JP4854195B2 - 薬剤導入システム及び薬剤導入方法 - Google Patents

薬剤導入システム及び薬剤導入方法 Download PDF

Info

Publication number
JP4854195B2
JP4854195B2 JP2004347594A JP2004347594A JP4854195B2 JP 4854195 B2 JP4854195 B2 JP 4854195B2 JP 2004347594 A JP2004347594 A JP 2004347594A JP 2004347594 A JP2004347594 A JP 2004347594A JP 4854195 B2 JP4854195 B2 JP 4854195B2
Authority
JP
Japan
Prior art keywords
irradiation
introduction
image data
unit
monitoring image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004347594A
Other languages
English (en)
Other versions
JP2006149872A (ja
Inventor
克彦 藤本
義治 石橋
真理子 柴田
重治 大湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2004347594A priority Critical patent/JP4854195B2/ja
Publication of JP2006149872A publication Critical patent/JP2006149872A/ja
Application granted granted Critical
Publication of JP4854195B2 publication Critical patent/JP4854195B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導入エネルギー波を用いることによって細胞や組織に対する薬剤の導入を行なう薬剤導入システム及び薬剤導入方法に関する。
治療の分野では、近年、MIT(Minimally Invasive Treatment)とよばれる最少侵襲治療が注目を浴びている。従来のMITとして虚血性の脳疾患及び心疾患患者に対するバルーンカテーテルやステントを用いたインターベンション治療が挙げられる。しかしながら動脈硬化症に起因するこれらの疾患は、再発率が高く、再発した部分に対して同一の治療を繰り返し行なうことは困難となっている。このような問題点に対して、再発を抑制したり、完全に梗塞を起こした組織に対し新たな血管を新生させることによって虚血症状を改善することが可能な遺伝子導入療法が注目されている。例えば、糖尿病に起因して虚血あるいは壊死状態に陥った四肢の疾患に対し血管新生因子を導入して血管の新生を促す遺伝子治療が既に効果を上げている。
一方、血管新生因子と逆の効果を有する血管新生抑制因子を腫瘍細胞に導入することによって腫瘍の栄養血管の新生を抑制し、腫瘍の増殖を抑えることが可能である。このような悪性腫瘍に対する新しい治療法として、腫瘍の細胞内に遺伝子を抽入して治療を行なう、遺伝子治療が検討されている。
細胞内に遺伝子を導入するためには、一時的に細胞膜の透過性を上昇させる手法が必要であり、その手法として、ウィルスの感染力を利用する方法やリポソームなどの化学的手法、更には、マイクロインジェクション、遺伝子銃、エレクトロポレーション、超音波、レーザなどの物理的手法が検討されている。特に、超音波など物理的手法による腫瘍細胞内への遺伝子導入は、ターゲットとなる局所的な組織を限定できる大きな利点を有している。
超音波による遺伝子導入法は、当初、細胞組織に対して超音波を照射する際に発生するキャビテーションによって細胞膜に一過性の孔が生成される現象(sonoporation現象)を利用し、この孔を介して遺伝子を導入する方法が検討されていた。これに対し最近では、更に導入効率を高めるために生体内にマイクロバブルから構成される超音波造影剤を投与し、超音波照射によって超音波造影剤が破砕する際に発生するマイクロジェットのsonoporation現象によって遺伝子導入を行なう手法が検討されている。この方法によれば比較的低パワーの超音波エネルギーによる遺伝子導入が可能となるため、正常組織に対する損傷を低減することができる(例えば、非特許文献1参照。)。
上述の造影剤を用いた遺伝子導入法では、細胞の核内に入ると新たなたんぱく質を形成する遺伝子が収納もしくは表面に付加された造影剤(マイクロバブル)を腫瘍組織内に投与し、この腫瘍組織に超音波照射を行なってマイクロバブルを破砕することによって遺伝子を取り出す。そして、取り出された遺伝子は、マイクロバブルの破砕時に生成された細胞膜の孔を介して細胞内へ導入される。この場合、当該患者の四肢の静脈から注入された超音波造影剤が治療対象部位に到達したことを超音波画像データによってモニタリングすることにより治療精度を向上させる方法も提案されている(例えば、特許文献1参照。)。
一方、遺伝子導入の効果確認を目的とした分子イメージング(Molecular Imaging)法の導入が検討されつつある。分子イメージング法は、光やX線を利用してマイクロからナノオーダーの細胞・分子を画像化する狭義の分子イメージング法と、分子内への薬剤導入や代謝に基づく分子の挙動を間接的に画像化する分子イメージング法に分類され、前者として蛍光顕微鏡やX線顕微鏡等、又、後者として核医学装置やMRI装置等の医用画像診断装置が用いられる。そして、例えば、核医学装置では、標的分子を標識した放射線核種を造影剤や薬剤と組み合わせることにより代謝機能の画像化が可能となる。一方、超音波診断装置やX線診断装置、更には、MRI装置等による血管新生の映像化技術も注目を浴びており、癌の血管新生の映像化による超早期診断、癌の確定診断、末梢動脈の硬化塞栓病変への血管新生因子導入治療等における早期治療効果判定の手段として期待されている。
特開2000−189521号公報 古幡博、馬目佳信"超音波遺伝子導入の展開"、BME、日本ME学会、平成14年7月10日、vol16、no7、p.3−7
上述の特許文献1に記載された方法によれば、モニタリングを目的とした超音波画像データを観察することによって治療対象部位に超音波造影剤が到達するタイミングを知ることが可能となるが、このときの造影剤濃度を定量的に把握する手段を有していない。このため、治療対象部位に対して超音波照射を行なう際に、所定照射位置に十分な濃度の超音波造影剤が蓄積されているか否かを正確に捉えることができない。又、照射された超音波による超音波造影剤の破砕状態を正確に把握する手段も有していない。このような理由により、治療対象部位に対する薬剤導入を精度よく行なうことが困難であった。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、薬剤と共に治療対象部位に投与された標識薬剤に対して導入エネルギー波を与えて薬剤導入を促進させる際に、標識薬剤の情報に基づいて導入エネルギー波の照射制御を行なうことにより、治療対象部位に対して確実な薬剤導入を効率よく行なうことが可能な薬剤導入システム及び薬剤導入方法を提供することにある。
前記課題を解決するために、請求項1に係る本発明の薬剤導入システムは、薬剤及び標識薬剤が投与された治療対象部位に対してモニタリング画像データを生成するモニタリング画像データ生成手段と、前記モニタリング画像データにおける前記治療対象部位の情報に基づいて薬剤導入を目的とした導入エネルギー波の複数の照射位置及び照射順序を設定する照射位置設定手段と、この照射位置設定手段で設定した照射順序に従って、複数の照射位置へ導入エネルギー波の焦点を移動して前記導入エネルギー波を照射する導入エネルギー波照射手段と、前記導入エネルギー波照射手段で導入エネルギー波を照射する際、その照射位置での照射直前の前記モニタリング画像データの画素の画素値と所定の閾値を比較する画素値比較手段と、この画素値比較手段による比較結果に基づいて前記照射位置に対する導入エネルギー波の照射を制御する照射制御手段を備えたことを特徴としている。

