JP2004318099A - Zoom lens device - Google Patents

Zoom lens device Download PDF

Info

Publication number
JP2004318099A
JP2004318099A JP2004083254A JP2004083254A JP2004318099A JP 2004318099 A JP2004318099 A JP 2004318099A JP 2004083254 A JP2004083254 A JP 2004083254A JP 2004083254 A JP2004083254 A JP 2004083254A JP 2004318099 A JP2004318099 A JP 2004318099A
Authority
JP
Japan
Prior art keywords
zoom lens
group
lens system
lens
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083254A
Other languages
Japanese (ja)
Inventor
Hitoshi Hagimori
仁 萩森
Genta Yagyu
玄太 柳生
Kazuhiko Ishimaru
和彦 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Photo Imaging Inc
Original Assignee
Konica Minolta Photo Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging Inc filed Critical Konica Minolta Photo Imaging Inc
Priority to JP2004083254A priority Critical patent/JP2004318099A/en
Publication of JP2004318099A publication Critical patent/JP2004318099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens device suitable for a digital camera equipped with a zoom lens system which is bright even in the longest focal distance state though a zoom ratio is large, and whose length in an optical axis direction in housing is very short. <P>SOLUTION: The zoom lens device is equipped with the zoom lens system and an imaging device for converting an optical image formed by the zoom lens system into electric image data in order from an object side. The zoom lens system consists of a plurality of groups including a 1st group arranged nearest to the object side and constituted only of one negative lens element, and performs zooming by changing space between the respective groups. Then, a diaphragm is arranged on the object side or the image side of a 2nd group and in the 2nd group, and a positive lens group or a single lens element arranged at a position nearer to the image side than the diaphragm and not included in the group nearest to the image side is moved on an optical axis, whereby focusing according to the change of an object distance is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CCD(Charge Coupled Device 電荷結合素子)やCMOSセンサ(Complementary
Metal-oxide Semiconductor 相補性金属酸化膜半導体センサ)等の受光面上に形成され
た光学像を電気信号に変換する撮像素子を備えたズームレンズ装置に関し、特にズームレ
ンズ系を備えた小型のズームレンズ装置に関する。
The present invention relates to a CCD (Charge Coupled Device) and a CMOS sensor (Complementary
The present invention relates to a zoom lens device having an image pickup device for converting an optical image formed on a light receiving surface such as a metal-oxide semiconductor (complementary metal oxide semiconductor sensor) into an electric signal, and in particular, a small zoom lens having a zoom lens system. Equipment related.

近年、銀塩フィルムの代わりにCCDやCMOSセンサなどの撮像素子を用いて、光学像を電
気信号に変換し、そのデータをデジタル化して記録したり転送したりするデジタルカメラ
が一般化している。このようなデジタルカメラにおいては、最近、200万画素や300万画素
といった高画素を有するCCDやCMOSセンサが比較的安価に提供されるようになったため、
高画素の撮像素子を装着した高性能なズームレンズ装置に対する需要が非常に増大してい
る。これらのズームレンズ装置のうちでも特に、画質を劣化させずに変倍が可能なズーム
レンズ系を搭載したコンパクトなズームレンズ装置が切望されている。
2. Description of the Related Art In recent years, a digital camera that converts an optical image into an electric signal by using an imaging device such as a CCD or a CMOS sensor instead of a silver halide film, digitizes the data, and records or transfers the digital image has become popular. In such digital cameras, CCD and CMOS sensors having high pixels such as 2 million pixels and 3 million pixels have recently been provided at relatively low cost.
The demand for a high-performance zoom lens device equipped with a high-pixel image sensor has been greatly increased. Among these zoom lens devices, in particular, a compact zoom lens device equipped with a zoom lens system capable of zooming without deteriorating image quality has been desired.

さらに、近年では、半導体素子等の画像処理能力の向上により、パーソナルコンピュー
タ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistan
ce)等にズームレンズ装置が内蔵又は外付けされるようになっており、高性能なズームレ
ンズ装置に対する需要に拍車をかけている。
In recent years, with the improvement of image processing capability of semiconductor devices and the like, personal computers, mobile computers, mobile phones, and personal digital assistants (PDAs) have been developed.
ce) and the like, a zoom lens device is built in or externally attached, which has spurred demand for a high-performance zoom lens device.

このようなズームレンズ装置に用いられるズームレンズ系としては、最も物体側に配置
された群が負のパワーを有する、いわゆるマイナスリードのズームレンズ系が数多く提案
されている。マイナスリードのズームレンズ系は、広角化が容易であり、光学的ローパス
フィルタの挿入に必要なレンズバックを確保しやすい等の特徴を有している。
As a zoom lens system used in such a zoom lens device, a number of so-called minus-lead zoom lens systems have been proposed in which the group arranged closest to the object side has negative power. The minus lead zoom lens system has features such as easy widening of the angle and easy securing of a lens back necessary for insertion of an optical low-pass filter.

マイナスリードのズームレンズ系としては、従来から銀塩フィルム用カメラの撮影レン
ズ系として提案されたズームレンズ系がある。しかしながら、これらのズームレンズ系は
、特に最短焦点距離状態でのレンズ系の射出瞳位置が比較的像面の近くに位置するため、
特に高画素を有する撮像素子の各画素に対応して設けられたマイクロレンズの瞳と整合せ
ず、周辺光量が十分に確保できないという問題があった。また、変倍時に射出瞳位置が大
きく変動するため、マイクロレンズの瞳の設定が困難であるという問題もあった。また、
そもそも銀塩フィルムと撮像素子では、求められる空間周波数特性等の光学性能が全く異
なるため、撮像素子に要求される十分な光学性能を確保できなかった。このため、撮像素
子を備えたズームレンズ装置に最適化された専用のズームレンズ系を開発する必要が生じ
ている。
As a minus lead zoom lens system, there is a zoom lens system conventionally proposed as a photographing lens system of a camera for a silver halide film. However, in these zoom lens systems, in particular, the exit pupil position of the lens system in the shortest focal length state is relatively close to the image plane,
In particular, there is a problem that the pupil of the microlens provided corresponding to each pixel of the image sensor having a high number of pixels does not match, and a sufficient amount of peripheral light cannot be secured. In addition, since the exit pupil position fluctuates greatly at the time of zooming, there is also a problem that it is difficult to set the pupil of the micro lens. Also,
In the first place, the required optical performance such as spatial frequency characteristics is completely different between the silver halide film and the imaging device, and thus sufficient optical performance required for the imaging device cannot be secured. Therefore, there is a need to develop a dedicated zoom lens system optimized for a zoom lens device having an image sensor.

撮像素子を備えたズームレンズ装置用のマイナスリードのズームレンズ系としては、例
えば米国特許第5,745,301号には、負パワーの第1群と、正パワーの第2群からなる、2成
分構成のズームレンズ系が開示されている。
As a minus lead zoom lens system for a zoom lens device having an imaging device, for example, US Pat. No. 5,745,301 discloses a two-component zoom composed of a first group of negative power and a second group of positive power. A lens system is disclosed.

また、特開平1-191820号には、負パワーの第1群、正パワーの第2群、正パワーの第3
群からなる、3成分構成のビデオカメラ用ズームレンズ系が開示されている。
Japanese Patent Application Laid-Open No. 1-191820 discloses a first group of negative power, a second group of positive power, and a third group of positive power.
A three-component zoom lens system for a video camera comprising a group is disclosed.

また、特開平1-216310号には、負パワーの第1群、正パワーの第2群、負パワーの第3
群、正パワーの第4群からなる、4成分構成のビデオカメラ用ズームレンズ系が開示され
ている。
Japanese Patent Application Laid-Open No. 1-216310 discloses a first group of negative power, a second group of positive power, and a third group of negative power.
There is disclosed a zoom lens system for a video camera having a four-component configuration including a group and a fourth group having a positive power.

さらに、特開平9-179026号には、負パワーの第1群、正パワーの第2群、負パワーの第
3群、正パワーの第4群からなる4成分構成の電子スチルカメラ用ズームレンズ系が開示
されている。
Further, Japanese Patent Application Laid-Open No. Hei 9-79026 discloses a zoom lens for an electronic still camera having a four-component configuration including a first group of negative power, a second group of positive power, a third group of negative power, and a fourth group of positive power. A system is disclosed.

米国特許第5,745,301号U.S. Pat.No. 5,745,301

特開平1-191820号JP-A 1-191820 特開平1-216310号JP-A 1-216310 特開平9-179026号JP-A-9-79026

しかしながら、上記米国特許第5,745,301号、特開平1-191820号あるいは特開平1-21631
0号に開示されているズームレンズ系は、ズーム比が2倍程度であり、ズーム比が小さい
という問題があった。
However, the above-mentioned U.S. Patent No. 5,745,301, JP-A-1-191820 or JP-A-1-21631
The zoom lens system disclosed in No. 0 has a problem that the zoom ratio is about twice and the zoom ratio is small.

また、特開平9-179026号に開示されているズームレンズ系は、ズーム比が3倍程度であ
るが、最長焦点距離状態でのFナンバーが7と大きく、明るいズームレンズ系ではないと
いう問題があった。
Further, the zoom lens system disclosed in Japanese Patent Application Laid-Open No. 9-179026 has a zoom ratio of about three times, but has a problem that the F-number in the longest focal length state is as large as 7 and is not a bright zoom lens system. there were.

さらに、いずれのズームレンズ系も、数多くのレンズ素子を必要としており、コンパク
ト性、特に収納時(沈胴時)の光軸方向のコンパクト性に欠けるという問題があった。
Further, each zoom lens system requires a large number of lens elements, and has a problem that it lacks compactness, particularly compactness in the optical axis direction when stored (when retracted).

さらに、フォーカス調整については、いずれの先行技術文献にも言及されていない。   Furthermore, there is no mention of focus adjustment in any of the prior art documents.

本発明の目的は、ズーム比が大きいにも拘わらず、収納時の光軸方向の長さが十分に小
さく、効率的なファーカシング調整が可能なズームレンズ系を備えたズームレンズ装置を
提供することである。
An object of the present invention is to provide a zoom lens device including a zoom lens system capable of performing efficient focusing adjustment with a sufficiently small length in the optical axis direction when stored, despite a large zoom ratio. It is.

本発明のさらなる目的は、最長焦点距離状態でも明るく、収納時の光軸方向の長さが十
分に小さく、効率的なファーカシング調整が可能なズームレンズ系を備えたズームレンズ
装置を提供することである。
A further object of the present invention is to provide a zoom lens device including a zoom lens system that is bright even in the longest focal length state, has a sufficiently small length in the optical axis direction when housed, and allows efficient focusing adjustment. is there.

上記目的を達成するために、本発明のズームレンズ装置は、物体側から順に、ズームレ
ンズ系と、ズームレンズ系が形成した光学像を電気的画像データに変換する撮像素子と、
を備えたズームレンズ装置であって、前記ズームレンズ系は、最も物体側に配置され1枚
の負レンズ素子のみから構成された第1群、を含む複数の群からなり、各群の間隔を変化
させてズーミングを行うとともに、第2群の物体側あるいは像側、及び第2群中に絞りを配
置し、絞りよりも像側であって最も像側の群に含まれない位置に配置された正のレンズ群
あるいは単レンズ素子を光軸上に移動させることにより、物体距離変化によるフォーカシ
ング調整を行うことを特徴とする。
In order to achieve the above object, a zoom lens device of the present invention includes, in order from the object side, a zoom lens system, and an image sensor that converts an optical image formed by the zoom lens system into electrical image data,
Wherein the zoom lens system includes a plurality of groups including a first group disposed closest to the object side and including only one negative lens element, and the distance between each group is set. While changing the zooming, the object side or the image side of the second group, and the stop is arranged in the second group, and the image side of the stop is located on the image side and is not included in the most image side group. By moving the positive lens group or the single lens element on the optical axis, focusing adjustment by changing the object distance is performed.

また、本発明の別の側面は、上記ズームレンズ装置を含むデジタルカメラであることを
特徴とする。なお、デジタルカメラの語は、従来は専ら光学的な静止画を記録するものを
指していたが、動画を同時に扱えるものや家庭用のデジタルビデオカメラも提案されてお
り、現在では特に区別されなくてなってきている。したがって、この明細書で用いるデジ
タルカメラの語は、デジタルスチルカメラ、デジタルムービーカメラ、ウェッブカメラ(
開放型、プライベートを問わずネットワークに接続されて画像の送受信を可能にする機器
に接続されるカメラであって、ネットワークに直接接続されるもの、又はパーソナルコン
ピュータ等の情報処理機能を有する機器を介して接続されるものの両方を含む)等の受光
面上に形成された光学像を電気信号に変換する撮像素子を備えた撮像装置を主たる構成要
素とするカメラをすべて含む。
Another aspect of the present invention is a digital camera including the zoom lens device. In the past, the term digital camera used to refer exclusively to those that record optical still images, but those that can simultaneously handle moving pictures and digital video cameras for home use have also been proposed, and at present there is no particular distinction between them. It is getting better. Therefore, the term digital camera used in this specification refers to a digital still camera, a digital movie camera, a web camera (
An open or private camera connected to a network that can transmit and receive images regardless of whether it is connected directly to the network or via a device having an information processing function such as a personal computer. And cameras connected to the optical device, and includes an image pickup device having an image pickup device that converts an optical image formed on a light receiving surface into an electric signal.

また、本発明の別の側面は、上記ズームレンズ装置を含む携帯情報機器であることを特
徴とする。ここで、携帯情報機器とは、携帯電話端末やPDA(Personal Digital Assistan
t)等の個人ユースの小型で携帯可能な情報機器端末を意味することとする。
Another aspect of the present invention is a portable information device including the zoom lens device. Here, the portable information device is a mobile phone terminal or a PDA (Personal Digital Assistan
It means a small and portable information device terminal for personal use such as t).

以上説明したように、本発明に係るズームレンズ装置によれば、ズーム比が大きいにも
拘わらず、収納時の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ
装置を提供することができる。
As described above, according to the zoom lens device of the present invention, there is provided a zoom lens device including a zoom lens system having a sufficiently small length in the optical axis direction when housed, despite a large zoom ratio. can do.

また、本発明に係るズームレンズ装置によれば、最長焦点距離状態でも明るく、収納時
の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ装置を提供するこ
とができる。
Further, according to the zoom lens device of the present invention, it is possible to provide a zoom lens device including a zoom lens system which is bright even in the longest focal length state and has a sufficiently small length in the optical axis direction when housed.

以下、図面を参照して、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明の一実施形態である撮像装置は、例えば図16に示すように、物体側(被写体側
)から順に、物体の光学像を変倍可能に形成するズームレンズ系とTL、光学的ローパスフ
ィルタLPFと、ズームレンズ系TLにより形成された光学像を電気的な信号に変換する撮像
素子SRと、で構成されている。撮像装置は、デジタルカメラ;ビデオカメラ;パーソナル
コンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digita
l Assistance)等に内蔵又は外付けされるカメラの主たる構成要素である。
As shown in FIG. 16, for example, an imaging apparatus according to an embodiment of the present invention includes a zoom lens system, a TL, and an optical low-pass filter that sequentially form an optical image of an object in a variable order from the object side (subject side). It comprises an LPF and an image sensor SR for converting an optical image formed by the zoom lens system TL into an electric signal. The imaging device is a digital camera; a video camera; a personal computer, a mobile computer, a mobile phone, and a personal digital assistant (PDA).
l Assistance) is a main component of a camera that is built in or externally attached.

光学ローパスフィルタLPFは、撮影レンズ系の空間周波数特性を調整し撮像素子で発生
する色モアレを解消するための特定の遮断周波数を有している。実施形態の光学ローパス
フィルタは、結晶軸を所定方向に調整された水晶等の複屈折材料や偏光面を変化させる波
長板等を積層して作成された複屈折型ローパスフィルタである。なお、光学ローパスフィ
ルタとしては、必要な光学的な遮断周波数の特性を回折効果により達成する位相型ローパ
スフィルタ等を採用してもよい。
The optical low-pass filter LPF has a specific cutoff frequency for adjusting the spatial frequency characteristics of the taking lens system and eliminating color moiré generated in the image sensor. The optical low-pass filter according to the embodiment is a birefringent low-pass filter formed by laminating a birefringent material such as quartz whose crystal axis is adjusted in a predetermined direction, a wave plate that changes the plane of polarization, and the like. Note that, as the optical low-pass filter, a phase-type low-pass filter or the like that achieves the required optical cutoff frequency characteristic by the diffraction effect may be employed.

撮像素子SRは、複数の画素を有するCCDからなり、ズームレンズ系が形成した光学像をC
CDで電気信号に変換する。撮像素子SRで生成された信号は、必要に応じて所定のデジタル
画像処理や画像圧縮処理等を施されてデジタル映像信号としてメモリー(半導体メモリー
,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換
されたりして他の機器に伝送される。なお、CCDの代わりにCMOSセンサ(Complementary M
etal-oxide Semiconductor)を用いてもよい。
The image sensor SR is composed of a CCD having a plurality of pixels, and converts an optical image formed by a zoom lens system into a CCD.
Convert to an electric signal with CD. The signal generated by the image sensor SR is subjected to predetermined digital image processing and image compression processing as required, and is recorded as digital video signals in a memory (semiconductor memory, optical disk, etc.). The signal is transmitted to another device through the device or converted into an infrared signal. Note that instead of a CCD, a CMOS sensor (Complementary M
etal-oxide Semiconductor) may be used.

図1は、第1実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1のみから構成される第1群Gr1と、
両凸形状の第2レンズL2,両凹形状の第3レンズL3,絞りST及び両凸形状の第4レンズL4の
みから構成される第2群Gr2と、物体側に凸面を向けた負メニスカス形状の第5レンズL5及
び物体側に凸面を向けた正メニスカス形状の第6レンズL6から構成される第3群Gr3と、か
ら成る。最短焦点距離状態から最長焦点距離状態へのズーミングに際して、第1群Gr1は像
側に凸のUターンの軌跡を描きながら移動し、第2群Gr2は物体側へ単調に移動する一方、
第3群Gr3は像面に対して固定される。また、無限遠合焦状態から有限物体合焦状態へのフ
ォーカシングに際して、第4レンズL4を単独で物体側へ移動させる。
FIG. 1 is a lens configuration diagram illustrating a configuration of a zoom lens system according to the first embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including only a biconcave first lens L1,
A second group Gr2 consisting of only a biconvex second lens L2, a biconcave third lens L3, a stop ST and a biconvex fourth lens L4, and a negative meniscus shape with the convex surface facing the object side And a third group Gr3 including a positive meniscus sixth lens L6 with the convex surface facing the object side. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex on the image side, while the second group Gr2 moves monotonously to the object side,
The third unit Gr3 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the fourth lens L4 alone is moved to the object side.

図2は、第2実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1のみから構成される第1群Gr1と、
両凸形状の第2レンズL2,絞りST及び近軸的には両凹形状の第3レンズL3から構成される第
2群Gr2と、両凸形状の第4レンズL4のみから構成される第3群Gr3と、物体側に凸面を向け
た負メニスカス形状の第5レンズL5及び物体側に凸面を向けた正メニスカス形状の第6レン
ズL6から構成される第4群Gr4と、から成る。最短焦点距離状態から最長焦点距離状態への
ズーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描きながら移動し、第2群G
r2及び第3群Gr3は互いの間隔を僅かに広げながら物体側へ単調にそれぞれ移動する一方、
第4群Gr4は像面に対して固定される。また、無限遠合焦状態から有限物体合焦状態へのフ
ォーカシングに際して、第4レンズL4を単独で物体側へ移動させる。
FIG. 2 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a second embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including only a biconcave first lens L1,
The second lens L2 is composed of a biconvex second lens L2, a stop ST and a paraxially biconcave third lens L3.
A second lens unit Gr2, a third lens unit Gr3 including only a biconvex fourth lens L4, a negative meniscus fifth lens L5 having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. And a fourth group Gr4 including the sixth lens L6. During zooming from the shortest focal length state to the longest focal length state, the first lens unit Gr1 moves while drawing a locus of a U-turn convex on the image side, and the second lens unit G1.
r2 and the third lens unit Gr3 monotonously move toward the object side while slightly widening the distance between each other,
The fourth unit Gr4 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the fourth lens L4 alone is moved to the object side.

図3は、第3実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、近軸的には物体側に凸の負メニスカス形状の第1レンズL1
のみから構成される第1群Gr1と、物体側に凸面を向けたほぼ平凸形状の第2レンズL2,絞
りST及び近軸的には両凹形状の第3レンズL3から構成される第2群Gr2と、両凸形状の第4レ
ンズL4のみから構成される第3群Gr3と、近軸的には物体側に凸面を向けた負メニスカス形
状の第5レンズL5のみから構成される第4群Gr4と、から成る。最短焦点距離状態から最長
焦点距離状態へのズーミングに際して、第1群Gr1は像側に移動し、第2群Gr2及び第3群Gr3
は互いの間隔を僅かに変化させながら物体側へ単調にそれぞれ移動し、第4群Gr4は物体側
に凸のUターンの軌跡を描きながら移動する。また、無限遠合焦状態から有限物体合焦状
態へのフォーカシングに際して、第4レンズL4を単独で物体側へ移動させる。
FIG. 3 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a third embodiment. This zoom lens system includes, in order from the object side, a first meniscus-shaped first lens L1 that is paraxially convex toward the object side.
A first lens unit Gr1 comprising only a second lens L2 having a substantially plano-convex shape with the convex surface facing the object side, a stop ST, and a third lens L3 having a paraxially biconcave shape. A group Gr2, a third group Gr3 including only a biconvex fourth lens L4, and a fourth group including only a negative meniscus fifth lens L5 with a convex surface facing the object side in an axial direction. The group Gr4. During zooming from the shortest focal length state to the longest focal length state, the first lens unit Gr1 moves to the image side, and the second lens unit Gr2 and the third lens unit Gr3
Moves monotonously toward the object side while slightly changing the distance between each other, and the fourth lens unit Gr4 moves while drawing a locus of a U-turn convex toward the object side. In focusing from an infinity in-focus condition to a finite object in-focus condition, the fourth lens L4 alone is moved to the object side.

図4は、第4実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1のみから構成される第1群Gr1と、
絞りST、両凸形状の第2レンズL2及び両凹形状の第3レンズL3から構成される第2群Gr2と、
両凸形状の第4レンズL4のみから構成される第3群Gr3と、両凸形状の第5レンズL5及び両凹
形状の第6レンズL6から構成される第4群Gr4とから成る。最短焦点距離状態から最長焦点
距離状態へのズーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描きながら移
動し、第2群Gr2及び第3群Gr3は互いに物体側へ単調に移動し、第4群Gr4は像側に単調に移
動する。また、無限遠合焦状態から有限物体合焦状態へのフォーカシングに際して、第4
レンズL4を単独で物体側へ移動させる。
FIG. 4 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a fourth embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including only a biconcave first lens L1,
An aperture ST, a second group Gr2 including a biconvex second lens L2 and a biconcave third lens L3,
The third group Gr3 includes only a biconvex fourth lens L4, and the fourth group Gr4 includes a biconvex fifth lens L5 and a biconcave sixth lens L6. During zooming from the shortest focal length state to the longest focal length state, the first lens unit Gr1 moves while drawing a locus of a U-turn that is convex on the image side, and the second lens unit Gr2 and the third lens unit Gr3 monotonously move toward the object side. Then, the fourth unit Gr4 monotonously moves to the image side. When focusing from an infinity in-focus condition to a finite object in-focus condition,
The lens L4 is independently moved to the object side.

図5は、第5実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1のみからなる第1群Gr1と、両凸形
状の第2レンズ,両凹形状の第3レンズL3,絞りST及び両凸形状の第4レンズL4からなる第2
群Gr2と、物体側に凸面を向けた負メニスカス形状の第5レンズL5及び物体側に凸面を向け
た正メニスカス形状の第6レンズL6からなる第3群Gr3と、からなる。最短焦点距離状態か
ら最長焦点距離状態へのズーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描
きながら移動し、第2群Gr2物体側へ単調に移動する一方、第3群Gr3は像面に対して固定さ
れる。また、無限遠合焦状態から有限物体合焦状態へのフォーカシングに際して、第4レ
ンズL4を単独で物体側へ移動させる。
FIG. 5 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a fifth embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including only a biconcave first lens L1, a biconvex second lens, a biconcave third lens L3, an aperture ST, and a biconvex lens. The second consisting of a shaped fourth lens L4
The lens unit includes a group Gr2 and a third group Gr3 including a negative meniscus fifth lens L5 having a convex surface facing the object side and a positive meniscus sixth lens L6 having a convex surface facing the object side. During zooming from the shortest focal length state to the longest focal length state, the first lens unit Gr1 moves while drawing a locus of a convex U-turn on the image side, and moves monotonically to the second lens unit Gr2 object side, while the third lens unit Gr3. Gr3 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the fourth lens L4 alone is moved to the object side.

各実施形態のズームレンズ系は、最も物体側に配置され1枚の負レンズ素子のみから構
成された第1群を有する。通常、第1群が負のパワーを有するズームレンズでは、Fナンバ
ーを確保するため第1群の光軸垂直方向のレンズ径が最も大きくなる。ここで複数枚のレ
ンズ素子で第1群が構成されていると、ズームレンズ系に入射する光線を確保するために
、第1群のレンズ素子の有効径が大きくなってしまう。したがって、外径を小さくするに
は、最少枚数である1枚で構成することが望ましい。また、レンズ径が大きなレンズ素子
が曲率を持つと、それに伴ってレンズ素子間の軸上空気間隔も増大する。すなわち、第1
群のレンズ枚数はズームレンズ系の全長を増加させる重要な要素となる。各実施形態のズ
ームレンズ系では、この負群を最少構成枚数の1枚で構成しているので、ズームレンズ系
の全長短縮と、ズームレンズ系を収納した状態(以下、沈胴時という)の厚みを小さくす
ることができる。
The zoom lens system according to each of the embodiments has a first group which is disposed closest to the object side and includes only one negative lens element. Normally, in a zoom lens in which the first group has negative power, the lens diameter of the first group in the direction perpendicular to the optical axis is the largest in order to secure the F-number. Here, if the first group is composed of a plurality of lens elements, the effective diameter of the lens elements of the first group will be large in order to secure light rays incident on the zoom lens system. Therefore, in order to reduce the outer diameter, it is desirable to configure the sheet with a minimum number of one sheet. Further, when a lens element having a large lens diameter has a curvature, the on-axis air gap between the lens elements increases accordingly. That is, the first
The number of lenses in the group is an important factor in increasing the overall length of the zoom lens system. In the zoom lens system according to each of the embodiments, since the negative lens group is constituted by one of the minimum number of components, the total length of the zoom lens system is reduced, and the thickness of the zoom lens system in a retracted state (hereinafter referred to as collapsed state). Can be reduced.

なお、第1群は、各実施形態のズームレンズ系のように、ズーミングに際して、像側に
凸の軌跡を描きながら移動することが望ましい。このように移動することにより、中間焦
点距離状態での像面湾曲を良好に補正することができる。
It is desirable that the first unit moves while drawing a locus convex toward the image side during zooming, as in the zoom lens systems of the embodiments. By moving in this way, it is possible to satisfactorily correct the field curvature in the intermediate focal length state.

また、各実施形態のズームレンズ系は、第2群の物体側あるいは像側、及び第2群中に絞
りを配置している。絞りをこの位置よりも、像側に配置すると第1群の外径が大きくなり
すぎるので、コンパクトなズームレンズ系を達成することができない。
In the zoom lens systems according to the embodiments, the diaphragm is arranged on the object side or image side of the second group, and in the second group. If the stop is located on the image side of this position, the outer diameter of the first lens unit becomes too large, so that a compact zoom lens system cannot be achieved.

また、各実施形態のズームレンズ系は、絞りよりも像側であって最も像側の群に含まれ
ない位置に配置された正のレンズ群あるいは単レンズ素子を光軸上に移動させることによ
りフォーカスをおこなっている。フォーカス群を、絞りよりも像側であって最も像側の群
に含まれない位置に配置された正のレンズ群あるいは単レンズ素子とすることにより、重
量が小さく、フォーカスの際の移動量が小さいレンズ群あるいは単レンズ素子をフォーカ
スすることができるので、鏡胴構成及び駆動モータの負荷軽減に効果を奏する。
Further, the zoom lens system according to each of the embodiments moves the positive lens group or the single lens element, which is disposed at a position closer to the image side than the stop and not included in the group closest to the image side, on the optical axis. The focus is on. By making the focus group a positive lens group or a single lens element located on the image side of the stop and not included in the group closest to the image side, the weight is small and the movement amount during focusing is small. Since a small lens group or a single lens element can be focused, it is effective in reducing the load on the lens barrel configuration and the drive motor.

各実施形態のズームレンズ系は、それぞれ独立した正レンズ素子及び負レンズ素子を含
み全体として正のパワーを有する第2群を含んでいる。負リードタイプのズームレンズ系
では、第2群の負のパワーが最も変倍に寄与する構成となっている。したがって、変倍に
伴って第2群で発生する収差、特に軸上色収差の変動が大きい。これを補正するためには
、少なくともそれぞれ独立した正レンズ素子及び負レンズ素子を第2群に含む構成としな
れば、ズーム全域での軸上色収差バランスをとることができない。
The zoom lens system according to each of the embodiments includes a second lens unit including independent positive lens elements and negative lens elements and having a positive power as a whole. In the negative lead type zoom lens system, the negative power of the second group contributes most to zooming. Therefore, the aberrations generated in the second lens unit, particularly the axial chromatic aberration, fluctuate greatly with zooming. To correct this, if at least the independent positive lens element and negative lens element are each included in the second group, axial chromatic aberration cannot be balanced in the entire zoom range.

また、各ズームレンズ系は、以下の条件式を満足している。   Each zoom lens system satisfies the following conditional expressions.

Fnt ≦ 6.0 (1)
2.3 ≦ ft / fw ≦ 5.5 (2)
ただし、
Fnt:最長焦点距離状態でのズームレンズ系の最小Fナンバー、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
ft:最長焦点距離状態でのズームレンズ系の焦点距離、
である。
Fnt ≤ 6.0 (1)
2.3 ≤ ft / fw ≤ 5.5 (2)
However,
Fnt: The minimum F-number of the zoom lens system at the longest focal length,
fw: focal length of the zoom lens system in the shortest focal length state,
ft: focal length of the zoom lens system in the longest focal length state,
It is.

条件式(1)は、ズームレンズ系の最長焦点距離状態での最少Fナンバーを規定する。最少
Fナンバーが6.0を超えて大きくなると、銀塩フィルムカメラに対抗するだけの画像品質を
保つことができない。特に、Fナンバーが6.0を超えて大きくなると動画の取得が困難とな
ってくる。
Conditional expression (1) defines the minimum F-number in the longest focal length state of the zoom lens system. Minimum
If the f-number increases beyond 6.0, the image quality cannot be maintained enough to compete with silver halide film cameras. In particular, when the F-number exceeds 6.0, it becomes difficult to acquire moving images.

条件式(2)は、ズームレンズ系のズーム比を規定する。本発明がねらいとするズームレ
ンズ系は、3〜4倍を中心ターゲットとする小型のズームレンズ系であるため、この条件
式(2)を規定している。条件式(2)の下限よりズーム比が小さいと光学的ズームの有意性が
小さくなり、ユーザベネフィットを達成することができない。一方、条件式(2)の上限よ
りズーム比が大きくなると、特に最長焦点距離状態での全長が大きくなりすぎ、ズームレ
ンズ装置としての小型化を達成することが困難となる。なお、ズーム比としては、以下の
範囲を満足するズームレンズ系であるとより望ましい。
Conditional expression (2) defines the zoom ratio of the zoom lens system. Since the zoom lens system aimed at by the present invention is a small-sized zoom lens system having a central target of 3 to 4 times, this conditional expression (2) is defined. If the zoom ratio is smaller than the lower limit of the conditional expression (2), the significance of the optical zoom decreases, and the user benefit cannot be achieved. On the other hand, when the zoom ratio is larger than the upper limit of the conditional expression (2), the total length particularly in the longest focal length state becomes too large, and it is difficult to achieve the miniaturization of the zoom lens device. It is more desirable that the zoom ratio be a zoom lens system satisfying the following range.

3.1 ≦ ft / fw (2)'
また、各実施形態のズームレンズ系は、以下の条件式(3)を満足している。
3.1 ≤ ft / fw (2) '
Further, the zoom lens systems according to the embodiments satisfy the following conditional expression (3).

0.1 < T23w / fw < 1.5 (3)
ただし、
T23w:最短焦点距離状態での第2群(最像側)と像側に隣接する群(最物体側)との軸
上面間隔、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
0.1 <T23w / fw <1.5 (3)
However,
T23w: axial top surface distance between the second group (most image side) and the group adjacent to the image side (most object side) in the shortest focal length state,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.

条件式(3)は、ズームレンズ系の第2群と像側に隣接する群との軸上面間隔を規定して
いる。条件式(3)の下限を超えると、最短焦点距離状態で第2群と第3群のレンズ素子が接
触するなどの干渉が発生する可能性が高くなるとともに、鏡胴構成が困難となり望ましく
ない。一方、条件式(3)の上限を超えると、最短焦点距離状態での光軸方向の全長が長く
なりコンパクトなズームレンズを達成することが出来ない。また、上限を超えた場合、パ
ワーの配置上、第1群と像面の間隔が大きくなるため光軸方向の全長が大きくなるととも
に、像面での照度を確保するため、第1群を構成するレンズ素子のレンズ径が大きくなり
、やはりコンパクトなズームレンズ系を達成することができない。
Conditional expression (3) defines the axial distance between the second group of the zoom lens system and the group adjacent to the image side. If the lower limit of conditional expression (3) is exceeded, interference such as contact between the second and third lens elements in the shortest focal length state increases, and the lens barrel configuration becomes difficult and undesirable. . On the other hand, when the value exceeds the upper limit of the conditional expression (3), the total length in the optical axis direction in the shortest focal length state becomes long, and a compact zoom lens cannot be achieved. If the upper limit is exceeded, the distance between the first lens unit and the image plane increases due to the arrangement of power, so that the overall length in the optical axis direction increases, and the first lens unit is configured to ensure illuminance on the image plane. The lens diameter of the lens element becomes large, so that a compact zoom lens system cannot be achieved.

また、各実施形態のズームレンズ系は、以下の条件式(4)を満足している。   Further, the zoom lens systems according to the embodiments satisfy the following conditional expression (4).

0.6 < Tsum / fw < 2.6 (4)
ただし、
Tsum:ズームレンズ系に含まれるすべてのレンズ素子の心厚の和、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
0.6 <Tsum / fw <2.6 (4)
However,
Tsum: Sum of the thicknesses of all the lens elements included in the zoom lens system,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.

条件式(4)は、ズームレンズ系に含まれるすべてのレンズ素子の心厚の和を規定してい
る。ズームレンズ系の沈胴時の光軸方向大きさは、デジタルカメラや携帯情報機器の厚み
方向の大きさを概略決定してしまう最大要因である。そして、沈胴時の光軸方向大きさは
、レンズ素子の心厚の和より物理的に小さくなることができない。したがって、Tsumを小
さくすることができなければ、沈胴時にコンパクトなズームレンズ系を達成することがで
きないのである。条件式(4)はまさに、この沈胴時の厚みを規定する条件式である。条件
式の下限を超えると、物理的に光学系を構成することが困難になる。一方、上限を超える
とレンズの厚みが大きくなりすぎ、デジタルカメラや携帯情報機器において許容される限
界を超えてしまう。なお、条件式(4)は、さらに以下の範囲とすることにより、より効果
的である。
Conditional expression (4) defines the sum of the core thicknesses of all the lens elements included in the zoom lens system. The size in the optical axis direction of the zoom lens system when retracted is the largest factor that roughly determines the size in the thickness direction of a digital camera or a portable information device. The size in the optical axis direction at the time of collapsing cannot be physically smaller than the sum of the thicknesses of the lens elements. Therefore, if Tsum cannot be reduced, a compact zoom lens system cannot be achieved when retracted. Conditional expression (4) is exactly a conditional expression that defines the thickness when retracted. If the lower limit of the conditional expression is exceeded, it becomes difficult to physically configure the optical system. On the other hand, when the value exceeds the upper limit, the thickness of the lens becomes too large, which exceeds the limit allowed in digital cameras and portable information devices. It is to be noted that conditional expression (4) is more effective when it is set in the following range.

Tsum / fw < 2.2 (4)'
Tsum / fw < 2.0 (4)''
なお、上記条件式(3)及び(4)は、同時に満足することにより、それぞれの効果を奏しな
がらより効果的にズームレンズ系を構成することでき、望ましい。
Tsum / fw <2.2 (4) '
Tsum / fw <2.0 (4) ''
It is preferable that the conditional expressions (3) and (4) be satisfied at the same time, so that the zoom lens system can be more effectively formed while achieving the respective effects.

また、各実施形態のズームレンズ系は、以下の条件式(5)を満足している。   Further, the zoom lens systems of the respective embodiments satisfy the following conditional expression (5).

ν1 > 45 (5)
ただし、
ν1:前記第1群を構成する1枚の負レンズ素子のアッベ数、である。
ν1> 45 (5)
However,
ν1 is the Abbe number of one negative lens element constituting the first group.

条件式(5)は、第1群を構成する負レンズ素子のアッベ数を規定する。ズームレンズ系で
は通常、ズーミング時に発生する収差の変動を極力抑えるために群ごとに、ある程度の収
差補正を行っている。しかしながら、第1群を1枚の負レンズ素子で構成したので、レンズ
群での収差補正、特に軸上色収差の補正はきわめて困難になる。そこで、実施形態のズー
ムレンズでは、第1群で発生する軸上色収差を他群でキャンセルすることにより収差のバ
ランスを取る必要がある。しかしながら、条件式(5)の下限を超えたアッベ数を有する材
料で第1群の負レンズ素子を構成した場合、軸上色収差の変動が他の群で補正できる許容
範囲を超えてしまうため望ましくない。
Conditional expression (5) defines the Abbe number of the negative lens element forming the first unit. In a zoom lens system, a certain degree of aberration correction is usually performed for each group in order to minimize fluctuations in aberrations that occur during zooming. However, since the first group is constituted by a single negative lens element, it becomes extremely difficult to correct aberrations in the lens groups, particularly to correct axial chromatic aberration. Therefore, in the zoom lens according to the embodiment, it is necessary to balance the aberration by canceling the axial chromatic aberration generated in the first group by the other group. However, when the negative lens element of the first group is formed of a material having an Abbe number exceeding the lower limit of the conditional expression (5), it is preferable that the fluctuation of the axial chromatic aberration exceeds the allowable range that can be corrected by the other groups. Absent.

なお、条件式(5)は、条件式(5)'、さらに条件式(5)''の範囲を満足することがより望ま
しい。
It is more preferable that the conditional expression (5) satisfies the ranges of the conditional expression (5) ′ and the conditional expression (5) ″.

ν1 > 60 (5)
ν1 > 80 (5)''
また、第1群を構成する負レンズ素子は、異常低分散性を持つ材料を用いることにより
更なる色収差の補正を達成することができ、望ましい。また、第1群を構成する負レンズ
素子は、歪曲補正等の目的で非球面形状を備えれることが望ましいので、非球面の形成が
容易である条件式(5)を満足する樹脂レンズ素子としてもよい。
ν1> 60 (5)
ν1> 80 (5) ''
Further, the negative lens element constituting the first group is desirably formed by using a material having an abnormally low dispersion so that further correction of chromatic aberration can be achieved. Further, since the negative lens element constituting the first group is desirably provided with an aspherical shape for the purpose of distortion correction or the like, it is preferable that the negative lens element be a resin lens element that satisfies the conditional expression (5) that facilitates formation of the aspherical surface. Is also good.

また、各実施形態のズームレンズ系において、最も像側の群を正レンズ素子及び負レン
ズ素子を含み全体として正のパワーを有する構成とすることが望ましい。このように構成
することにより、特に第1群の1枚の負レンズ素子で発生する軸上色収差のズーミングによ
る変動を良好に補正することができるという効果がある。加えて、特に最短焦点距離状態
での軸外のコマ収差の補正にも効果的である。さらに、最も像側の群を像面に対して固定
することにより、軸上色収差のズーミングによる変動をさらに良好に補正することができ
るとともに、鏡胴構成を簡単にすることができる。
Further, in the zoom lens system of each embodiment, it is desirable that the group closest to the image side has a positive power as a whole including a positive lens element and a negative lens element. With such a configuration, there is an effect that a fluctuation due to zooming of the axial chromatic aberration generated by one negative lens element of the first group can be favorably corrected. In addition, it is also effective in correcting off-axis coma, particularly in the shortest focal length state. Further, by fixing the group closest to the image side with respect to the image plane, it is possible to more properly correct axial chromatic aberration caused by zooming, and to simplify the lens barrel configuration.

以上説明した第1〜第5の実施の形態を構成している各レンズ群は、入射光線を屈折に
より偏向させる屈折型レンズのみで構成されているが、これに限らない。例えば、回折に
より入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線
を偏向させる屈折・回折ハイブリッド型レンズ等で、各レンズ群を構成してもよい。
Each of the lens groups constituting the first to fifth embodiments described above includes only a refraction lens that deflects an incident light beam by refraction, but is not limited thereto. For example, each lens group may be composed of a diffractive lens that deflects an incident light beam by diffraction, a hybrid refraction / diffraction lens that deflects an incident light beam by a combination of a diffraction action and a refraction action, or the like.

また、各レンズ群内やレンズ群間に存在する空気間隔を適当に調整して、入射光軸を折
り曲げる反射部材を追加してもよい。入射光軸を折り曲げることにより、光学系の配置の
自由度が向上するとともに、入射光軸方向の光学機器の厚みを小さくすることができ望ま
しい。
Further, a reflecting member that bends the incident optical axis may be added by appropriately adjusting the air gap existing in each lens group or between the lens groups. Bending the incident optical axis is preferable because the degree of freedom of arrangement of the optical system can be improved and the thickness of the optical device in the direction of the incident optical axis can be reduced.

以下、本発明を実施したズームレンズの構成を、コンストラクションデータ,収差図等
を挙げて、更に具体的に説明する。なお、以下に挙げる実施例1〜5は、前述した第1〜
第5の実施の形態にそれぞれ対応しており、第1〜第5の実施の形態を表すレンズ構成図
(図1〜図5http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00=1E_N/;>>=;=>:6///&N0001=148&N0552=9&N0553=000012)は、対応する実施例1〜5のレ
ンズ構成をそれぞれ示している。
Hereinafter, the configuration of the zoom lens embodying the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. In addition, Examples 1 to 5 listed below are the first to fifth examples described above.
Lens configuration diagrams respectively corresponding to the fifth embodiment and representing the first to fifth embodiments
(Figures 1 to 5 http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00 = 1E_N /; >>=;=>: 6 /// & N0001 = 148 & N0552 = 9 & N0553 = 000012) shows the corresponding lens configurations of Examples 1 to 5, respectively.

各実施例のコンストラクションデータにおいて、ri (i = 1,2,3,...)は物体側から数え
てi番目の面の曲率半径、di(i = 1,2,3,...)は物体側から数えてi番目の軸上面間隔を示
しており、Ni (i = 1,2,3,...), νi (i = 1,2,3,...)は物体側から数えてi番目の光学要
素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデ
ータ中、ズーミングにおいて変化する軸上面間隔(可変間隔)は、最短焦点距離状態(短焦
点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜最長焦点距離状態(長焦点距離端)[T]
での各レンズ群間の軸上空気間隔である。各焦点距離状態[W], [M], [T]に対応する全
系の焦点距離f及びFナンバーFNOを併せて示す。
In the construction data of each embodiment, ri (i = 1, 2, 3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1, 2, 3, ...) Indicates the i-th axial distance from the object side, and Ni (i = 1,2,3, ...) and νi (i = 1,2,3, ...) The refractive index (Nd) and Abbe number (νd) of the i-th optical element counted for the d-line are shown. In the construction data, the axial top surface interval (variable interval) that changes during zooming is from the shortest focal length state (short focal length end) [W] to the middle (intermediate focal length state) [M] to the longest focal length state (long). Focal length end) [T]
Is the axial air spacing between each lens group. The focal length f and the F-number FNO of the entire system corresponding to each focal length state [W], [M], [T] are also shown.

曲率半径riに*が付された面は、非球面で構成された面であることを示し、非球面の面
形状を表す以下の式(AS)で定義されるものとする。各実施例の非球面データを他のデー
タと併せて示す。
A surface with * added to the radius of curvature ri indicates a surface constituted by an aspheric surface, and is defined by the following formula (AS) representing the surface shape of the aspheric surface. The aspherical surface data of each example is shown together with other data.

Z(h)=r-(r^2-ε・h^2)^1/2+(A4・h^4+A6・h^6+A8・h^8+…) (AS)
r:非球面の近軸曲率半径、
ε:楕円係数、
Ai:非球面のi次の非球面係数、

<実施例1>
f = 6.0 - 13.8 - 17.3 mm
FNo.= 2.95 - 4.08 - 4.58
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -24.000
d1 = 1.200 N1 = 1.52510 ν1 = 56.38
r2*= 8.537
d2 = 21.597 - 5.154 - 2.607
r3 = 8.946
d3 = 2.620 N2 = 1.75450 ν2 = 51.57
r4 = -28.455
d4 = 1.880
r5*= -14.577
d5 = 0.800 N3 = 1.84666 ν3 = 23.82
r6*= 155.719
d6 = 0.800
r7 = ∞
d7 = 7.471
r8 = 21.530
d8 = 1.721 N4 = 1.79260 ν4 = 45.91
r9 = -31.317
d9 = 1.000 - 10.165 - 14.254
r10= 65.851
d10= 0.800 N5 = 1.79850 ν5 = 22.60
r11= 6.992
d11= 0.100
r12= 6.038
d12= 2.772 N6 = 1.52510 ν6 = 56.38
r13*= -37.830
d13 = 2.240
r14= ∞
d14 = 2.000 N7 = 1.51680 ν7 = 64.20
r15= ∞

[非球面係数]
r1
ε = 0.10000E+01
A4 = -0.37244E-03
A6 = 0.15081E-04
A8 = -0.18789E-06
A10= 0.65368E-09

r2
ε = 0.10000E+01
A4 = -0.71541E-03
A6 = 0.76630E-05
A8 = 0.41941E-06
A10= -0.10107E-07

r5
ε = 0.10000E+01
A4 = 0.33144E-03
A6 = 0.47309E-04
A8 = -0.10852E-04
A10= 0.67862E-06

r6
ε = 0.10000E+01
A4 = 0.71541E-03
A6 = 0.64576E-04
A8 = -0.12229E-04
A10= 0.74861E-06

r13
ε = 0.10000E+01
A4 = 0.11793E-02
A6 = 0.96628E-05
A8 = 0.32872E-06
A10= 0.45109E-09

<実施例2>
f = 5.6 - 12.9 - 16.1 mm
FNo.= 2.95 - 4.01 - 4.45
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -24.000
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2*= 8.123
d2 = 20.351 - 5.732 - 3.353
r3 = 6.991
d3 = 2.638 N2 = 1.72375 ν2 = 52.66
r4 = -34.740
d4 = 0.900
r5 = ∞
d5 = 1.000
r6*= -9.988
d6 = 0.800 N3 = 1.84666 ν3 = 23.82
r7*= 247.216
d7 = 6.049 - 6.611 - 6.879
r8 = 16.911
d8 = 1.806 N4 = 1.77436 ν4 =48.39
r9 = -46.007
d9 = 0.800 - 9.345 - 13.337
r10= 9.008
d10 = 0.800 N5 = 1.84666 ν5 = 23.82
r11= 4.749
d11= 0.301
r12*= 5.048
d12= 3.555 N6 = 1.52510 ν6 = 56.38
r13*= 21.908
d13= 0.800
r14= ∞
d14= 2.000 N7 = 1.51680 ν7 = 64.20
r15= ∞

[非球面係数]
r1
ε = 0.10000E+01
A4 = -0.63439E-04
A6 = 0.68501E-05
A8 = -0.66696E-07
A10= -0.17038E-09

r2
ε = 0.10000E+01
A4 = -0.47028E-03
A6 = 0.69477E-06
A8 = 0.66535E-06
A10= -0.15800E-07

r6
ε = 0.10000E+01
A4 = 0.59417E-03
A6 = 0.46685E-04
A8 = -0.77214E-05
A10= 0.39203E-06

r7
ε = 0.10000E+01
A4 = 0.12314E-02
A6 = 0.80651E-04
A8 = -0.10222E-04
A10= 0.55470E-06

r12
ε = 0.10000E+01
A4 = -0.59528E-03
A6 = -0.10325E-04
A8 = -0.14170E-06
A10= -0.31345E-06

r13
ε = 0.10000E+01
A4 = -0.55636E-03
A6 = 0.13842E-03
A8 = -0.20578E-04
A10= 0.36116E-06

<実施例3>
f = 6.0 - 12.0 - 17.3 mm
FNo.= 2.95 - 3.60 - 3.84
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= 72.689
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2* = 8.018
d2 = 28.005 - 8.738 - 1.125
r3 = 5.404
d3 = 2.577 N2 = 1.70206 ν2 = 53.53
r4 = -4231.909
d4 = 0.900
r5 = ∞
d5 = 1.271
r6*= -10.108
d6 = 0.800 N3 = 1.84666 ν3 = 23.82
r7*= 19.972
d7 = 4.900 - 5.414 - 4.248
r8 = 12.483
d8 = 2.589 N4 = 1.69005 ν4 = 54.04
r9 = -18.055
d9 = 0.800 - 2.578 - 8.087
r10*= 7.794
d10= 1.157 N5 = 1.80518 ν5 = 25.43
r11*= 5.486
d11= 0.800 - 2.807 - 1.046
r12= ∞
d12= 2.000 N6 = 1.51680 ν6 = 64.20
r13= ∞

[非球面係数]
r1
ε = 0.10000E+01
A4 = -0.15783E-03
A6 = 0.29784E-05
A8 = -0.83049E-07
A10= 0.69898E-09

r2
ε = 0.10000E+01
A4 = -0.37748E-03
A6 = 0.46708E-05
A8 = -0. 33213E-06
A10= 0.30433E-08

r6
ε = 0.10000E+01
A4 = -0.36757E-02
A6 = 0.36847E-03
A8 = -0.10565E-04
A10= -0.20504E-05

r7
ε = 0.10000E+01
A4 = -0.21103E-02
A6 = 0.46641E-03
A8 = -0.26240E-04

r10
ε = 0.10000E+01
A4 = -0.57224E-02
A6 = -0.62282E-05
A8 = 0.46111E-05
A10 = -0.39249E-06

r11
ε = 0.10000E+01
A4 = -0.81522E-02
A6 = 0.16684E-03
A8 = -0.53316E-05

<実施例4>
f = 6.0 - 10.8 - 17.3 mm
FNo.= 2.95 - 3.46 - 4.24
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -180.565
d1 = 1.000 N1 = 1.49310 ν1 = 83.58
r2*= 8.101
d2 = 22.102 - 8.977 - 3.301
r3 = ∞
d3 = 0.600
r4 = 6.286
d4 = 2.725 N2 = 1.74159 ν2 = 43.17
r5 = -29.861
d5 = 1.300
r6*= -11.145
d6 = 1.000 N3 = 1.84666 ν3 = 23.82
r7*= 10.004
d7 = 3.742 - 4.916 - 4.596
r8 = 21.104
d8 = 2.414 N4 = 1.80513 ν4 = 44.41
r9 = -20.523
d9 = 1.000 - 6.985 - 16.317
r10 = 10.089
d10= 3.566 N5 = 1.48749 ν5 = 70.44
r11= -8.086
d11= 0.100
r12= -7.873
d12= 0.800 N6 = 1.58340 ν6 = 30.23
r13*= 25.439
d13 = 2.550 - 2.460 - 1.116
r14= ∞
d14= 2.000 N7 = 1.51633 ν7 = 64.14
r15= ∞

[非球面係数]
r1
ε = 0.10000E+01
A4 = -0.75826E-03
A6 = 0.34105E-04
A8 = -0.50991E-06
A10= 0.25871E-08

r2
ε = 0.10000E+01
A4 = -0.10941E-02
A6 = 0.26338E-04
A8 = 0.51284E-06
A10= -0.16952E-07

r6
ε = 0.10000E+01
A4 = -0.31416E-03
A6 = 0.93704E-05
A8 = 0.43331E-05
A10= -0.34297E-06

r7
ε = 0.10000E+01
A4 = 0.55006E-03
A6 = 0.43702E-04
A8 = 0.29782E-05
A10= -0.26895E-06

r13
ε = 0.10000E+01
A4 = 0.55321E-03
A6 = -0.23535E-04
A8 = 0.11220E-05
A10= -0.93429E-08

<実施例5>
f = 5.6 - 16.1 - 21.2 mm
FNo.= 2.95 - 4.51 - 5.27
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -39.852
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2*= 7.943
d2 = 27.324 - 5.086 - 2.210
r3 = 9.089
d3 = 2.617 N2 = 1.75450 ν2 = 51.57
r4 = -26.827
d4 = 1.220
r5*= -45.076
d5 = 0.800 N3 = 1.84666 ν3 = 23.82
r6*= 18.718
d6 = 1.188
r7 = ∞
d7 = 8.466
r8 = 19.274
d8 = 1.710 N4 = 1.76213 ν4 = 50.28
r9 = -79.564
d9 = 1.000 - 13.487 - 19.631
r10 = 19.602
d10= 0.800 N5 = 1.79850 ν5 = 22.60
r11= 6.499
d11= 0.100
r12*= 5.624
d12= 3.076 N6 = 1.52510 ν6 = 56.38
r13*= 67.250
d13= 1.000
r14= ∞
d14 = 2.000 N7 = 1.51680 ν7 = 64.20
r15 = ∞

[非球面係数]
r1
ε = 0.10000E+01
A4 = -0.64385E-03
A6 = 0.20445E-04
A8 = -0.22702E-06
A10= 0.79381E-09

r2
ε = 0.10000E+01
A4 = -0.10137E-02
A6 = 0.90231E-05
A8 = 0.49260E-06
A10= -0.10596E-07

r5
ε = 0.10000E+01
A4 = -0.61443E-03
A6 = 0.40451E-04
A8 = -0.38476E-05
A10= 0.18991E-06

r6
ε = 0.10000E+01
A4 = -0.28745E-03
A6 = 0.58066E-04
A8 = -0.54298E-05
A10= 0.27306E-06

r12
ε = 0.10000E+01
A4 = 0.65072E-03
A6 = -0.30424E-03
A8 = 0.28044E-04
A10= -0.12221E-05

r13
ε = 0.10000E+01
A4= 0.27656E-02
A6 = -0.45141E-03
A8 = 0.33907E-04
A10= -0.12549E-05

図6〜図15は、実施例1〜実施例5の収差図であり、図6〜図10は、無限遠合焦状
態での実施例1〜5の各収差、図11〜図25は、近接物体(物体距離40cm)合焦点状態
での実施例1〜5の各収差を示している。各収差図中、上段は最短焦点距離状態,中段は
ミドル,下段は最長焦点距離状態における諸収差(左から順に、球面収差等,非点収差,
歪曲;Y':像高)を示している。また、球面収差図中の実線(d)、一点鎖線(g)はそれぞれ
d線、g線に対する球面収差、破線(SC)は正弦条件を表しており、非点収差図中の破線(DM
)と実線(DS)は、メリディオナル面とサジタル面でのd線に対する非点収差をそれぞれ表
わしている。
Z (h) = r- (r ^ 2-ε ・ h ^ 2) ^ 1/2 + (A4 ・ h ^ 4 + A6 ・ h ^ 6 + A8 ・ h ^ 8 + ...) (AS)
r: radius of paraxial curvature of aspheric surface
ε: elliptic coefficient,
Ai: the i-th aspherical coefficient of the aspherical surface,

<Example 1>
f = 6.0-13.8-17.3 mm
FNo. = 2.95-4.08-4.58
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -24.000
d1 = 1.200 N1 = 1.52510 ν1 = 56.38
r2 * = 8.537
d2 = 21.597-5.154-2.607
r3 = 8.946
d3 = 2.620 N2 = 1.75450 ν2 = 51.57
r4 = -28.455
d4 = 1.880
r5 * = -14.577
d5 = 0.800 N3 = 1.84666 ν3 = 23.82
r6 * = 155.719
d6 = 0.800
r7 = ∞
d7 = 7.471
r8 = 21.530
d8 = 1.721 N4 = 1.79260 ν4 = 45.91
r9 = -31.317
d9 = 1.000-10.165-14.254
r10 = 65.851
d10 = 0.800 N5 = 1.79850 ν5 = 22.60
r11 = 6.992
d11 = 0.100
r12 = 6.038
d12 = 2.772 N6 = 1.52510 ν6 = 56.38
r13 * = -37.830
d13 = 2.240
r14 = ∞
d14 = 2.000 N7 = 1.51680 ν7 = 64.20
r15 = ∞

[Aspheric coefficient]
r1
ε = 0.10000E + 01
A4 = -0.37244E-03
A6 = 0.15081E-04
A8 = -0.18789E-06
A10 = 0.65368E-09

r2
ε = 0.10000E + 01
A4 = -0.71541E-03
A6 = 0.76630E-05
A8 = 0.41941E-06
A10 = -0.10107E-07

r5
ε = 0.10000E + 01
A4 = 0.33144E-03
A6 = 0.47309E-04
A8 = -0.10852E-04
A10 = 0.67862E-06

r6
ε = 0.10000E + 01
A4 = 0.71541E-03
A6 = 0.64576E-04
A8 = -0.12229E-04
A10 = 0.74861E-06

r13
ε = 0.10000E + 01
A4 = 0.11793E-02
A6 = 0.96628E-05
A8 = 0.32872E-06
A10 = 0.45109E-09

<Example 2>
f = 5.6-12.9-16.1 mm
FNo. = 2.95-4.01-4.45
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -24.000
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2 * = 8.123
d2 = 20.351-5.732-3.353
r3 = 6.991
d3 = 2.638 N2 = 1.72375 ν2 = 52.66
r4 = -34.740
d4 = 0.900
r5 = ∞
d5 = 1.000
r6 * = -9.988
d6 = 0.800 N3 = 1.84666 ν3 = 23.82
r7 * = 247.216
d7 = 6.049-6.611-6.879
r8 = 16.911
d8 = 1.806 N4 = 1.77436 ν4 = 48.39
r9 = -46.007
d9 = 0.800-9.345-13.337
r10 = 9.008
d10 = 0.800 N5 = 1.84666 ν5 = 23.82
r11 = 4.749
d11 = 0.301
r12 * = 5.048
d12 = 3.555 N6 = 1.52510 ν6 = 56.38
r13 * = 21.908
d13 = 0.800
r14 = ∞
d14 = 2.000 N7 = 1.51680 ν7 = 64.20
r15 = ∞

[Aspheric coefficient]
r1
ε = 0.10000E + 01
A4 = -0.63439E-04
A6 = 0.68501E-05
A8 = -0.66696E-07
A10 = -0.17038E-09

r2
ε = 0.10000E + 01
A4 = -0.47028E-03
A6 = 0.69477E-06
A8 = 0.66535E-06
A10 = -0.15800E-07

r6
ε = 0.10000E + 01
A4 = 0.59417E-03
A6 = 0.46685E-04
A8 = -0.77214E-05
A10 = 0.39203E-06

r7
ε = 0.10000E + 01
A4 = 0.12314E-02
A6 = 0.80651E-04
A8 = -0.10222E-04
A10 = 0.55470E-06

r12
ε = 0.10000E + 01
A4 = -0.59528E-03
A6 = -0.10325E-04
A8 = -0.14170E-06
A10 = -0.31345E-06

r13
ε = 0.10000E + 01
A4 = -0.55636E-03
A6 = 0.13842E-03
A8 = -0.20578E-04
A10 = 0.36116E-06

<Example 3>
f = 6.0-12.0-17.3 mm
FNo. = 2.95-3.60-3.84
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = 72.689
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2 * = 8.018
d2 = 28.005-8.738-1.125
r3 = 5.404
d3 = 2.577 N2 = 1.70206 ν2 = 53.53
r4 = -4231.909
d4 = 0.900
r5 = ∞
d5 = 1.271
r6 * = -10.108
d6 = 0.800 N3 = 1.84666 ν3 = 23.82
r7 * = 19.972
d7 = 4.900-5.414-4.248
r8 = 12.483
d8 = 2.589 N4 = 1.69005 ν4 = 54.04
r9 = -18.055
d9 = 0.800-2.578-8.087
r10 * = 7.794
d10 = 1.157 N5 = 1.80518 ν5 = 25.43
r11 * = 5.486
d11 = 0.800-2.807-1.046
r12 = ∞
d12 = 2.000 N6 = 1.51680 ν6 = 64.20
r13 = ∞

[Aspheric coefficient]
r1
ε = 0.10000E + 01
A4 = -0.15783E-03
A6 = 0.29784E-05
A8 = -0.83049E-07
A10 = 0.69898E-09

r2
ε = 0.10000E + 01
A4 = -0.37748E-03
A6 = 0.46708E-05
A8 = -0. 33213E-06
A10 = 0.30433E-08

r6
ε = 0.10000E + 01
A4 = -0.36757E-02
A6 = 0.36847E-03
A8 = -0.10565E-04
A10 = -0.20504E-05

r7
ε = 0.10000E + 01
A4 = -0.21103E-02
A6 = 0.46641E-03
A8 = -0.26240E-04

r10
ε = 0.10000E + 01
A4 = -0.57224E-02
A6 = -0.62282E-05
A8 = 0.46111E-05
A10 = -0.39249E-06

r11
ε = 0.10000E + 01
A4 = -0.81522E-02
A6 = 0.16684E-03
A8 = -0.53316E-05

<Example 4>
f = 6.0-10.8-17.3 mm
FNo. = 2.95-3.46-4.24
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -180.565
d1 = 1.000 N1 = 1.49310 ν1 = 83.58
r2 * = 8.101
d2 = 22.102-8.977-3.301
r3 = ∞
d3 = 0.600
r4 = 6.286
d4 = 2.725 N2 = 1.74159 ν2 = 43.17
r5 = -29.861
d5 = 1.300
r6 * = -11.145
d6 = 1.000 N3 = 1.84666 ν3 = 23.82
r7 * = 10.004
d7 = 3.742-4.916-4.596
r8 = 21.104
d8 = 2.414 N4 = 1.80513 ν4 = 44.41
r9 = -20.523
d9 = 1.000-6.985-16.317
r10 = 10.089
d10 = 3.566 N5 = 1.48749 ν5 = 70.44
r11 = -8.086
d11 = 0.100
r12 = -7.873
d12 = 0.800 N6 = 1.58340 ν6 = 30.23
r13 * = 25.439
d13 = 2.550-2.460-1.116
r14 = ∞
d14 = 2.000 N7 = 1.51633 ν7 = 64.14
r15 = ∞

[Aspheric coefficient]
r1
ε = 0.10000E + 01
A4 = -0.75826E-03
A6 = 0.34105E-04
A8 = -0.50991E-06
A10 = 0.25871E-08

r2
ε = 0.10000E + 01
A4 = -0.10941E-02
A6 = 0.26338E-04
A8 = 0.51284E-06
A10 = -0.16952E-07

r6
ε = 0.10000E + 01
A4 = -0.31416E-03
A6 = 0.93704E-05
A8 = 0.43331E-05
A10 = -0.34297E-06

r7
ε = 0.10000E + 01
A4 = 0.55006E-03
A6 = 0.43702E-04
A8 = 0.29782E-05
A10 = -0.26895E-06

r13
ε = 0.10000E + 01
A4 = 0.55321E-03
A6 = -0.23535E-04
A8 = 0.11220E-05
A10 = -0.93429E-08

<Example 5>
f = 5.6-16.1-21.2 mm
FNo. = 2.95-4.51-5.27
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -39.852
d1 = 1.200 N1 = 1.49310 ν1 = 83.58
r2 * = 7.943
d2 = 27.324-5.086-2.210
r3 = 9.089
d3 = 2.617 N2 = 1.75450 ν2 = 51.57
r4 = -26.827
d4 = 1.220
r5 * = -45.076
d5 = 0.800 N3 = 1.84666 ν3 = 23.82
r6 * = 18.718
d6 = 1.188
r7 = ∞
d7 = 8.466
r8 = 19.274
d8 = 1.710 N4 = 1.76213 ν4 = 50.28
r9 = -79.564
d9 = 1.000-13.487-19.631
r10 = 19.602
d10 = 0.800 N5 = 1.79850 ν5 = 22.60
r11 = 6.499
d11 = 0.100
r12 * = 5.624
d12 = 3.076 N6 = 1.52510 ν6 = 56.38
r13 * = 67.250
d13 = 1.000
r14 = ∞
d14 = 2.000 N7 = 1.51680 ν7 = 64.20
r15 = ∞

[Aspheric coefficient]
r1
ε = 0.10000E + 01
A4 = -0.64385E-03
A6 = 0.20445E-04
A8 = -0.22702E-06
A10 = 0.79381E-09

r2
ε = 0.10000E + 01
A4 = -0.10137E-02
A6 = 0.90231E-05
A8 = 0.49260E-06
A10 = -0.10596E-07

r5
ε = 0.10000E + 01
A4 = -0.61443E-03
A6 = 0.40451E-04
A8 = -0.38476E-05
A10 = 0.18991E-06

r6
ε = 0.10000E + 01
A4 = -0.28745E-03
A6 = 0.58066E-04
A8 = -0.54298E-05
A10 = 0.27306E-06

r12
ε = 0.10000E + 01
A4 = 0.65072E-03
A6 = -0.30424E-03
A8 = 0.28044E-04
A10 = -0.12221E-05

r13
ε = 0.10000E + 01
A4 = 0.27656E-02
A6 = -0.45141E-03
A8 = 0.33907E-04
A10 = -0.12549E-05

6 to 15 are aberration diagrams of Examples 1 to 5, FIGS. 6 to 10 are aberrations of Examples 1 to 5 in an infinity in-focus state, and FIGS. 9 shows respective aberrations of Examples 1 to 5 in a focused state of a close object (object distance of 40 cm). In each aberration diagram, the upper part shows the shortest focal length state, the middle part shows the middle, and the lower part shows various aberrations in the longest focal state (from left to right, spherical aberration, astigmatism,
Distortion (Y ': image height). Further, the solid line (d) and the dashed-dotted line (g) in the spherical aberration diagram represent the spherical aberration with respect to the d-line and the g-line, respectively, and the dashed line (SC) represents the sine condition.
) And the solid line (DS) represent the astigmatism with respect to the d-line on the meridional surface and the sagittal surface, respectively.

本発明の第1の実施形態(実施例1)を表すレンズ構成図1 is a lens configuration diagram illustrating a first embodiment (Example 1) of the present invention. 本発明の第2の実施形態(実施例2)を表すレンズ構成図FIG. 4 is a lens configuration diagram illustrating a second embodiment (Example 2) of the present invention. 本発明の第3の実施形態(実施例3)を表すレンズ構成図Lens configuration diagram showing a third embodiment (Example 3) of the present invention 本発明の第4の実施形態(実施例4)を表すレンズ構成図A lens configuration diagram illustrating a fourth embodiment (Example 4) of the present invention. 本発明の第5の実施形態(実施例5)を表すレンズ構成図A lens configuration diagram illustrating a fifth embodiment (Example 5) of the present invention. 本発明の第1の実施形態(実施例1)の無限遠合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when focused on infinity 本発明の第2の実施形態(実施例2)の無限遠合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention when focused on infinity 本発明の第3の実施形態(実施例3)の無限遠合焦状態の収差図Aberration diagram of the third embodiment (Example 3) of the present invention when focused on infinity 本発明の第4の実施形態(実施例4)の無限遠合焦状態の収差図Aberration diagram of the fourth embodiment (Example 4) of the present invention in an infinity in-focus state 本発明の第5の実施形態(実施例5)の無限遠合焦状態の収差図Aberration diagram of the fifth embodiment (Example 5) of the present invention when focused on infinity 本発明の第1の実施形態(実施例1)の近接物体合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when a close object is in focus 本発明の第2の実施形態(実施例2)の近接物体合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention in a state where a close object is in focus 本発明の第3の実施形態(実施例3)の近接物体合焦状態の収差図Aberration diagram of the third embodiment (Example 3) of the present invention when a close object is in focus 本発明の第4の実施形態(実施例4)の近接物体合焦状態の収差図4A and 4B are aberration diagrams of a fourth embodiment (Example 4) of the present invention in a state where a close object is in focus. 本発明の第5の実施形態(実施例5)の近接物体合焦状態の収差図Aberration diagram of the fifth embodiment (Example 5) of the present invention in a state where a close object is in focus 本発明のズームレンズ装置の概略構成を示す図FIG. 1 is a diagram showing a schematic configuration of a zoom lens device according to the present invention.

符号の説明Explanation of reference numerals

ズームレンズ系(TL)
第1レンズ群(Gr1)
第2レンズ群(Gr2)
第3レンズ群(Gr3)
第4レンズ群(Gr4)
フィルタ(LPF)
撮像素子(SR)
Zoom lens system (TL)
First lens group (Gr1)
Second lens group (Gr2)
Third lens group (Gr3)
4th lens group (Gr4)
Filter (LPF)
Image sensor (SR)

Claims (8)

物体側から順に、ズームレンズ系と、ズームレンズ系が形成した光学像を電気的画像デー
タに変換する撮像素子と、を備えたズームレンズ装置であって、
前記ズームレンズ系は、
最も物体側に配置され1枚の負レンズ素子のみから構成された第1群、を含む複数の群
からなり、各群の間隔を変化させてズーミングを行うとともに、
第2群の物体側あるいは像側、及び第2群中に絞りを配置し、絞りよりも像側であって最
も像側の群に含まれない位置に配置された正のレンズ群あるいは単レンズ素子を光軸上に
移動させることにより、物体距離変化によるフォーカシング調整を行うことを特徴とする
ズームレンズ装置。
A zoom lens device including, in order from the object side, a zoom lens system, and an imaging element that converts an optical image formed by the zoom lens system into electrical image data,
The zoom lens system includes:
A plurality of groups including a first group disposed only on the object side and composed of only one negative lens element, and performing zooming by changing the interval between the groups,
A positive lens group or a single lens arranged at the object side or image side of the second group, and a stop located in the second group, and arranged at a position on the image side of the stop and not included in the most image side group A zoom lens apparatus wherein focusing is adjusted by changing an object distance by moving an element on an optical axis.
前記ズームレンズ系が、以下の条件を満足することを特徴とする請求項1に記載のズー
ムレンズ装置;
0.1 < T23w / fw < 1.5
ただし、
T23w:最短焦点距離状態での第2群と像側に隣接する群との軸上面間隔、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
2. The zoom lens device according to claim 1, wherein the zoom lens system satisfies the following conditions;
0.1 <T23w / fw <1.5
However,
T23w: axial top surface distance between the second group and the group adjacent to the image side in the shortest focal length state,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.
前記ズームレンズ系が、以下の条件を満足することを特徴とする請求項1に記載のズー
ムレンズ装置;
0.6 < Tsum / fw < 2.6
ただし、
Tsum:ズームレンズ系に含まれるすべてのレンズ素子の心厚の和、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
2. The zoom lens device according to claim 1, wherein the zoom lens system satisfies the following conditions;
0.6 <Tsum / fw <2.6
However,
Tsum: Sum of the thicknesses of all the lens elements included in the zoom lens system,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.
前記ズームレンズ系の第1群は、ズーミング時移動することを特徴とする請求項1に記
載のズームンレンズ装置。
The zoom lens apparatus according to claim 1, wherein the first group of the zoom lens system moves during zooming.
前記ズームンレンズ系の最も像側に配置された光学的にパワーを有する群は、2枚以上
のレンズ素子を含むことを特徴とする請求項1に記載のズームレンズ装置。
The zoom lens apparatus according to claim 1, wherein the optically power group disposed closest to the image side of the zoom lens system includes two or more lens elements.
前記ズームレンズ系が、以下の条件を満足することを特徴とする請求項1に記載のズー
ムレンズ装置;
ν1 > 45
ただし、
ν1:前記第1群を構成する1枚の負レンズ素子のアッベ数、である。
2. The zoom lens device according to claim 1, wherein the zoom lens system satisfies the following conditions;
ν1> 45
However,
ν1 is the Abbe number of one negative lens element constituting the first group.
請求項1乃至6のいずれかのズームレンズ装置を備えたデジタルカメラ。   A digital camera comprising the zoom lens device according to claim 1. 請求項1乃至6のいずれかのズームレンズ装置を備えた携帯情報機器。

A portable information device comprising the zoom lens device according to claim 1.

JP2004083254A 2003-03-31 2004-03-22 Zoom lens device Pending JP2004318099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083254A JP2004318099A (en) 2003-03-31 2004-03-22 Zoom lens device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003093530 2003-03-31
JP2004083254A JP2004318099A (en) 2003-03-31 2004-03-22 Zoom lens device

Publications (1)

Publication Number Publication Date
JP2004318099A true JP2004318099A (en) 2004-11-11

Family

ID=33478595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083254A Pending JP2004318099A (en) 2003-03-31 2004-03-22 Zoom lens device

Country Status (1)

Country Link
JP (1) JP2004318099A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343552A (en) * 2005-06-09 2006-12-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2007156385A (en) * 2005-06-15 2007-06-21 Olympus Imaging Corp Zoom optical system and image taking apparatus using the same
US7382547B2 (en) 2006-04-04 2008-06-03 Olympus Imaging Corp. Zoom lens system
US7474472B2 (en) 2006-06-06 2009-01-06 Olympus Imaging Corp. Zoom lens, and imaging system comprising the same
WO2012132456A1 (en) * 2011-03-30 2012-10-04 富士フイルム株式会社 Image pickup lens and image pickup device
US8411378B2 (en) 2009-10-07 2013-04-02 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
JP2013092775A (en) * 2011-10-26 2013-05-16 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Lens system
US9383555B2 (en) 2012-07-23 2016-07-05 Fujifilm Corporation Imaging lens and imaging apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343552A (en) * 2005-06-09 2006-12-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2007156385A (en) * 2005-06-15 2007-06-21 Olympus Imaging Corp Zoom optical system and image taking apparatus using the same
US7382547B2 (en) 2006-04-04 2008-06-03 Olympus Imaging Corp. Zoom lens system
US7808721B2 (en) 2006-04-04 2010-10-05 Olympus Imaging Corp. Zoom lens system
US7474472B2 (en) 2006-06-06 2009-01-06 Olympus Imaging Corp. Zoom lens, and imaging system comprising the same
US8411378B2 (en) 2009-10-07 2013-04-02 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
WO2012132456A1 (en) * 2011-03-30 2012-10-04 富士フイルム株式会社 Image pickup lens and image pickup device
US8908289B2 (en) 2011-03-30 2014-12-09 Fujifilm Corporation Image capturing lens and image capturing apparatus
JP5698834B2 (en) * 2011-03-30 2015-04-08 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2013092775A (en) * 2011-10-26 2013-05-16 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Lens system
US9383555B2 (en) 2012-07-23 2016-07-05 Fujifilm Corporation Imaging lens and imaging apparatus

Similar Documents

Publication Publication Date Title
US7379250B2 (en) Variable magnification optical system and image-taking apparatus
JP4055599B2 (en) Imaging lens device and electronic apparatus equipped with the same
JP3896988B2 (en) Imaging lens device
JP4862433B2 (en) Magnification optical system and imaging device
JP2004037924A (en) Imaging apparatus
JP5062734B2 (en) Image pickup apparatus provided with optical path reflection type zoom lens
JP2003202500A (en) Imaging apparatus
JP2001343587A (en) Image pickup lens device
JP3750672B2 (en) Imaging lens device
JP2004102089A (en) Imaging apparatus
JP2004037966A (en) Image pickup lens device
US7522346B2 (en) Imaging device and digital camera using the imaging device
US6853807B2 (en) Imaging device and digital camera using the imaging device
JP2004325713A (en) Objective lens
US6930839B2 (en) Zoom lens device
JP2005037576A (en) Imaging lens device
JP2004318097A (en) Zoom lens device
JP3821087B2 (en) Imaging lens device
US7440195B2 (en) Zoom lens system and imaging device having the same
JP2004318108A (en) Zoom lens device
JP2004318107A (en) Zoom lens device
JP2004318103A (en) Zoom lens device
JP2004037925A (en) Imaging apparatus
JP2004318106A (en) Zoom lens device
JP4821207B2 (en) Variable magnification optical system and image pickup apparatus including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404