.30
19= ∞(像面)
非球面係数
第1面
K = -0.134
4 = 2.47196×10-7
6 = 2.34297×10-7
8 = 0.000
10= 0.000
第2面
K = -1.454
4 = 1.35646×10-5
6 = -1.44746×10-7
8 = 6.88829×10-9
10= 0.000
第3面
K = -0.093
4 = 3.65504×10-5
6 = -1.10311×10-7
8 = -4.25458×10-8
10= 2.18338×10-10
第4面
K = -18.402
4 = 3.23935×10-5
6 = -6.55955×10-7
8 = -3.93067×10-8
10= 4.20213×10-10
第7面
K = 0.004
4 = 1.46877×10-4
6 = 8.79444×10-6
8 = 1.86813×10-7
10= 8.06203×10-9
第11面
K = -12.098
4 = -1.37660×10-4
6 = 1.15212×10-6
8 = -2.15963×10-7
10= 0
第12面
K = -0.296
4 = -5.40491×10-5
6 = -2.16122×10-6
8 = -3.79109×10-8
10= -2.42168×10-9
第13面
K = -5.302
4 = -3.55522×10-4
6 = 2.30162×10-5
8 = 0
10= 0
第14面
K = 0.000
4 = 0.000
6 = 2.63358×10-5
8 = 1.38995×10-8
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.14 14.00 23.45
NO 1.86 2.31 3.68
2ω(°) 60.86 35.29 21.39
2 20.49 6.87 5.23
8 4.12 3.63 17.92
12 1.11 7.40 5.08
14 3.67 1.80 0.28 。

Example 14
r 1 = -28.621 (aspherical surface) d 1 = 0.90 n d1 = 1.43875 ν d1 = 94.93
r 2 = 13.270 (aspherical surface) d 2 = (variable)
r 3 = 18.910 (aspherical surface) d 3 = 1.83 n d2 = 1.76802 ν d2 = 49.24
r 4 = -52.548 (aspherical surface) d 4 = 0.10
r 5 = 7.084 d 5 = 2.90 n d3 = 1.88300 ν d3 = 40.76
r 6 = 27.980 d 6 = 0.55 n d4 = 1.83918 ν d4 = 23.85
r 7 = 5.338 (aspherical surface) d 7 = 1.72
r 8 = ∞ (aperture) d 8 = (variable)
r 9 = -7.790 d 9 = 0.80 n d5 = 1.92286 ν d5 = 18.90
r 10 = -11.396 d 10 = 0.15
r 11 = 60.657 (aspherical surface) d 11 = 2.34 n d6 = 1.76802 ν d6 = 49.24
r 12 = -11.972 (aspherical surface) d 12 = (variable)
r 13 = -26.874 (aspherical surface) d 13 = 1.00 n d7 = 1.69350 ν d7 = 53.20
r 14 = -17.612 (aspherical surface) d 14 = (variable)
r 15 = ∞ d 15 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.50
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞ d 18 = 0.30
r 19 = ∞ (image plane)
Aspheric coefficient 1st surface K = -0.134
A 4 = 2.47196 × 10 -7
A 6 = 2.34297 × 10 -7
A 8 = 0.000
A 10 = 0.000
Second side K = -1.454
A 4 = 1.35646 × 10 -5
A 6 = -1.44746 × 10 -7
A 8 = 6.88829 × 10 -9
A 10 = 0.000
Third side K = -0.093
A 4 = 3.65504 × 10 -5
A 6 = -1.10311 × 10 -7
A 8 = -4.25458 × 10 -8
A 10 = 2.18338 × 10 -10
4th surface K = -18.402
A 4 = 3.23935 × 10 -5
A 6 = -6.55955 × 10 -7
A 8 = -3.93067 × 10 -8
A 10 = 4.20213 × 10 -10
Surface 7 K = 0.004
A 4 = 1.46877 × 10 -4
A 6 = 8.79444 × 10 -6
A 8 = 1.86813 × 10 -7
A 10 = 8.06203 × 10 -9
11th surface K = -12.098
A 4 = -1.37660 × 10 -4
A 6 = 1.15212 × 10 -6
A 8 = -2.15963 × 10 -7
A 10 = 0
Surface 12 K = -0.296
A 4 = -5.40491 × 10 -5
A 6 = -2.16122 × 10 -6
A 8 = -3.79109 × 10 -8
A 10 = -2.42168 × 10 -9
Surface 13 K = -5.302
A 4 = -3.55522 × 10 -4
A 6 = 2.30162 × 10 -5
A 8 = 0
A 10 = 0
14th face K = 0.000
A 4 = 0.000
A 6 = 2.63358 × 10 -5
A 8 = 1.38995 × 10 -8
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.14 14.00 23.45
F NO 1.86 2.31 3.68
2ω (°) 60.86 35.29 21.39
d 2 20.49 6.87 5.23
d 8 4.12 3.63 17.92
d 12 1.11 7.40 5.08
d 14 3.67 1.80 0.28.


実施例15
1 = -22.016 (非球面) d1 = 0.90 nd1 =1.43875 νd1 =94.93
2 = 15.461 (非球面) d2 = (可変)
3 = 14.701 (非球面) d3 = 2.06 nd2 =1.74320 νd2 =49.34
4 = -32.999 (非球面) d4 = 0.10
5 = 6.405 (非球面) d5 = 2.90 nd3 =1.80610 νd3 =40.92
6 = 33.244 d6 = 0.50 nd4 =2.00069 νd4 =25.46
7 = 4.856 d7 = 1.72
8 = ∞(絞り) d8 = (可変)
9 = -8.940 d9 = 0.80 nd5 =1.92286 νd5 =18.90
10= -16.611 d10= 0.18
11= 45.839 (非球面) d11= 2.55 nd6 =1.80610 νd6 =40.92
12= -11.009 (非球面) d12= (可変)
13= -10.879 (非球面) d13= 1.00 nd7 =1.52542 νd7 =55.78
14= -7.731 (非球面) d14= (可変)
15= ∞ d15= 0.74 nd8 =1.54771 νd8 =62.84
16= ∞ d16= 0.50
17= ∞ d17= 0.50 nd9 =1.51633 νd9 =64.14
18= ∞ d18= 0.30
19= ∞(像面)
非球面係数
第1面
K = -0.519
4 = 3.69695×10-5
6 = 5.65774×10-8
8 = 0.000
10= 3.73887×10-12
第2面
K = -2.161
4 = 4.21993×10-5
6 = -1.75597×10-7
8 = 8.97310×10-9
10= 0.000
第3面
K = -0.175
4 = -9.06679×10-6
6 = -3.53110×10-7
8 = -2.44657×10-8
10= 2.47234×10-10
第4面
K = -17.775
4 = -2.80828×10-5
6 = -1.49749×10-7
8 = -1.08247×10-8
10= 1.49523×10-10
第5面
K = 0.037
4 = -3.97693×10-5
6 = -1.02246×10-6
8 = -1.04292×10-9
10= -2.35540×10-13
第11面
K = -11.838
4 = -1.64575×10-4
6 = -3.82233×10-6
8 = -2.40636×10-7
10= 0
第12面
K = -0.837
4 = -6.41167×10-5
6 = -6.74867×10-6
8 = -4.23546×10-8
10= -2.74519×10-9
第13面
K = -2.908
4 = -1.08544×10-3
6 = 4.99868×10-5
8 = 0
10= 0
第14面
K = 0.000
4 = 0.000
6 = 4.25126×10-5
8 = 1.52833×10-7
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 8.14 13.82 23.46
NO 1.85 2.47 3.85
2ω(°) 60.81 35.74 21.43
2 20.70 9.76 6.47
8 3.54 6.20 17.38
12 1.23 5.56 4.71
14 3.38 1.41 0.16 。

Example 15
r 1 = -22.016 (aspherical surface) d 1 = 0.90 n d1 = 1.43875 ν d1 = 94.93
r 2 = 15.461 (aspherical surface) d 2 = (variable)
r 3 = 14.701 (aspherical surface) d 3 = 2.06 n d2 = 1.74320 ν d2 = 49.34
r 4 = -32.999 (aspherical surface) d 4 = 0.10
r 5 = 6.405 (aspherical surface) d 5 = 2.90 n d3 = 1.80610 ν d3 = 40.92
r 6 = 33.244 d 6 = 0.50 n d4 = 2.00069 ν d4 = 25.46
r 7 = 4.856 d 7 = 1.72
r 8 = ∞ (aperture) d 8 = (variable)
r 9 = -8.940 d 9 = 0.80 n d5 = 1.92286 ν d5 = 18.90
r 10 = -16.611 d 10 = 0.18
r 11 = 45.839 (aspherical surface) d 11 = 2.55 n d6 = 1.80610 ν d6 = 40.92
r 12 = -11.009 (aspherical surface) d 12 = (variable)
r 13 = -10.879 (aspherical surface) d 13 = 1.00 n d7 = 1.52542 ν d7 = 55.78
r 14 = -7.731 (aspherical surface) d 14 = (variable)
r 15 = ∞ d 15 = 0.74 n d8 = 1.54771 ν d8 = 62.84
r 16 = ∞ d 16 = 0.50
r 17 = ∞ d 17 = 0.50 n d9 = 1.51633 ν d9 = 64.14
r 18 = ∞ d 18 = 0.30
r 19 = ∞ (image plane)
Aspheric coefficient 1st surface K = -0.519
A 4 = 3.69695 × 10 -5
A 6 = 5.65774 × 10 -8
A 8 = 0.000
A 10 = 3.73887 × 10 -12
Second side K = -2.161
A 4 = 4.21993 × 10 -5
A 6 = -1.75597 × 10 -7
A 8 = 8.97310 × 10 -9
A 10 = 0.000
Third side K = -0.175
A 4 = -9.06679 × 10 -6
A 6 = -3.53110 × 10 -7
A 8 = -2.44657 × 10 -8
A 10 = 2.47234 × 10 -10
4th surface K = -17.775
A 4 = -2.80828 × 10 -5
A 6 = -1.49749 × 10 -7
A 8 = -1.08247 × 10 -8
A 10 = 1.49523 × 10 -10
Fifth side K = 0.037
A 4 = -3.97693 × 10 -5
A 6 = -1.02246 × 10 -6
A 8 = -1.04292 × 10 -9
A 10 = -2.35540 × 10 -13
11th surface K = -11.838
A 4 = -1.64575 × 10 -4
A 6 = -3.82233 × 10 -6
A 8 = -2.40636 × 10 -7
A 10 = 0
Surface 12 K = -0.837
A 4 = -6.41167 × 10 -5
A 6 = -6.74867 × 10 -6
A 8 = -4.23546 × 10 -8
A 10 = -2.74519 × 10 -9
Surface 13 K = -2.908
A 4 = -1.08544 × 10 -3
A 6 = 4.99868 × 10 -5
A 8 = 0
A 10 = 0
14th face K = 0.000
A 4 = 0.000
A 6 = 4.25126 × 10 -5
A 8 = 1.52833 × 10 -7
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 8.14 13.82 23.46
F NO 1.85 2.47 3.85
2ω (°) 60.81 35.74 21.43
d 2 20.70 9.76 6.47
d 8 3.54 6.20 17.38
d 12 1.23 5.56 4.71
d 14 3.38 1.41 0.16.

以上の実施例1〜15の無限遠物点合焦時の収差図をそれぞれ図16〜図30に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。各図中、“ω”は半画角(°)を示す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 15 are shown in FIGS. In these aberration diagrams, (a) is the wide angle end, (b) is the intermediate state, (c) is the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the telephoto end. ). In each figure, “ω” indicates a half angle of view (°).

次に、上記各実施例における条件式(1)〜(14)の値を下記に示す。   Next, the values of conditional expressions (1) to (14) in each of the above examples are shown below.

実施例 1 2 3 4 5 6 7 8
条件式(1) 20.38 20.10 21.46 21.11 19.84 19.81 21.31 18.72
条件式(2) 20.38 20.10 21.46 21.11 19.84 19.81 21.31 18.72
条件式(3) 0.35 0.36 0.35 0.36 0.26 0.26 0.28 0.27
条件式(4) 2.05 1.71 2.09 1.81 1.53 1.49 1.54 1.72
条件式(5) 1.76 1.75 1.88 1.86 1.61 1.61 1.83 1.69
条件式(6) 1.40 1.43 1.44 1.40 1.11 1.10 1.55 1.62
条件式(7) 0.34 0.35 0.32 0.34 0.34 0.34 0.30 0.28
条件式(8) 0.48 0.48 0.47 0.48 0.47 0.48 0.46 0.48
条件式(9) 1.07 1.06 1.07 1.11 0.97 0.98 0.94 0.86
条件式(10) 0.81 0.78 0.91 0.90 0.79 0.97 0.80 0.70
条件式(11) 0.68 0.68 0.70 0.70 0.81 0.86 0.66 0.64
条件式(12) 2.88 2.88 2.89 2.90 2.88 2.84 2.87 2.88
条件式(13) 62.01 61.68 60.98 60.75 62.43 62.14 63.24 61.31
条件式(14) 2.74 2.86 2.51 2.56 2.66 2.14 3.46 3.21

実施例 9 10 11 12 13 14 15
条件式(1) 17.91 19.79 18.48 21.63 19.60 19.97 19.85
条件式(2) 17.91 19.79 18.48 21.69 19.60 19.97 19.85
条件式(3) 0.27 0.27 0.28 0.28 0.28 0.27 0.27
条件式(4) 1.41 1.70 1.36 1.76 1.25 1.30 1.35
条件式(5) 1.58 1.70 1.60 1.71 1.80 1.69 1.68
条件式(6) 1.38 1.36 1.60 1.36 1.68 1.36 1.36
条件式(7) 0.32 0.32 0.31 0.33 0.31 0.32 0.33
条件式(8) 0.47 0.47 0.48 0.43 0.49 0.48 0.48
条件式(9) 0.89 0.95 0.89 0.91 0.99 0.98 0.99
条件式(10) 0.68 0.73 0.49 0.61 0.65 0.72 0.65
条件式(11) 0.59 0.72 0.64 0.42 0.75 0.48 0.44
条件式(12) 2.85 2.88 2.91 2.87 2.85 2.88 2.88
条件式(13) 62.67 63.07 61.86 66.51 62.15 60.86 60.81
条件式(14) 3.15 3.41 4.83 4.34 4.47 3.50 3.94
Example 1 2 3 4 5 6 7 8
Conditional expression (1) 20.38 20.10 21.46 21.11 19.84 19.81 21.31 18.72
Conditional expression (2) 20.38 20.10 21.46 21.11 19.84 19.81 21.31 18.72
Conditional expression (3) 0.35 0.36 0.35 0.36 0.26 0.26 0.28 0.27
Conditional expression (4) 2.05 1.71 2.09 1.81 1.53 1.49 1.54 1.72
Conditional expression (5) 1.76 1.75 1.88 1.86 1.61 1.61 1.83 1.69
Conditional expression (6) 1.40 1.43 1.44 1.40 1.11 1.10 1.55 1.62
Conditional expression (7) 0.34 0.35 0.32 0.34 0.34 0.34 0.30 0.28
Conditional expression (8) 0.48 0.48 0.47 0.48 0.47 0.48 0.46 0.48
Conditional expression (9) 1.07 1.06 1.07 1.11 0.97 0.98 0.94 0.86
Conditional expression (10) 0.81 0.78 0.91 0.90 0.79 0.97 0.80 0.70
Conditional expression (11) 0.68 0.68 0.70 0.70 0.81 0.86 0.66 0.64
Conditional expression (12) 2.88 2.88 2.89 2.90 2.88 2.84 2.87 2.88
Conditional expression (13) 62.01 61.68 60.98 60.75 62.43 62.14 63.24 61.31
Conditional expression (14) 2.74 2.86 2.51 2.56 2.66 2.14 3.46 3.21

Example 9 10 11 12 13 14 15
Conditional expression (1) 17.91 19.79 18.48 21.63 19.60 19.97 19.85
Conditional expression (2) 17.91 19.79 18.48 21.69 19.60 19.97 19.85
Conditional expression (3) 0.27 0.27 0.28 0.28 0.28 0.27 0.27
Conditional expression (4) 1.41 1.70 1.36 1.76 1.25 1.30 1.35
Conditional expression (5) 1.58 1.70 1.60 1.71 1.80 1.69 1.68
Conditional expression (6) 1.38 1.36 1.60 1.36 1.68 1.36 1.36
Conditional expression (7) 0.32 0.32 0.31 0.33 0.31 0.32 0.33
Conditional expression (8) 0.47 0.47 0.48 0.43 0.49 0.48 0.48
Conditional expression (9) 0.89 0.95 0.89 0.91 0.99 0.98 0.99
Conditional expression (10) 0.68 0.73 0.49 0.61 0.65 0.72 0.65
Conditional expression (11) 0.59 0.72 0.64 0.42 0.75 0.48 0.44
Conditional expression (12) 2.85 2.88 2.91 2.87 2.85 2.88 2.88
Conditional expression (13) 62.67 63.07 61.86 66.51 62.15 60.86 60.81
Conditional expression (14) 3.15 3.41 4.83 4.34 4.47 3.50 3.94
.

これらの実施例では、ズーム比が3倍程度と大きく、広角端での画角が60°程度と広角でありながら、広角端でのF値が1.8程度と明るく、全変倍域・撮影距離において光学性能が良好であり、かつ、コンパクトに沈胴することが可能なズームレンズを実現している。   In these embodiments, the zoom ratio is as large as about 3 times, the angle of view at the wide angle end is as wide as about 60 °, and the F value at the wide angle end is as bright as about 1.8. A zoom lens that has good optical performance at a shooting distance and can be retracted compactly is realized.

各実施例における最も遠方に合焦した状態は無限遠物体へ合焦した状態である。実施例12を除き、広角端無限遠物体合焦時が最も全長が長くなる。なお、近距離への合焦動作は、第3レンズ群G3、第4レンズ群G4の一方又は両方で行う構成としてよい。   In each embodiment, the farthest focus state is a focus on an infinite object. Except for the twelfth embodiment, the entire length becomes longest when the object at the wide-angle end infinity is in focus. Note that the focusing operation to a short distance may be performed by one or both of the third lens group G3 and the fourth lens group G4.

各実施例の明るさ絞りSは、明るさ調整ために開口サイズを可変としてよく、また、絞りの開口サイズを固定として、他の箇所に光量低減をフィルターを抜き差しして光量の調整を行うようにしてもよい。   The aperture stop S of each embodiment may have a variable aperture size for brightness adjustment, and the aperture size of the aperture may be fixed, and the light amount may be adjusted by inserting / removing a filter to reduce the light amount at other locations. It may be.

各実施例における明るさ絞りSは、開放時、光軸を中心とする円形であり、その開口の半径は、次の通りである。   The aperture stop S in each embodiment is a circle centered on the optical axis when opened, and the radius of the opening is as follows.

実施例 開口の半径(mm)
1 4.67
2 4.63
3 4.67
4 4.85
5 4.33
6 3.97
7 4.00
8 3.85
9 2.49
10 4.22
11 3.78
12 2.25
13 4.17
14 2.82
15 2.61 。
Example Radius of opening (mm)
1 4.67
2 4.63
3 4.67
4 4.85
5 4.33
6 3.97
7 4.00
8 3.85
9 2.49
10 4.22
11 3.78
12 2.25
13 4.17
14 2.82
15 2.61.

ところで、本発明のズームレンズを用いたときに、像の歪曲は電気的にデジタル補正する。以下に、像の歪曲をデジタル補正するための基本的概念について説明する。   By the way, when the zoom lens of the present invention is used, image distortion is digitally corrected electrically. The basic concept for digitally correcting image distortion will be described below.

例えば、図31に示すように、光軸と撮像面との交点を中心として有効撮像面の長辺に内接する半径Rの円周上(像高)での倍率を固定し、この円周を補正の基準とする。そして、それ以外の任意の半径r(ω)の円周上(像高)の各点を略放射方向に移動させて、半径r' (ω)となるように同心円状に移動させることで補正する。例えば、図31において、半径Rの円の内側に位置する任意の半径r1 (ω)の円周上の点P1 は、円の中心に向けて補正すべき半径r1'(ω)円周上の点P2 に移動させる。また、半径Rの円の外側に位置する任意の半径r2 (ω)の円周上の点Q1 は、円の中心から離れる方向に向けて補正すべき半径r2'(ω)円周上の点Q2 に移動させる。ここで、r' (ω)は次のように表わすことができる。 For example, as shown in FIG. 31, the magnification on the circumference (image height) of the radius R inscribed in the long side of the effective imaging surface around the intersection of the optical axis and the imaging surface is fixed, and this circumference is The standard for correction. Then, correction is performed by moving each point on the circumference (image height) of any other radius r (ω) in a substantially radial direction and concentrically so as to have the radius r ′ (ω). To do. For example, in FIG. 31, a point P 1 on the circumference of an arbitrary radius r 1 (ω) located inside the circle of radius R is a radius r 1 ′ (ω) circle to be corrected toward the center of the circle. Move to point P 2 on the circumference. A point Q 1 on the circumference of an arbitrary radius r 2 (ω) located outside the circle of radius R is a radius r 2 ′ (ω) circumference to be corrected in a direction away from the center of the circle. It is moved to the point Q 2 of the above. Here, r ′ (ω) can be expressed as follows.

r' (ω)=αftanω (0≦α≦1)
ただし、ωは被写体半画角、fは結像光学系(本発明では、ズームレンズ)の焦点距離である。
r ′ (ω) = αf tan ω (0 ≦ α ≦ 1)
Here, ω is the half-angle of the subject, and f is the focal length of the imaging optical system (in the present invention, the zoom lens).

ここで、前記半径Rの円上(像高)に対応する理想像高をYとすると、
α=R/Y=R/ftanω
となる。
Here, if the ideal image height corresponding to the circle (image height) of the radius R is Y,
α = R / Y = R / ftanω
It becomes.

光学系は、理想的には、光軸に対して回転対称であり、すなわち歪曲収差も光軸に対して回転対称に発生する。したがって、上述のように、光学的に発生した歪曲収差を電気的に補正する場合には、再現画像上で光軸と撮像面との交点を中心とした有効撮像面の長辺に内接する半径Rの円の円周上(像高)の倍率を固定して、それ以外の半径r(ω)の円周上(像高)の各点を略放射方向に移動させて、半径r' (ω)となるように同心円状に移動させることで補正することができれば、データ量や演算量の点で有利と考えられる。   The optical system is ideally rotationally symmetric with respect to the optical axis, that is, distortion is also generated rotationally symmetric with respect to the optical axis. Therefore, as described above, when the optically generated distortion aberration is electrically corrected, the radius inscribed in the long side of the effective imaging surface around the intersection of the optical axis and the imaging surface on the reproduced image. The magnification on the circumference of the circle of R (image height) is fixed, and other points on the circumference (image height) of the radius r (ω) are moved in a substantially radial direction to obtain a radius r ′ ( If correction can be performed by moving the concentric circles so that ω), it is considered advantageous in terms of data amount and calculation amount.

ところが、光学像は、電子撮像素子で撮像された時点で(サンプリングのため)連続量ではなくなる。したがって、厳密には光学像上に描かれる上記半径Rの円も、電子撮像素子上の画素が放射状に配列されていない限り正確な円ではなくなる。つまり、離散的座標点毎に表わされる画像データの形状補正においては、上記倍率を固定できる円は存在しない。そこで、各画素(Xi ,Yj )毎に、移動先の座標(Xi ' ,Yj ' )を決める方法を用いるのがよい。なお、座標(Xi ' ,Yj ' )に(Xi ,Yj )の2点以上が移動してきた場合には、各画素が有する値の平均値をとる。また、移動してくる点がない場合には、周囲のいくつかの画素の座標(Xi ' ,Yj ' )の値を用いて補間すればよい。 However, the optical image is no longer a continuous amount (due to sampling) when captured by the electronic image sensor. Therefore, strictly speaking, the circle with the radius R drawn on the optical image is not an accurate circle unless the pixels on the electronic image sensor are arranged radially. That is, in the shape correction of the image data represented for each discrete coordinate point, there is no circle that can fix the magnification. Therefore, it is preferable to use a method of determining the coordinates (X i ′, Y j ′) of the movement destination for each pixel (X i , Y j ). When two or more points (X i , Y j ) have moved to the coordinates (X i ′, Y j ′), the average value of the values possessed by each pixel is taken. If there is no moving point, interpolation may be performed using the values of the coordinates (X i ′, Y j ′) of some surrounding pixels.

このような方法は、特にズームレンズが有する電子撮像装置において光学系や電子撮像素子の製造誤差等のために光軸に対して歪みが著しく、前記光学像上に描かれる上記半径Rの円が非対称になった場合の補正に有効である。また、撮像素子あるいは各種出力装置において信号を画像に再現する際に幾何学的歪み等が発生する場合等の補正に有効である。   Such a method is particularly distorted with respect to the optical axis due to a manufacturing error of an optical system or an electronic imaging element in an electronic imaging device included in a zoom lens, and the circle with the radius R drawn on the optical image is It is effective for correction when it becomes asymmetric. Further, it is effective for correction when a geometric distortion or the like occurs when a signal is reproduced as an image in an image sensor or various output devices.

本発明の電子撮像装置では、補正量r' (ω)−r(ω)を計算するために、r(ω)すなわち半画角と像高との関係、あるいは、実像高rと理想像高r' /αとの関係が、電子撮像装置に内蔵された記録媒体に記録されている構成としてもよい。   In the electronic imaging apparatus of the present invention, in order to calculate the correction amount r ′ (ω) −r (ω), r (ω), that is, the relationship between the half field angle and the image height, or the real image height r and the ideal image height. The relationship between r ′ / α may be recorded on a recording medium built in the electronic imaging apparatus.

なお、歪曲補正後の画像が短辺方向の両端において光量が極端に不足することのないようにするには、前記半径Rが、次の条件式を満足するのがよい。   Note that the radius R preferably satisfies the following conditional expression so that the image after distortion correction does not have an extremely short amount of light at both ends in the short side direction.

0≦R≦0.6Ls
ただし、Ls は有効撮像面の短辺の長さである。
0 ≦ R ≦ 0.6L s
Note that L s is the length of the short side of the effective imaging surface.

好ましくは、前記半径Rは、次の条件式を満足するのがよい。   Preferably, the radius R satisfies the following conditional expression.

0.3Ls ≦R≦0.6Ls
さらには、前記半径Rは、略有効撮像面の短辺方向の内接円の半径に一致させるのが最も有利である。なお、半径R=0の近傍、すなわち、軸上近傍において倍率を固定した補正の場合は、実質画像数の面で若干の不利があるが、広角化しても小型化にするための効果は確保できる。
0.3L s ≤ R ≤ 0.6L s
Furthermore, it is most advantageous that the radius R coincides with the radius of the inscribed circle in the short side direction of the substantially effective imaging surface. In the case of correction in which the magnification is fixed in the vicinity of the radius R = 0, that is, in the vicinity of the axis, there is a slight disadvantage in terms of the actual number of images, but the effect of reducing the size is ensured even if the angle is widened. it can.

なお、補正が必要な焦点距離区間については、いくつかの焦点ゾーンに分割する。そして、該分割された焦点ゾーン内の望遠端近傍で略
r' (ω)=αftanω
を満足する補正結果が得られる場合と同じ補正量で補正してもよい。ただし、その場合、分割された焦点ゾーン内の広角端において樽型歪曲量がある程度残存してしまう。また、分割ゾーン数を増加させてしまうと、補正のために必要な固有データを記録媒体に余計に保有する必要が生じあまり好ましくない。そこで、分割された焦点ゾーン内の各焦点距離に関連した1つ又は数個の係数を予め算出しておく。この係数は、シミュレーションや実機による測定に基づいて決定しておけばよい。そして、前記分割されたゾーン内の望遠鏡近傍で略
r' (ω)=αftanω
を満足する補正結果が得られる場合の補正量を算出し、この補正量に対して焦点距離毎に前記係数を一律に掛けて最終的な補正量にしてもよい。
The focal length section that needs to be corrected is divided into several focal zones. Then, in the vicinity of the telephoto end in the divided focal zone, approximately r ′ (ω) = αf tan ω
You may correct | amend with the same correction amount as the case where the correction result which satisfies is obtained. However, in that case, some barrel distortion remains at the wide-angle end in the divided focal zone. Further, if the number of divided zones is increased, it becomes unnecessary to store extraneous data necessary for correction on the recording medium, which is not preferable. Therefore, one or several coefficients related to each focal length in the divided focal zone are calculated in advance. This coefficient may be determined on the basis of simulation or actual measurement. And approximately r ′ (ω) = αf tan ω in the vicinity of the telescope in the divided zone
It is also possible to calculate a correction amount when a correction result satisfying the above is obtained, and uniformly multiply the correction amount for each focal distance to obtain a final correction amount.

ところで、無限遠物体を結像させて得られた像に歪曲がない場合は、
f=y/tanω
が成立する。ただし、yは像点の光軸からの高さ(像高)、fは結像系(本発明ではズームレンズ)の焦点距離、ωは撮像面上の中心からyの位置に結ぶ像点に対応する物点方向の光軸に対する角度(被写体半画角)である。
By the way, if there is no distortion in the image obtained by imaging an object at infinity,
f = y / tan ω
Is established. Where y is the height of the image point from the optical axis (image height), f is the focal length of the imaging system (in the present invention, the zoom lens), and ω is the image point connected from the center on the imaging surface to the y position. It is an angle (subject half field angle) with respect to the optical axis in the corresponding object direction.

結像系に樽型の歪曲収差がある場合は、
f>y/tanω
となる。つまり、結像系の焦点距離fと、像高yとを一定とすると、ωの値は大きくなる。
If the imaging system has barrel distortion,
f> y / tan ω
It becomes. That is, if the focal length f of the imaging system and the image height y are constant, the value of ω increases.

図32〜図34は、以上のようなズームレンズを撮影光学系41に組み込んだ本発明によるデジタルカメラの構成の概念図を示す。図32はデジタルカメラ40の外観を示す前方斜視図、図33は同後方正面図、図34はデジタルカメラ40の構成を示す模式的な断面図である。ただし、図32と図34においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42上に位置する撮影光学系41、ファインダー用光路44上に位置するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図34の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、波長域制限コートを施したローパスフィルターFとカバーガラスCを介してCCD49の撮像面(光電変換面)上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   FIGS. 32 to 34 are conceptual diagrams of the configuration of a digital camera according to the present invention in which the zoom lens as described above is incorporated in the photographing optical system 41. FIG. 32 is a front perspective view showing the external appearance of the digital camera 40, FIG. 33 is a rear front view thereof, and FIG. 34 is a schematic cross-sectional view showing the configuration of the digital camera 40. However, in FIGS. 32 and 34, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 located on the photographing optical path 42, a finder optical system 43 located on the finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length. When the photographic optical system 41 is retracted, the photographic optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60, including the change button 61, the setting change switch 62, and the like. When the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state shown in FIG. 34. When the shutter button 45 disposed on the upper part of the camera 40 is pressed, photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface (photoelectric conversion surface) of the CCD 49 via a low-pass filter F and a cover glass C that are provided with a wavelength band limiting coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と正立プリズム55a、55b、55cからなる正立プリズム系55とから構成され、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム系55の視野枠57上に形成される。この正立プリズム系55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and an erecting prism system 55 including erecting prisms 55a, 55b, and 55c, and is linked to the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on a field frame 57 of an erecting prism system 55 that is an image erecting member. Behind the erecting prism system 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

図35は、上記デジタルカメラ40の主要部の内部回路の構成ブロック図である。なお、以下の説明では、上記の処理手段51は例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等からなり、記憶手段52は例えば記憶媒体部19等からなる。   FIG. 35 is a block diagram showing the internal circuitry of the main part of the digital camera 40. In the following description, the processing unit 51 includes, for example, the CDS / ADC unit 24, the temporary storage memory 17, the image processing unit 18, and the like, and the storage unit 52 includes, for example, the storage medium unit 19 and the like.

図35に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。   As shown in FIG. 35, the digital camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15. An imaging drive circuit 16, a temporary storage memory 17, an image processing unit 18, a storage medium unit 19, a display unit 20, and a setting information storage memory unit 21 are provided.

上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21はバス22を介して相互にデータの入力又は出力が可能なように構成され、また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。   The temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 are configured to be able to input or output data with each other via the bus 22 The imaging drive circuit 16 is connected with a CCD 49 and a CDS / ADC unit 24.

操作部12は各種の入力ボタンやスイッチを備え、これらの入力ボタンやスイッチを介して外部(カメラ使用者)から入力されるイベント情報を制御部に通知する回路である。制御部13は、例えばCPU等からなる中央演算処理装置であり、不図示のプログラムメモリを内蔵し、そのプログラムメモリに格納されているプログラムにしたがって、操作部12を介してカメラ使用者から入力される指示命令を受けてデジタルカメラ40全体を制御する回路である。   The operation unit 12 includes various input buttons and switches, and is a circuit that notifies the control unit of event information input from the outside (camera user) via these input buttons and switches. The control unit 13 is a central processing unit composed of, for example, a CPU, and has a built-in program memory (not shown). The control unit 13 is input by a camera user via the operation unit 12 according to a program stored in the program memory. This circuit controls the entire digital camera 40 in response to the instruction command.

CCD49は、本発明による撮影光学系41を介して形成された物体像を受光する。CCD49は、撮像駆動回路16により駆動制御され、その物体像の各画素ごとの光量を電気信号に変換してCDS/ADC部24に出力する撮像素子である。   The CCD 49 receives an object image formed via the photographing optical system 41 according to the present invention. The CCD 49 is an image pickup element that is driven and controlled by the image pickup drive circuit 16 and converts the light amount of each pixel of the object image into an electric signal and outputs the electric signal to the CDS / ADC unit 24.

CDS/ADC部24は、CCD49から入力する電気信号を増幅しかつアナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。   The CDS / ADC unit 24 amplifies the electric signal input from the CCD 49 and performs analog / digital conversion, and temporarily generates the raw video data (Bayer data, hereinafter referred to as RAW data) that has just been subjected to the amplification and digital conversion. It is a circuit that outputs to the storage memory 17.

一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力される上記RAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13から指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。   The temporary storage memory 17 is a buffer made of, for example, SDRAM or the like, and is a memory device that temporarily stores the RAW data output from the CDS / ADC unit 24. The image processing unit 18 reads out the RAW data stored in the temporary storage memory 17 or the RAW data stored in the storage medium unit 19, and performs various corrections including distortion correction based on the image quality parameter designated by the control unit 13. It is a circuit that performs image processing electrically.

記録媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、それらカード型又はスティック型のフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する装置の制御回路である。   The recording medium unit 19 detachably mounts a card-type or stick-type recording medium made of, for example, a flash memory, and the RAW data transferred from the temporary storage memory 17 to the card-type or stick-type flash memory. It is a control circuit of an apparatus that records and holds image data processed by the image processing unit 18.

表示部20は、液晶表示モニター47を備え、その液晶表示モニター47に画像や操作メニュー等を表示する回路である。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、そのROM部から読み出された画質パラメータの中から操作部12の入力操作によって選択された画質パラメータを記憶するRAM部が備えられている。設定情報記憶メモリ部21は、それらのメモリへの入出力を制御する回路である。   The display unit 20 includes a liquid crystal display monitor 47 and is a circuit that displays an image, an operation menu, and the like on the liquid crystal display monitor 47. The setting information storage memory unit 21 stores a ROM unit in which various image quality parameters are stored in advance, and an image quality parameter selected by an input operation of the operation unit 12 among the image quality parameters read from the ROM unit. RAM section is provided. The setting information storage memory unit 21 is a circuit for controlling input / output to / from these memories.

このように構成されたデジタルカメラ40は、撮影光学系41が、本発明により、十分な広角域を有し、コンパクトな構成としながら、高変倍で全変倍域で結像性能が極めて安定的であるので、高性能・小型化・広角化が実現できる。そして、広角側、望遠側での速い合焦動作が可能となる。   In the digital camera 40 configured in this manner, the imaging optical system 41 has a sufficiently wide angle range according to the present invention, and a compact configuration, while the imaging performance is extremely stable at a high zoom ratio and in a full zoom ratio range. Therefore, high performance, downsizing, and wide angle can be realized. In addition, fast focusing operation on the wide-angle side and the telephoto side is possible.

本発明は、以上のような一般的な被写体を撮影する所謂コンパクトデジタルカメラだけでなく、広い画角が必要な監視カメラや、レンズ交換式のカメラに適用してもよい。   The present invention may be applied not only to a so-called compact digital camera that captures a general subject as described above, but also to a surveillance camera that requires a wide angle of view and an interchangeable lens camera.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 本発明のズームレンズの実施例2の図1と同様の図である。It is the same figure as FIG. 1 of Example 2 of the zoom lens of this invention. 本発明のズームレンズの実施例3の図1と同様の図である。It is the same figure as FIG. 1 of Example 3 of the zoom lens of this invention. 本発明のズームレンズの実施例4の図1と同様の図である。It is the same figure as FIG. 1 of Example 4 of the zoom lens of this invention. 本発明のズームレンズの実施例5の図1と同様の図である。It is the same figure as FIG. 1 of Example 5 of the zoom lens of this invention. 本発明のズームレンズの実施例6の図1と同様の図である。It is the same figure as FIG. 1 of Example 6 of the zoom lens of this invention. 本発明のズームレンズの実施例7の図1と同様の図である。It is the same figure as FIG. 1 of Example 7 of the zoom lens of this invention. 本発明のズームレンズの実施例8の図1と同様の図である。It is a figure similar to FIG. 1 of Example 8 of the zoom lens of this invention. 本発明のズームレンズの実施例9の図1と同様の図である。It is the same figure as FIG. 1 of Example 9 of the zoom lens of this invention. 本発明のズームレンズの実施例10の図1と同様の図である。It is a figure similar to FIG. 1 of Example 10 of the zoom lens of this invention. 本発明のズームレンズの実施例11の図1と同様の図である。It is the same figure as FIG. 1 of Example 11 of the zoom lens of this invention. 本発明のズームレンズの実施例12の図1と同様の図である。It is the same figure as FIG. 1 of Example 12 of the zoom lens of this invention. 本発明のズームレンズの実施例13の図1と同様の図である。It is the same figure as FIG. 1 of Example 13 of the zoom lens of this invention. 本発明のズームレンズの実施例14の図1と同様の図である。It is the same figure as FIG. 1 of Example 14 of the zoom lens of this invention. 本発明のズームレンズの実施例15の図1と同様の図である。It is the same figure as FIG. 1 of Example 15 of the zoom lens of this invention. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 実施例8の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 8 upon focusing on an object point at infinity. 実施例9の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 9 upon focusing on an object point at infinity. 実施例10の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 10 upon focusing on an object point at infinity. 実施例11の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 11 upon focusing on an object point at infinity. 実施例12の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 12 upon focusing on an object point at infinity. 実施例13の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 13 upon focusing on an object point at infinity. 実施例14の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 14 upon focusing on an object point at infinity. 実施例15の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 15 upon focusing on an object point at infinity. 像の歪曲をデジタル補正するための基本的概念を説明するための図である。It is a figure for demonstrating the basic concept for carrying out the digital correction of the distortion of an image. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図32のデジタルカメラの後方斜視図である。It is a back perspective view of the digital camera of FIG. 図32のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 図32のデジタルカメラの主要部の内部回路の構成ブロック図である。FIG. 33 is a configuration block diagram of an internal circuit of a main part of the digital camera of FIG. 32.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
G4…第3レンズ群
S…開口絞り
F…光学的ローパスフィルター
C…カバーガラス
I…像面
E…観察者眼球
12…操作部
13…制御部
14、15…バス
16…撮像駆動回路
17…一時記憶メモリ
18…画像処理部
19…記憶媒体部
20…表示部
21…設定情報記憶メモリ部
22…バス
24…CDS/ADC部
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム系
55a、55b、55c…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group G4 ... 3rd lens group S ... Aperture stop F ... Optical low-pass filter C ... Cover glass I ... Image plane E ... Observer eyeball 12 ... Operation Unit 13 ... Control units 14 and 15 ... Bus 16 ... Imaging drive circuit 17 ... Temporary storage memory 18 ... Image processing unit 19 ... Storage medium unit 20 ... Display unit 21 ... Setting information storage memory unit 22 ... Bus 24 ... CDS / ADC unit 40 ... Digital camera 41 ... Shooting optical system 42 ... Shooting optical path 43 ... Viewfinder optical system 44 ... Viewfinder optical path 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Viewfinder objective optical system 55 ... Erect prism system 55a, 55b, 55c ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length Change button 62 ... Setting change switch

Claims (22)

物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするズームレンズ。
16<Cjw/h1w<23 ・・・(1)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
jwは広角端かつ最遠距離合焦状態における第1レンズ群入射面から像面までの光軸上での長さ、
である。
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power are provided, from the wide-angle end to the telephoto end. During zooming, each of the first lens group, the second lens group, and the third lens group moves along the optical axis, and the interval between the first lens group and the second lens group is reduced. The distance between the second lens group and the third lens group is widened, and the first lens group consists of a single lens that is a biconcave negative lens, or two lenses that are a biconcave negative lens and a positive lens. The second lens group is composed of two positive lenses and one negative lens, and at least one of the two positive lenses of the second lens group has an aspheric lens surface. ,
A zoom lens satisfying the following conditional expression:
16 <C jw / h 1w <23 (1)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
C jw is the length on the optical axis from the first lens group entrance surface to the image plane in the wide-angle end and the farthest distance in-focus state,
It is.
以下の条件式を満足することを特徴とする請求項1記載のズームレンズ。
16<Cjmax/h1w<23 ・・・(2)
ただし、Cjmaxは全使用状態における第1レンズ群入射面から像面までの光軸上での長さが最も長くなるときの長さ、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
16 <C jmax / h 1w <23 (2)
Where C jmax is the length when the length on the optical axis from the first lens group entrance surface to the image plane in the entire use state is the longest,
It is.
前記第2レンズ群の直前の空間から前記第2レンズ群の直後の空間までの何れかの位置に配置された明るさ絞りを有し、前記明るさ絞りは、前記ズーミング時に前記第2レンズ群と一体となって光軸方向に移動することを特徴とする請求項1又は2記載のズームレンズ。 A brightness stop disposed at any position from a space immediately before the second lens group to a space immediately after the second lens group, the brightness stop being in the second lens group during zooming; The zoom lens according to claim 1, wherein the zoom lens moves in the optical axis direction integrally with the zoom lens. 以下の条件式を満足することを特徴とする請求項1から3の何れか1項記載のズームレンズ。
0.25<h1'w /fw <0.4 ・・・(3)
ただし、h1'w は広角端かつ最遠距離合焦状態における第1レンズ群の射出面での軸上マージナル光線の光線高、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
The zoom lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.25 <h 1'w / f w <0.4 (3)
Where h 1′w is the height of the axial marginal ray at the exit surface of the first lens group at the wide-angle end and in the farthest distance focus state,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.
以下の条件式を満足することを特徴とする請求項1から4の何れか1項記載のズームレンズ。
1.0<Σd/fw <2.2 ・・・(4)
ただし、Σdはズームレンズ全系の各レンズ群の光軸上での厚みの総和、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.0 <Σd / f w <2.2 (4)
Where Σd is the sum of the thickness on the optical axis of each lens group of the entire zoom lens system,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.
前記第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を配置したことを特徴とする請求項1から5の何れか1項記載のズームレンズ。 6. The zoom lens according to claim 1, wherein a fourth lens group including one aspherical lens is disposed closer to the image side than the third lens group. 前記第3レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項1から6の何れか1項記載のズームレンズ。 7. The focusing operation from the farthest distance focusing state to the short distance focusing state is performed by moving the third lens group in the optical axis direction. Zoom lens. 互いの間隔を一定、若しくは、互いの間隔を変化させて前記第3レンズ群及び前記第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項6記載のズームレンズ。 By moving the third lens group and the fourth lens group in the direction of the optical axis with the mutual distance being constant or changing the mutual distance, the farthest distance focusing state is changed to the short-distance focusing state. The zoom lens according to claim 6, wherein a focusing operation is performed. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするズームレンズ。
1.5<f2 /fw <1.9 ・・・(5)
ただし、f2 は第2レンズ群の焦点距離、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power are provided, from the wide-angle end to the telephoto end. During zooming, each of the first lens group, the second lens group, and the third lens group moves along the optical axis, and the interval between the first lens group and the second lens group is reduced. The distance between the second lens group and the third lens group is widened, and the first lens group consists of a single lens that is a biconcave negative lens, or two lenses that are a biconcave negative lens and a positive lens. The second lens group is composed of two positive lenses and one negative lens, and at least one of the two positive lenses of the second lens group has an aspheric lens surface. ,
A zoom lens satisfying the following conditional expression:
1.5 <f 2 / f w <1.9 (5)
Where f 2 is the focal length of the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.
次の条件式を満足することを特徴とする請求項9記載のズームレンズ。
1.09<|f1 |/(fw ・FNOw )<1.7 ・・・(6)
ただし、f1 は第1レンズ群の焦点距離、
NOw は広角端かつ最遠距離合焦状態におけるFナンバー、
である。
The zoom lens according to claim 9, wherein the following conditional expression is satisfied.
1.09 <| f 1 | / (f w · F NOw ) <1.7 (6)
Where f 1 is the focal length of the first lens group,
F NOw is the F number at the wide-angle end and at the farthest distance.
It is.
以下の条件式を満足することを特徴とする請求項9又は10記載のズームレンズ。
0.28<h2w/f2 <0.35 ・・・(7)
ただし、h2wは広角端かつ最遠距離合焦状態における第2レンズ群入射面での軸上マージナル光線の光線高、
である。
The zoom lens according to claim 9 or 10, wherein the following conditional expression is satisfied.
0.28 <h 2w / f 2 <0.35 (7)
Where h 2w is the height of the on-axis marginal ray at the entrance surface of the second lens group at the wide-angle end and at the farthest distance focus state,
It is.
前記第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を有することを特徴とする請求項9から11の何れか1項記載のズームレンズ。 12. The zoom lens according to claim 9, further comprising a fourth lens group including one aspherical lens on the image side of the third lens group. 前記第3レンズ群を光軸方向の移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項9から12の何れか1項記載のズームレンズ。 The focusing operation from the farthest distance focusing state to the short distance focusing state is performed by moving the third lens group in the optical axis direction. Zoom lens. 互いの間隔を一定、若しくは、互いの間隔を変化させて前記第3レンズ群及び前記第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項12記載のズームレンズ。 By moving the third lens group and the fourth lens group in the direction of the optical axis with the mutual distance being constant or changing the mutual distance, the farthest distance focusing state is changed to the short-distance focusing state. The zoom lens according to claim 12, wherein a focusing operation is performed. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端から望遠端へのズーミング時に、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群の各々が光軸に沿って移動し、前記第1レンズ群と前記第2レンズ群との間の間隔が狭まり、前記第2レンズ群と前記第3レンズ群との間隔が広がり、前記第1レンズ群は両凹負レンズである単レンズ1枚、若しくは、両凹負レンズと正レンズの2枚のレンズからなり、前記第2レンズ群は2枚の正レンズと1枚の負レンズからなり、前記第2レンズ群の前記2枚の正レンズの中、少なくとも一方の正レンズは非球面のレンズ面を持ち、
以下の条件式を満足することを特徴とするズームレンズ。
0.8<h1w/IH<0.5 ・・・(8)
ただし、h1wは広角端かつ最遠距離合焦状態における第1レンズ群入射面での軸上マージナル光線の光線高、
IHは最大像高、
である。
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power are provided, from the wide-angle end to the telephoto end. During zooming, each of the first lens group, the second lens group, and the third lens group moves along the optical axis, and the interval between the first lens group and the second lens group is reduced. The distance between the second lens group and the third lens group is widened, and the first lens group consists of a single lens that is a biconcave negative lens, or two lenses that are a biconcave negative lens and a positive lens. The second lens group is composed of two positive lenses and one negative lens, and at least one of the two positive lenses of the second lens group has an aspheric lens surface. ,
A zoom lens satisfying the following conditional expression:
0.8 <h 1w /IH<0.5 (8)
Here, h 1w is the height of the on-axis marginal ray at the entrance surface of the first lens group at the wide-angle end and the farthest distance in-focus state,
IH is the maximum image height,
It is.
以下の条件式を満足することを特徴とする請求項15記載のズームレンズ。
0.4<h2w/IH<1.2 ・・・(9)
ただし、h2wは広角端かつ最遠距離合焦状態における第2レンズ群入射面での軸上マージナル光線の光線高、
である。
The zoom lens according to claim 15, wherein the following conditional expression is satisfied.
0.4 <h 2w /IH<1.2 (9)
Where h 2w is the height of the on-axis marginal ray at the entrance surface of the second lens group at the wide-angle end and at the farthest distance focus state,
It is.
以下の条件式を満足することを特徴とする請求項15又は16記載のズームレンズ。
0.4<D2w/fw <1.0 ・・・(10)
ただし、D2wは広角端かつ最遠距離合焦状態における第2レンズ群と第3レンズ群との光軸上での間隔、
w は広角端かつ最遠距離合焦状態でのズームレンズ全系の焦点距離、
である。
The zoom lens according to claim 15 or 16, wherein the following conditional expression is satisfied.
0.4 <D 2w / f w <1.0 (10)
Where D 2w is the distance on the optical axis between the second lens group and the third lens group at the wide-angle end and in the farthest distance focusing state,
f w is the focal length of the entire zoom lens system at the wide-angle end and at the farthest distance,
It is.
以下の条件式を満足することを特徴とする請求項15から17の何れか1項記載のズームレンズ。
0.4<g3w/g3t<0.88 ・・・(11)
ただし、g3wは広角端かつ最遠距離合焦状態における第3レンズ群入射面での最軸外主光線の光線高、
3tは望遠端かつ最遠距離合焦状態における第3レンズ群入射面での最軸外主光線の光線高、
である。
The zoom lens according to any one of claims 15 to 17, wherein the following conditional expression is satisfied.
0.4 <g 3w / g 3t <0.88 (11)
Where g 3w is the height of the most off-axis principal ray at the entrance surface of the third lens group at the wide-angle end and the farthest distance in-focus state,
g 3t is the height of the most off-axis principal ray at the entrance surface of the third lens group at the telephoto end and at the farthest distance focused state;
It is.
前記第3レンズ群よりも像側に、1枚の非球面レンズからなる第4レンズ群を有することを特徴とする請求項15から18の何れか1項記載のズームレンズ。 The zoom lens according to any one of claims 15 to 18, further comprising a fourth lens group including one aspherical lens on the image side of the third lens group. 前記第3レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項15から19の何れか1項記載のズームレンズ。 20. The focusing operation from the farthest distance focus state to the short distance focus state is performed by moving the third lens group in the optical axis direction. Zoom lens. 互いの間隔を一定、若しくは、互いの間隔を変化させて前記第3レンズ群及び前記第4レンズ群を光軸方向に移動させることで、最遠距離合焦状態から近距離合焦状態へのフォーカシング動作を行うことを特徴とする請求項19記載のズームレンズ。 By moving the third lens group and the fourth lens group in the direction of the optical axis with the mutual distance being constant or changing the mutual distance, the farthest distance focusing state is changed to the short-distance focusing state. The zoom lens according to claim 19, wherein a focusing operation is performed. 請求項1から15の何れか1項記載のズームレンズと、前記ズームレンズの像側に配置された撮像面を持ち、前記ズームレンズにより前記撮像面上に形成された像を電気信号に変換する撮像素子とを備えたことを特徴とする撮像装置。 16. The zoom lens according to claim 1, and an imaging surface disposed on an image side of the zoom lens, wherein an image formed on the imaging surface by the zoom lens is converted into an electric signal. An imaging apparatus comprising: an imaging element.
JP2006156979A 2006-06-06 2006-06-06 Zoom lens and imaging apparatus with the same Pending JP2007327991A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006156979A JP2007327991A (en) 2006-06-06 2006-06-06 Zoom lens and imaging apparatus with the same
US11/810,362 US7474472B2 (en) 2006-06-06 2007-06-04 Zoom lens, and imaging system comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156979A JP2007327991A (en) 2006-06-06 2006-06-06 Zoom lens and imaging apparatus with the same

Publications (1)

Publication Number Publication Date
JP2007327991A true JP2007327991A (en) 2007-12-20

Family

ID=38789772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156979A Pending JP2007327991A (en) 2006-06-06 2006-06-06 Zoom lens and imaging apparatus with the same

Country Status (2)

Country Link
US (1) US7474472B2 (en)
JP (1) JP2007327991A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001545A1 (en) * 2008-07-02 2010-01-07 パナソニック株式会社 Zoom lens system, imaging device and camera
JP2010139870A (en) * 2008-12-12 2010-06-24 Olympus Imaging Corp Image forming optical system and electronic imaging apparatus having the same
JP2011253050A (en) * 2010-06-02 2011-12-15 Canon Inc Optical system and optical equipment having the same
US8159755B2 (en) 2008-12-17 2012-04-17 Olympus Imaging Corp. Zoom lens and image pickup apparatus using the same
US8208205B2 (en) 2009-05-09 2012-06-26 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2012168513A (en) * 2011-01-26 2012-09-06 Nikon Corp Zoom lens, optical equipment, and manufacturing method for zoom lens
US8432623B2 (en) 2008-12-16 2013-04-30 Olympus Imaging Corp. Zoom lens and imaging apparatus using the same
WO2013118467A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Super-wide angle lens, and imaging device
JPWO2012105181A1 (en) * 2011-01-31 2014-07-03 富士フイルム株式会社 Projection lens and projection display device
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
JP2016012034A (en) * 2014-06-30 2016-01-21 株式会社シグマ Optical system
JP2016090745A (en) * 2014-10-31 2016-05-23 株式会社タムロン Zoom lens and imaging apparatus
KR101782993B1 (en) 2010-08-05 2017-09-28 삼성전자주식회사 Compact zoom lens
JP2018106021A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2019168496A (en) * 2018-03-22 2019-10-03 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2022140661A (en) * 2018-05-18 2022-09-26 株式会社ニコン Optical system and optical device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184413A (en) * 2004-12-27 2006-07-13 Konica Minolta Photo Imaging Inc Photographing optical system and imaging apparatus
JP4905778B2 (en) * 2006-08-21 2012-03-28 富士フイルム株式会社 Zoom lens and imaging device
US8289632B2 (en) * 2009-10-27 2012-10-16 Sony Corporation Zoom lens and image pickup device
JP5465018B2 (en) * 2010-01-16 2014-04-09 キヤノン株式会社 Zoom lens and optical apparatus having the same
TWI443404B (en) * 2011-05-27 2014-07-01 Asia Optical Co Inc Fixed focus projection lens
KR102052126B1 (en) * 2013-07-09 2019-12-05 삼성전자주식회사 Zoom lens and photographing lens having the same
CN108873273B (en) * 2015-01-30 2021-08-20 大立光电股份有限公司 Optical image capturing system and image capturing device
WO2021138782A1 (en) * 2020-01-06 2021-07-15 天津欧菲光电有限公司 Optical system, lens module and terminal device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160912A (en) * 1982-03-19 1983-09-24 Canon Inc Zoom lens
JPH05100165A (en) * 1991-10-09 1993-04-23 Ricoh Co Ltd Compact zoom lens
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
JP2004318107A (en) * 2003-03-31 2004-11-11 Konica Minolta Photo Imaging Inc Zoom lens device
JP2004318108A (en) * 2003-03-31 2004-11-11 Konica Minolta Photo Imaging Inc Zoom lens device
JP2005156829A (en) * 2003-11-25 2005-06-16 Olympus Corp Variable power optical system and electronic device using the same
JP2005258067A (en) * 2004-03-11 2005-09-22 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2005258064A (en) * 2004-03-11 2005-09-22 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006030824A (en) * 2004-07-21 2006-02-02 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006065182A (en) * 2004-08-30 2006-03-09 Konica Minolta Opto Inc Zoom lens
JP2006113109A (en) * 2004-10-12 2006-04-27 Nidec Copal Corp Zoom lens
JP2006138969A (en) * 2004-11-11 2006-06-01 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006163338A (en) * 2004-12-08 2006-06-22 Ind Technol Res Inst Zoom lens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009491A (en) * 1987-08-07 1991-04-23 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JP2556046B2 (en) 1987-08-07 1996-11-20 ミノルタ株式会社 Compact zoom lens
JPH04114116A (en) 1990-09-04 1992-04-15 Minolta Camera Co Ltd Zoom lens
JP4432153B2 (en) * 1999-08-03 2010-03-17 株式会社ニコン Zoom lens
JP2001208969A (en) * 2000-01-25 2001-08-03 Fuji Photo Optical Co Ltd Wide-angle zoom lens
JP2004318099A (en) 2003-03-31 2004-11-11 Konica Minolta Photo Imaging Inc Zoom lens device
US6930839B2 (en) * 2003-03-31 2005-08-16 Minolta Co., Ltd. Zoom lens device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160912A (en) * 1982-03-19 1983-09-24 Canon Inc Zoom lens
JPH05100165A (en) * 1991-10-09 1993-04-23 Ricoh Co Ltd Compact zoom lens
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
JP2004318107A (en) * 2003-03-31 2004-11-11 Konica Minolta Photo Imaging Inc Zoom lens device
JP2004318108A (en) * 2003-03-31 2004-11-11 Konica Minolta Photo Imaging Inc Zoom lens device
JP2005156829A (en) * 2003-11-25 2005-06-16 Olympus Corp Variable power optical system and electronic device using the same
JP2005258067A (en) * 2004-03-11 2005-09-22 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2005258064A (en) * 2004-03-11 2005-09-22 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006030824A (en) * 2004-07-21 2006-02-02 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006065182A (en) * 2004-08-30 2006-03-09 Konica Minolta Opto Inc Zoom lens
JP2006113109A (en) * 2004-10-12 2006-04-27 Nidec Copal Corp Zoom lens
JP2006138969A (en) * 2004-11-11 2006-06-01 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006163338A (en) * 2004-12-08 2006-06-22 Ind Technol Res Inst Zoom lens

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010001545A1 (en) * 2008-07-02 2011-12-15 パナソニック株式会社 Zoom lens system, imaging device and camera
WO2010001545A1 (en) * 2008-07-02 2010-01-07 パナソニック株式会社 Zoom lens system, imaging device and camera
US8446520B2 (en) 2008-07-02 2013-05-21 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010139870A (en) * 2008-12-12 2010-06-24 Olympus Imaging Corp Image forming optical system and electronic imaging apparatus having the same
US8432623B2 (en) 2008-12-16 2013-04-30 Olympus Imaging Corp. Zoom lens and imaging apparatus using the same
US8159755B2 (en) 2008-12-17 2012-04-17 Olympus Imaging Corp. Zoom lens and image pickup apparatus using the same
US8208205B2 (en) 2009-05-09 2012-06-26 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
US8395850B2 (en) 2009-05-09 2013-03-12 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2011253050A (en) * 2010-06-02 2011-12-15 Canon Inc Optical system and optical equipment having the same
KR101782993B1 (en) 2010-08-05 2017-09-28 삼성전자주식회사 Compact zoom lens
JP2012168513A (en) * 2011-01-26 2012-09-06 Nikon Corp Zoom lens, optical equipment, and manufacturing method for zoom lens
JPWO2012105181A1 (en) * 2011-01-31 2014-07-03 富士フイルム株式会社 Projection lens and projection display device
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
CN104094157A (en) * 2012-02-06 2014-10-08 富士胶片株式会社 Super-wide angle lens, and imaging device
JPWO2013118467A1 (en) * 2012-02-06 2015-05-11 富士フイルム株式会社 Ultra wide-angle lens and imaging device
JP5616539B2 (en) * 2012-02-06 2014-10-29 富士フイルム株式会社 Ultra wide-angle lens and imaging device
US9164261B2 (en) 2012-02-06 2015-10-20 Fujifilm Corporation Super wide angle lens and imaging apparatus
WO2013118467A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Super-wide angle lens, and imaging device
JP2016012034A (en) * 2014-06-30 2016-01-21 株式会社シグマ Optical system
JP2016090745A (en) * 2014-10-31 2016-05-23 株式会社タムロン Zoom lens and imaging apparatus
JP2018106021A (en) * 2016-12-27 2018-07-05 キヤノン株式会社 Zoom lens and image capturing device having the same
US10634878B2 (en) 2016-12-27 2020-04-28 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2019168496A (en) * 2018-03-22 2019-10-03 キヤノン株式会社 Zoom lens and image capturing device having the same
JP7182886B2 (en) 2018-03-22 2022-12-05 キヤノン株式会社 ZOOM LENS AND IMAGING DEVICE HAVING THE SAME
JP2022140661A (en) * 2018-05-18 2022-09-26 株式会社ニコン Optical system and optical device

Also Published As

Publication number Publication date
US7474472B2 (en) 2009-01-06
US20070279759A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4936437B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4840909B2 (en) Zoom lens and image pickup apparatus including the same
JP4942091B2 (en) Wide-angle high-magnification zoom lens and imaging apparatus using the same
JP2007327991A (en) Zoom lens and imaging apparatus with the same
JP5013599B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4900924B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4912828B2 (en) Zoom lens and imaging apparatus having the same
JP5006007B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4901270B2 (en) Zoom lens
JP2008146016A (en) Zoom lens and electronic imaging apparatus using the same
JP5025232B2 (en) Imaging device using variable magnification optical system
JP2010181787A (en) Zoom lens and image pickup apparatus using the same
JP2008209773A (en) Zoom lens, and electronic imaging apparatus using the same
JP2008122880A (en) Zoom lens and electronic imaging apparatus
JP2009139701A (en) Zoom lens and imaging device using the same
JP2009036961A (en) Two-group zoom lens and imaging device using the same
JP2010049189A (en) Zoom lens and imaging device including the same
JP2008052110A (en) Zoom lens and electronic imaging apparatus using the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2008122879A (en) Zoom lens and electronic imaging apparatus using the same
JP2009020324A (en) Three-group zoom lens and imaging apparatus using the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP5009051B2 (en) Three-group zoom lens and image pickup apparatus including the same
JP5031318B2 (en) Zoom lens and imaging apparatus having the same
JP4873937B2 (en) Three-group zoom lens and image pickup apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120829