以上述べたように本発明によれば、治療対象部位に薬剤と共に投与された標識薬剤の情報に基づいて導入エネルギー波の照射制御を行なうため、治療対象部位における血流状態等に左右されること無く確実な薬剤導入を効率よく行なうことが可能となる。
以下、図面を参照して本発明の実施例を説明する。
(装置の構成)
本発明の実施例の第1の特徴は、治療対象部位に遺伝子等の薬剤と共に投与された超音波造影剤(標識薬剤)を超音波照射にて破砕することにより治療対象部位に対する薬剤導入を行なう際に、上述の薬剤導入をモニタリング画像データの観察下にて行ない、導入用超音波の照射前あるいは照射後のモニタリング画像データに反映される超音波造影剤の情報に基づいて所定照射位置に対する超音波照射を制御することにある。
又、本発明の実施例の第2の特徴は、治療対象部位に対して行なわれた薬剤導入の効果を分子イメージングデータによって確認することにある。尚、本実施例では、超音波診断装置によって上述のモニタリング画像データを生成する場合について述べるが、これに限定されるものではなく他の医用画像診断装置であってもよい。
本発明の実施例につき図1乃至図7を用いて説明する。尚、図1は、本実施例における薬剤導入システムの全体構成を示すブロック図であり、図2は、この薬剤導入システムが備えるモニタリング画像データ生成部と薬剤導入部の具体例を示すブロック図である。
図1において、薬剤導入システム100は、患者の治療対象部位に対し薬剤導入を目的とした超音波(以下では、導入用超音波と呼ぶ。)の照射を行なう薬剤導入部1と、薬剤導入時のモニタリング画像データを生成するモニタリング画像データ生成部21と、薬剤導入効果を確認するための分子イメージングデータを生成する分子イメージングデータ生成部22と、モニタリング画像データ生成部21及び分子イメージングデータ生成部22の位置情報と薬剤導入部1の位置情報を検出する位置検出部3と、この位置検出部3によって得られた位置情報に基づいてモニタリング画像データと薬剤導入部1による照射位置データ及び後述の入力部が設定する関心領域データ等の合成、あるいはモニタリング画像データと分子イメージングデータの合成等を行なうデータ合成部4を備えている。
又、薬剤導入システム100は、前記関心領域の位置情報が保存される関心領域データ記憶部5と、この関心領域に基づいて照射計画を策定する照射計画策定部6と、照射計画に基づいて治療対象部位に設定された導入用超音波の照射位置に対応したモニタリング画像データの画素値と予め設定された閾値(第1の閾値及び第2の閾値)との比較を行なう画素値比較部7と、画素値比較部7の比較結果に基づいて前記照射位置に対する導入用超音波の照射を制御する照射制御部8を備え、更に、データ合成部4において合成された分子イメージングデータやモニタリング画像データを表示する表示部9と、患者情報の入力やモニタリング画像データに対する関心領域の設定、更には、画素値比較のための閾値の設定等を行なう入力部10と、上述の各ユニットを統括的に制御するシステム制御部11を備えている。
薬剤導入部1は、当該患者の治療対象部位に対して薬剤導入を行なうための導入用超音波を照射するための超音波照射部32と、この超音波照射部32に対して駆動信号を供給する駆動部31を備えている。
図2は、薬剤導入部1の具体例を示したものであり、この薬剤導入部1の超音波照射部32におけるアプリケータ321は脱気水からなるカップリング液323によって充満されている。更に、このアプリケータ321の上方には導入用超音波を放射する凹面状あるいは平面状の圧電振動子322が取り付けられ、その中央の開口部にはモニタリング画像データ生成部21における超音波プローブ211が回動/スライド自在に装着されている。
一方、アプリケータ321の生体51との接触部には、カップリング液323とほぼ等しい音響インピーダンスの高分子材料からなるカップリング膜324が設けられている。そして、圧電振動子322から照射される導入用超音波や超音波プローブ211によって送受信されるモニタリング用超音波は、生体51とほぼ等しい音響特性を有するカップリング膜324及びカップリング液323を介し、生体51に対して効率良く送受信される。尚、圧電振動子322は、N個の振動素子を2次元配列して構成され、これらの振動素子から放射された導入用超音波は、生体51の治療対象領域55に設定された所定照射位置に集束される。
一方、薬剤導入部1の駆動部31は、導入用超音波を放射するために超音波照射部32におけるN個の振動素子に対して駆動信号を供給する機能を有し、照射制御部8から供給される制御信号に基づいて時間τ1の連続波(バースト波)を発生するバースト波発生器311と、このバースト波発生器311からのバースト波に対して所定の遅延位相を与える遅延回路312と、遅延後のバースト波を照射制御部8からの制御信号に基づいて所定の大きさに増幅するパワーアンプ313と、パワーアンプ313の出力を圧電振動子322に効率良く供給するためにインピーダンスマッチングを行なうマッチング回路314を備えている。尚、遅延回路312、パワーアンプ313、マッチング回路314の各々は、圧電振動子322の振動素子数Nに対応してNチャンネルから構成されている。
そして、上述の遅延回路312は、照射制御部8からの制御信号に基づいて、超音波照射部32の圧電振動子322が照射する導入用超音波を所望の領域に照射するために、バースト波発生器311が出力したバースト波に対して所定の遅延位相を与える。尚、この遅延位相は、導入用超音波を所定の方向に偏向するための遅延位相と、所定の距離(焦点距離)に集束するための遅延位相とから構成されており、振動素子の配列位置と導入用超音波の照射位置によって一義的に決定される。
次に、超音波画像データの生成機能を有したモニタリング画像データ生成部21の構成につき図3のブロック図を用いて説明する。
このモニタリング画像データ生成部21は、生体51の治療対象部位55に対してモニタリング用超音波の送受信を行なう超音波プローブ211と、超音波プローブ211に対して送信信号を供給すると共に、超音波プローブ211から得られた受信信号に基づいてモニタリング画像データを生成する画像データ生成部212を備えている。
超音波プローブ211は、通常の超音波診断において用いられているものと同様のものを使用することが可能であり、特に超音波照射部32の圧電振動子322による導入用超音波の照射を妨げないように、小さな超音波送受信面で広い範囲の画像化が可能なセクタ走査用の超音波プローブが好適である。本実施例では、超音波ビームの送受信方向を電子的に制御して扇状の画像領域を得るセクタ電子走査型の超音波プローブ211を用いるが、これに限定されない。図3に示した超音波プローブ211の先端部は、X方向に1次元配列された図示しないM個の微小振動素子を有し、この微小振動素子によって、送信時には電気パルスを超音波パルス(送信超音波)に変換して被検体51に送信し、又、受信時には被検体51からの超音波反射波(受信超音波)を電気信号に変換する。
一方、画像データ生成部212は、超音波プローブ211の圧電振動子322から生体51に対して送信超音波を放射するための駆動信号を生成する送信部41と、生体51からの受信超音波を超音波プローブ211を介して受信する受信部42と、この受信信号に対してBモードデータを生成するための信号処理を行なう信号処理部43と、得られたBモードデータを保存してBモード画像データを生成する画像データ記憶部44と、システム制御部11からの指示信号に従って超音波の走査方向を制御する走査制御部45を備えている。
送信部41は、生体51に送信する送信超音波の繰り返し周期を決定するためのレートパルスを発生するレートパルス発生器411と、送信超音波を集束するための遅延時間と所定方向に対して送信超音波を放射し生体51を走査するための遅延時間を前記レートパルスに供給する送信遅延回路412と、遅延後のレートパルスに基づいて駆動信号を生成し、この駆動信号を超音波プローブ211の微小振動素子に供給するパルサ413を有している。
一方、受信部42は、前記超音波プローブ211の微小振動素子によって電気信号に変換されたMチャンネルの受信信号をA/D変換するA/D変換器421と、A/D変換された所定方向及び所定深さからの受信信号を整相加算する受信遅延回路422及び加算器423を備えている。
尚、上述の送信遅延回路412、パルサ413、A/D変換器421及び受信遅延回路422の各々は、超音波プローブ211の微小振動素子数Mに対応してMチャンネルから構成されている。
信号処理部43は、受信信号の振幅を対数変換して弱い信号を相対的に強調する対数変換器431と、対数変換された受信信号に対して包絡線検波を行なう包絡線検波器432を備えており、画像データ記憶部44は、信号処理部43において生成されたBモードデータを走査方向単位で順次保存してモニタリング画像データを生成する。
そして、走査制御部45は、システム制御部11からの指示信号に従い、生体内の所定走査方向に対して超音波送受信を行なうために送信部41の送信遅延回路412及び受信部42の受信遅延回路422の遅延時間を制御する。
一方、分子イメージングデータ生成部22は、治療対象部位における薬剤導入効果を確認するために分子イメージングデータの生成を行なう。この分子イメージングデータ生成部22は、例えば、PET装置やX線CT装置、更にはMRI装置のように通常の臨床診断に用いられている医用画像診断装置が設けられている。又、モニタリング画像データ生成部21として用いられた超音波診断装置を併用してもよい。
次に、図1の位置検出部3は、モニタリング画像データ生成部21における超音波プローブ211の位置情報や分子イメージングデータ生成部22における検出器等の位置情報、更には、薬剤導入部1の超音波照射部32におけるアプリケータ321の位置情報を検出する。例えば、上述の各々に磁気センサを装着し、この磁気センサからの受信信号に基づいて位置情報を検出する。更に、位置検出部3は、超音波プローブ211、検出器及びアプリケータ321の位置情報に基づいて患者に対するモニタリング画像データ、分子イメージングデータ及び導入用超音波の照射領域の相対位置を検出する。
そして、データ合成部4は、位置検出部3において検出された相対位置情報に基づいてモニタリング画像データと照射領域データの合成を行ない、更に、照射領域データが重畳されたモニタリング画像データと後述する入力部10において設定された関心領域データとの合成を行なう。一方、関心領域データ記憶部5には、表示部9に表示されたモニタリング画像データの治療対象部位に基づいて操作者が入力部10にて設定した関心領域の位置情報が保存される。
次に、照射計画策定部6は、関心領域データ記憶部5に保存された関心領域の位置情報と入力部10にて予め設定されシステム制御部11を介して自己の記憶回路に保存されている所定照射位置に対する照射回数n1、照射時間τ1、照射周期τ2、照射エネルギー、水平方向(X方向)の照射位置間隔dx、深さ方向(Z方向)の照射位置間隔dz等に基づいて治療対象部位に対する導入用超音波の照射計画を策定する。このとき、照射位置間隔dx及びdzは、導入用超音波におけるX方向のビーム幅及びZ方向の焦点深度に基づいて決定される。
図4(a)は、データ合成部4にて合成されたモニタリング画像データ82、超音波照射部32のアプリケータ321における圧電振動子322の位置83及び入力部10において設定された関心領域85を示したものであり、超音波プローブ211の先端部81に対応するモニタリング画像データ82の上端部がアプリケータ321における圧電振動子322の中央部に対応するように合成され、このときモニタリング画像データ82の治療対象部位84を囲むように設定された関心領域85の境界線がモニタリング画像データ82に合成される。
一方、図4(b)は照射計画策定部6が設定する導入用超音波の照射計画を模式的に示したものであり、照射計画策定部6は、モニタリング画像データ82において設定された関心領域85を予め設定された上述の照射位置間隔dx及びdzで形成される複数の微小領域に分割し、各々の微小領域の略中心位置を導入用超音波の照射位置(例えば、C1乃至C3)に設定する。次いで、これらの照射位置C1乃至C3に対する導入用超音波の照射順序を例えば矢印の方向に設定する。尚、図4(b)では、以下の説明を簡単にするために深さ方向の微小領域数が1つの場合について示したが、複数の領域を設定することも可能である。
次に、図5は、照射計画策定部6によって策定された照射位置C1乃至C3に対する導入用超音波の照射波形及び照射順序を示すタイムチャートである。尚、この図では、同一照射位置に対する照射回数n1を3回とした場合について示しているが、これに限定されない。即ち、図4(b)の最初の照射位置C1に対して導入用超音波の焦点を設定し照射時間τ1の照射を行なった後、時間τ3(τ3=τ2−τ1)の間照射を休止した状態で導入超音波の焦点を隣接した照射位置C2に移動し、この照射位置C2に対して照射時間τ1の照射を行なう。同様の手順によって照射位置C3に対する照射を終了したならば導入用超音波の焦点を照射位置C1に戻して照射位置C1乃至C3に対する照射を照射周期τ2で繰返し、夫々の照射位置に対してn1=3回の照射を行なったならば治療対象部位84に対する導入用超音波の照射を一旦終了する。照射計画策定部6は、図4及び図5に示すような照射計画を操作者によって設定された関心領域に基づいて策定する。
次に、図1の画素値比較部7は、図示しない演算回路と記憶回路を備え、前記記憶回路にはシステム制御部11を介して入力部10より供給された第1の閾値P1x及び第2の閾値P2xが保存される。一方、前記演算回路は、照射計画策定部6が策定した照射計画に基づいて所定照射位置Cnに対する導入用超音波の照射を行なう際、この照射の直前に得られたモニタリング画像データの前記照射位置Cnに対応した画素値Pnをデータ合成部4より読み出し、この画素値Pnと前記記憶回路に保存された第1の閾値P1xとの比較を行なう。又、画素値比較部7は、同様にして、前記照射位置Cnに対する導入用超音波の照射が行なわれた直後に得られたモニタリング画像データの前記照射位置Cnに対応した画素値Pnと前記記憶回路に保存されている第2の閾値P2xとの比較を行なう。
そして、照射制御部8は、画素値比較部7から供給される画素値の比較結果に基づき照射位置Cnに対して照射を行なうための制御信号を薬剤導入部1の駆動部31に供給する。
上述の画素値比較部7及び照射制御部8は、本実施例において最も重要な部分であるため、これらのユニットが有する機能と効果につき、更に詳しく説明する。
治療対象部位に対して有効な薬剤導入を行なうための第1の条件は、所定の照射位置Cnにおいて造影剤が十分蓄積(還流)された時点で導入用超音波を照射することであり、又、第2の条件は、この照射位置Cnに導入超音波を照射することによって造影剤が確実に破砕されたか否かを把握し、破砕が不充分な場合には同一照射部位に対して追加の照射を行なうことである。
上述の第1の条件に対し、本実施例では、所定照射部位に還流される造影剤の濃度に対応するモニタリング画像データの画素値を監視し、この画素値が所定の大きさに到達したならば導入用超音波の照射を行なう。
図6(a)は、例えば、照射位置C1に対して導入用超音波が照射される際に、照射計画策定部6によって設定された照射計画に基づいて薬剤導入部1における駆動部31が制御される場合であり、(a−1)は、モニタリング画像データの生成タイミング、(a−2)は、照射位置C1に対応した画素における画素値P1の変化曲線、そして、(a−3)は、照射制御部8から薬剤導入部1の駆動部31に供給される照射位置C1の照射トリガ信号を示している。
即ち、時刻t21の照射トリガ信号に従い照射位置C1に対する導入用超音波が照射され、照射位置C1に蓄積された造影剤の大部分は破砕される。そして、この造影剤の破砕に伴ってモニタリング画像データの照射位置C1に対応した画素値P1も(a−1)に示すように急速に減少する。次いで、照射位置C2及びC3に対する導入用超音波の照射が行なわれている間に照射位置C1には周囲の血管あるいは組織から血流と共に造影剤が還流され、この造影剤の還流に伴って画素値P1も徐々に増大する。そして、十分な画素値に達した時点t22で照射位置C1に対する次の照射が行なわれるように上述の照射計画は策定される。
しかしながら、この場合の照射間隔[t21〜t22]は、治療対象部位における血流状態に大きく依存するため、患者の個体差を考慮すれば照射計画において厳密に設定することは望ましくない。このため、本実施例における上述の画素値比較部7は、照射計画において設定された照射タイミングt22の直前の時刻t14において得られたモニタリング画像データから照射位置C1に対応した画素の画素値P1を抽出し、次いで、この画素値P1と自己の記憶回路に保存されている第1の閾値P1xを比較してその比較結果を照射制御部8に供給する。次いで、照射制御部8は、画素値比較部7から供給された比較結果を読み取り、画素値P1が第1の閾値P1x以上の場合には照射位置C1に対する照射を照射計画に従い時刻t22において行なう。
一方、図6(b)は、照射位置C1における造影剤の還流が特に遅い患者の場合を示したものであり、図6(a)の場合と同様にして(b−2)は、照射位置C1における画素値P1の変化曲線、(b−3)は、照射制御部8から駆動部31に供給される照射位置C1の照射トリガ信号を示している。
即ち、画素値比較部7から供給された比較結果を受信した照射制御部8は、照射計画において設定された照射タイミングt22の直前の時刻t14において得られたモニタリング画像データの画素値P1が第1の閾値P1xに到達していない場合には、時刻t22での導入用超音波の照射を取り止める。そして、後続して得られるモニタリング画像データ(例えば、時刻t15のモニタリング画像データ)における照射位置C1の画素値P1が前記閾値P1xを越えたならば、時刻t15から所定時間Δτa後の時刻t23において照射位置C1に対する導入用超音波の照射を行なう。
次に、治療対象部位に対して有効な薬剤導入を行なうための第2の条件に対し、本実施例では、所定照射部位に対する導入超音波の照射直後に得られたモニタリング画像データを監視し、このモニタリング画像データにおける照射位置C1の画素値P1が予め設定された第2の閾値P2x以下に低減しない場合には同一照射位置に対して再度導入用超音波の照射を行なう。
図7(a)は、例えば、照射位置C1に対して導入用超音波が照射される際に、照射計画策定部6によって設定された照射計画に基づいて薬剤導入部1における駆動部31が制御される場合であり、(a−1)は、モニタリング画像データの生成タイミング、(a−2)は、照射位置C1おける画素値P1の変化曲線、そして、(a−3)は、照射制御部8から駆動部31に供給される照射位置C1の照射トリガ信号を示している。
そして、図7の(a−2)に示すように、画素値比較部7は、時刻t22の照射トリガ信号に基づいて照射位置C1に対する導入用超音波の照射が行なわれた直後のt15において得られたモニタリング画像データの照射位置C1に対応した画素の画素値P1を抽出する。次いで、この画素値P1と自己の記憶回路に保存されている第2の閾値P2xを比較し、その比較結果を照射制御部8に供給する。一方、照射制御部8は、画素値比較部7から供給された比較結果を読み取り、画素値P1が閾値P2x以下の場合には照射位置C1に対する照射を一旦終了し、隣接した照射位置C2に対する導入用超音波の照射に移行する。
一方、図7(b)は、体動等の理由により照射位置C1に対する導入用超音波の照射が不十分の場合を示したものであり、図7(a)の場合と同様にして(b−2)は、照射位置C1における画素値P1の変化曲線、(b−3)は、照射制御部8から駆動部31に供給される照射位置C1の照射トリガ信号を示している。
即ち、画素値比較部7からの画素値比較結果を受信した照射制御部8は、照射タイミングt22の直後の時刻t15において得られたモニタリング画像データの画素値P1が第2の閾値P2xより大きい場合には、時刻t15より所定時間Δτb後の時刻t24において照射位置C1に対する照射を再度行なう。そして、この照射直後の時刻t16において得られたモニタリング画像データの画素値P1が前記閾値P2x以下である場合には次の照射位置C2に対する照射に移行する。
一方、画素値P1が閾値P2xより大きい場合には、同様の手順にて導入用超音波の照射と画素値の比較を繰返し、画素値P1が閾値P2x以下であることが確認されたならば次の照射位置C2に対する照射に移行する。尚、上述の時間Δτa及びΔτbは、照射時間τ1等と共に初期設定において設定される。
図1に戻って、表示部9は、図示しない表示用データ生成回路、変換回路及びモニタを備えている。そして、データ合成部4に保存された上述のモニタリング画像データや分子イメージングデータは表示用データ生成回路にて走査変換が行なわれ、変換回路においてD/A変換とテレビフォーマット変換が行われてモニタに表示される。特に、モニタリング画像データの表示に際しては、アプリケータ321の位置情報や関心領域85、この関心領域85に基づいて設定された複数の照射位置C1乃至C3の位置情報、更には各種の付帯情報等をモニタリング画像データに重畳して表示することも可能である。
次に、入力部10は、操作パネル上に表示パネルやキーボード、トラックボール、マウス、選択ボタン等の入力デバイスを備えたインタラクティブなインターフェースであり、患者情報の入力、画像データ収集装置の選択、画像表示モードの選択、関心領域の設定、関心領域における水平方向(X方向)の照射位置間隔dx及び深さ方向(Z方向)における照射位置間隔dzの設定、照射時間τ1、照射周期τ2、時間Δτa及びΔτbの設定、所定照射位置に対する照射回数n1、照射エネルギー、モニタリング画像データの画素値に対する第1の閾値P1x及び第2の閾値P2xの設定、更には、各種コマンド信号の入力等が行なわれる。尚、上述の画像表示モードとして、モニタリング画像データ及び分子イメージングデータの表示があり、画像データ収集装置としてモニタリング画像データあるいは分子イメージングデータを生成するための超音波診断装置、PET装置、CT装置、MRI装置等の医用画像診断装置がある。
そして、システム制御部11は、図示しないCPUと記憶回路を備え、操作者によって入力部10から入力された入力情報、設定情報及び選択情報は前記記憶回路に保存される。一方、CPUは、入力部10から入力された上述の情報に基づいて、薬剤導入システム100の上記各ユニットの制御やシステム全体の制御を統括して行なう。
(治療対象部位に対する薬剤導入の手順)
次に、本実施例における薬剤導入の手順につき図8のフローチャートに沿って説明する。
操作者は、当該患者に対する治療前診断によって治療対象部位の位置や状態の把握を行なう。特に、治療対象部位に対して画像診断を行なう際には、薬剤導入システム100の分子イメージングデータ生成部22に設けられている超音波診断装置やMRI装置あるいはX線CT装置等を使用することも可能である。
治療前診断が終了したならば、操作者は入力部10において患者情報を入力した後、画像表示モードとしてモニタリング画像データの表示モードを、又、このモニタリング画像データを生成するための画像データ収集装置として超音波診断装置を選択する。
更に、操作者は、入力部10にて水平方向の照射位置間隔dx及び深さ方向の照射位置間隔dz、照射時間τ1、時間Δτa及びΔτb、所定照射位置に対する照射回数n1、照射エネルギー(バースト波振幅)、モニタリング画像データの画素値に対する第1の閾値P1x及び第2の閾値P2x等の初期設定を行なう。そして、このとき設定された情報はシステム制御部11の記憶回路に保存されると共に、照射位置間隔dx及びdz、照射時間τ1、照射回数n1、照射エネルギー、時間Δτa及びΔτb等は照射計画策定部6の記憶回路に、又、第1の閾値P1x及び第2の閾値P2xは画素値比較部7の記憶回路に夫々保存される(図8のステップS1)。
これらの初期設定が終了したならば、モニタリング画像データ生成部21の超音波プローブ211と薬剤導入部1の超音波照射部32におけるアプリケータ321を当該患者の体表部に固定し、モニタリング画像データの生成及び表示を開始するためのコマンド信号を入力する。
このコマンド信号を受信したシステム制御部11は、モニタリング画像データ生成部21の走査制御部45に対して走査方向θ1乃至θPの超音波送受信を行なうための指示信号を供給し、走査制御部45は、この指示信号に従って送信部41の送信遅延時間及び受信部42の受信遅延時間を制御し走査方向θ1乃至θPに対する超音波送受信を行なう。そして、信号処理部43は、各々の走査方向からの受信信号を信号処理し、得られたBモードデータを画像データ記憶部44に保存してモニタリング画像データを生成する。
一方、位置検出部3は、モニタリング画像データ生成部21における超音波プローブ211の位置情報と薬剤導入部1の超音波照射部32におけるアプリケータ321の位置情報に基づいて相対位置情報を検出し、データ合成部4は、検出された相対位置情報に基づいてモニタリング画像データと薬剤導入部1の照射領域データの合成を行なって表示部9のモニタに表示する(図8のステップS2)。
次いで、操作者は、表示部9に表示されたモニタリング画像データを観測し、このモニタリング画像データの治療対象部位に対する関心領域を入力部10の入力デバイスを用いて設定する。そして、設定された関心領域の位置情報は関心領域データ記憶部5に保存される(図8のステップS3)。
次に、照射計画策定部6は、関心領域データ記憶部5に保存された関心領域の位置情報を読み出し、この関心領域の位置情報と自己の記憶回路に保存されている照射位置間隔dx及びdzに基づいて照射計画の照射位置C1乃至C3を設定すると共に、これらの照射位置C1乃至C3に対する照射計画の照射波形及び照射順序を自己の記憶回路に保存されている照射時間τ1、照射周期τ2、照射回数n1、照射エネルギー等に基づいて設定する(図8のステップS4)。
上述の照射計画が策定されたならば、当該患者の例えば上肢静脈より薬剤及び超音波造影剤を投与し(図8のステップS5)、この造影剤の治療対象部位への到達をモニタリング画像データの観測によって確認したならば治療対象部位に対する導入用超音波の照射を開始するためのコマンド信号を入力部10より入力する(図8のステップS6)。
次いで、モニタリング画像データ生成部21は、照射計画において設定された最初の照射位置C1に対する導入用超音波の照射が行なわれる直前のモニタリング画像データを生成してデータ合成部4に保存する(図8のステップS7)。尚、この場合のモニタリング画像データ及び後述する導入用超音波の照射直後におけるモニタリング画像データを生成するために超音波プローブ211から放射されるモニタリング用超音波の振幅は、前記照射位置における超音波造影剤が破砕しない程度の低パワーに設定される。
一方、画素値比較部7は、このモニタリング画像データの照射位置C1に対応する画素の画素値P1と自己の記憶回路に保存されている第1の閾値P1xを比較し(図8のステップS8)、この比較結果を照射制御部8に供給する。
画素値比較部7より比較結果の供給を受けた照射制御部8は、モニタリング画像データの画素値P1が第1の閾値P1x以上の場合には、照射位置C1に対する導入用超音波の照射を行なう(図8のステップS9)。一方、モニタリング画像データの画素値P1が第1の閾値P1xより小さい場合には、同様の手順により前記モニタリング画像データに後続して得られるモニタリング画像データの照射位置C1に対応する画素値P1と前記閾値P1xとの比較を継続して行ない(図8のステップS7及びS8)、新たなモニタリング画像データにおける画素値P1が第1の閾値P1x以上になったならば照射位置C1に対する導入用超音波の照射を行なう(図8のステップS9)。
次に、モニタリング画像データ生成部21は、照射位置C1に対する導入用超音波の照射が行なわれた直後のモニタリング画像データを生成してデータ合成部4に保存し(図8のステップS10)、画素値比較部7は、このモニタリング画像データの照射位置C1に対応する画素の画素値P1と自己の記憶回路に保存されている第2の閾値P2xを比較して(図8のステップS11)、この比較結果を照射制御部8に供給する。
そして、照射制御部8は供給された比較結果において、モニタリング画像データの画素値P1が第2の閾値P1x以下の場合には、次の照射位置C2に対する導入用超音波の照射に移行する(図8のステップS7乃至S11)。一方、モニタリング画像データの画素値P1が第2の閾値P2xより大きい場合には、照射位置C1に対する照射とこの照射の直後に得られるモニタリング画像データの画素値P1と前記閾値P2xとの比較を繰返して行ない(図8のステップS9及びS11)、画素値P1が第2の閾値P2xより小さくなったならば照射位置C2に対する導入用超音波の照射に移行する(図8のステップS7乃至S11)。
そして、上述の手順によって照射位置C3に対する照射が終了したならば治療対象部位に対する導入用超音波の照射を一旦停止し(図8のステップS12)、所定時間経過した後に分子イメージングデータによる薬剤導入効果の確認を行なう。分子イメージングデータの生成に際し、操作者は、使用可能な医用画像診断装置の中から例えばMRI装置を選択し、Gene Expression Imaging等の分子イメージング手段を適用して治療対象部位における遺伝子発現状況等を観察することにより薬剤導入効果の確認を行なう。
選択されたMRI装置に対し、位置検出部3はその位置情報を検出し、データ合成部4は、検出された位置情報に基づいてMRI装置によって得られた分子イメージングデータと関心領域データ記憶部5に保存されている関心領域データ等との合成を行なって表示部9に表示する(図8のステップS13)。
操作者は、表示された分子イメージングデータにおいて、例えば、関心領域内の治療対象部位における薬剤導入効果を観測し、治療対象部位の全領域において十分な薬剤導入効果が確認できた場合には導入用超音波の照射による薬剤導入を終了する(図8のステップS14)。
一方、治療対象部位において薬剤導入効果が不十分な領域が認められた場合には、入力部10の入力デバイスを使用して、前記領域に対して関心領域を設定し(図8のステップS15)、次いで、図8のステップS4に戻り新たに設定された関心領域に対する導入用超音波の照射と薬剤導入効果の確認を繰返す(図8のステップS4乃至S14)。
以上述べた本実施例では、治療対象部位に薬剤と共に投与された超音波造影剤を導入用超音波の照射によって破砕することにより治療対象部位に対する薬剤導入を行なう際に、導入用超音波の照射直前に得られたモニタリング画像データにおける超音波造影剤の環流状態に基づいて導入用超音波の照射を制御しているため、当該患者の血流状態等に影響されることなく、常に超音波造影剤が所定濃度に達した治療対象部位に対し導入用超音波を照射することが可能となる。
又、導入用超音波の照射直後に得られたモニタリング画像データにおける超音波造影剤の破砕状態に基づいて導入用超音波の照射を制御しているため、例えば、体動等によって一時的に超音波造影剤の破砕が十分行なわれない状態が発生しても過不足のない追加照射により最適な導入用超音波の照射が可能となる。
即ち、上述の実施例によれば、導入用超音波の照射直前あるいは照射直後のモニタリング画像データに反映される超音波造影剤の情報に基づいて所定照射位置に対する導入用超音波の照射を制御しているため、治療対象部位に対し精度のよい薬剤導入を効率よく行なうことが可能となる。
又、この実施例によれば、導入用超音波の照射直前及び照射直後に得られるモニタリング画像データの画素値と予め設定された閾値との比較を行ない、この比較結果に基づいて所定照射位置に対する導入用超音波の照射を制御しているため、精度のよい制御を自動的に行なうことが可能となり、治療に要する時間の短縮が可能となるのみならず、操作者や患者の負担を軽減することができる。
更に、上述の本実施例では、治療対象部位に対して行なわれた薬剤導入の効果を分子イメージングデータによって短時間で確認することが可能となるため、薬剤導入の精度を更に向上させることが可能となる。
以上、本発明の実施例について述べたが、本発明は上述の実施例に限定されるものではなく、種々変形して実施することが可能である。例えば、上述の実施例では、所定照射位置に対する導入用超音波の照射直後に得られたモニタリング画像データの画素値P1と第2の閾値P2xとの比較結果に基づいて導入用超音波の照射を制御する際、前記画素値P1が第2の閾値P2xより大きい場合には、同一の照射位置に対する追加照射を引き続いて行なったが、画素値P1が第2の閾値P2xより大きい場合の照射位置の位置情報Cxを保存し、予め設定された照射計画に基づいた導入用超音波の照射が終了した時点、あるいは、複数の照射位置に対する最初の導入用超音波の照射が終了した時点で前記位置情報Cxの照射位置に対する追加照射を纏めて行なってもよい。この場合、追加照射を要する照射位置が複数箇所存在する場合には、照射計画策定部6は、位置情報Cxに基づいて新たな照射計画を策定し、この照射計画に基づいて追加照射を行なってもよい。このときの照射位置Cxのマッピングデータを作成し表示部9に表示することによって操作者は導入用超音波の追加照射状況を可視化することが可能となる。更に、この場合、追加照射が必要な領域、照射が不可能な領域、照射済みの領域等を色別して表示することが望ましい。
一方、上述の実施例における分子イメージングデータ生成部22としてMRI装置を用いる場合について述べたが、核医学装置(PET装置及びSPECT装置)や超音波診断装置、X線CT装置、X線診断装置を用いてもよい。特に、核医学装置を使用する場合には、薬剤や超音波造影剤と共にRIを当該患者の治療対象部位に対して投与することが望ましい。又、分子イメージングデータとして、例えば、形態診断能に優れたX線CT画像データと機能診断能に優れた核医学画像データの合成等、異種の画像データを合成して用いてもよい。更に、上述の分子イメージングデータとモニタリング画像データを合成表示することも可能である。
一方、標識薬剤として超音波造影剤を用いる場合について述べたが、他の標識薬剤を用いてもよい。又、上述の実施例では、照射位置数が3、所定照射位置に対する照射回数n1が3回の場合について述べたがこれらに限定されない。
本発明の実施例における薬剤導入システムの全体構成を示すブロック図。 同実施例の薬剤導入システムにおけるモニタリング画像データ生成部と薬剤導入部の具体例を示すブロック図。 同実施例のモニタリング画像データ生成部の構成を示すブロック図。 同実施例における導入用超音波の照射計画を模式的に示す図。 同実施例における導入用超音波の照射波形及び照射順序を示すタイムチャート。 同実施例における導入用超音波の照射前のモニタリング画像データに基づいた照射制御方法を示す図。 同実施例における導入用超音波の照射後のモニタリング画像データに基づいた照射制御方法を示す図。 同実施例における薬剤導入の手順を示すフローチャート。
符号の説明
1…薬剤導入部
3…位置検出部
4…データ合成部
5…関心領域データ記憶部
6…照射計画策定部
7…画素値比較部
8…照射制御部
9…表示部
10…入力部
11…システム制御部
21…モニタリング画像データ生成部
22…分子イメージングデータ生成部
31…駆動部
32…超音波照射部
100…薬剤導入システム
211…超音波プローブ
212…画像データ生成部
311…バースト波発生器
312…遅延回路
313…パワーアンプ
314…マッチング回路
321…アプリケータ
322…圧電振動子
323…カップリング液
324…カップリング膜

Claims (8)

  1. 薬剤及び標識薬剤が投与された治療対象部位に対してモニタリング画像データを生成するモニタリング画像データ生成手段と、
    前記モニタリング画像データにおける前記治療対象部位の情報に基づいて薬剤導入を目的とした導入エネルギー波の複数の照射位置及び照射順序を設定する照射位置設定手段と、
    この照射位置設定手段で設定した照射順序に従って、複数の照射位置へ導入エネルギー波の焦点を移動して前記導入エネルギー波を照射する導入エネルギー波照射手段と、
    前記導入エネルギー波照射手段で導入エネルギー波を照射する際、その照射位置での照射直前の前記モニタリング画像データの画素の画素値と所定の閾値を比較する画素値比較手段と、
    この画素値比較手段による比較結果に基づいて前記照射位置に対する導入エネルギー波の照射を制御する照射制御手段を
    備えたことを特徴とする薬剤導入システム。
  2. 前記画素値比較手段は、前記照射位置に対する前記導入エネルギー波の照射前に生成された前記モニタリング画像データの前記画素値と第1の閾値を比較し、前記照射制御手段は、前記画素値比較手段による比較結果に基づいて前記照射位置に対する導入エネルギー波の照射の是非を判断することを特徴とする請求項1記載の薬剤導入システム。
  3. 前記照射制御手段は、前記画素値比較手段による比較結果において、前記画素値が前記第1の閾値以上あるいは前記第1の閾値より大きい場合には前記照射位置に対して前記導入エネルギー波を照射するための制御を前記導入エネルギー波照射手段に対して行なうことを特徴とする請求項2記載の薬剤導入システム。
  4. 関心領域設定手段を備え、前記照射位置設定手段は、前記関心領域設定手段が前記モニタリング画像データの前記治療対象部位に対して設定した関心領域に基づいて前記導入エネルギー波の照射位置を設定することを特徴とする請求項1記載の薬剤導入システム。
  5. モニタリング画像データを表示する表示手段を備え、前記表示手段は、前記画素値比較手段による前記比較結果を前記モニタリング画像データに重畳表示することを特徴とする請求項1記載の薬剤導入システム。
  6. 前記標識薬剤は超音波造影剤であり、前記導入エネルギー波照射手段は、前記超音波造影剤が薬剤と共に投与された前記治療対象部位の前記照射位置に対して超音波を照射することを特徴とする請求項1記載の薬剤導入システム。
  7. 分子イメージングデータ生成手段を備え、前記分子イメージングデータ生成手段は、前記導入エネルギー波照射手段によって導入エネルギー波が照射された前記治療対象部位における薬剤導入効果を確認するための画像データを生成することを特徴とする請求項1記載の薬剤導入システム。
  8. 前記分子イメージングデータ生成手段は、MRI装置、核医学装置、X線診断装置、X線CT装置、超音波診断装置の少なくとも何れかであることを特徴とする請求項7記載の薬剤導入システム。
JP2004347594A 2004-11-30 2004-11-30 薬剤導入システム及び薬剤導入方法 Expired - Fee Related JP4854195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347594A JP4854195B2 (ja) 2004-11-30 2004-11-30 薬剤導入システム及び薬剤導入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347594A JP4854195B2 (ja) 2004-11-30 2004-11-30 薬剤導入システム及び薬剤導入方法

Publications (2)

Publication Number Publication Date
JP2006149872A JP2006149872A (ja) 2006-06-15
JP4854195B2 true JP4854195B2 (ja) 2012-01-18

Family

ID=36628829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347594A Expired - Fee Related JP4854195B2 (ja) 2004-11-30 2004-11-30 薬剤導入システム及び薬剤導入方法

Country Status (1)

Country Link
JP (1) JP4854195B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956206B2 (ja) * 2007-01-25 2012-06-20 株式会社東芝 超音波診断装置、超音波治療用物質導入装置及び超音波走査制御プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297475A (ja) * 1990-04-16 1991-12-27 Ken Ishihara 共振音波により薬物の放出を制御する方法
JP2000189521A (ja) * 1998-12-28 2000-07-11 Toshiba Corp 超音波診断・治療装置
JP4380863B2 (ja) * 1999-12-14 2009-12-09 株式会社東芝 超音波治療装置
US6475148B1 (en) * 2000-10-25 2002-11-05 Acuson Corporation Medical diagnostic ultrasound-aided drug delivery system and method
JP4712980B2 (ja) * 2001-01-18 2011-06-29 株式会社日立メディコ 超音波装置
JP2004202142A (ja) * 2002-12-26 2004-07-22 Ge Medical Systems Global Technology Co Llc 超音波イメージング装置および超音波造影剤の破壊モード制御方法
JP2004290548A (ja) * 2003-03-28 2004-10-21 Toshiba Corp 画像診断装置、診断・治療装置及び診断・治療方法
JP4253274B2 (ja) * 2004-05-31 2009-04-08 株式会社東芝 超音波治療装置

Also Published As

Publication number Publication date
JP2006149872A (ja) 2006-06-15

Similar Documents

Publication Publication Date Title
US20230346354A1 (en) Dual mode ultrasound transducer (dmut) system and method for controlling delivery of ultrasound therapy
JP4921795B2 (ja) 超音波薬剤導入装置及び医用画像診断装置
Vaezy et al. Image-guided acoustic therapy
US20080319356A1 (en) Pulsed cavitational ultrasound therapy
JP4801968B2 (ja) 画像診断・治療支援装置及び画像データ表示方法
WO2002056957A1 (fr) Dispositif de diagnostic/traitement ultrasonore et procede associe
US20080228075A1 (en) Combination Imaging and Therapy Transducer With Therapy Transducer Amplifier
Seip et al. Targeted ultrasound-mediated delivery of nanoparticles: on the development of a new HIFU-based therapy and imaging device
JP5689678B2 (ja) 超音波装置
US20080319316A1 (en) Combination Imaging and Therapy Transducer
JP4434668B2 (ja) 治療システム及び治療支援システム
Azhari Ultrasound: medical imaging and beyond (an invited review)
JP4956206B2 (ja) 超音波診断装置、超音波治療用物質導入装置及び超音波走査制御プログラム
Rahimi et al. A high-frequency phased array system for transcranial ultrasound delivery in small animals
JP4319427B2 (ja) 医用超音波照射装置
JP5032226B2 (ja) 超音波治療装置
JP4854195B2 (ja) 薬剤導入システム及び薬剤導入方法
JP4685458B2 (ja) 超音波診断装置
JP4342167B2 (ja) 超音波照射装置
JP4387947B2 (ja) 超音波治療装置
Gray et al. Snap, crackle, and pop: Theracoustic cavitation
KR20140094955A (ko) 온도 영상 생성 방법 및 장치, 이를 포함한 초음파 시스템
JP2005000530A (ja) 超音波照射装置及び超音波照射方法
JP2009125383A (ja) 超音波治療診断装置
Zhu Assessment and Control of a Cavitation-Enabled Therapy for Minimally Invasive Myocardial Reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees