JP4857205B2 - Shade - Google Patents

Shade Download PDF

Info

Publication number
JP4857205B2
JP4857205B2 JP2007171343A JP2007171343A JP4857205B2 JP 4857205 B2 JP4857205 B2 JP 4857205B2 JP 2007171343 A JP2007171343 A JP 2007171343A JP 2007171343 A JP2007171343 A JP 2007171343A JP 4857205 B2 JP4857205 B2 JP 4857205B2
Authority
JP
Japan
Prior art keywords
light
film
mgo
thickness
mgo film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007171343A
Other languages
Japanese (ja)
Other versions
JP2009007210A (en
Inventor
真也 白石
良享 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2007171343A priority Critical patent/JP4857205B2/en
Publication of JP2009007210A publication Critical patent/JP2009007210A/en
Application granted granted Critical
Publication of JP4857205B2 publication Critical patent/JP4857205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特定波長域の紫外線を含む光、例えば太陽光を受けたときに、この光を受ける前と比べて光の透過率が減少するMgO膜からなる遮光体に関するものである。   The present invention relates to a light-shielding body made of an MgO film that has a light transmittance that is reduced when it receives light including ultraviolet light in a specific wavelength range, for example, sunlight, before receiving the light.

遮光体は、部屋の境界部に取り付けて直射日光の屋内進入を遮蔽したり、屋内に対するのぞき見を阻止したり、更には、パソコン、携帯電話など、電子機器におけるディスプレイの斜め方向からの他人の覗き見を阻止するなどを目的に利用される。   The light shield is attached to the boundary of the room to block direct sunlight from entering indoors, to prevent peeping indoors, and to prevent other people from seeing diagonally from the display of electronic devices such as personal computers and mobile phones. Used to prevent peeping.

従来、ブラインド、ロールスクリーン、カーテン等、太陽光の射し込む窓面に取り付けることで、室内への採光を調節する調光型の遮光体が開示されている(例えば、特許文献1)。
特開平11−193678号公報(請求項1及び2)
2. Description of the Related Art Conventionally, there has been disclosed a dimming type light shielding body that adjusts daylighting indoors by being attached to a window surface into which sunlight enters, such as a blind, a roll screen, and a curtain (for example, Patent Document 1).
JP-A-11-193678 (Claims 1 and 2)

しかしながら、上記特許文献1記載の調光型遮光体は、これを開閉する開閉機構と、該開閉機構の動作を制御する制御手段とを備える。この制御手段では、直射光有りと判定された場合は、さらに検出手段により特定波長の光の強度を検出し、特定波長の光の強度が予め設定した設定値以上である場合に調光型遮光体を閉じ、特定波長の光の強度が予め設定した設定値以下である場合に調光型遮光体を開くよう開閉機構を制御する構成になっているため、特定波長の光のみを透過させるフィルターや、該フィルターを透過した光の強度を検出するセンサー部材などを備えるなど、一般住宅や車両等の用途に用いる遮光体としては、装置が複雑で光を遮光するまでの工程が煩雑である。   However, the dimming type light-shielding body described in Patent Document 1 includes an opening / closing mechanism that opens and closes the opening / closing mechanism and a control unit that controls the operation of the opening / closing mechanism. In this control means, when it is determined that there is direct light, the light intensity of the specific wavelength is further detected by the detection means, and if the light intensity of the specific wavelength is equal to or higher than a preset value, the light control type light shielding A filter that allows only light of a specific wavelength to pass through because the body is closed and the open / close mechanism is controlled to open the dimming light shield when the intensity of light of a specific wavelength is below a preset value. In addition, as a light-blocking body used for general houses and vehicles, such as a sensor member that detects the intensity of light transmitted through the filter, the apparatus is complicated and the process until the light is blocked is complicated.

本発明の目的は、特定波長域の紫外線を含む光を受けたときに、この光を受ける前と比べて光の透過率が減少する主に自動車のリヤガラス等の用途に適した遮光体を提供することにある。   An object of the present invention is to provide a light-shielding body that is suitable for applications such as rear glass of automobiles in which light transmittance is reduced when receiving light including ultraviolet rays in a specific wavelength range compared to before receiving the light. There is to do.

本発明の別の目的は、特定波長域の紫外線を含む光を受けて、光の透過率が減少した後、加熱により特定波長域の紫外線を含む光を受ける前の透過率までほぼ回復することができる主に自動車のリヤガラス等の用途に適した遮光体を提供することにある。   Another object of the present invention is to receive light containing ultraviolet rays in a specific wavelength region, and after the light transmittance is reduced, it is almost recovered to the transmittance before receiving the light containing ultraviolet rays in the specific wavelength region by heating. An object of the present invention is to provide a light-shielding body suitable for applications such as automobile rear glass.

請求項1に係る発明は、透明基板上に0.2〜500μmの厚さを有する純度99.0%以上のMgO膜が形成され、MgO膜が厚さ0.1〜10μmであって波長280〜380nmの紫外線を透過する保護膜で被覆され、上記MgO膜におけるCの濃度が2000ppm未満であり、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnからなる群より選ばれた1種又は2種以上の遷移金属元素の濃度が2000ppm以下であり、かつ上記遷移金属元素の各元素の濃度が500ppm以下であり、波長280〜380nmの範囲の紫外線を含む光を受けると、この光を受ける前と比べて、光の透過率が0.5%以上減少することを特徴とする遮光体である。
請求項2に係る発明は、請求項1に係る発明であって、自動車のリヤガラスに用いられる遮光体である。
In the invention according to claim 1, an MgO film having a thickness of 0.2 to 500 μm and a purity of 99.0% or more is formed on a transparent substrate, and the MgO film has a thickness of 0.1 to 10 μm and a wavelength. A group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn , coated with a protective film that transmits ultraviolet light of 280 to 380 nm, the concentration of C in the MgO film being less than 2000 ppm Light containing ultraviolet rays having a wavelength of 280 to 380 nm , wherein the concentration of one or more selected transition metal elements is 2000 ppm or less, and the concentration of each of the transition metal elements is 500 ppm or less. When received, the light-shielding body is characterized in that the light transmittance is reduced by 0.5% or more compared to before receiving this light.
The invention according to claim 2 is the invention according to claim 1, and is a light-shielding body used for a rear glass of an automobile.

請求項に係る発明は、請求項1又は2に係る発明であって、透明基板の内部に電熱線が配線された遮光体である。 The invention according to claim 3 is the light-shielding body according to claim 1 or 2 , wherein a heating wire is wired inside the transparent substrate.

本発明に係る遮光体によれば、透明基板上に0.2〜500μmの厚さを有する純度99.0%以上のMgO膜が形成され、MgO膜が厚さ0.1〜10μmであって波長280〜380nmの紫外線を透過する保護膜で被覆され、上記MgO膜におけるCの濃度が2000ppm未満であり、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnからなる群より選ばれた1種又は2種以上の遷移金属元素の濃度が2000ppm以下であり、かつ上記遷移金属元素の各元素の濃度が500ppm以下であることにより、波長280〜380nmの紫外線を含む光を受けると、前記光を受ける前と比べて、光の透過率を0.5%以上減少させることができる。 According to the light shielding body of the present invention, is formed purity 99.0% or more of the MgO film having a thickness of 0.2~500μm on a transparent substrate, MgO film, 0.1 to 10 [mu] m thick met In the MgO film, the concentration of C is less than 2000 ppm, and Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. the concentration of one or more transition metal elements selected from the group consisting is at 2000ppm or less, and the concentration of 500ppm or less der Rukoto of each element of the transition metal element, the ultraviolet rays having a wavelength of 280~380nm When it contains light, the light transmittance can be reduced by 0.5% or more compared to before receiving the light.

また本発明に係る別の遮光体によれば、波長280〜380nmの紫外線を含む光を受けることにより光の透過率が低下したMgO膜を、透明基板内部に配線された電熱線により加熱することで、再度元の透過率までほぼ回復することができる。   Moreover, according to another light-shielding body according to the present invention, the MgO film whose light transmittance has been reduced by receiving light containing ultraviolet rays having a wavelength of 280 to 380 nm is heated by a heating wire wired inside the transparent substrate. Thus, the original transmittance can be almost recovered again.

次に本発明を実施するための最良の形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は、本発明に係る遮光体を模式的に表した図である。本発明に係る遮光体は、図1に示すように、透明基板13上に0.2〜500μmの厚さを有する純度99.0%以上のMgO膜12が形成され、MgO膜12が厚さ0.1〜10μmの保護膜11で被覆される。また、MgO膜12は、膜中のCの濃度が2000ppm未満であり、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnからなる群より選ばれた1種又は2種以上の遷移金属元素の濃度が2000ppm以下であり、かつ上記遷移金属元素の各元素の濃度が500ppm以下である。なお、本明細書中、MgO膜の純度及び各元素の濃度は、成膜前のMgO粉末の時点で測定された値で表したものである。 FIG. 1 is a diagram schematically illustrating a light shielding body according to the present invention. As shown in FIG. 1, in the light shielding body according to the present invention, an MgO film 12 having a thickness of 0.2 to 500 μm and having a purity of 99.0% or more is formed on a transparent substrate 13, and the MgO film 12 is thick. It is covered with a protective film 11 of 0.1 to 10 μm. Further, the MgO film 12 has a C concentration of less than 2000 ppm, and one or two selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. The concentration of the above transition metal element is 2000 ppm or less, and the concentration of each element of the transition metal element is 500 ppm or less. In the present specification, the purity of the MgO film and the concentration of each element are represented by values measured at the time of the MgO powder before film formation.

透明基板13の厚さは、特に限定されないが、1〜10mmであることが好ましい。1mm未満では強度が十分でなく、10mmを越えると光の透過率が低下しやすい。また透明基板13の材質としては透明体であれば、特に限定されない。例えば、ガラス、プラスチック及びセラミックス等が挙げられる。   The thickness of the transparent substrate 13 is not particularly limited, but is preferably 1 to 10 mm. If it is less than 1 mm, the strength is not sufficient, and if it exceeds 10 mm, the light transmittance tends to decrease. The material of the transparent substrate 13 is not particularly limited as long as it is a transparent body. For example, glass, plastic, ceramics, etc. are mentioned.

MgO膜12の純度を99.0%以上としたのは、99.0%未満では、不純物によりMgO膜12の透明度が得られないため、特定波長域の紫外線を含む光を受けても透過率の変化がみられないからである。このうち、MgO膜12の純度は99.5%以上であることが好ましい。またMgO膜12の厚さを0.2〜500μmとしたのは、下限値未満では膜厚が薄すぎるため、太陽光など、波長280〜380nmの範囲の紫外線を含む光を受けても十分な光の遮蔽効果がなく、上限値を越えると前記光を受ける前の透過率が低くなりすぎて十分な透明性が得られないからである。MgO膜12の厚さは1〜100μmであることが好ましい。   The reason why the purity of the MgO film 12 is 99.0% or more is that if it is less than 99.0%, the transparency of the MgO film 12 cannot be obtained due to impurities. This is because there is no change. Among these, the purity of the MgO film 12 is preferably 99.5% or more. Also, the thickness of the MgO film 12 is set to 0.2 to 500 μm because the film thickness is too thin below the lower limit, so that it is sufficient to receive light including ultraviolet rays in the wavelength range of 280 to 380 nm, such as sunlight. This is because there is no light shielding effect, and when the value exceeds the upper limit, the transmittance before receiving the light becomes too low and sufficient transparency cannot be obtained. The thickness of the MgO film 12 is preferably 1 to 100 μm.

MgO膜12は、水や二酸化炭素と反応しやすく、屋外で使用した場合等に変形、劣化しやすい。そのため、これらを防止するために耐候性を有する保護膜11により被覆される。保護膜11の厚さを0.1〜10μmとしたのは、下限値未満では耐候性において不十分となり、上限値を越えると膜の割れ、剥離が生じやすくなり好ましくないからである。保護膜11の厚さは0.2〜3μmであることが好ましい。この保護膜11は、波長280〜380nmの範囲を含む紫外線を透過する性質を持つ。例えば、SiO2膜及びSiON膜などが好ましい。 The MgO film 12 easily reacts with water and carbon dioxide, and easily deforms and deteriorates when used outdoors. Therefore, in order to prevent these, it is covered with a protective film 11 having weather resistance. The reason why the thickness of the protective film 11 is 0.1 to 10 μm is that the weather resistance is insufficient if it is less than the lower limit, and the film is liable to be cracked or peeled if the upper limit is exceeded. The thickness of the protective film 11 is preferably 0.2 to 3 μm. This protective film 11 has a property of transmitting ultraviolet rays including a wavelength range of 280 to 380 nm. For example, a SiO 2 film and a SiON film are preferable.

本発明に係る遮光体におけるMgO膜12は、波長280〜380nmの範囲を含む紫外線を受けると白色から紫色調の色を呈し、この紫色調の色を呈したMgO膜12が380〜780nmの可視光領域の光を吸収することにより、この可視光領域の光における透過率を下げることができる。MgO膜12が波長280〜380nmの範囲を含む紫外線を吸収し、紫外線を受けることにより白色から紫色調を呈する技術的理由については現時点では解明されていないが、紫外線を受けることによりMgO結晶格子中の格子欠陥が、紫外線により励起されるためであると推察される。紫外線を受けた後のMgO膜12は、膜厚を0.2〜500μmとした場合、可視光領域の透過率は最大で0.7〜30%、好ましくは23〜30%減少する。   The MgO film 12 in the light-shielding body according to the present invention exhibits a white to purple color when receiving an ultraviolet ray including a wavelength range of 280 to 380 nm, and the MgO film 12 exhibiting this purple color is visible at 380 to 780 nm. By absorbing light in the light region, the transmittance of light in the visible light region can be lowered. The technical reason why the MgO film 12 absorbs ultraviolet rays including a wavelength range of 280 to 380 nm and exhibits a purple color from white by receiving the ultraviolet rays has not been elucidated at the present time. This is presumably because the lattice defects are excited by ultraviolet rays. When the thickness of the MgO film 12 after receiving ultraviolet rays is 0.2 to 500 μm, the transmittance in the visible light region is reduced by 0.7 to 30% at maximum, preferably 23 to 30%.

本発明の遮光体を構成するMgO膜12は、乾式法又は湿式法で透明基板13上に形成される。乾式法としては真空蒸着法、電子ビーム蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。湿式法としてはスピンコーティング法、スプレーコーティング法、積層スクリーン印刷法、ドクターブレード法等が挙げられる。   The MgO film 12 constituting the light shielding body of the present invention is formed on the transparent substrate 13 by a dry method or a wet method. Examples of the dry method include a vacuum evaporation method, an electron beam evaporation method, an ion plating method, and a sputtering method. Examples of the wet method include a spin coating method, a spray coating method, a laminated screen printing method, and a doctor blade method.

乾式法として真空蒸着法によりMgO膜12を形成する場合、ペレットのMgO蒸着材をターゲット材とする。このMgO蒸着材は、MgO純度が99.0%以上、好ましくは99.5%以上である。更にこのMgO蒸着材は、Cの濃度が2000ppm未満、かつ遷移金属元素の濃度が2000ppm以下である。C濃度及び遷移金属元素の濃度を上記範囲としたのはCの濃度が2000ppm以上、遷移金属元素の濃度が2000ppmを越えると、MgO結晶格子中の格子欠陥が不純物により減少することで紫外線を受けても色の変化がみられなかったり、紫外線を受ける前のMgO膜に十分な透明性が得られず紫外線を受ける前と紫外線を受けた後での光の透過率にあまり変化がないからである。遷移金属元素はSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnからなる群より選ばれた1種又は2種以上の元素であり、各元素の濃度は500ppm以下である。各元素の濃度を500ppm以下としたのは、500ppmを越えるとMgO結晶格子中の格子欠陥が不純物により減少することで紫外線を受けても色の変化がみられなかったり、紫外線を受ける前のMgO膜に十分な透明性が得られず紫外線を受ける前と紫外線を受けた後での光の透過率にあまり変化がないからである。   When the MgO film 12 is formed by a vacuum deposition method as a dry method, a pellet MgO deposition material is used as a target material. This MgO vapor deposition material has a MgO purity of 99.0% or more, preferably 99.5% or more. Furthermore, this MgO vapor deposition material has a C concentration of less than 2000 ppm and a transition metal element concentration of 2000 ppm or less. The C concentration and the transition metal element concentration are within the above ranges because when the C concentration is 2000 ppm or more and the transition metal element concentration exceeds 2000 ppm, the lattice defects in the MgO crystal lattice are reduced by the impurities, and thus the ultraviolet rays are received. However, there is no change in color, or sufficient transparency is not obtained in the MgO film before receiving ultraviolet rays, and there is not much change in light transmittance before and after receiving ultraviolet rays. is there. The transition metal element is one or more elements selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, and the concentration of each element is 500 ppm or less. . The reason why the concentration of each element is 500 ppm or less is that when 500 ppm is exceeded, lattice defects in the MgO crystal lattice are reduced by impurities, so that no change in color is observed even when receiving ultraviolet rays, or MgO before receiving ultraviolet rays. This is because sufficient transparency of the film cannot be obtained, and there is not much change in the light transmittance before and after receiving the ultraviolet rays.

MgO蒸着材の直径及び厚さは特に限定されるものではないが、成膜速度及びスプラッシュの発生頻度の面から直径は1〜20mm、厚さは1〜30mmの範囲から決められる。なお、MgO蒸着材の組成は多結晶だけでなく、上記純度の条件を満たせば単結晶でも利用可能である。   The diameter and thickness of the MgO vapor deposition material are not particularly limited, but the diameter is determined from the range of 1 to 20 mm and the thickness is determined from the range of 1 to 30 mm in terms of the film formation speed and the frequency of occurrence of splash. Note that the composition of the MgO vapor deposition material is not limited to polycrystals, and single crystals can be used as long as the above purity conditions are satisfied.

湿式法によりMgO膜12を形成する場合、先ずMgO粉末を、溶媒としてのアルコールに分散させて分散液を調製する。この分散液の調製の際にはMgO粉末の分散性向上のための分散剤を適宜加える。次に、この分散液に、バインダと、有機溶媒とを添加して均一に混合することによりMgO塗料を得る。   When the MgO film 12 is formed by a wet method, first, MgO powder is dispersed in alcohol as a solvent to prepare a dispersion. In preparing this dispersion, a dispersant for improving the dispersibility of the MgO powder is appropriately added. Next, a binder and an organic solvent are added to the dispersion and mixed uniformly to obtain an MgO paint.

得られたMgO塗料を、透明基材13上に湿式法であるスピンコーティング法、スプレーコーティング法、積層スクリーン印刷法又はドクターブレード法により塗布した後、この透明基材13を乾燥、焼成して塗膜を固定することにより、透明基材13上にMgO膜12を形成する。   The obtained MgO paint is applied onto the transparent substrate 13 by a wet method such as spin coating, spray coating, laminated screen printing, or doctor blade method, and then the transparent substrate 13 is dried and baked to be applied. The MgO film 12 is formed on the transparent substrate 13 by fixing the film.

乾式法又は湿式法によりこの透明基板13上に形成されたMgO膜12は、図1に示すように保護膜11により被覆される。保護膜の製造方法及び被覆方法は以下の通りである。先ずSiO2の濃度が0.5〜5.0質量%となるようにテトラメトキシシランをエタノールに溶解し、触媒として酸を0.001〜0.1質量%添加する。添加する酸としては、特に限定されないが、塩酸、硝酸、酢酸等を用いるのが好ましい。次にこの溶液を40〜80℃の温度で30分〜10時間加熱した後、冷却して保護膜形成用液を得る。この保護膜形成用液の塗膜方法は特に限定されないが、スピンコーティング法、スプレーコーティング法及びCVD法等を用いてMgO膜12上に塗膜するのが好ましい。次いで、150〜300℃の温度で10〜60分間大気中で加熱して膜を固定し、MgO膜12表面に膜厚が0.1〜10μmのSiO2膜を成膜する。 The MgO film 12 formed on the transparent substrate 13 by a dry method or a wet method is covered with a protective film 11 as shown in FIG. The manufacturing method and coating method of the protective film are as follows. First, tetramethoxysilane is dissolved in ethanol so that the concentration of SiO 2 is 0.5 to 5.0% by mass, and 0.001 to 0.1% by mass of acid is added as a catalyst. Although it does not specifically limit as an acid to add, It is preferable to use hydrochloric acid, nitric acid, acetic acid, etc. Next, this solution is heated at a temperature of 40 to 80 ° C. for 30 minutes to 10 hours, and then cooled to obtain a protective film forming liquid. The method of coating the protective film forming liquid is not particularly limited, but it is preferable to coat the MgO film 12 using a spin coating method, a spray coating method, a CVD method, or the like. Next, the film is fixed by heating in the atmosphere at a temperature of 150 to 300 ° C. for 10 to 60 minutes, and a SiO 2 film having a thickness of 0.1 to 10 μm is formed on the surface of the MgO film 12.

次に本発明の別の実施の形態を図2に基づいて説明する。図2において、前記実施の形態と同一の構成部位は図1と同一符号で示す。   Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same components as those in the above-described embodiment are denoted by the same reference numerals as those in FIG.

この実施の形態における遮光体はヒーター14を備える。このヒーター14は、直列に接続された電熱線14a、電源14b、及びスイッチ14cを備え、電熱線14aは透明基板13の内部に配線される。   The light shield in this embodiment includes a heater 14. The heater 14 includes a heating wire 14 a, a power source 14 b, and a switch 14 c connected in series. The heating wire 14 a is wired inside the transparent substrate 13.

波長280〜380nmの範囲の紫外線を含む光を受けた後のMgO膜12は、透明基板13の内部に配線された電熱線14aにより100〜600℃、好ましくは200〜300℃で加熱することで、紫色調から消色状態に戻り、上記光を受ける前の透過率までほぼ回復できる。加熱することにより紫色調から消色状態に戻る技術的理由については、現時点では解明されていないが、MgO結晶格子中の格子欠陥が紫外線を受けることにより励起されるためであると推察される。加熱温度が下限値の100℃未満では十分な消色効果が得られないため透過率が十分に回復せず、加熱温度が上限値の600℃を越えても消色効果は変わらず透過率に変化がみられないため、600℃を越えた加熱は熱エネルギーの浪費となる。   The MgO film 12 after receiving light containing ultraviolet rays having a wavelength in the range of 280 to 380 nm is heated at 100 to 600 ° C., preferably 200 to 300 ° C., by the heating wire 14 a wired inside the transparent substrate 13. From the purple tone to the decolored state, it can be almost recovered to the transmittance before receiving the light. Although the technical reason for returning from the purple tone to the decolored state by heating is not clarified at present, it is assumed that the lattice defects in the MgO crystal lattice are excited by receiving ultraviolet rays. If the heating temperature is less than the lower limit of 100 ° C., a sufficient decoloring effect cannot be obtained, and thus the transmittance does not sufficiently recover. Even if the heating temperature exceeds the upper limit of 600 ° C., the decoloring effect does not change and the transmittance is maintained. Since no change is observed, heating above 600 ° C. is a waste of heat energy.

またこの実施の形態における保護膜11は、前述したように波長280〜380nmの範囲を含む紫外線を透過する性質を持つほか、電熱線14aの熱により変形や劣化が起こらないように電熱線14aの加熱温度以上の耐熱性を有する。例えば、SiO2膜及びSiON膜などが好ましい。 Further, the protective film 11 in this embodiment has a property of transmitting ultraviolet rays including a wavelength range of 280 to 380 nm as described above, and the heating wire 14a is not deformed or deteriorated by the heat of the heating wire 14a. Heat resistance above the heating temperature. For example, a SiO 2 film and a SiON film are preferable.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
ず、MgO純度が99.9%であり、C濃度50ppm、遷移金属元素として、Fe、Mn及びZnをそれぞれ10ppm、Siを20ppm含有するMgO粉末を、溶媒としてのアルコールに分散させて分散液を調製した。この分散液にはMgO粉末の分散性向上のための分散剤を適宜添加した。この分散液に、バインダとしてポリエステル、有機溶媒としてアルコールを添加した混合溶液をマグネチックスターラーで攪拌してMgO塗料を得た。また透明基板としては、厚さ3mmのガラス基材を用意した。次いで、このガラス基材上にドクターブレード法により、上記MgO塗料を塗布した後、この透明基材13を乾燥し、150℃で焼成して塗膜を固定することにより透明基材13上に厚さ100μmのMgO膜を形成した。次にSiO2の濃度が1質量%となるようにテトラメトキシシランをエタノールに溶解した溶液に、触媒として硝酸を0.005質量%添加した。この溶液を60℃で60分間加熱した後、冷却して保護膜形成用液を調製した。次いで、スピンコートティング法を用いて、この保護膜形成用液をMgO膜上に塗膜した後、200℃の温度で30分間大気中で加熱してMgO膜表面に厚さ0.5μmのSiO2膜を成膜し、以下の表1に示す、本発明の遮光体を形成した。
<Example 1>
Previously not a a M gO purity 99.9%, C concentration 50 ppm, as a transition metal element, Fe, and 10ppm Mn and Zn, respectively, a MgO powder containing 20ppm of Si, is dispersed in an alcohol as a solvent dispersion A liquid was prepared. A dispersant for improving the dispersibility of the MgO powder was appropriately added to this dispersion. A mixed solution in which polyester as a binder and alcohol as an organic solvent were added to this dispersion was stirred with a magnetic stirrer to obtain a MgO paint. As a transparent substrate, a glass substrate having a thickness of 3 mm was prepared. Next, after applying the MgO paint on the glass substrate by the doctor blade method, the transparent substrate 13 is dried, fired at 150 ° C. to fix the coating film, and the coating is fixed. A 100 μm thick MgO film was formed. Next, 0.005% by mass of nitric acid as a catalyst was added to a solution in which tetramethoxysilane was dissolved in ethanol so that the concentration of SiO 2 was 1% by mass. This solution was heated at 60 ° C. for 60 minutes and then cooled to prepare a protective film forming solution. Next, this protective film-forming solution is applied onto the MgO film by using a spin coating method, and then heated in the air at a temperature of 200 ° C. for 30 minutes to form a 0.5 μm thick SiO 2 film on the surface of the MgO film. Two films were formed, and the light shielding body of the present invention shown in Table 1 below was formed.

<実施例2>
以下の表1に示すように、透明基板として厚さ3mmのガラス基材を使用し、またMgO膜の厚さを250μm及び保護膜の厚さを0.5μmとしたこと以外は実施例1と同じ条件で本発明の遮光体を形成した。
<Example 2>
As shown in Table 1 below, Example 1 was used except that a glass substrate having a thickness of 3 mm was used as the transparent substrate, the thickness of the MgO film was 250 μm, and the thickness of the protective film was 0.5 μm. The light shielding body of the present invention was formed under the same conditions.

<実施例3>
以下の表1に示すように、透明基板として厚さ3mmのガラス基材を使用し、またMgO膜の厚さを400μm及び保護膜の厚さを0.5μmとしたこと以外は実施例1と同じ条件で本発明の遮光体を形成した。
<Example 3>
As shown in Table 1 below, Example 1 was used except that a glass substrate having a thickness of 3 mm was used as the transparent substrate, the thickness of the MgO film was 400 μm, and the thickness of the protective film was 0.5 μm. The light shielding body of the present invention was formed under the same conditions.

<実施例4>
透明基板として厚さ3mmのガラス基材を使用し、またMgO膜の厚さを500μm及び保護膜の厚さを0.5μmとしたこと以外は実施例1と同じ条件で本発明の遮光体を形成した。
<Example 4>
The light-shielding body of the present invention was used under the same conditions as in Example 1 except that a glass substrate having a thickness of 3 mm was used as the transparent substrate, the thickness of the MgO film was 500 μm, and the thickness of the protective film was 0.5 μm. Formed.

<実施例5>
透明基板として厚さ3mmのガラス基材を使用し、またMgO膜の厚さを0.8μm及び保護膜の厚さを0.5μmとしたこと以外は実施例1と同じ条件で本発明の遮光体を形成した。
<Example 5>
The light-shielding material of the present invention was used under the same conditions as in Example 1, except that a glass substrate having a thickness of 3 mm was used as the transparent substrate, the thickness of the MgO film was 0.8 μm, and the thickness of the protective film was 0.5 μm. Formed body.

<比較例1>
以下の表1に示すように、MgO膜の厚さを0.1μmとしたこと以外は実施例1と同じ条件で遮光体を形成した。
<Comparative Example 1>
As shown in Table 1 below, a light-shielding body was formed under the same conditions as in Example 1 except that the thickness of the MgO film was 0.1 μm.

<比較例2>
以下の表1に示すように、MgO膜の厚さを2000μmとしたこと以外は実施例1と同じ条件で遮光体を形成した。
<Comparative example 2>
As shown in Table 1 below, a light shield was formed under the same conditions as in Example 1 except that the thickness of the MgO film was 2000 μm.

<比較例3>
MgO膜を純度99.0%未満の98.5%であるMgO蒸着材によりMgO膜を形成させたこと以外は実施例1と同じ条件で、以下の表1に示す遮光体を形成した。
<Comparative Example 3>
The light-shielding body shown in Table 1 below was formed under the same conditions as in Example 1 except that the MgO film was formed using an MgO vapor deposition material having a purity of less than 99.0% and a purity of 98.5%.

Figure 0004857205
<比較試験及び評価1>
特定波長域の紫外線を含む光として模擬的に高圧水銀ランプ(波長200〜600nm:ウシオ電機社製)を用いて、このランプの光を実施例1〜5及び比較例1〜3で形成した遮光体に照射した。これら遮光体の可視光透過率を分光光度計(日立製作所社製:U−4000)を用いて測定した。測定は紫外線を照射する前と照射した後行った。上記高圧水銀ランプの照射条件は照射強度86mW/cm2及び照射量500mJ/cm2であった。その結果を表2に示す。
Figure 0004857205
<Comparison test and evaluation 1>
Using a high-pressure mercury lamp (wavelength 200 to 600 nm: manufactured by Ushio Inc.) as light containing ultraviolet rays in a specific wavelength range, the light from this lamp was formed in Examples 1-5 and Comparative Examples 1-3. The body was irradiated. The visible light transmittance of these light shielding bodies was measured using a spectrophotometer (manufactured by Hitachi, Ltd .: U-4000). Measurement was performed before and after irradiation with ultraviolet rays. The irradiation conditions of the high pressure mercury lamp were an irradiation intensity of 86 mW / cm 2 and an irradiation amount of 500 mJ / cm 2 . The results are shown in Table 2.

Figure 0004857205
表2から明らかなように、MgO膜の膜厚が0.2μm未満である比較例1では紫外線の照射前後において、可視光透過率にほとんど変化はみられなかった。またMgO膜の膜厚が500μmを越える比較例2では、紫外線照射前の透過率が低くなりすぎ十分な透明性が得られなかった。これに対し、実施例1〜5では紫外線照射後の可視光透過率が、紫外線照射前の透過率に比べ0.7〜30%下がっており、MgO膜の膜厚を100〜500μmにすることが効果的であることが確認された。またMgO膜の純度が99.0%未満が比較例3では、紫外線の照射前後において、可視光透過率にほとんど変化はみられなかった。このことから、MgO膜の純度を99.0%以上とすることが効果的であることが確認された。
Figure 0004857205
As is clear from Table 2, in Comparative Example 1 in which the thickness of the MgO film was less than 0.2 μm, there was almost no change in the visible light transmittance before and after the ultraviolet irradiation. Further, in Comparative Example 2 in which the film thickness of the MgO film exceeds 500 μm, the transmittance before ultraviolet irradiation becomes too low to obtain sufficient transparency. On the other hand, in Examples 1 to 5, the visible light transmittance after ultraviolet irradiation is 0.7 to 30% lower than the transmittance before ultraviolet irradiation, and the film thickness of the MgO film is set to 100 to 500 μm. Has been confirmed to be effective. In Comparative Example 3, the purity of the MgO film was less than 99.0%, and the visible light transmittance hardly changed before and after the ultraviolet irradiation. From this, it was confirmed that it is effective to set the purity of the MgO film to 99.0% or more.

<評価2>
実施例1における紫外線照射後のMgO膜を、透明基板の内部に配線された電熱線により、以下の表3に示す温度及び時間で加熱した後、可視光透過率を測定した。
<Evaluation 2>
The MgO film after ultraviolet irradiation in Example 1 was heated at the temperature and time shown in Table 3 below with a heating wire wired inside the transparent substrate, and then the visible light transmittance was measured.

Figure 0004857205
表3から明らかなように、元の透過率までほぼ回復させるには100℃以上で120分間以上の温度で加熱する必要があることが判った。
Figure 0004857205
As is apparent from Table 3, it was found that it was necessary to heat at 100 ° C. or higher for 120 minutes or longer in order to almost restore the original transmittance.

<評価3>
まず膜厚100μm、初期透過率92.5%のMgO膜に、照射強度1000mJ/cm2及び照射量120mJ/cm2で紫外線を照射して透過率を減少させた。次にMgO膜をヒーターにより150℃で30分間加熱してMgO膜の透過率を上昇させた後、室温で冷却した。この工程を1サイクルとし、この1サイクルを複数回繰り返して行う再現試験を行った。20、30及び50サイクル後の結果を以下の表4に示す。
<Evaluation 3>
First, an MgO film having a film thickness of 100 μm and an initial transmittance of 92.5% was irradiated with ultraviolet rays at an irradiation intensity of 1000 mJ / cm 2 and an irradiation amount of 120 mJ / cm 2 to reduce the transmittance. Next, the MgO film was heated with a heater at 150 ° C. for 30 minutes to increase the transmittance of the MgO film, and then cooled at room temperature. This process was defined as one cycle, and a reproduction test was performed by repeating this one cycle a plurality of times. The results after 20, 30, and 50 cycles are shown in Table 4 below.

Figure 0004857205
表4から明らかなように、本発明の遮光体では上記工程を50回以上繰り返してもほぼ元の透過率に戻ることが確認された。
Figure 0004857205
As is apparent from Table 4, it was confirmed that the light shielding body of the present invention returned to the original transmittance almost even when the above process was repeated 50 times or more.

本発明に係る遮光体を模式的に表した図。The figure which represented typically the light-shielding body which concerns on this invention. 本発明の別の実施の形態の遮光体を模式的に表した図。The figure which represented typically the light-shielding body of another embodiment of this invention.

符号の説明Explanation of symbols

11 保護膜
12 MgO膜
13 基板
14 ヒーター
11 Protective film 12 MgO film 13 Substrate 14 Heater

Claims (3)

透明基板上に0.2〜500μmの厚さを有する純度99.0%以上のMgO膜が形成され、前記MgO膜が厚さ0.1〜10μmであって波長280〜380nmの紫外線を透過する保護膜で被覆され、
前記MgO膜におけるCの濃度が2000ppm未満であり、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnからなる群より選ばれた1種又は2種以上の遷移金属元素の濃度が2000ppm以下であり、かつ前記遷移金属元素の各元素の濃度が500ppm以下であり、
波長280〜380nmの範囲の紫外線を含む光を受けると、この光を受ける前と比べて、光の透過率が0.5%以上減少することを特徴とする遮光体。
An MgO film having a thickness of 0.2 to 500 μm and a purity of 99.0% or more is formed on a transparent substrate, and the MgO film transmits ultraviolet rays having a thickness of 0.1 to 10 μm and a wavelength of 280 to 380 nm. Covered with a protective film ,
The concentration of C in the MgO film is less than 2000 ppm, and one or more transition metal elements selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn are used. The concentration is 2000 ppm or less, and the concentration of each element of the transition metal element is 500 ppm or less,
A light-shielding body characterized in that when light containing ultraviolet rays having a wavelength in the range of 280 to 380 nm is received, the light transmittance is reduced by 0.5% or more compared to before receiving the light.
自動車のリヤガラスに用いられる請求項1記載の遮光体。The light-shielding body according to claim 1, which is used for a rear glass of an automobile. 前記透明基板の内部に電熱線が配線された請求項1又は2記載の遮光体。 Inside the heating wire wiring claims 1 or 2 light-shielding body according of the transparent substrate.
JP2007171343A 2007-06-29 2007-06-29 Shade Expired - Fee Related JP4857205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171343A JP4857205B2 (en) 2007-06-29 2007-06-29 Shade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171343A JP4857205B2 (en) 2007-06-29 2007-06-29 Shade

Publications (2)

Publication Number Publication Date
JP2009007210A JP2009007210A (en) 2009-01-15
JP4857205B2 true JP4857205B2 (en) 2012-01-18

Family

ID=40322674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171343A Expired - Fee Related JP4857205B2 (en) 2007-06-29 2007-06-29 Shade

Country Status (1)

Country Link
JP (1) JP4857205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071179A2 (en) * 2012-11-01 2014-05-08 Thermalens, Llc Thermally influenced changeable tint device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158910A (en) * 1984-01-30 1985-08-20 Toshiba Corp Control method of rolling in sheet width direction
JPS6210629A (en) * 1985-07-09 1987-01-19 Seiko Epson Corp Functional optical material
JPH0741337A (en) * 1993-07-30 1995-02-10 Glaverbel Sa Optical coloring prevention transparent body
FR2894140B1 (en) * 2005-12-05 2008-01-18 Oreal PHOTOCHROMIC MASK

Also Published As

Publication number Publication date
JP2009007210A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP5147034B2 (en) Automatic thermal color-harmonic shading glass and manufacturing method
DE102005020168A1 (en) Coating glass or ceramic substrate with anti-reflective layer using sol-gel process, employs e.g. silicon-aluminum mixed oxide with adsorbed hydrophobe present in sol-gel binder
CN102603204B (en) Photochromic glass
JP6954807B2 (en) How to make infrared reflective pigment powder
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2007269523A (en) Heat ray shielding glass and its manufacturing method
DE102014018464A1 (en) THERMOCHROMIC PIGMENTS, THERMOCHROME COATING, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
KR20150007634A (en) Transparent coating composition for shielding infrared ray having improved near infrared ray shielding rate, manufacturing method of the composition, infrared ray shielding film and glass using the composition
JP3250125B2 (en) Infrared cutoff powder
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JPH0770482A (en) Infrared cut-off film and forming material thereof
JP4857205B2 (en) Shade
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
US20190019910A1 (en) Cover glass for solar cell, solar cell module provided with cover glass for solar cell, and transparent protective film
CN111913329B (en) Visible-to-mid-infrared band light-adjustable electrochromic thin film device and preparation method thereof
JP2006010759A (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding body, and method for adjusting color tone of visible light passing through the near-infrared shielding material
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP2001049190A (en) Coating liquid for forming solar radiation filter film
JPH0770481A (en) Infrared cut-off material
JP2002194290A (en) Method for preparing coating fluid for forming deep colored film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
US20060086928A1 (en) Sun shade and dispersion liquid for forming sun shade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees