JP2004318107A - Zoom lens device - Google Patents

Zoom lens device Download PDF

Info

Publication number
JP2004318107A
JP2004318107A JP2004083262A JP2004083262A JP2004318107A JP 2004318107 A JP2004318107 A JP 2004318107A JP 2004083262 A JP2004083262 A JP 2004083262A JP 2004083262 A JP2004083262 A JP 2004083262A JP 2004318107 A JP2004318107 A JP 2004318107A
Authority
JP
Japan
Prior art keywords
zoom lens
group
lens
object side
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083262A
Other languages
Japanese (ja)
Inventor
Hitoshi Hagimori
仁 萩森
Genta Yagyu
玄太 柳生
Kazuhiko Ishimaru
和彦 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Photo Imaging Inc
Original Assignee
Konica Minolta Photo Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging Inc filed Critical Konica Minolta Photo Imaging Inc
Priority to JP2004083262A priority Critical patent/JP2004318107A/en
Publication of JP2004318107A publication Critical patent/JP2004318107A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens device suitable for a digital camera equipped with a zoom lens system which is bright even in the longest focal distance state though a zoom ratio is large, and whose length in an optical axis direction in housing is very short. <P>SOLUTION: In the zoom lens device equipped with the zoom lens system and an imaging device for converting an optical image formed by the zoom lens system into electric image data in order from an object side, the zoom lens system is constituted of a 1st group having negative power, a 2nd group having positive power, a 3rd group having positive power and a 4th group in order from the object side. In the case of zooming from the shortest focal distance state to the longest focal distance state, space between the respective groups is changed by moving the 2nd and the 3rd groups, especially, moving the 2nd group to the object side, and focusing in accordance with the change of an object distance is performed by moving the 3rd group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CCD(Charge Coupled Device 電荷結合素子)やCMOSセンサ(Complementary
Metal-oxide Semiconductor 相補性金属酸化膜半導体センサ)等の受光面上に形成され
た光学像を電気信号に変換する撮像素子を備えたズームレンズ装置に関し、特にズームレ
ンズ系を備えた小型のズームレンズ装置に関する。
The present invention relates to a CCD (Charge Coupled Device) and a CMOS sensor (Complementary
The present invention relates to a zoom lens device having an image pickup device for converting an optical image formed on a light receiving surface such as a metal-oxide semiconductor (complementary metal oxide semiconductor sensor) into an electric signal, and in particular, a small zoom lens having a zoom lens system. Equipment related.

近年、銀塩フィルムの代わりにCCDやCMOSセンサなどの撮像素子を用いて、光学像を電
気信号に変換し、そのデータをデジタル化して記録したり転送したりするデジタルカメラ
が一般化している。このようなデジタルカメラにおいては、最近、200万画素や300万画素
といった高画素を有するCCDやCMOSセンサが比較的安価に提供されるようになったため、
高画素の撮像素子を装着した高性能なズームレンズ装置に対する需要が非常に増大してい
る。これらのズームレンズ装置のうちでも特に、画質を劣化させずに変倍が可能なズーム
レンズ系を搭載したコンパクトなズームレンズ装置が切望されている。
2. Description of the Related Art In recent years, a digital camera that converts an optical image into an electric signal by using an imaging device such as a CCD or a CMOS sensor instead of a silver halide film, digitizes the data, and records or transfers the digital image has become popular. In such digital cameras, CCD and CMOS sensors having high pixels such as 2 million pixels and 3 million pixels have recently been provided at relatively low cost.
The demand for a high-performance zoom lens device equipped with a high-pixel image sensor has been greatly increased. Among these zoom lens devices, in particular, a compact zoom lens device equipped with a zoom lens system capable of zooming without deteriorating image quality has been desired.

さらに、近年では、半導体素子等の画像処理能力の向上により、パーソナルコンピュー
タ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistan
ce)等にズームレンズ装置が内蔵又は外付けされるようになっており、高性能なズームレ
ンズ装置に対する需要に拍車をかけている。
In recent years, with the improvement of image processing capability of semiconductor devices and the like, personal computers, mobile computers, mobile phones, and personal digital assistants (PDAs) have been developed.
ce) and the like, a zoom lens device is built in or externally attached, which has spurred demand for a high-performance zoom lens device.

このようなズームレンズ装置に用いられるズームレンズ系としては、最も物体側に配置
された群が負のパワーを有する、いわゆるマイナスリードのズームレンズ系が数多く提案
されている。マイナスリードのズームレンズ系は、広角化が容易であり、光学的ローパス
フィルタの挿入に必要なレンズバックを確保しやすい等の特徴を有している。
As a zoom lens system used in such a zoom lens device, a number of so-called minus-lead zoom lens systems have been proposed in which the group arranged closest to the object side has negative power. The minus lead zoom lens system has features such as easy widening of the angle and easy securing of a lens back necessary for insertion of an optical low-pass filter.

マイナスリードのズームレンズ系としては、従来から銀塩フィルム用カメラの撮影レン
ズ系として提案されたズームレンズ系がある。しかしながら、これらのズームレンズ系は
、特に最短焦点距離状態でのレンズ系の射出瞳位置が比較的像面の近くに位置するため、
特に高画素を有する撮像素子の各画素に対応して設けられたマイクロレンズの瞳と整合せ
ず、周辺光量が十分に確保できないという問題があった。また、変倍時に射出瞳位置が大
きく変動するため、マイクロレンズの瞳の設定が困難であるという問題もあった。また、
そもそも銀塩フィルムと撮像素子では、求められる空間周波数特性等の光学性能が全く異
なるため、撮像素子に要求される十分な光学性能を確保できなかった。このため、撮像素
子を備えたズームレンズ装置に最適化された専用のズームレンズ系を開発する必要が生じ
ている。
As a minus lead zoom lens system, there is a zoom lens system conventionally proposed as a photographing lens system of a camera for a silver halide film. However, in these zoom lens systems, in particular, the exit pupil position of the lens system in the shortest focal length state is relatively close to the image plane,
In particular, there is a problem that the pupil of the microlens provided corresponding to each pixel of the image sensor having a high number of pixels does not match, and a sufficient amount of peripheral light cannot be secured. In addition, since the exit pupil position fluctuates greatly at the time of zooming, there is also a problem that it is difficult to set the pupil of the micro lens. Also,
In the first place, the required optical performance such as spatial frequency characteristics is completely different between the silver halide film and the imaging device, and thus sufficient optical performance required for the imaging device cannot be secured. Therefore, there is a need to develop a dedicated zoom lens system optimized for a zoom lens device having an image sensor.

撮像素子を備えたズームレンズ装置用のマイナスリードのズームレンズ系としては、例
えば米国特許第5,745,301号には、負パワーの第1群と、正パワーの第2群からなる、2成
分構成のズームレンズ系が開示されている。
As a minus lead zoom lens system for a zoom lens device having an imaging device, for example, US Pat. No. 5,745,301 discloses a two-component zoom composed of a first group of negative power and a second group of positive power. A lens system is disclosed.

また、特開平1-191820号には、負パワーの第1群、正パワーの第2群、正パワーの第3
群からなる、3成分構成のビデオカメラ用ズームレンズ系が開示されている。
Japanese Patent Application Laid-Open No. 1-191820 discloses a first group of negative power, a second group of positive power, and a third group of positive power.
A three-component zoom lens system for a video camera comprising a group is disclosed.

また、特開平1-216310号には、負パワーの第1群、正パワーの第2群、負パワーの第3
群、正パワーの第4群からなる、4成分構成のビデオカメラ用ズームレンズ系が開示され
ている。
Japanese Patent Application Laid-Open No. 1-216310 discloses a first group of negative power, a second group of positive power, and a third group of negative power.
There is disclosed a zoom lens system for a video camera having a four-component configuration including a group and a fourth group having a positive power.

さらに、特開平9-179026号には、負パワーの第1群、正パワーの第2群、負パワーの第
3群、正パワーの第4群からなる4成分構成の電子スチルカメラ用ズームレンズ系が開示
されている。
Further, Japanese Patent Application Laid-Open No. Hei 9-79026 discloses a zoom lens for an electronic still camera having a four-component configuration including a first group of negative power, a second group of positive power, a third group of negative power, and a fourth group of positive power. A system is disclosed.

米国特許第5,745,301号U.S. Pat.No. 5,745,301

特開平1-191820号JP-A 1-191820 特開平1-216310号JP-A 1-216310 特開平9-179026号JP-A-9-79026

しかしながら、上記米国特許第5,745,301号、特開平1-191820号あるいは特開平1-21631
0号に開示されているズームレンズ系は、ズーム比が2倍程度であり、ズーム比が小さい
という問題があった。
However, the above-mentioned U.S. Patent No. 5,745,301, JP-A-1-191820 or JP-A-1-21631
The zoom lens system disclosed in No. 0 has a problem that the zoom ratio is about twice and the zoom ratio is small.

また、特開平9-179026号に開示されているズームレンズ系は、ズーム比が3倍程度であ
るが、最長焦点距離状態でのFナンバーが7と大きく、明るいズームレンズ系ではないと
いう問題があった。
Further, the zoom lens system disclosed in Japanese Patent Application Laid-Open No. 9-179026 has a zoom ratio of about three times, but has a problem that the F-number in the longest focal length state is as large as 7 and is not a bright zoom lens system. there were.

さらに、いずれのズームレンズ系も、数多くのレンズ素子を必要としており、コンパク
ト性、特に収納時(沈胴時)の光軸方向のコンパクト性に欠けるという問題があった。
Further, each zoom lens system requires a large number of lens elements, and has a problem that it lacks compactness, particularly compactness in the optical axis direction when stored (when retracted).

本発明の目的は、ズーム比が大きいにも拘わらず、収納時の光軸方向の長さが十分に小
さいズームレンズ系を備えたズームレンズ装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a zoom lens device including a zoom lens system having a sufficiently short length in the optical axis when stored, despite a large zoom ratio.

本発明のさらなる目的は、最長焦点距離状態でも明るく、収納時の光軸方向の長さが十
分に小さいズームレンズ系を備えたズームレンズ装置を提供することである。
A further object of the present invention is to provide a zoom lens device including a zoom lens system that is bright even in the longest focal length state and has a sufficiently small length in the optical axis direction when housed.

上記目的を達成するために、請求項1に記載されたズームレンズ系は、物体側から順に
、ズームレンズ系と、ズームレンズ系が形成した光学像を電気的画像データに変換する撮
像素子と、を備えたズームレンズ装置であって、前記ズームレンズ系は、物体側から順に
、負のパワーを有する第1群と、正のパワーを有する第2群と、正のパワーを有する第3
群と、第4群と、から構成され、最短焦点距離状態から最長焦点距離状態へのズーミング
に際して、前記第2、3群を移動させ、特に第2群は物体側へ移動させて、各群間隔を変
更するとともに、物体距離の変化に応じたフォーカシングを、前記第3群を移動させるこ
とにより行うことを特徴とする。
In order to achieve the above object, the zoom lens system according to claim 1 includes, in order from the object side, a zoom lens system, and an image sensor that converts an optical image formed by the zoom lens system into electrical image data. Wherein the zoom lens system includes, in order from the object side, a first unit having negative power, a second unit having positive power, and a third unit having positive power.
A second group and a fourth group. When zooming from the shortest focal length state to the longest focal length state, the second and third groups are moved, and in particular, the second group is moved to the object side. In addition to changing the distance, focusing according to the change in the object distance is performed by moving the third lens unit.

また、本発明の別の側面は、上記ズームレンズ装置を含むデジタルカメラであることを
特徴とする。なお、デジタルカメラの語は、従来は専ら光学的な静止画を記録するものを
指していたが、動画を同時に扱えるものや家庭用のデジタルビデオカメラも提案されてお
り、現在では特に区別されなくてなってきている。したがって、この明細書で用いるデジ
タルカメラの語は、デジタルスチルカメラ、デジタルムービーカメラ、ウェッブカメラ(
開放型、プライベートを問わずネットワークに接続されて画像の送受信を可能にする機器
に接続されるカメラであって、ネットワークに直接接続されるもの、又はパーソナルコン
ピュータ等の情報処理機能を有する機器を介して接続されるものの両方を含む)等の受光
面上に形成された光学像を電気信号に変換する撮像素子を備えた撮像装置を主たる構成要
素とするカメラをすべて含む。
Another aspect of the present invention is a digital camera including the zoom lens device. In the past, the term digital camera used to refer exclusively to those that record optical still images, but those that can simultaneously handle moving pictures and digital video cameras for home use have also been proposed, and at present there is no particular distinction between them. It is getting better. Therefore, the term digital camera used in this specification refers to a digital still camera, a digital movie camera, a web camera (
An open or private camera connected to a network that can transmit and receive images regardless of whether it is connected directly to the network or via a device having an information processing function such as a personal computer. And cameras connected to the optical device, and includes an image pickup device having an image pickup device that converts an optical image formed on a light receiving surface into an electric signal.

また、本発明の別の側面は、上記ズームレンズ装置を含む携帯情報機器であることを特
徴とする。ここで、携帯情報機器とは、携帯電話端末やPDA(Personal Digital Assistan
t)等の個人ユースの小型で携帯可能な情報機器端末を意味することとする。
Another aspect of the present invention is a portable information device including the zoom lens device. Here, the portable information device is a mobile phone terminal or a PDA (Personal Digital Assistan
It means a small and portable information device terminal for personal use such as t).

以上説明したように、本発明に係るズームレンズ装置によれば、ズーム比が大きいにも
拘わらず、収納時の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ
装置を提供することができる。
As described above, according to the zoom lens device of the present invention, there is provided a zoom lens device including a zoom lens system having a sufficiently small length in the optical axis direction when housed, despite a large zoom ratio. can do.

また、本発明に係るズームレンズ装置によれば、最長焦点距離状態でも明るく、収納時
の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ装置を提供するこ
とができる。
Further, according to the zoom lens device of the present invention, it is possible to provide a zoom lens device including a zoom lens system which is bright even in the longest focal length state and has a sufficiently small length in the optical axis direction when housed.

以下、図面を参照して、本発明の一実施形態について説明する。     Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明の一実施形態である撮像装置は、例えば図16に示すように、物体側(被写体側
)から順に、物体の光学像を変倍可能に形成するズームレンズ系とTL、光学的ローパスフ
ィルタLPFと、ズームレンズ系TLにより形成された光学像を電気的な信号に変換する撮像
素子SRと、で構成されている。撮像装置は、デジタルカメラ;ビデオカメラ;パーソナル
コンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digita
l Assistance)等に内蔵又は外付けされるカメラの主たる構成要素である。
As shown in FIG. 16, for example, an imaging apparatus according to an embodiment of the present invention includes a zoom lens system, a TL, and an optical low-pass filter that sequentially form an optical image of an object in a variable order from the object side (subject side). It comprises an LPF and an image sensor SR for converting an optical image formed by the zoom lens system TL into an electric signal. The imaging device is a digital camera; a video camera; a personal computer, a mobile computer, a mobile phone, and a personal digital assistant (PDA).
l Assistance) is a main component of a camera that is built in or externally attached.

光学ローパスフィルタLPFは、撮影レンズ系の空間周波数特性を調整し撮像素子で発生
する色モアレを解消するための特定の遮断周波数を有している。実施形態の光学ローパス
フィルタは、結晶軸を所定方向に調整された水晶等の複屈折材料や偏光面を変化させる波
長板等を積層して作成された複屈折型ローパスフィルタである。なお、光学ローパスフィ
ルタとしては、必要な光学的な遮断周波数の特性を回折効果により達成する位相型ローパ
スフィルタ等を採用してもよい。
The optical low-pass filter LPF has a specific cutoff frequency for adjusting the spatial frequency characteristics of the taking lens system and eliminating color moiré generated in the image sensor. The optical low-pass filter according to the embodiment is a birefringent low-pass filter formed by laminating a birefringent material such as quartz whose crystal axis is adjusted in a predetermined direction, a wave plate that changes the plane of polarization, and the like. Note that, as the optical low-pass filter, a phase-type low-pass filter or the like that achieves the required optical cutoff frequency characteristic by the diffraction effect may be employed.

撮像素子SRは、複数の画素を有するCCDからなり、ズームレンズ系が形成した光学像をC
CDで電気信号に変換する。撮像素子SRで生成された信号は、必要に応じて所定のデジタル
画像処理や画像圧縮処理等を施されてデジタル映像信号としてメモリー(半導体メモリー
,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換
されたりして他の機器に伝送される。なお、CCDの代わりにCMOSセンサ(Complementary M
etal-oxide Semiconductor)を用いてもよい。
The image sensor SR is composed of a CCD having a plurality of pixels, and converts an optical image formed by a zoom lens system into a CCD.
Convert to an electric signal with CD. The signal generated by the image sensor SR is subjected to predetermined digital image processing and image compression processing as required, and is recorded as digital video signals in a memory (semiconductor memory, optical disk, etc.). The signal is transmitted to another device through the device or converted into an infrared signal. Note that instead of a CCD, a CMOS sensor (Complementary M
etal-oxide Semiconductor) may be used.

図1は、第1実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1及び物体側に凸の正メニスカス形
状の第2レンズL2から構成される第1群Gr1と、両凸形状の第3レンズL3,物体側に凹面を向
けた負メニスカス形状の第4レンズL4及び絞りSTから構成される第2群Gr2と、両凸形状の
第5レンズL5のみから構成される第3群Gr3と、近軸的に物体側に凸面を向けた正メニスカ
ス形状の第6レンズL6のみから構成される第4群Gr4と、から成る。最短焦点距離状態から
最長焦点距離状態へのズーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描き
ながら移動し、第2群Gr2及び第3群Gr3は互いの間隔を狭めながら物体側へ単調にそれぞれ
移動する一方、第4群Gr4は像面に対して固定される。また、無限遠合焦状態から有限物体
合焦状態へのフォーカシングに際して、第5レンズL5を単独で物体側へ移動させる。
FIG. 1 is a lens configuration diagram illustrating a configuration of a zoom lens system according to the first embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including a biconcave first lens L1 and a positive meniscus second lens L2 convex on the object side, and a biconvex third lens L3, a second lens unit Gr2 including a negative meniscus fourth lens L4 having a concave surface facing the object side and an aperture ST, and a third lens unit Gr3 including only a biconvex fifth lens L5. A fourth lens unit Gr4 including only a positive meniscus sixth lens L6 with the convex surface facing the object side in the axial direction. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex on the image side, and the second group Gr2 and the third group Gr3 narrow each other's distance. The fourth unit Gr4 is fixed with respect to the image plane while moving monotonously to the object side. In focusing from an infinity in-focus condition to a finite object in-focus condition, the fifth lens L5 is independently moved to the object side.

図2は、第2実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1のみから構成される第1群Gr1と、
絞りST,両凸形状の第2レンズL2,両凹形状の第3レンズL3及び両凸形状の第4レンズL4か
ら構成される第2群Gr2と、両凸形状の第5レンズL5及び物体側に凹面を向けた負メニスカ
ス形状の第6レンズL6から構成される第3群Gr3と、物体側に凹面を向けた負メニスカス形
状の第7レンズL7のみから構成される第4群Gr4と、から成る。最短焦点距離状態から最長
焦点距離状態へのズーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描きなが
ら移動し、第2群Gr2は物体側へ単調に移動し、第3群Gr3は物体側に凸の軌跡を描きながら
移動する一方、第4群Gr4は像面に対して固定される。また、無限遠合焦状態から有限物体
合焦状態へのフォーカシングに際して、第3群Gr3全体を物体側へ移動させる。
FIG. 2 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a second embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including only a biconcave first lens L1,
A second group Gr2 composed of an aperture ST, a biconvex second lens L2, a biconcave third lens L3 and a biconvex fourth lens L4, a biconvex fifth lens L5 and an object side A third group Gr3 composed of a negative meniscus sixth lens L6 with a concave surface facing the fourth group Gr4 composed of only a negative meniscus seventh lens L7 with a concave surface facing the object side. Become. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex to the image side, the second group Gr2 moves monotonously to the object side, and the third group Gr2. Gr3 moves while drawing a locus convex toward the object side, while the fourth unit Gr4 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the entire third unit Gr3 is moved to the object side.

図3は、第3実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1及び物体側に凸の正メニスカス形
状の第2レンズL2から構成される第1群Gr1と、絞りST,両凸形状の第3レンズL3,両凹形状
の第4レンズL4及び両凸形状の第5レンズL5からなる第2群Gr2と、両凸形状の第6レンズL6
のみからなる第3群Gr3と、物体側に凹面を向けた負メニスカス形状の第7レンズL7のみか
らなる第4群Gr4と、からなる。最短焦点距離状態から最長焦点距離状態へのズーミングに
際して、第1群Gr1は像側に凸のUターンの軌跡を描きながら移動し、第2群Gr2は物体側へ
単調に移動し、第3群Gr3は像側へ移動する一方、第4群Gr4は像面に対して固定される。ま
た、無限遠合焦状態から有限物体合焦状態へのフォーカシングに際して、第6レンズL6を
単独で物体側へ移動させる。
FIG. 3 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a third embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including a biconcave first lens L1 and a positive meniscus second lens L2 convex on the object side, an aperture ST, and a biconvex shape. A second group Gr2 including a third lens L3, a biconcave fourth lens L4, and a biconvex fifth lens L5, and a biconvex sixth lens L6
A third unit Gr3 including only a negative meniscus seventh lens L7 having a concave surface facing the object side; During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex to the image side, the second group Gr2 moves monotonously to the object side, and the third group Gr2. Gr3 moves to the image side, while the fourth unit Gr4 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the sixth lens L6 is independently moved to the object side.

図4は、第4実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1及び物体側に凸の正メニスカス形
状の第2レンズL2から構成される第1群Gr1と、絞りST,物体側に凸面を向けた正メニスカ
ス形状の第3レンズL3,両凹形状の第4レンズL4及び両凸形状の第5レンズL5からなる第2レ
ンズ群Gr2と、両凸形状の第6レンズ及び両凹形状の第7レンズL7からなる第3群Gr3と、物
体側に凹面を向けた負メニスカス形状の第8レンズL8のみからなる第4群Gr4と、から成る
。最短焦点距離状態から最長焦点距離状態へのズーミングに際して、第1群Gr1は像側に凸
のUターンの軌跡を描きながら移動し、第2群Gr2は物体側へ単調に移動し、第3群Gr3は像
側へ単調に移動する一方、第4群Gr4は像面に対して固定される。また、無限遠合焦状態か
ら有限物体合焦状態へのフォーカシングに際して、第3群Gr3全体を物体側へ移動させる。
FIG. 4 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a fourth embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including a biconcave first lens L1 and a positive meniscus second lens L2 convex on the object side, an aperture ST, and a convex surface on the object side. A second lens group Gr2 including a positive meniscus third lens L3, a biconcave fourth lens L4, and a biconvex fifth lens L5, and a biconvex sixth lens and a biconcave The third lens unit includes a third lens unit Gr3 including a seventh lens L7 and a fourth lens unit Gr4 including only a negative meniscus eighth lens L8 having a concave surface facing the object side. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex on the image side, the second group Gr2 moves monotonously to the object side, and the third group Gr2. Gr3 moves monotonously to the image side, while the fourth unit Gr4 is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the entire third unit Gr3 is moved to the object side.

図5は、第5実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、両凹形状の第1レンズL1及び物体側に凸の正メニスカス形
状の第2レンズL2から構成される第1群Gr1と、絞りST,物体側に凸面を向けた正メニスカ
ス形状の第3レンズL3,物体側に凸面を向けた負メニスカス形状の第4レンズL4及び両凸形
状の第5レンズL5からなる第2群Gr2と、両凸形状の第6レンズL6及び両凹形状の第7レンズL
7からなる第3群Gr3と、物体側に凹面を向けた負メニスカス形状の第8レンズL8のみからな
る第4群Gr4と、からなる。最短焦点距離状態から最長焦点距離状態へのズーミングに際し
て、第1群Gr1は像側に凸のUターンの軌跡を描きながら移動し、第2群Gr2は物体側へ単調
に移動し、第3群Gr3は物体側に凸のUターンの軌跡を描きながら移動する一方、第4群Gr4
は像面に対して固定される。また、無限遠合焦状態から有限物体合焦状態へのフォーカシ
ングに際して、第3群Gr3を物体側へ移動させる。
FIG. 5 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a fifth embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including a biconcave first lens L1 and a positive meniscus second lens L2 convex on the object side, an aperture ST, and a convex surface on the object side. A second lens unit Gr2 including a positive meniscus third lens L3 facing the lens, a negative meniscus fourth lens L4 having a convex surface facing the object side, and a biconvex fifth lens L5, and a biconvex sixth lens L2. Lens L6 and biconcave seventh lens L
And a fourth group Gr4 including only a negative meniscus eighth lens L8 having a concave surface facing the object side. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex to the image side, the second group Gr2 moves monotonously to the object side, and the third group Gr2. Gr3 moves while drawing a locus of U-turn convex to the object side, while the fourth group Gr4
Is fixed with respect to the image plane. In focusing from an infinity in-focus condition to a finite object in-focus condition, the third unit Gr3 is moved to the object side.

各実施形態のズームレンズ系は、物体側から順に、負のパワーを有する第1群と、正の
パワーを有する第2群と、正のパワーを有する第3群と、第4群と、から構成され、最短
焦点距離状態から最長焦点距離状態へのズーミングに際して、前記第2、3群を移動させ
、特に第2群は物体側へ移動させて、各群間隔を変更するズームレンズ系である。ズーム
レンズ系を上記構成、特に最短焦点距離状態から最長焦点距離状態へのズーミングに際し
て、前記第2、3群を移動させ、特に第2群は物体側へ移動させて、各群間隔を変更する
構成を採用することにより、負正正の3成分系と比較して、球面収差補正、特に最長焦点
距離状態で発生する球面収差を良好に補正することが可能となる。
The zoom lens system according to each embodiment includes, in order from the object side, a first unit having negative power, a second unit having positive power, a third unit having positive power, and a fourth unit. The zoom lens system is configured to move the second and third units, and in particular, move the second unit toward the object side to change the distance between the units during zooming from the shortest focal length state to the longest focal length state. . During zooming of the zoom lens system with the above configuration, particularly from the shortest focal length state to the longest focal length state, the second and third units are moved, and in particular, the second unit is moved toward the object side to change the distance between the units. By adopting the configuration, it is possible to satisfactorily correct spherical aberration, particularly spherical aberration generated in the longest focal length state, as compared with a negative, positive, and positive three-component system.

また、各ズームレンズ系は、物体距離の変化に応じたフォーカシングを、前記第3群を
移動させることによって行っている。通常、物体距離の変化に応じたフォーカシングに際
して、第2群を物体側に移動させると、強い正のパワーのために負の像面湾曲が発生して
しまう。そこで、比較的パワーの弱い第3群を移動させることにより、像面湾曲の発生を
抑えることが可能となる。また、フォーカスの際の移動群が第3群の場合、第2群より軽
いレンズ素子となるので、駆動系の負荷を小さくすることができ、またメカ構成上も簡単
に保持することが可能となる。
Each zoom lens system performs focusing according to a change in the object distance by moving the third lens unit. Usually, when the second lens unit is moved to the object side during focusing according to the change in the object distance, negative field curvature occurs due to strong positive power. Therefore, by moving the third lens group having relatively weak power, it is possible to suppress the occurrence of the field curvature. Further, when the moving group at the time of focusing is the third group, the lens elements are lighter than the second group, so that the load on the drive system can be reduced and the mechanical structure can be easily held. Become.

第4群が、正のパワーを有する場合、特に最短焦点距離状態での像面への軸外光線の入
射角度を確保しやすくなり、像面照度が維持できるので好ましい。
It is preferable that the fourth unit has a positive power, since it becomes easy to secure an incident angle of an off-axis ray to the image plane particularly in the shortest focal length state, and the image plane illuminance can be maintained.

また、第4群が、負のパワーを有する場合、全長を短縮することができ、コンパクトな
ズームレンズ系を達成できるので好ましい。
In addition, it is preferable that the fourth unit has a negative power because the total length can be reduced and a compact zoom lens system can be achieved.

各実施形態のズームレンズ系は、以下の条件を満足している。   The zoom lens system according to each embodiment satisfies the following conditions.

0.5 < f2 / f3 < 2.5 (1)
ただし、
f2:第2群の焦点距離、
f3:第3群の焦点距離、
である。
0.5 <f2 / f3 <2.5 (1)
However,
f2: focal length of the second group,
f3: focal length of the third group,
It is.

条件式(1)は、2、3群比を規定する。条件式の下限を超えると、第3群のパワーが大きく
なりすぎるので、第2群で発生するアンダーの球面収差とのバランスを図ることが困難に
なる。一方、上限を超えると、第3群のパワーが小さくなり過ぎ、第2群の外径が大きくな
りすぎるので好ましくない。
Conditional expression (1) defines the ratio of the second and third groups. If the lower limit of the conditional expression is exceeded, the power of the third lens unit will be too large, and it will be difficult to balance with the under spherical aberration generated in the second lens unit. On the other hand, when the value exceeds the upper limit, the power of the third lens unit becomes too small, and the outer diameter of the second lens unit becomes too large, which is not preferable.

各実施形態のズームレンズ系において、最も物体側に配置され1枚の負レンズ素子のみ
から構成された第1群を有することが望ましい。通常、第1群が負のパワーを有するズー
ムレンズでは、Fナンバーを確保するため第1群の光軸垂直方向のレンズ径が最も大きくな
る。ここで複数枚のレンズ素子で第1群が構成されていると、ズームレンズ系に入射する
光線を確保するために、第1群のレンズ素子の有効径が大きくなってしまう。したがって
、外径を小さくするには、最少枚数である1枚で構成することが望ましい。また、レンズ
径が大きなレンズ素子が曲率を持つと、それに伴ってレンズ素子間の軸上空気間隔も増大
する。すなわち、第1群のレンズ枚数はズームレンズ系の全長を増加させる重要な要素と
なる。各実施形態のズームレンズ系では、この負群を最少構成枚数の1枚で構成している
ので、ズームレンズ系の全長短縮と、ズームレンズ系を収納した状態(以下、沈胴時とい
う)の厚みを小さくすることができる。
In the zoom lens system according to each of the embodiments, it is preferable that the zoom lens system include a first group that is disposed closest to the object side and includes only one negative lens element. Normally, in a zoom lens in which the first group has negative power, the lens diameter of the first group in the direction perpendicular to the optical axis is the largest in order to secure the F-number. Here, if the first group is composed of a plurality of lens elements, the effective diameter of the lens elements of the first group will be large in order to secure light rays incident on the zoom lens system. Therefore, in order to reduce the outer diameter, it is desirable to configure the sheet with a minimum number of one sheet. Further, when a lens element having a large lens diameter has a curvature, the on-axis air gap between the lens elements increases accordingly. That is, the number of lenses in the first group is an important factor for increasing the overall length of the zoom lens system. In the zoom lens system according to each of the embodiments, since the negative lens group is constituted by one of the minimum number of components, the total length of the zoom lens system is reduced, and the thickness of the zoom lens system in a retracted state (hereinafter referred to as collapsed state). Can be reduced.

また、各実施形態のズームレンズ系において、第1群を2枚のレンズで構成した場合は
、最短焦点距離状態での倍率色収差を良好に補正することができ好ましい。
In the zoom lens system of each embodiment, it is preferable that the first group is composed of two lenses, because lateral chromatic aberration in the shortest focal length state can be favorably corrected.

なお、第1群は、各実施形態のズームレンズ系のように、ズーミングに際して、像側に
凸の軌跡を描きながら移動することが望ましい。このように移動することにより、中間焦
点距離状態での像面湾曲を良好に補正することができる。
It is desirable that the first unit moves while drawing a locus convex toward the image side during zooming, as in the zoom lens systems of the embodiments. By moving in this way, it is possible to satisfactorily correct the field curvature in the intermediate focal length state.

また、第4群がズーミングに際して、像面に対し固定されている構成を採用した場合、
鏡胴構成を簡単にできるので好ましい。
When the fourth unit adopts a configuration fixed to the image plane during zooming,
This is preferable because the lens barrel configuration can be simplified.

以上説明した第1〜第5の実施の形態を構成している各レンズ群は、入射光線を屈折に
より偏向させる屈折型レンズのみで構成されているが、これに限らない。例えば、回折に
より入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線
を偏向させる屈折・回折ハイブリッド型レンズ等で、各レンズ群を構成してもよい。
Each of the lens groups constituting the first to fifth embodiments described above includes only a refraction lens that deflects an incident light beam by refraction, but is not limited thereto. For example, each lens group may be composed of a diffractive lens that deflects an incident light beam by diffraction, a hybrid refraction / diffraction lens that deflects an incident light beam by a combination of a diffraction action and a refraction action, or the like.

また、各レンズ群内やレンズ群間に存在する空気間隔を適当に調整して、入射光軸を折
り曲げる反射部材を追加してもよい。入射光軸を折り曲げることにより、光学系の配置の
自由度が向上するとともに、入射光軸方向の光学機器の厚みを小さくすることができ望ま
しい。
Further, a reflecting member that bends the incident optical axis may be added by appropriately adjusting the air gap existing in each lens group or between the lens groups. Bending the incident optical axis is preferable because the degree of freedom of arrangement of the optical system can be improved and the thickness of the optical device in the direction of the incident optical axis can be reduced.

以下、本発明を実施したズームレンズの構成を、コンストラクションデータ,収差図等
を挙げて、更に具体的に説明する。なお、以下に挙げる実施例1〜5は、前述した第1〜
第5の実施の形態にそれぞれ対応しており、第1〜第5の実施の形態を表すレンズ構成図
(図1〜図5http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00=1E_N/;>>=;=>:6///&N0001=148&N0552=9&N0553=000012)は、対応する実施例1〜5のレ
ンズ構成をそれぞれ示している。
Hereinafter, the configuration of the zoom lens embodying the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. In addition, Examples 1 to 5 listed below are the first to fifth examples described above.
Lens configuration diagrams respectively corresponding to the fifth embodiment and representing the first to fifth embodiments
(Figures 1 to 5 http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00 = 1E_N /; >>=;=>: 6 /// & N0001 = 148 & N0552 = 9 & N0553 = 000012) shows the corresponding lens configurations of Examples 1 to 5, respectively.

各実施例のコンストラクションデータにおいて、ri (i = 1,2,3,...)は物体側から数え
てi番目の面の曲率半径、di(i = 1,2,3,...)は物体側から数えてi番目の軸上面間隔を示
しており、Ni (i = 1,2,3,...), νi (i = 1,2,3,...)は物体側から数えてi番目の光学要
素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデ
ータ中、ズーミングにおいて変化する軸上面間隔(可変間隔)は、最短焦点距離状態(短焦
点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜最長焦点距離状態(長焦点距離端)[T]
での各レンズ群間の軸上空気間隔である。各焦点距離状態[W], [M], [T]に対応する全
系の焦点距離f及びFナンバーFNOを併せて示す。
In the construction data of each embodiment, ri (i = 1, 2, 3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1, 2, 3, ...) Indicates the i-th axial distance from the object side, and Ni (i = 1,2,3, ...) and νi (i = 1,2,3, ...) The refractive index (Nd) and Abbe number (νd) of the i-th optical element counted for the d-line are shown. In the construction data, the axial top surface interval (variable interval) that changes during zooming is from the shortest focal length state (short focal length end) [W] to the middle (intermediate focal length state) [M] to the longest focal length state (long). Focal length end) [T]
Is the axial air spacing between each lens group. The focal length f and the F-number FNO of the entire system corresponding to each focal length state [W], [M], [T] are also shown.

曲率半径riに*が付された面は、非球面で構成された面であることを示し、非球面の面
形状を表す以下の式(AS)で定義されるものとする。各実施例の非球面データを他のデー
タと併せて示す。
A surface with * added to the radius of curvature ri indicates a surface constituted by an aspheric surface, and is defined by the following formula (AS) representing the surface shape of the aspheric surface. The aspherical surface data of each example is shown together with other data.

Z(h)=r-(r^2-ε・h^2)^1/2+(A4・h^4+A6・h^6+A8・h^8+…) (AS)
r:非球面の近軸曲率半径、
ε:楕円係数、
Ai:非球面のi次の非球面係数、

<実施例1>
f = 5.8 - 11.1 - 16.8 mm
FNo.= 2.95 - 3.81 - 4.83
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -39.975
d1 = 1.200 N1 = 1.55299 ν1 = 62.75
r2*= 6.541
d2 = 0.755
r3 = 8.756
d3 = 1.873 N2 = 1.84666 ν2 = 23.78
r4 = 11.530
d4 = 18.755 - 5.409 - 0.900
r5 = 9.844
d5 = 4.269 N3 = 1.75291 ν3 = 51.62
r6 = -12.759
d6 = 1.000
r7 = -7.836
d7 = 1.000 N7 = 1.84666 ν4 = 23.78
r8 = -37.579
d8 = 1.000
r9 = ∞
d9 = 7.471 - 6.059 - 4.273
r10*= 12.663
d10= 1.741 N8 = 1.48749 ν5 = 70.44
r11*= -32.883
d11= 2.344 - 9.246 - 15.779
r12*= 6.386
d12= 1.599 N9 = 1.52510 ν6 = 56.38
r13*= 8.384
d13= 0.993
r14= ∞
d14= 2.000 N10= 1.51680 ν7 = 64.20
r15= ∞

[非球面係数]
r1
ε = 1.0000E+00
A4 = 2.2080E-05
A6 = -8.1895E-06
A8 = 2.0365E-07
A10 = -1.1961E-09

r2
ε = 1.0000E+00
A4 = -3.4828E-04
A6 = -1.4369E-05
A8 = 1.1602E-07
A10 = 2.6586E-10

r10
ε = 1.0000E+00
A4 = 4.1991E-05
A6 = 3.4463E-06
A8 = -2.2840E-06
A10= 1.4597E-07

r11
ε = 1.0000E+00
A4 = 1.6750E-04
A6 = 8.2009E-06
A8 = -2.6592E-06
A10= 1.5482E-07

r12
ε = 1.0000E+00
A4 = 1.7501E-04
A6 = -9.2028E-05
A8 = -4.5108E-06
A10= -5.1235E-08

r13
ε = 1.0000E+00
A4 = 2.3030E-03
A6 = -2.3547E-04
A8 = -1.1690E-05
A10= 5.0795E-07

<実施例2>
f = 5.8 - 10.4 - 16.6 mm
FNo.= 2.95 - 3.19 - 3.91
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -145.113
d1 = 1.000 N1 = 1.49310 ν1 = 83.58
r2*= 7.808
d2 = 21.602 - 7.045 - 2.000
r3 = ∞
d3 = 0.600
r4 = 6.092
d4 = 2.735 N2 = 1.73480 ν2 = 47.86
r5 = -21.758
d5 = 1.541
r6*= -7.582
d6 = 1.000 N3 = 1.84666 ν3 = 23.82
r7*= 13.430
d7 = 3.942
r8 = 19.767
d8 = 2.520 N4 = 1.85000 ν4 = 40.04
r9 = -17.304
d9 = 1.000 - 4.384 - 11.701
r10= 19.300
d10= 2.861 N5 = 1.48749 ν5 = 70.44
r11= -6.950
d11= 0.100
r12 = -6.755
d12= 0.800 N6 = 1.58340 ν6 = 30.23
r13= -12.658
d13= 1.073
r14= -8.000
d14= 0.800 N7 = 1.79850 ν7 = 22.60
r15= -19.187
d15= 0.425
r16 = ∞
d16= 2.000 N8 = 1.51633 ν8 = 64.14
r17 = ∞
[非球面係数]
r1
ε = 1.0000E+00
A4 = -8.4261E-04
A6 = 3.4843E-05
A8 = -5.3266E-07
A10= 2.8481E-09

r2
ε = 1.0000E+00
A4 = -1.2797E-03
A6 = 3.4368E-05
A8 = 1.0424E-07
A10= -1.1871E-08

r6
ε = 1.0000E+00
A4 = -4.0212E-04
A6 = 1.0262E-05
A8 = 7.3123E-06
A10= -4.4336E-07

r7
ε = 1.0000E+00
A4 = 6.2524E-04
A6 = 5.7678E-05
A8 = 1.6430E-06
A10= -5.4369E-08

r13
ε = 1.0000E+00
A4 = 3.5743E-04
A6 = -1.0838E-05
A8 = 2.8869E-07
A10 = -3.0988E-09

<実施例3>
f = 5.4 - 10.6 - 20.5 mm
FNo.= 2.95 - 3.59 - 5.05
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -62.388
d1 = 1.000 N1 = 1.67246 ν1 = 54.84
r2*= 7.517
d2 = 2.033
r3 = 12.124
d3 = 2.242 N2 = 1.84666 ν2 = 23.78
r4 = 22.671
d4 = 26.346 - 8.841 - 1.000
r5 = ∞
d5 = 0.600
r6 = 8.414
d6 = 2.572 N3 = 1.75450 ν3 = 51.57
r7 = -214.826
d7 = 1.586
r8*= -41.141
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9*= 12.338
d9 = 3.742
r10 = 19.804
d10= 2.692 N5 = 1.56021 ν5 = 62.10
r11= -14.550
d11= 1.000
r12*= 27.714
d12= 1.409 N6 = 1.52510 ν6 = 56.38
r13*= -51.224
d13= 5.642
r14= -9.076
d14= 0.800 N7 = 1.58340 ν7 = 30.23
r15= -14.938
d15= 0.336
r16= ∞
d16 = 2.000 N8 = 1.51633 ν8 = 64.14
r17= ∞

[非球面係数]
r1
ε = 1.0000E+00
A4 = 5.2949E-05
A6 = 2.4146E-06
A8 = -5.3199E-08
A10 = 3.0717E-10

r2
ε = 1.0000E+00
A4 = -1.7266E-04
A6 = -5.2034E-07
A8 = 6.9605E-08
A10= -3.3443E-09

r8
ε = 1.0000E+00
A4 = 2.3478E-05
A6 = 5.5834E-06
A8 = -2.3522E-07
A10= 3.5749E-09

r9
ε = 1.0000E+00
A4 = 4.8852E-04
A6 = 1.5183E-05
A8 = -5.4123E-07
A10= 2.2280E-08

r12
ε = 1.0000E+00
A4 = -2.4043E-05
A6 = 1.3756E-05
A8 = -7.5488E-07
A10= 4.3195E-08

r13
ε = 1.0000E+00
A4 = 1.1110E-04
A6 = 4.2505E-06
A8 = -2.9448E-07
A10= 4.0091E-08

<実施例4>
f = 5.6 - 10.9 - 21.2 mm
FNo.= 2.95 - 3.69 - 5.47
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -2206.921
d1 = 1.000 N1 = 1.70830 ν1 = 52.37
r2*= 7.541
d2 = 2.035
r3 = 10.756
d3 = 2.244 N2 = 1.84666 ν2 = 23.78
r4 = 17.416
d4 = 23.473 - 7.610 - 1.000
r5 = ∞
d5 = 0.600
r6 = 8.203
d6 = 2.459 N3 = 1.78862 ν3 = 46.42
r7 = 35.013
d7 = 1.000
r8*= -105.219
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9*= 11.626
d9 = 2.285
r10= 20.288
d10= 2.753 N5 = 1.57612 ν5 = 60.77
r11= -13.148
d11= 1.019 - 8.431 - 25.158
r12= 21.425
d12= 2.229 N6 = 1.82241 ν6 = 42.56
r13= -15.290
d13= 0.100
r14= -15.623
d14= 0.800 N7 = 1.58340 ν7 = 30.23
r15 = 22.445
d15= 6.051 - 5.837 - 1.993
r16= -8.000
d16= 0.800 N8 = 1.79850 ν8 = 22.6
r17= -8.795
d17= 0.100
r18= ∞
d18= 2.000 N9 = 1.51633 ν9 = 64.14
r19 = ∞

[非球面係数]
r1
ε = 1.0000E+00
A4 = 3.9901E-05
A6 = 3.3171E-06
A8 = -6.0759E-08
A10= 3.0895E-10

r2
ε = 1.0000E+00
A4 = -1.1359E-04
A6 = 9.2923E-07
A8 = 1.2155E-07
A10= -4.1825E-09

r8
ε = 1.0000E+00
A4 = 4.2490E-05
A6 = 1.1312E-05
A8 = -6.0790E-07
A10= 1.4669E-08

r9
ε = 1.0000E+00
A4 = 4.3056E-04
A6 = 1.8279E-05
A8 = -9.5543E-07
A10= 3.2601E-08

r15
ε = 1.0000E+00
A4 = 2.4936E-04
A6 = -1.4428E-05
A8 = 1.0190E-06
A10= -2.5304E-08

<実施例5>
f = 5.4 - 11.9 - 25.6 mm
FNo.= 2.95 - 3.69 - 5.47
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= -212.663
d1 = 1.000 N1 = 1.74449 ν1 = 51.91
r2*= 8.320
d2 = 1.820
r3 = 11.906
d3 = 2.346 N2 = 1.84666 ν2 = 23.78
r4 = 20.694
d4 = 29.376 - 8.154 - 1.307
r5 = ∞
d5 = 0.600
r6 = 8.903
d6 = 2.426 N3 = 1.75450 ν3 = 51.57
r7 = 44.059
d7 = 1.023
r8*= 91.082
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9*= 12.588
d9 = 4.473
r10= 22.161
d10= 2.756 N5 = 1.49756 ν5 = 69.00
r11= -16.983
d11= 1.212
r12= 18.148
d12= 2.161 N6 = 1.75450 ν6 = 51.57
r13= -21.315
d13 = 0.100
r14 = -29.569
d14 = 0.800 N7 = 1.58340 ν7 = 30.23
r15* = 23.902
d15 = 5.780
r16 = -10.181
d16 = 0.800 N8 = 1.84923 ν8 = 34.60
r17 = -14.581
d17 = 0.331
r18 = ∞
d18 = 2.000 N9 = 1.51633 ν9 = 64.14
r19 = ∞

[非球面係数]
r1
ε = 1.0000E+00
A4 = 5.8268E-05
A6 = 7.7325E-07
A8 = -1.9659E-08
A10= 1.0309E-10

r2
ε = 1.0000E+00
A4 = -9.1108E-05
A6 = 7.2884E-08
A8 = 1.4570E-08
A10= -1.1004E-09

r8
ε = 1.0000E+00
A4 = 8.2459E-05
A6 = 1.1732E-05
A8 = -6.4586E-07
A10= 1.2445E-08

r9
ε = 1.0000E+00
A4 = 3.7619E-04
A6 = 1.8914E-05
A8 = -8.9674E-07
A10= 2.2738E-08

r15
ε = 1.0000E+00
A4 = 2.1626E-04
A6 = -1.1901E-05
A8 = 7.7472E-07
A10= -1.6905E-08

図6〜図15は、実施例1〜実施例5の収差図であり、図6〜図10は、無限遠合焦状
態での実施例1〜5の各収差、図11〜図15は、近接物体(物体距離40cm)合焦点状態
での実施例1〜5の各収差を示している。各収差図中、上段は最短焦点距離状態,中段は
ミドル,下段は最長焦点距離状態における諸収差(左から順に、球面収差等,非点収差,
歪曲;Y':像高)を示している。また、球面収差図中の実線(d)、一点鎖線(g)はそれぞれ
d線、g線に対する球面収差、破線(SC)は正弦条件を表しており、非点収差図中の破線(DM
)と実線(DS)は、メリディオナル面とサジタル面でのd線に対する非点収差をそれぞれ表
わしている。
Z (h) = r- (r ^ 2-ε ・ h ^ 2) ^ 1/2 + (A4 ・ h ^ 4 + A6 ・ h ^ 6 + A8 ・ h ^ 8 + ...) (AS)
r: radius of paraxial curvature of aspheric surface
ε: elliptic coefficient,
Ai: the i-th aspherical coefficient of the aspherical surface,

<Example 1>
f = 5.8-11.1-16.8 mm
FNo. = 2.95-3.81-4.83
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -39.975
d1 = 1.200 N1 = 1.55299 ν1 = 62.75
r2 * = 6.541
d2 = 0.755
r3 = 8.756
d3 = 1.873 N2 = 1.84666 ν2 = 23.78
r4 = 11.530
d4 = 18.755-5.409-0.900
r5 = 9.844
d5 = 4.269 N3 = 1.75291 ν3 = 51.62
r6 = -12.759
d6 = 1.000
r7 = -7.836
d7 = 1.000 N7 = 1.84666 ν4 = 23.78
r8 = -37.579
d8 = 1.000
r9 = ∞
d9 = 7.471-6.059-4.273
r10 * = 12.663
d10 = 1.741 N8 = 1.48749 ν5 = 70.44
r11 * = -32.883
d11 = 2.344-9.246-15.779
r12 * = 6.386
d12 = 1.599 N9 = 1.52510 ν6 = 56.38
r13 * = 8.384
d13 = 0.993
r14 = ∞
d14 = 2.000 N10 = 1.51680 ν7 = 64.20
r15 = ∞

[Aspheric coefficient]
r1
ε = 1.0000E + 00
A4 = 2.2080E-05
A6 = -8.1895E-06
A8 = 2.0365E-07
A10 = -1.1961E-09

r2
ε = 1.0000E + 00
A4 = -3.4828E-04
A6 = -1.4369E-05
A8 = 1.1602E-07
A10 = 2.6586E-10

r10
ε = 1.0000E + 00
A4 = 4.1991E-05
A6 = 3.4463E-06
A8 = -2.2840E-06
A10 = 1.4597E-07

r11
ε = 1.0000E + 00
A4 = 1.6750E-04
A6 = 8.2009E-06
A8 = -2.6592E-06
A10 = 1.5482E-07

r12
ε = 1.0000E + 00
A4 = 1.7501E-04
A6 = -9.2028E-05
A8 = -4.5108E-06
A10 = -5.1235E-08

r13
ε = 1.0000E + 00
A4 = 2.3030E-03
A6 = -2.3547E-04
A8 = -1.1690E-05
A10 = 5.0795E-07

<Example 2>
f = 5.8-10.4-16.6 mm
FNo. = 2.95-3.19-3.91
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -145.113
d1 = 1.000 N1 = 1.49310 ν1 = 83.58
r2 * = 7.808
d2 = 21.602-7.045-2.000
r3 = ∞
d3 = 0.600
r4 = 6.092
d4 = 2.735 N2 = 1.73480 ν2 = 47.86
r5 = -21.758
d5 = 1.541
r6 * = -7.582
d6 = 1.000 N3 = 1.84666 ν3 = 23.82
r7 * = 13.430
d7 = 3.942
r8 = 19.767
d8 = 2.520 N4 = 1.85000 ν4 = 40.04
r9 = -17.304
d9 = 1.000-4.384-11.701
r10 = 19.300
d10 = 2.861 N5 = 1.48749 ν5 = 70.44
r11 = -6.950
d11 = 0.100
r12 = -6.755
d12 = 0.800 N6 = 1.58340 ν6 = 30.23
r13 = -12.658
d13 = 1.073
r14 = -8.000
d14 = 0.800 N7 = 1.79850 ν7 = 22.60
r15 = -19.187
d15 = 0.425
r16 = ∞
d16 = 2.000 N8 = 1.51633 ν8 = 64.14
r17 = ∞
[Aspheric coefficient]
r1
ε = 1.0000E + 00
A4 = -8.4261E-04
A6 = 3.4843E-05
A8 = -5.3266E-07
A10 = 2.8481E-09

r2
ε = 1.0000E + 00
A4 = -1.2797E-03
A6 = 3.4368E-05
A8 = 1.0424E-07
A10 = -1.1871E-08

r6
ε = 1.0000E + 00
A4 = -4.0212E-04
A6 = 1.0262E-05
A8 = 7.3123E-06
A10 = -4.4336E-07

r7
ε = 1.0000E + 00
A4 = 6.2524E-04
A6 = 5.7678E-05
A8 = 1.6430E-06
A10 = -5.4369E-08

r13
ε = 1.0000E + 00
A4 = 3.5743E-04
A6 = -1.0838E-05
A8 = 2.8869E-07
A10 = -3.0988E-09

<Example 3>
f = 5.4-10.6-20.5 mm
FNo. = 2.95-3.59-5.05
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -62.388
d1 = 1.000 N1 = 1.67246 ν1 = 54.84
r2 * = 7.517
d2 = 2.033
r3 = 12.124
d3 = 2.242 N2 = 1.84666 ν2 = 23.78
r4 = 22.671
d4 = 26.346-8.841-1.000
r5 = ∞
d5 = 0.600
r6 = 8.414
d6 = 2.572 N3 = 1.75450 ν3 = 51.57
r7 = -214.826
d7 = 1.586
r8 * = -41.141
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9 * = 12.338
d9 = 3.742
r10 = 19.804
d10 = 2.692 N5 = 1.56021 ν5 = 62.10
r11 = -14.550
d11 = 1.000
r12 * = 27.714
d12 = 1.409 N6 = 1.52510 ν6 = 56.38
r13 * = -51.224
d13 = 5.642
r14 = -9.076
d14 = 0.800 N7 = 1.58340 ν7 = 30.23
r15 = -14.938
d15 = 0.336
r16 = ∞
d16 = 2.000 N8 = 1.51633 ν8 = 64.14
r17 = ∞

[Aspheric coefficient]
r1
ε = 1.0000E + 00
A4 = 5.2949E-05
A6 = 2.4146E-06
A8 = -5.3199E-08
A10 = 3.0717E-10

r2
ε = 1.0000E + 00
A4 = -1.7266E-04
A6 = -5.2034E-07
A8 = 6.9605E-08
A10 = -3.3443E-09

r8
ε = 1.0000E + 00
A4 = 2.3478E-05
A6 = 5.5834E-06
A8 = -2.3522E-07
A10 = 3.5749E-09

r9
ε = 1.0000E + 00
A4 = 4.8852E-04
A6 = 1.5183E-05
A8 = -5.4123E-07
A10 = 2.2280E-08

r12
ε = 1.0000E + 00
A4 = -2.4043E-05
A6 = 1.3756E-05
A8 = -7.5488E-07
A10 = 4.3195E-08

r13
ε = 1.0000E + 00
A4 = 1.1110E-04
A6 = 4.2505E-06
A8 = -2.9448E-07
A10 = 4.0091E-08

<Example 4>
f = 5.6-10.9-21.2 mm
FNo. = 2.95-3.69-5.47
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -2206.921
d1 = 1.000 N1 = 1.70830 ν1 = 52.37
r2 * = 7.541
d2 = 2.035
r3 = 10.756
d3 = 2.244 N2 = 1.84666 ν2 = 23.78
r4 = 17.416
d4 = 23.473-7.610-1.000
r5 = ∞
d5 = 0.600
r6 = 8.203
d6 = 2.459 N3 = 1.78862 ν3 = 46.42
r7 = 35.013
d7 = 1.000
r8 * = -105.219
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9 * = 11.626
d9 = 2.285
r10 = 20.288
d10 = 2.753 N5 = 1.57612 ν5 = 60.77
r11 = -13.148
d11 = 1.019-8.431-25.158
r12 = 21.425
d12 = 2.229 N6 = 1.82241 ν6 = 42.56
r13 = -15.290
d13 = 0.100
r14 = -15.623
d14 = 0.800 N7 = 1.58340 ν7 = 30.23
r15 = 22.445
d15 = 6.051-5.837-1.993
r16 = -8.000
d16 = 0.800 N8 = 1.79850 ν8 = 22.6
r17 = -8.795
d17 = 0.100
r18 = ∞
d18 = 2.000 N9 = 1.51633 ν9 = 64.14
r19 = ∞

[Aspheric coefficient]
r1
ε = 1.0000E + 00
A4 = 3.9901E-05
A6 = 3.3171E-06
A8 = -6.0759E-08
A10 = 3.0895E-10

r2
ε = 1.0000E + 00
A4 = -1.1359E-04
A6 = 9.2923E-07
A8 = 1.2155E-07
A10 = -4.1825E-09

r8
ε = 1.0000E + 00
A4 = 4.2490E-05
A6 = 1.1312E-05
A8 = -6.0790E-07
A10 = 1.4669E-08

r9
ε = 1.0000E + 00
A4 = 4.3056E-04
A6 = 1.8279E-05
A8 = -9.5543E-07
A10 = 3.2601E-08

r15
ε = 1.0000E + 00
A4 = 2.4936E-04
A6 = -1.4428E-05
A8 = 1.0190E-06
A10 = -2.5304E-08

<Example 5>
f = 5.4-11.9-25.6 mm
FNo. = 2.95-3.69-5.47
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = -212.663
d1 = 1.000 N1 = 1.74449 ν1 = 51.91
r2 * = 8.320
d2 = 1.820
r3 = 11.906
d3 = 2.346 N2 = 1.84666 ν2 = 23.78
r4 = 20.694
d4 = 29.376-8.154-1.307
r5 = ∞
d5 = 0.600
r6 = 8.903
d6 = 2.426 N3 = 1.75450 ν3 = 51.57
r7 = 44.059
d7 = 1.023
r8 * = 91.082
d8 = 1.000 N4 = 1.84666 ν4 = 23.82
r9 * = 12.588
d9 = 4.473
r10 = 22.161
d10 = 2.756 N5 = 1.49756 ν5 = 69.00
r11 = -16.983
d11 = 1.212
r12 = 18.148
d12 = 2.161 N6 = 1.75450 ν6 = 51.57
r13 = -21.315
d13 = 0.100
r14 = -29.569
d14 = 0.800 N7 = 1.58340 ν7 = 30.23
r15 * = 23.902
d15 = 5.780
r16 = -10.181
d16 = 0.800 N8 = 1.84923 ν8 = 34.60
r17 = -14.581
d17 = 0.331
r18 = ∞
d18 = 2.000 N9 = 1.51633 ν9 = 64.14
r19 = ∞

[Aspheric coefficient]
r1
ε = 1.0000E + 00
A4 = 5.8268E-05
A6 = 7.7325E-07
A8 = -1.9659E-08
A10 = 1.0309E-10

r2
ε = 1.0000E + 00
A4 = -9.1108E-05
A6 = 7.2884E-08
A8 = 1.4570E-08
A10 = -1.1004E-09

r8
ε = 1.0000E + 00
A4 = 8.2459E-05
A6 = 1.1732E-05
A8 = -6.4586E-07
A10 = 1.2445E-08

r9
ε = 1.0000E + 00
A4 = 3.7619E-04
A6 = 1.8914E-05
A8 = -8.9674E-07
A10 = 2.2738E-08

r15
ε = 1.0000E + 00
A4 = 2.1626E-04
A6 = -1.1901E-05
A8 = 7.7472E-07
A10 = -1.6905E-08

6 to 15 are aberration diagrams of Examples 1 to 5, FIGS. 6 to 10 are aberrations of Examples 1 to 5 in an infinity in-focus state, and FIGS. 9 shows respective aberrations of Examples 1 to 5 in a focused state of a close object (object distance of 40 cm). In each aberration diagram, the upper part shows the shortest focal length state, the middle part shows the middle, and the lower part shows various aberrations in the longest focal state (from left to right, spherical aberration, astigmatism,
Distortion (Y ': image height). Further, the solid line (d) and the dashed-dotted line (g) in the spherical aberration diagram represent the spherical aberration with respect to the d-line and the g-line, respectively, and the dashed line (SC) represents the sine condition.
) And the solid line (DS) represent the astigmatism with respect to the d-line on the meridional surface and the sagittal surface, respectively.

本発明の第1の実施形態(実施例1)を表すレンズ構成図1 is a lens configuration diagram illustrating a first embodiment (Example 1) of the present invention. 本発明の第2の実施形態(実施例2)を表すレンズ構成図FIG. 4 is a lens configuration diagram illustrating a second embodiment (Example 2) of the present invention. 本発明の第3の実施形態(実施例3)を表すレンズ構成図Lens configuration diagram showing a third embodiment (Example 3) of the present invention 本発明の第4の実施形態(実施例4)を表すレンズ構成図A lens configuration diagram illustrating a fourth embodiment (Example 4) of the present invention. 本発明の第5の実施形態(実施例5)を表すレンズ構成図A lens configuration diagram illustrating a fifth embodiment (Example 5) of the present invention. 本発明の第1の実施形態(実施例1)の無限遠合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when focused on infinity 本発明の第2の実施形態(実施例2)の無限遠合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention when focused on infinity 本発明の第3の実施形態(実施例3)の無限遠合焦状態の収差図Aberration diagram of the third embodiment (Example 3) of the present invention when focused on infinity 本発明の第4の実施形態(実施例4)の無限遠合焦状態の収差図Aberration diagram of the fourth embodiment (Example 4) of the present invention in an infinity in-focus state 本発明の第5の実施形態(実施例5)の無限遠合焦状態の収差図Aberration diagram of the fifth embodiment (Example 5) of the present invention when focused on infinity 本発明の第1の実施形態(実施例1)の近接物体合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when a close object is in focus 本発明の第2の実施形態(実施例2)の近接物体合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention in a state where a close object is in focus 本発明の第3の実施形態(実施例3)の近接物体合焦状態の収差図Aberration diagram of the third embodiment (Example 3) of the present invention when a close object is in focus 本発明の第4の実施形態(実施例4)の近接物体合焦状態の収差図4A and 4B are aberration diagrams of a fourth embodiment (Example 4) of the present invention in a state where a close object is in focus. 本発明の第5の実施形態(実施例5)の近接物体合焦状態の収差図Aberration diagram of the fifth embodiment (Example 5) of the present invention in a state where a close object is in focus 本発明のズームレンズ装置の概略構成を示す図FIG. 1 is a diagram showing a schematic configuration of a zoom lens device according to the present invention.

符号の説明Explanation of reference numerals

ズームレンズ系(TL)
第1レンズ群(Gr1)
第2レンズ群(Gr2)
第3レンズ群(Gr3)
第4レンズ群(Gr4)
フィルタ(LPF)
撮像素子(SR)
Zoom lens system (TL)
First lens group (Gr1)
Second lens group (Gr2)
Third lens group (Gr3)
4th lens group (Gr4)
Filter (LPF)
Image sensor (SR)

Claims (7)

物体側から順に、ズームレンズ系と、ズームレンズ系が形成した光学像を電気的画像デー
タに変換する撮像素子と、を備えたズームレンズ装置であって、
前記ズームレンズ系は、物体側から順に、負のパワーを有する第1群と、正のパワーを
有する第2群と、正のパワーを有する第3群と、第4群と、から構成され、
最短焦点距離状態から最長焦点距離状態へのズーミングに際して、前記第2、3群を移
動させ、特に第2群は物体側へ移動させて、各群間隔を変更するとともに、
物体距離の変化に応じたフォーカシングを、前記第3群を移動させることにより行うこ
とを特徴とするズームレンズ装置。
A zoom lens device including, in order from the object side, a zoom lens system, and an imaging element that converts an optical image formed by the zoom lens system into electrical image data,
The zoom lens system includes, in order from the object side, a first group having negative power, a second group having positive power, a third group having positive power, and a fourth group,
At the time of zooming from the shortest focal length state to the longest focal length state, the second and third lens groups are moved, and in particular, the second lens group is moved to the object side to change the distance between the lens groups,
A zoom lens apparatus, wherein focusing according to a change in an object distance is performed by moving the third group.
前記第4群は、正のパワーを有することを特徴とする請求項1記載のズームレンズ装置。 2. The zoom lens device according to claim 1, wherein the fourth group has a positive power. 前記第4群は、負のパワーを有することを特徴とする請求項1記載のズームレンズ装置。 The zoom lens apparatus according to claim 1, wherein the fourth group has a negative power. 以下の条件を満足することを特徴とする請求項1記載のズームレンズ装置;
0.5 < f2 / f3 < 2.5
ただし、
f2:第2群の焦点距離、
f3:第3群の焦点距離、
である。
The zoom lens device according to claim 1, wherein the following condition is satisfied;
0.5 <f2 / f3 <2.5
However,
f2: focal length of the second group,
f3: focal length of the third group,
It is.
前記第4群はズーミングに際して、像面に対し固定されていることを特徴とする請求項1
記載のズームレンズ装置。
2. The zoom lens according to claim 1, wherein the fourth lens unit is fixed to an image plane during zooming.
The zoom lens device according to any one of the preceding claims.
請求項1乃至5のいずれかに記載のズームレンズ装置を備えたデジタルカメラ。 A digital camera comprising the zoom lens device according to claim 1. 請求項1乃至5のいずれかに記載のズームレンズ装置を備えた携帯情報機器。










A portable information device comprising the zoom lens device according to claim 1.










JP2004083262A 2003-03-31 2004-03-22 Zoom lens device Pending JP2004318107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083262A JP2004318107A (en) 2003-03-31 2004-03-22 Zoom lens device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003093537 2003-03-31
JP2004083262A JP2004318107A (en) 2003-03-31 2004-03-22 Zoom lens device

Publications (1)

Publication Number Publication Date
JP2004318107A true JP2004318107A (en) 2004-11-11

Family

ID=33478602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083262A Pending JP2004318107A (en) 2003-03-31 2004-03-22 Zoom lens device

Country Status (1)

Country Link
JP (1) JP2004318107A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284790A (en) * 2005-03-31 2006-10-19 Olympus Corp Electronic photographing device
JP2007148052A (en) * 2005-11-29 2007-06-14 Konica Minolta Photo Imaging Inc Variable power optical system
JP2007156385A (en) * 2005-06-15 2007-06-21 Olympus Imaging Corp Zoom optical system and image taking apparatus using the same
JP2007327991A (en) * 2006-06-06 2007-12-20 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
US7382547B2 (en) 2006-04-04 2008-06-03 Olympus Imaging Corp. Zoom lens system
JP2010026407A (en) * 2008-07-24 2010-02-04 Nikon Corp Zoom lens, optical apparatus having the same, and zooming method
US8154648B2 (en) 2008-12-18 2012-04-10 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
CN108227131A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108227130A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP6362293B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2022016255A (en) * 2020-07-09 2022-01-21 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Image capturing optical lens

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284790A (en) * 2005-03-31 2006-10-19 Olympus Corp Electronic photographing device
US7502172B2 (en) 2005-06-15 2009-03-10 Olympus Imaging Corp. Zoom optical system and image taking apparatus using the same
JP2007156385A (en) * 2005-06-15 2007-06-21 Olympus Imaging Corp Zoom optical system and image taking apparatus using the same
US7643222B2 (en) 2005-06-15 2010-01-05 Olympus Imaging Corp. Zoom optical system and image taking apparatus using the same
JP2007148052A (en) * 2005-11-29 2007-06-14 Konica Minolta Photo Imaging Inc Variable power optical system
US7808721B2 (en) 2006-04-04 2010-10-05 Olympus Imaging Corp. Zoom lens system
US7382547B2 (en) 2006-04-04 2008-06-03 Olympus Imaging Corp. Zoom lens system
JP2007327991A (en) * 2006-06-06 2007-12-20 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
JP2010026407A (en) * 2008-07-24 2010-02-04 Nikon Corp Zoom lens, optical apparatus having the same, and zooming method
US8154648B2 (en) 2008-12-18 2012-04-10 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
JP6362293B1 (en) * 2017-11-18 2018-07-25 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019095750A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
CN108227131A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN108227130A (en) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP2022016255A (en) * 2020-07-09 2022-01-21 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Image capturing optical lens
JP7105858B2 (en) 2020-07-09 2022-07-25 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド imaging optical lens

Similar Documents

Publication Publication Date Title
US6754446B2 (en) Imaging device and digital camera using the imaging device
JP3433734B2 (en) Imaging lens device
JP5045267B2 (en) Zoom lens and imaging device
US7339747B2 (en) Variable magnification optical system
JP3433733B2 (en) Imaging lens device
JP4103475B2 (en) Imaging lens device
JP2004037924A (en) Imaging apparatus
JP2001343588A (en) Image pickup lens device
JP2002055278A (en) Image pickup lens device
JP2004102089A (en) Imaging apparatus
US7522346B2 (en) Imaging device and digital camera using the imaging device
US6853807B2 (en) Imaging device and digital camera using the imaging device
JP2004318097A (en) Zoom lens device
JP3821087B2 (en) Imaging lens device
JP2004013169A (en) Variable magnification group in zoom lens, zoom lens, and camera system
US7440195B2 (en) Zoom lens system and imaging device having the same
JP2004318107A (en) Zoom lens device
JP2004318108A (en) Zoom lens device
JP2004037925A (en) Imaging apparatus
JP2004318106A (en) Zoom lens device
JP4821207B2 (en) Variable magnification optical system and image pickup apparatus including the same
JP2004318103A (en) Zoom lens device
JP2004102090A (en) Imaging apparatus
JP2010160277A (en) Zoom lens system, imaging device, and camera
JP2004318099A (en) Zoom lens device