JP4857547B2 - Manufacturing method of multilayer wiring board with built-in components - Google Patents

Manufacturing method of multilayer wiring board with built-in components Download PDF

Info

Publication number
JP4857547B2
JP4857547B2 JP2004332830A JP2004332830A JP4857547B2 JP 4857547 B2 JP4857547 B2 JP 4857547B2 JP 2004332830 A JP2004332830 A JP 2004332830A JP 2004332830 A JP2004332830 A JP 2004332830A JP 4857547 B2 JP4857547 B2 JP 4857547B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
resistance
manufacturing
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332830A
Other languages
Japanese (ja)
Other versions
JP2006147683A (en
Inventor
達広 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004332830A priority Critical patent/JP4857547B2/en
Publication of JP2006147683A publication Critical patent/JP2006147683A/en
Application granted granted Critical
Publication of JP4857547B2 publication Critical patent/JP4857547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗、キャパシタ、インダクタ等の受動素子を内蔵した多層配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer wiring board incorporating passive elements such as resistors, capacitors, and inductors.

抵抗、キャパシタ、インダクタ等の受動素子を内蔵した配線基板を製造する場合、前記受動素子と配線層を同一基板上に形成するのが一般的に行われていた。
このように、受動素子と配線層を同じ基板に設けた構成とした場合、前記受動素子を単独に、検査、調整することは困難であった。
また、受動素子と配線層のそれぞれの製造における管理項目が異なるため、受動素子を配線層形成工程で形成した場合、受動素子の容量が変化してしまうことがあった。
一方、特許文献1には、抵抗、キャパシタ、インダクタ等の受動素子を形成した多層配線基板を歩留まりよく、効率的に製造するため、受動素子を形成した複数の基板を、それぞれプリプレグを介して、且つ、下面及び上面に銅箔が表出される状態で一体化し、前記受動素子と配線層をビア接続、またはスルーホール接続により接続して、多層配線基板とすることが記載されている。
しかし、前記受動素子を形成する基板の構成は、基板の表裏にそれぞれの受動素子を形成した構成となっているため、絶縁基板に形成したそれぞれの受動素子単独で検査、調整することは困難で、予め設定した条件のまま形成し、そのまま内蔵した多層基板とせざる得なかった。
特開2003−154971号公報
When manufacturing a wiring board incorporating a passive element such as a resistor, a capacitor, or an inductor, the passive element and the wiring layer are generally formed on the same substrate.
Thus, when it was set as the structure which provided the passive element and the wiring layer in the same board | substrate, it was difficult to test | inspect and adjust the said passive element independently.
In addition, since the management items for manufacturing the passive element and the wiring layer are different, when the passive element is formed in the wiring layer forming process, the capacitance of the passive element may change.
On the other hand, in Patent Document 1, in order to efficiently produce a multilayer wiring board in which passive elements such as resistors, capacitors, and inductors are formed with high yield, a plurality of substrates on which passive elements are formed are respectively connected via prepregs. Further, it is described that a copper foil is exposed on the lower surface and the upper surface, and the passive element and the wiring layer are connected by via connection or through hole connection to form a multilayer wiring board.
However, the structure of the substrate on which the passive elements are formed is a structure in which the passive elements are formed on the front and back of the substrate, so that it is difficult to inspect and adjust each passive element formed on the insulating substrate alone. However, it was unavoidable to form a multilayer substrate that was formed as it was and was built in as it was.
JP 2003-154971 A

本発明は、実回路内に受動素子を形成すると回路上の問題で素子単独で検査や素子容量の調整ができない問題、及び配線回路基板と受動素子の形成工程での管理項目が異なる問題を解消し、受動素子を単独に検査、調整可能な、受動素子を内蔵した多層配線基板の製造方法を提供することである。   The present invention solves the problem that if a passive element is formed in an actual circuit, the problem cannot be inspected and the capacitance of the element alone cannot be adjusted due to a circuit problem, and the management items in the wiring circuit board and the passive element forming process are different. Another object of the present invention is to provide a method for manufacturing a multilayer wiring board with a built-in passive element that can independently inspect and adjust the passive element.

請求項1に記載の発明は、薄膜絶縁基板の片面に抵抗素子、キャパシタ、インダクタの少なくとも一種類の素子を、それぞれ独立した状態で配置した素子基板を形成し、前記素子基板の各素子の検査や調整を行った後、多層配線基板の積層工程において、配線層を有する配線基板と前記素子基板を積層し、前記素子基板の各素子と上下の前記配線基板の配線層とを、ビア接続あるいはスルーホール接続することで基板内部に受動素子を内蔵した多層配線基板の製造方法である。   According to the first aspect of the present invention, an element substrate in which at least one element of a resistance element, a capacitor, and an inductor is arranged in an independent state is formed on one surface of a thin film insulating substrate, and each element of the element substrate is inspected. After the adjustment, the wiring substrate having the wiring layer and the element substrate are stacked in the stacking process of the multilayer wiring substrate, and each element of the element substrate and the wiring layers of the upper and lower wiring substrates are connected via or This is a method for manufacturing a multilayer wiring board in which a passive element is built in the substrate by through-hole connection.

請求項2に記載の発明は、前記抵抗素子が、薄膜絶縁基板の全面に薄膜金属形成工程によって全面に金属抵抗薄膜を形成し、該金属抵抗薄膜の所定の箇所、にフォトリソグラフィー工程とエッチングにより、所定の大きさ、形状に加工された抵抗素子であることを特徴とする、請求項1記載の受動素子を内蔵した多層配線基板の製造方法である。   According to a second aspect of the present invention, the resistance element is formed by forming a metal resistance thin film on the entire surface of the thin film insulating substrate by a thin film metal forming process, and performing a photolithography process and etching on a predetermined portion of the metal resistance thin film. 2. The method of manufacturing a multilayer wiring board with a built-in passive element according to claim 1, wherein the resistance element is processed into a predetermined size and shape.

請求項3に記載の発明は、前記抵抗素子が、薄膜絶縁基板の所定の箇所に、抵抗体ペーストを所定の大きさ、形状で印刷した抵抗素子であることを特徴とする、請求項1記載の受動素子を内蔵した多層配線基板の製造方法である。   The invention according to claim 3 is characterized in that the resistance element is a resistance element in which a resistor paste is printed in a predetermined size and shape at a predetermined location of a thin film insulating substrate. This is a method of manufacturing a multilayer wiring board incorporating the passive elements.

請求項4に記載の発明は、前記抵抗素子が、端部に導電性ペーストからなる配線層接続用電極が設けられていることを特徴とする、請求項2または3記載の受動素子を内蔵した多層配線基板の製造方法である。   According to a fourth aspect of the present invention, there is provided the passive element according to the second or third aspect, wherein the resistance element is provided with a wiring layer connection electrode made of a conductive paste at an end portion. It is a manufacturing method of a multilayer wiring board.

請求項5に記載の発明は、前記素子基板を構成する薄膜絶縁基板が、予め抵抗素子用電極が形成されていることを特徴とする、請求項2ないし4のいずれかに記載の受動素子を内蔵した多層配線基板の製造方法である。   According to a fifth aspect of the present invention, there is provided the passive element according to any one of the second to fourth aspects, wherein the thin film insulating substrate constituting the element substrate has a resistance element electrode formed in advance. This is a method of manufacturing a built-in multilayer wiring board.

ここで、積層工程によって形成する多層配線回路基板に受動素子として抵抗素子を内蔵する方法として、薄膜の絶縁基板上にあらかじめ所定の箇所に各素子を形成した素子基板と、多層配線基板の積層工程時に同時に積層したのち、上下配線基板の配線層とビア接続することで基板内部に各素子を配置、接続し、多層配線基板の内部に部品を内蔵することを可能とした。   Here, as a method of incorporating a resistance element as a passive element in a multilayer wiring circuit board formed by a lamination process, an element substrate in which each element is formed in a predetermined position on a thin insulating substrate in advance and a lamination process of the multilayer wiring board At the same time, after stacking at the same time, it is possible to place and connect each element inside the substrate by via-connecting to the wiring layers of the upper and lower wiring substrates, and to incorporate the components inside the multilayer wiring substrate.

上記の薄膜基板上への抵抗素子の形成方法として、薄膜金属形成(スパッタ、無電解めっき、蒸着など)によって薄膜基板の全面に金属薄膜を形成し、フォトリソグラフィー工程とエッチング技術によって、所定の大きさで薄膜金属を残し配置することで抵抗素子とした。
なお、前記無電解めっきで形成する金属箔は、抵抗値の高いものが望ましいが、使用する抵抗の容量によって選択する必要がある。
また、抵抗素子の形成方法として、所定の場所に抵抗体ペーストを所定の大きさで印刷し、抵抗素子とする方法も可能である。抵抗体ペーストの抵抗率やサイズも使用する抵抗素子の容量に合わせて選定する必要がある。
As a method of forming the resistance element on the thin film substrate, a metal thin film is formed on the entire surface of the thin film substrate by thin film metal formation (sputtering, electroless plating, vapor deposition, etc.), and a predetermined size is obtained by a photolithography process and an etching technique. Now, a thin film metal was left and arranged to form a resistance element.
In addition, although the metal foil formed by the said electroless plating has a desirable high resistance value, it needs to be selected according to the capacity | capacitance of the resistance to be used.
Further, as a method of forming the resistance element, a method of printing a resistor paste in a predetermined size at a predetermined location to form a resistance element is also possible. It is necessary to select the resistivity and the size of the resistor paste according to the capacity of the resistor element to be used.

上記で形成した薄膜金属抵抗や印刷抵抗素子を、上下層の配線層と接続する際に、スルーホール接続であれば薄膜金属や印刷ペーストでも問題ないが、レーザー加工でのビア接続では、金属層を貫通するなどの問題が発生する。
そのため抵抗素子の端部に導電性ペーストによって接続用の電極を印刷により形成することで、レーザーによるビア接続にも対応することが可能となる。
薄膜絶縁層に配線回路と同様の方法で、あらかじめ上下の配線基板の配線層との接続用電極を配線パターンで形成しておく方法もある。この接続電極を形成した薄膜基板上に、薄膜金属や抵抗ペーストで抵抗体を形成することで、上下の配線層との接続を従来通り行うことができる。
When connecting the thin film metal resistors and printed resistor elements formed above with the upper and lower wiring layers, there is no problem with thin film metal or printed paste as long as it is through-hole connection, but in via connection in laser processing, the metal layer Problems such as penetrating through.
Therefore, it is possible to cope with via connection by laser by forming a connection electrode on the end portion of the resistance element with a conductive paste by printing.
There is also a method in which connection electrodes to the wiring layers of the upper and lower wiring boards are formed in advance on the thin film insulating layer in the same manner as the wiring circuit. By forming a resistor with a thin film metal or a resistance paste on the thin film substrate on which the connection electrode is formed, connection with the upper and lower wiring layers can be performed as usual.

次に、インダクタンスについては、薄膜基板上にあらかじめ銅箔を形成したものを使用し、フォトリソグラフィ工程とエッチングによって形成することが可能である。また、導電性ペーストを印刷によってインダクタ形状を形成することもできる。   Next, the inductance can be formed by using a copper foil previously formed on a thin film substrate by a photolithography process and etching. Further, the inductor shape can be formed by printing a conductive paste.

キャパシタについては、インダクタと同様にキャパシタの下部電極をフォトリソグラフィ工程とエッチングによって形成し、誘電体のペーストを印刷によって電極上に部分的に形成する方法や、感光性の誘電体フィルムを使用して、フォトリソグラフィ工程によって電極上に部分的に誘電体を形成する方法がある。
また、上部電極は導電性ペーストを誘電体上に印刷することでキャパシタを形成することができる。
For capacitors, the lower electrode of the capacitor is formed by photolithography and etching in the same manner as the inductor, and a dielectric paste is partially formed on the electrode by printing, or a photosensitive dielectric film is used. There is a method in which a dielectric is partially formed on an electrode by a photolithography process.
The upper electrode can form a capacitor by printing a conductive paste on the dielectric.

薄膜絶縁層に形成された素子は、配線回路を持たず、各素子独立であるため、各素子の容量を測定することが可能であり、また調整のためトリミングすることも容易である。   Since the element formed in the thin film insulating layer does not have a wiring circuit and is independent of each element, the capacitance of each element can be measured and can be easily trimmed for adjustment.

受動素子を配線回路とは、別にあらかじめ薄膜絶縁体上に形成することで、各素子を確実に検査することが可能となり、配線回路と別の工程で形成することができることから、収率を上げることができ、製造工程のコストダウンにつながる。
また、各素子の配置によっては、形成した薄膜絶縁シートを共有化できることから、基板全体のコストダウンにもつながる。
さらに、各素子を同一面上に形成することで、各素子を形成した薄膜基板ごとに管理することが可能となり、不良率の低減にもつながる。
By forming passive elements on the thin film insulator in advance separately from the wiring circuit, each element can be reliably inspected and can be formed in a separate process from the wiring circuit, thus increasing the yield. This leads to cost reduction in the manufacturing process.
In addition, depending on the arrangement of each element, the formed thin film insulating sheet can be shared, which leads to cost reduction of the entire substrate.
Furthermore, by forming each element on the same surface, it becomes possible to manage each thin film substrate on which each element is formed, leading to a reduction in the defect rate.

本発明の配線基板構造を図7、図8、図9に基づいて説明する。
本発明の素子内蔵基板の形成方法は、図7、図8に示すように、薄膜絶縁基板10上に、抵抗電極端子45ならびにインダクタ60、キャパシタ下部電極50を形成し、前記抵抗電極端子45上に、薄膜金属形成工程とフォトリソグラフィ工程ならびにエッチング工程によって抵抗素子20を形成する。
そして、前記抵抗素子の容量を調整するためにトリミング装置で抵抗値の調整を行うことで、抵抗素子を形成できる。
次に、キャパシタ下電極50上に誘電体ペーストを印刷により、誘電体層を形成する。
そして、誘電体層を形成後に、導電性ペーストを誘電体上に印刷し、キャパシタ上部電極52を形成する。
この各素子を形成した素子基板を、図9の工程によって基板内に内蔵する。
配線回路を形成した配線基板1と各素子を形成した素子基板10a、ならびに絶縁基板2を真空プレス機によって積層貼付けする。なお、各基板の貼付けは、プリプレグなどの接着層を挟み込むことで接着一体化する。
次に、インダクタの電極部、キャパシタの電極部、抵抗端子電極部30に設けた貫通孔用の穴を狙ってレーザー加工によって導通用の穴加工を行う。
ここで、レーザーの選択によっては、電極部の加工もできるため、この抵抗電極部の貫通孔は設ける必要ない。コア基板1の配線層まで加工し、次に、無電解めっき工程で絶縁基板2ならびに貫通後部に導体層3を形成する。この導体層3を形成後に、フォトリソグラフィ工程とエッチング工程によって上部配線層3aの形成を行い、内層の薄膜絶縁基板に形成した各素子と配線回路とを電気的に接続することができる。
この工程で、本発明の受動素子内蔵基板を形成することができる。
The wiring board structure of the present invention will be described with reference to FIGS.
As shown in FIGS. 7 and 8, the element-embedded substrate forming method of the present invention forms a resistance electrode terminal 45, an inductor 60, and a capacitor lower electrode 50 on a thin film insulating substrate 10. Further, the resistance element 20 is formed by a thin film metal forming process, a photolithography process, and an etching process.
The resistance element can be formed by adjusting the resistance value with a trimming device to adjust the capacitance of the resistance element.
Next, a dielectric layer is formed on the capacitor lower electrode 50 by printing a dielectric paste.
Then, after forming the dielectric layer, a conductive paste is printed on the dielectric to form the capacitor upper electrode 52.
The element substrate on which each element is formed is built in the substrate by the process of FIG.
The wiring substrate 1 on which the wiring circuit is formed, the element substrate 10a on which each element is formed, and the insulating substrate 2 are laminated and pasted by a vacuum press. Each substrate is bonded and integrated by sandwiching an adhesive layer such as a prepreg.
Next, hole processing for conduction is performed by laser processing aiming at a hole for a through hole provided in the electrode portion of the inductor, the electrode portion of the capacitor, and the resistance terminal electrode portion 30.
Here, depending on the selection of the laser, the electrode portion can be processed, and therefore there is no need to provide a through hole in the resistance electrode portion. The wiring layer of the core substrate 1 is processed, and then the insulating substrate 2 and the conductor layer 3 are formed on the rear part in the electroless plating process. After the conductor layer 3 is formed, the upper wiring layer 3a is formed by a photolithography process and an etching process, and each element formed on the inner thin film insulating substrate can be electrically connected to the wiring circuit.
In this step, the passive element-embedded substrate of the present invention can be formed.

(実施例1)
以下、実施例1について、図1、図2、図3を用いて説明する。
まず、薄膜絶縁基板10の材料として、コア厚0.06mm厚のBTレジン基板を使用した。この絶縁基板10上にスクリーン印刷を用いて、カーボンペーストからなる抵抗材料を使用し、抵抗の容量に合わせて、膜厚とサイズを調整し、薄膜基板上に図1ならびに図2のように印刷形成した。印刷後、80℃で30分間、仮ベークし、さらに190℃、2時間本ベークを行った。
次に、キャパシタの形成を行うため、銅ペーストからなる銅ペーストを用いて、下部電極50を印刷によって形成した。
そして、印刷後に80℃で30分間仮ベークし、誘電体ペーストを下部電極を覆うように形成し、誘電体層511の形成を行った。さらに、印刷後80℃で30分間仮ベークし、キャパシタの上部電極52を銅ペーストで印刷により形成した。
印刷後、80℃で仮ベークし、190℃、2時間の本ベークを行うことで、キャパシタの形成、ならびに抵抗素子の形成を行った。
そして、抵抗素子の容量を調整するためにトリミング装置で抵抗値の調整を行い、次に、図3(a)に示すように、配線回路基板1と素子基板10aならびに絶縁基板2とを配置し、60μmのプリプレグ(図示せず)を使用して、真空プレス機によって図3(b)に示すのように積層一体化した。
次に、炭酸ガスレーザー加工機を使用して、図3(c)に示すように、薄膜基板10aの各素子の端子部ならびに、配線回路基板1のランド接続部まで貫通するように穴開け加工を行った。
さらに、図3(d)に示すように、無電解銅めっき工程によって絶縁基板2ならびに貫通孔部に薄膜金属層を形成し、次に、電解銅めっきによって薄膜金属層の厚みを12μmまで厚くし、金属層3を形成した。
次に、配線層を形成するため、金属層3の上部にドライフィルムレジスト(日立化成工業製 RY−3315 15μm厚)をラミネートし、配線パターンマスクを用いて、露光(UV露光、40mJ)と現像(1%炭酸ソーダ、15秒、スプレー現像)を行い、塩化第二鉄液によるエッチングで配線パターンを形成し、図3(e)に示す受動素子内蔵基板を形成した。
Example 1
Hereinafter, Example 1 will be described with reference to FIGS. 1, 2, and 3.
First, a BT resin substrate having a core thickness of 0.06 mm was used as the material of the thin film insulating substrate 10. A resistive material made of carbon paste is used on the insulating substrate 10 by screen printing, and the film thickness and size are adjusted in accordance with the resistance capacity, and printed on the thin film substrate as shown in FIGS. Formed. After printing, it was temporarily baked at 80 ° C. for 30 minutes, and further baked at 190 ° C. for 2 hours.
Next, in order to form a capacitor, the lower electrode 50 was formed by printing using a copper paste made of a copper paste.
Then, after printing, temporary baking was performed at 80 ° C. for 30 minutes to form a dielectric paste so as to cover the lower electrode, and a dielectric layer 511 was formed. Further, after printing, the substrate was temporarily baked at 80 ° C. for 30 minutes, and the upper electrode 52 of the capacitor was formed by printing with a copper paste.
After printing, temporary baking was performed at 80 ° C., and main baking was performed at 190 ° C. for 2 hours, thereby forming a capacitor and a resistance element.
Then, the trimming device is used to adjust the resistance value in order to adjust the capacitance of the resistance element. Next, as shown in FIG. 3A, the wiring circuit board 1, the element board 10a, and the insulating board 2 are arranged. , 60 μm prepreg (not shown) was laminated and integrated as shown in FIG. 3B by a vacuum press.
Next, using a carbon dioxide gas laser processing machine, as shown in FIG. 3 (c), drilling is performed so as to penetrate to the terminal portions of each element of the thin film substrate 10a and the land connection portions of the printed circuit board 1. Went.
Further, as shown in FIG. 3 (d), a thin film metal layer is formed on the insulating substrate 2 and the through hole by an electroless copper plating process, and then the thickness of the thin film metal layer is increased to 12 μm by electrolytic copper plating. A metal layer 3 was formed.
Next, in order to form a wiring layer, a dry film resist (RY-3315 15 μm thick, manufactured by Hitachi Chemical Co., Ltd.) is laminated on the metal layer 3, and exposure (UV exposure, 40 mJ) and development are performed using a wiring pattern mask. (1% sodium carbonate, 15 seconds, spray development) was performed, and a wiring pattern was formed by etching with ferric chloride solution to form a substrate with built-in passive elements shown in FIG.

(実施例2)
以下、実施例2について、図4、図5、図6を用いて説明する。
薄膜絶縁基板10の材料として、0.06mm厚のBTレジン基板を使用した。この絶縁基板10上にスクリーン印刷を用いて、抵抗材料にカーボンペーストを使用し、抵抗の容量に合わせて膜厚と大きさを調整してコーティングした。
印刷後に80℃で30分間仮ベークし、さらに抵抗素子の端子部に、銀ペーストからなる導電ペースト30を、図4、図5に示すようににリング状に印刷した。また、銀ペーストでインダクタの形成も印刷によって形成して。
印刷後に80℃で30分間分仮ベークし、さらにキャパシタの形成を行うため、銅ペーストからなる導電性ペーストを用いて、下部電極50を印刷によって形成した。印刷後に80℃で30分間仮ベークし、誘電体ペーストで下部電極を覆うように形成し、誘電体層51を形成した。
さらに、印刷後80℃で30分間仮ベークし、キャパシタの上部電極52を銅ペーストで印刷により形成した。印刷後、80℃で仮ベークし、190℃、2時間の本ベークを行うことで、キャパシタの形成ならびに抵抗素子、インダクタ素子を形成した。
抵抗端子部のリングの中心の穴径は、100μmで、断面形状は、図5に示したように配置した。
この工程で、受動素子を形成した素子基板10aを形成した。そして。抵抗素子の容量を調整するためにトリミング装置で抵抗値の調整を行った。
次に、図6(a)に示すように、配線回路基板1と薄膜基板10aならびに絶縁基板2とを配置し、60μmのプリプレグ(図示せず)を使用して、真空プレス機によって図6(b)のように積層一体化した。
次に、図6(c)に示すように、炭酸ガスレーザー加工機を使用して、素子基板10aの各素子端子部、ならびに、配線回路基板1のランド接続部まで貫通するように穴開け加工を行った。
抵抗素子の穴開け加工は、銀ペーストに設けられたリングの孔部を広げるように加工した。
さらに、図6(d)に示すように,無電解銅めっき工程によって絶縁基板2ならびに貫通孔部に薄膜金属層を形成し、さらに電解銅めっきによって薄膜金属層の厚みを15μmまで厚くし、金属層3の形成を行った。次に、配線層を、金属層3の上部にドライフィルムレジスト(日立化成工業製 RY−3315 15μm厚)をラミネートし、配線パターンマスクを用いて露光(UV露光、40mJ)と現像(1%炭酸ソーダ、15秒,スプレー現像)を行い、塩化第二鉄液によるエッチングで配線パターンを形成し、図6(e)に示す受動素子内蔵基板を形成した。
(Example 2)
Hereinafter, Example 2 will be described with reference to FIGS. 4, 5, and 6.
As a material for the thin film insulating substrate 10, a BT resin substrate having a thickness of 0.06 mm was used. The insulating substrate 10 was coated by screen printing using a carbon paste as a resistance material and adjusting the film thickness and size according to the resistance capacity.
After printing, it was temporarily baked at 80 ° C. for 30 minutes, and a conductive paste 30 made of silver paste was printed in a ring shape as shown in FIGS. 4 and 5 on the terminal portion of the resistance element. Also, form the inductor with silver paste by printing.
After printing, the lower electrode 50 was formed by printing using a conductive paste made of a copper paste for provisional baking at 80 ° C. for 30 minutes and further forming a capacitor. After printing, the substrate was temporarily baked at 80 ° C. for 30 minutes, and the dielectric paste was formed so as to cover the lower electrode with a dielectric paste.
Further, after printing, the substrate was temporarily baked at 80 ° C. for 30 minutes, and the upper electrode 52 of the capacitor was formed by printing with a copper paste. After printing, temporary baking was performed at 80 ° C. and main baking was performed at 190 ° C. for 2 hours to form a capacitor, a resistance element, and an inductor element.
The hole diameter at the center of the ring of the resistance terminal portion was 100 μm, and the cross-sectional shape was arranged as shown in FIG.
In this step, an element substrate 10a on which passive elements are formed is formed. And then. In order to adjust the capacitance of the resistance element, the resistance value was adjusted with a trimming device.
Next, as shown in FIG. 6 (a), the printed circuit board 1, the thin film substrate 10a, and the insulating substrate 2 are arranged, and a 60 μm prepreg (not shown) is used to perform FIG. The layers were integrated as shown in b).
Next, as shown in FIG. 6C, using a carbon dioxide laser processing machine, drilling is performed so that each element terminal portion of the element substrate 10a and the land connection portion of the printed circuit board 1 are penetrated. Went.
The resistance element was drilled so as to widen the hole of the ring provided in the silver paste.
Further, as shown in FIG. 6 (d), a thin film metal layer is formed on the insulating substrate 2 and the through hole by an electroless copper plating process, and the thickness of the thin film metal layer is increased to 15 μm by electrolytic copper plating. Layer 3 was formed. Next, the wiring layer is laminated with a dry film resist (RY-3315 15 μm thickness, manufactured by Hitachi Chemical Co., Ltd.) on the upper part of the metal layer 3, and is exposed (UV exposure, 40 mJ) and developed (1% carbonic acid using a wiring pattern mask). (Soda, 15 seconds, spray development) was performed, and a wiring pattern was formed by etching with a ferric chloride solution to form a passive element built-in substrate shown in FIG.

(実施例3)
以下、実施例について図7、図8、図9を用いて説明する。
片面に12μmの銅箔を有する0.06mm厚のBTレジン基板を、薄膜基板10の材料として使用した。
次に、図7,図8に示すように、銅箔上にドライフィルムレジスト(日立化成工業製 RY−3315 15μm厚)をラミネートし、配線パターンマスクを用いて露光(UV露光、40mJ)と現像(1%炭酸ソーダ、15秒、スプレー現像)を行い、塩化第二鉄液によるエッチングで抵抗素子の端子部、ならびにインダクタ、キャパシタの下部電極を形成した。
抵抗の電極部に、スクリーン印刷を用いて、抵抗材料にカーボンペーストを使用し、抵抗の容量に合わせて膜厚と大きさを調整してコーティングした。印刷後に80℃で30分間仮ベークし、さらに、キャパシタの形成を行うため、誘電体ペーストを下部電極を覆うように形成し、誘電体層51の形成を行った。
さらに、印刷後80℃で30分間仮ベークし、キャパシタの上部電極52を銅ペーストで印刷により形成した。印刷後、80℃で仮ベークし、190℃、2時間の本ベークを行うことで、キャパシタの形成、ならびに抵抗素子の形成を行った。
抵抗素子の容量を調整するためにトリミング装置で抵抗値の調整を行った。次に、図9(a)に示すように、配線回路基板1と薄膜基板10a、ならびに絶縁基板2とを配置し、60μmのプリプレグを(図示せず)使用して、真空プレス機によって図9(b)のように積層一体化した。
次に、図9(c)に示すように、炭酸ガスレーザー加工機を使用して、薄膜基板10aの各素子の端子部、ならびに、配線回路基板1のランド接続部まで貫通するように穴開け加工を行った。抵抗素子の穴開け加工は、端子部に設けられたリングの孔部を広げるように加工した。
さらに、図9(d)に示すように、無電解銅めっき工程によって、絶縁基板2ならびに貫通孔部に薄膜金属層を形成し、さらに電解銅めっきによって薄膜金属層の厚みを15μmまで厚くし、金属層3を形成した。
次に、配線層を形成するため、金属層3の上部にドライフィルムレジスト(日立化成工業製 RY−3315 15μm厚)をラミネートし、配線パターンマスクを用いて露光(UV露光、40mJ)と現像(1%炭酸ソーダ、15秒,スプレー現像)を行い、塩化第二鉄液によるエッチングで配線パターンを形成し、図9(e)のような受動素子内蔵基板を形成した。
(Example 3)
Hereinafter, an Example is described using FIG. 7, FIG. 8, FIG.
A 0.06 mm-thick BT resin substrate having a 12 μm copper foil on one side was used as a material for the thin film substrate 10.
Next, as shown in FIGS. 7 and 8, a dry film resist (RY-3315 15 μm thick, manufactured by Hitachi Chemical Co., Ltd.) is laminated on the copper foil, and exposure (UV exposure, 40 mJ) and development are performed using a wiring pattern mask. (1% sodium carbonate, 15 seconds, spray development) was performed, and the terminal portion of the resistance element, the inductor and the lower electrode of the capacitor were formed by etching with ferric chloride solution.
The electrode part of the resistor was coated by using screen printing, using a carbon paste as a resistor material, adjusting the film thickness and size according to the resistor capacity. After printing, the substrate was temporarily baked at 80 ° C. for 30 minutes, and a dielectric paste was formed to cover the lower electrode and a dielectric layer 51 was formed in order to form a capacitor.
Further, after printing, the substrate was temporarily baked at 80 ° C. for 30 minutes, and the upper electrode 52 of the capacitor was formed by printing with a copper paste. After printing, temporary baking was performed at 80 ° C., and main baking was performed at 190 ° C. for 2 hours, thereby forming a capacitor and a resistance element.
In order to adjust the capacitance of the resistance element, the resistance value was adjusted with a trimming device. Next, as shown in FIG. 9 (a), the printed circuit board 1, the thin film substrate 10a, and the insulating substrate 2 are arranged, and a 60 μm prepreg (not shown) is used, and a vacuum press machine is used. The layers were integrated as shown in (b).
Next, as shown in FIG. 9 (c), using a carbon dioxide laser processing machine, holes are formed so as to penetrate to the terminal portions of each element of the thin film substrate 10a and the land connection portions of the printed circuit board 1. Processing was performed. The resistance element was drilled so as to widen the hole of the ring provided in the terminal.
Furthermore, as shown in FIG. 9 (d), a thin film metal layer is formed on the insulating substrate 2 and the through hole by an electroless copper plating step, and the thickness of the thin film metal layer is further increased to 15 μm by electrolytic copper plating. Metal layer 3 was formed.
Next, in order to form a wiring layer, a dry film resist (manufactured by Hitachi Chemical Co., Ltd., RY-3315 15 μm thick) is laminated on the upper part of the metal layer 3, and exposure (UV exposure, 40 mJ) and development (using a wiring pattern mask) 1% sodium carbonate, 15 seconds, spray development), a wiring pattern was formed by etching with ferric chloride solution, and a passive element built-in substrate as shown in FIG. 9E was formed.

本発明の受動素子の配置例を示す説明図。Explanatory drawing which shows the example of arrangement | positioning of the passive element of this invention. 図1のa―bからの断面図。Sectional drawing from ab of FIG. 本発明の多層配線基板の製造方法の例を示す説明図。Explanatory drawing which shows the example of the manufacturing method of the multilayer wiring board of this invention. 本発明の受動素子の配置例を示す説明図。Explanatory drawing which shows the example of arrangement | positioning of the passive element of this invention. 図5のa―bからの断面図。Sectional drawing from ab of FIG. 本発明の多層配線基板の製造方法の例を示す説明図。Explanatory drawing which shows the example of the manufacturing method of the multilayer wiring board of this invention. 本発明の受動素子の配置例を示す説明図。Explanatory drawing which shows the example of arrangement | positioning of the passive element of this invention. 図1のa―bからの断面図。Sectional drawing from ab of FIG. 本発明の多層配線基板の製造方法の例を示す説明図。Explanatory drawing which shows the example of the manufacturing method of the multilayer wiring board of this invention.

1・・・・・・・・・ 配線基板
2 ・・・・・・・・・ 絶縁基板
3・・・・・・・・・ 金属層
3a・・・・・・・・・ 配線回路
2a・・・・・・・・・ 薄膜抵抗体基板
10・・・・・・・・・ 薄膜絶縁基板
10a・・・・・・・・・ 素子基板
10b・・・・・・・・・ 穴あけ加工された素子基板
20・・・・・・・・・ 抵抗体
30・・・・・・・・・ 端子電極
50・・・・・・・・・ 下部電極
51・・・・・・・・・ 誘電体層
52・・・・・・・・・ 上部電極
60・・・・・・・・・ インダクタ
1 ... Wiring board 2 ... Insulating board 3 ... Metal layer 3a ... Wiring circuit 2a ... ... Thin film resistor substrate 10 ... Thin film insulating substrate 10a ... Element substrate 10b ... Drilled. Element substrate 20... Resistor 30... Terminal electrode 50... Lower electrode 51. Body layer 52 ... Upper electrode 60 ... Inductor

Claims (5)

薄膜絶縁基板の片面に抵抗素子、キャパシタ、インダクタの少なくとも一種類の素子を、それぞれ独立した状態で配置した素子基板を形成し、
前記素子基板の各素子の検査や調整を行った後、多層配線基板の積層工程において、配線層を有する配線基板と絶縁基板の間に前記素子基板を接着層を介して積層し、
前記配線基板と前記素子基板と前記絶縁基板を接着一体化し、
前記素子基板の各素子と上下の前記配線基板の配線層とを、ビア接続あるいはスルーホール接続することで基板内部に受動素子を内蔵した多層配線基板の製造方法。
Forming an element substrate in which at least one element of a resistance element, a capacitor, and an inductor are arranged independently on one side of a thin film insulating substrate,
After inspecting and adjusting each element of the element substrate, in the stacking process of the multilayer wiring substrate, the element substrate is stacked between the wiring substrate having the wiring layer and the insulating substrate via an adhesive layer,
Bonding and integrating the wiring substrate, the element substrate, and the insulating substrate;
A method of manufacturing a multilayer wiring board in which passive elements are built in a substrate by via-connecting or through-hole connecting each element of the element substrate and wiring layers of the upper and lower wiring boards.
前記抵抗素子が、薄膜絶縁基板の全面に薄膜金属形成工程によって全面に金属抵抗薄膜を形成し、該金属抵抗薄膜の所定の箇所、にフォトリソグラフィー工程とエッチングにより、所定の大きさ、形状に加工された抵抗素子であることを特徴とする、請求項1記載の受動素子を内蔵した多層配線基板の製造方法。   The resistance element forms a metal resistance thin film on the entire surface of the thin film insulating substrate by a thin film metal formation process, and is processed into a predetermined size and shape by a photolithography process and etching at a predetermined portion of the metal resistance thin film. 2. The method for manufacturing a multilayer wiring board with a built-in passive element according to claim 1, wherein the resistive element is a resistive element. 前記抵抗素子が、薄膜絶縁基板の所定の箇所に、抵抗体ペーストを所定の大きさ、形状で印刷した抵抗素子であることを特徴とする、請求項1記載の受動素子を内蔵した多層配線基板の製造方法。   2. The multilayer wiring board with a built-in passive element according to claim 1, wherein the resistance element is a resistance element in which a resistor paste is printed in a predetermined size and shape at a predetermined location of a thin film insulating substrate. Manufacturing method. 前記抵抗素子が、端部に導電性ペーストからなる配線層接続用電極が設けられていることを特徴とする、請求項2または3記載の受動素子を内蔵した多層配線基板の製造方法。   4. The method of manufacturing a multilayer wiring board with a built-in passive element according to claim 2, wherein the resistance element is provided with a wiring layer connection electrode made of a conductive paste at an end. 前記素子基板を構成する薄膜絶縁基板が、予め抵抗素子用電極が形成されていることを特徴とする、請求項2ないし4のいずれかに記載の受動素子を内蔵した多層配線基板の製造方法。
5. The method of manufacturing a multilayer wiring board with a built-in passive element according to claim 2, wherein the thin film insulating substrate constituting the element substrate is formed with a resistance element electrode in advance.
JP2004332830A 2004-11-17 2004-11-17 Manufacturing method of multilayer wiring board with built-in components Expired - Fee Related JP4857547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332830A JP4857547B2 (en) 2004-11-17 2004-11-17 Manufacturing method of multilayer wiring board with built-in components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332830A JP4857547B2 (en) 2004-11-17 2004-11-17 Manufacturing method of multilayer wiring board with built-in components

Publications (2)

Publication Number Publication Date
JP2006147683A JP2006147683A (en) 2006-06-08
JP4857547B2 true JP4857547B2 (en) 2012-01-18

Family

ID=36627041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332830A Expired - Fee Related JP4857547B2 (en) 2004-11-17 2004-11-17 Manufacturing method of multilayer wiring board with built-in components

Country Status (1)

Country Link
JP (1) JP4857547B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221698A (en) * 1988-07-08 1990-01-24 Hitachi Chem Co Ltd Wired board having resistance wire and manufacture thereof
JPH0231493A (en) * 1988-07-21 1990-02-01 Alps Electric Co Ltd Circuit board
JPH0786753A (en) * 1993-09-16 1995-03-31 Matsushita Electric Ind Co Ltd Manufacture of multilayer circuit board provided with built-in resistor
JPH08125302A (en) * 1994-10-20 1996-05-17 Hokuriku Electric Ind Co Ltd Circuit substrate with capacitor and multilayer circuit substrate wherein the circuit substrate is used
JP4026329B2 (en) * 2001-06-29 2007-12-26 日本ビクター株式会社 Manufacturing method of wiring board with built-in element

Also Published As

Publication number Publication date
JP2006147683A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
KR100754080B1 (en) Rigid-flexible printed circuit board and manufacturing method therefor
US7186919B2 (en) Printed circuit board including embedded capacitors and method of manufacturing the same
US8052881B2 (en) Method of manufacturing multilayer printed circuit board having buried holes
US7774932B2 (en) Circuit board process
JP4818888B2 (en) Manufacturing method of printed wiring board with built-in resistor
JP2007208263A (en) Method for manufacturing printed-circuit substrate with built-in thin-film capacitor
US10292279B2 (en) Disconnect cavity by plating resist process and structure
US20120080401A1 (en) Method of fabricating multilayer printed circuit board
JPH08125342A (en) Flexible multilayered wiring board and its manufacture
JP4753380B2 (en) Bottom electrode type solid electrolytic capacitor
US20060191133A1 (en) Multilayer board and its manufacturing method
TW201720250A (en) Printed circuit board and method for manufacturing same
CN110366310B (en) Soft and hard composite board and its making method
JP4857547B2 (en) Manufacturing method of multilayer wiring board with built-in components
JP2008305988A (en) Method of manufacturing printed wiring board incorporating resistive element
KR20130065473A (en) The printed circuit board and the method for manufacturing the same
JP4701853B2 (en) Multi-layer wiring board with built-in resistance element and resistance value adjustment method for the resistance element
JP4541051B2 (en) Resistance element built-in wiring board and manufacturing method of resistance element built-in wiring board
JP4529614B2 (en) Method for manufacturing printed wiring board
JP2007027238A (en) Resistive element and multilayer wiring board incorporating the same, and method of adjusting resistance value of resistive element
JP4802575B2 (en) Electric circuit board
JP2023042086A (en) Electronic device and method for manufacturing the same
KR20070078148A (en) Resistence embedded pcb and manufacturing method thereof
JP2004039908A (en) Circuit board and its manufacturing method
JPH0818228A (en) Manufacture of multi-layer printed board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees