JP4838977B2 - Circuit board and circuit board manufacturing method - Google Patents

Circuit board and circuit board manufacturing method Download PDF

Info

Publication number
JP4838977B2
JP4838977B2 JP2003356635A JP2003356635A JP4838977B2 JP 4838977 B2 JP4838977 B2 JP 4838977B2 JP 2003356635 A JP2003356635 A JP 2003356635A JP 2003356635 A JP2003356635 A JP 2003356635A JP 4838977 B2 JP4838977 B2 JP 4838977B2
Authority
JP
Japan
Prior art keywords
hole
layer
insulating resin
diameter
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003356635A
Other languages
Japanese (ja)
Other versions
JP2005123401A (en
Inventor
和彦 生田目
良明 坪松
昭彦 若林
匡史 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003356635A priority Critical patent/JP4838977B2/en
Publication of JP2005123401A publication Critical patent/JP2005123401A/en
Application granted granted Critical
Publication of JP4838977B2 publication Critical patent/JP4838977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、回路基板及び回路基板の製造方法に関する。   The present invention relates to a circuit board and a method for manufacturing the circuit board.

近年の電子機器の小型化・高機能化の進展とともに、薄型化や高密度配線に対応したビルドアップ回路基板の開発が求められている。ビルドアップ回路基板は、層間接続が必要な回路層のみ、非貫通孔で接続することが可能なため、内層板の貫通孔のみで、回路基板全体を貫通する孔は、必ずしも必要とせず、回路基板の薄型化や小型化に適しており、近年開発が進められている。   With the recent progress in downsizing and high functionality of electronic devices, development of build-up circuit boards corresponding to thinning and high density wiring is required. Since the build-up circuit board can be connected only with the circuit layer that requires interlayer connection with a non-through hole, only the through hole of the inner layer plate and the hole that penetrates the entire circuit board are not necessarily required. It is suitable for thinning and miniaturization of substrates, and has been developed in recent years.

そして、ビルドアップ回路基板において、非貫通孔を有する内層板にビルドアップ層を形成する場合、非貫通孔は、配線の効率化及び高密度化の観点から、非貫通孔の直上に形成することが多くなっている(ビアオンビア構造)。3層以上の導体層を有するビルドアップ回路基板において、第一の内層導体層に達する非貫通孔が形成された内層板があり、、前記内層板の前記非貫通孔の直上に、さらに外層の非貫通孔を形成する場合、無電解あるいは電解金属めっきを施した内層板の非貫通孔を導電材で充填するか、もしくは導電材あるいは絶縁樹脂で非貫通孔を充填後、非貫通孔を覆うように金属めっきを施すことが必要である。あるいはまた、内層板の非貫通孔を電気銅めっきにより、充填する。そして、第二の内層導体層が形成される(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照) 。また、直上構造となる内層板の非貫通孔内が、導電材、絶縁樹脂あるいは電気銅めっきにより充填されていない場合は、外層の非貫通孔に施された無電解あるいは電解金属めっきにより、第一の内層導体層と第二の内層導体層と外層導体層が、接続されることがある。
特開平9−116266号公報 特開2001−223469号公報 特開2001−7526号公報 特開2000−101247号公報
In the build-up circuit board, when the build-up layer is formed on the inner layer plate having the non-through hole, the non-through hole should be formed immediately above the non-through hole from the viewpoint of efficiency of wiring and high density. Is increasing (via-on-via structure). In the build-up circuit board having three or more conductor layers, there is an inner layer plate in which a non-through hole reaching the first inner layer conductor layer is formed, and an outer layer layer is provided immediately above the non-through hole of the inner layer plate. When forming a non-through hole, fill the non-through hole of the inner layer plate that has been electrolessly or electrolessly plated with a conductive material, or fill the non-through hole with a conductive material or insulating resin, and then cover the non-through hole. It is necessary to apply metal plating. Alternatively, the non-through holes of the inner layer plate are filled by electrolytic copper plating. Then, a second inner conductor layer is formed (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). In addition, when the inside of the non-through hole of the inner layer plate that is directly above is not filled with conductive material, insulating resin, or electrolytic copper plating, electroless or electrolytic metal plating applied to the non-through hole of the outer layer One inner conductor layer, the second inner conductor layer, and the outer conductor layer may be connected.
JP-A-9-116266 JP 2001-223469 A JP 2001-7526 A JP 2000-101247 A

ビルドアップ回路基板の内層板の非貫通孔を導電材で充填する場合、非貫通孔を覆うように金属めっきを施すことが、必ずしも必要ではない。しかし、導電材は、導電粒子を含んでいるため、絶縁樹脂と比較し、ペースト状態で極めて粘度が高く、小径の非貫通孔や高アスペクト比の非貫通孔の充填は、ボイド等が発生し、困難である。また、非貫通孔を導電材で充填できた場合においても、導電材は硬化した状態で、硬度が、絶縁樹脂と比較し、大きいため、非貫通孔から突出した導電材が多い時は、研磨等で、完全に除去することは、内層板表面の銅層を深く削り取る恐れもあり、困難である。そして、研磨残りがあった場合などは、回路形成不良の原因ともなる。   When filling the non-through holes of the inner layer plate of the build-up circuit board with a conductive material, it is not always necessary to perform metal plating so as to cover the non-through holes. However, since the conductive material contains conductive particles, it has a very high viscosity in the paste state compared to the insulating resin, and the filling of small diameter non-through holes and high aspect ratio non-through holes causes voids and the like. ,Have difficulty. In addition, even when the non-through holes can be filled with the conductive material, the conductive material is hardened and the hardness is larger than that of the insulating resin. For example, it is difficult to completely remove the copper layer on the surface of the inner layer plate because the copper layer may be deeply shaved off. In addition, when there is a polishing residue, it may cause defective circuit formation.

第二の非貫通孔17を第一の非貫通孔の直上に形成する場合(ビアオンビア構造)、ビルドアップ回路基板の内層板の第一の非貫通孔を絶縁樹脂21で充填した場合には、第一の非貫通孔を覆うように金属めっきを施すことが、接続信頼性の確保の点から必要である(図2の(a)参照)。特に、内層板の第一の非貫通孔の直径が、その直上に形成する第二の非貫通孔17の直径より大きい場合は、必須である。そして、内層の導体層の厚みは、一般的に、下地銅層、非貫通孔の銅めっき、さらに非貫通孔を覆う銅めっきの厚みが重なり、微細な回路を形成するには不利になる。また、内層板の非貫通孔を電気銅めっきにより充填した場合も、同様に内層導体層が厚くなる。   When the second non-through hole 17 is formed immediately above the first non-through hole (via-on-via structure), when the first non-through hole of the inner layer plate of the build-up circuit board is filled with the insulating resin 21, From the viewpoint of ensuring connection reliability, it is necessary to perform metal plating so as to cover the first non-through hole (see FIG. 2A). In particular, it is essential when the diameter of the first non-through hole of the inner layer plate is larger than the diameter of the second non-through hole 17 formed immediately above. The thickness of the inner conductor layer is generally disadvantageous for forming a fine circuit because the base copper layer, the copper plating of the non-through hole, and the copper plating covering the non-through hole overlap. Further, when the non-through hole of the inner layer plate is filled with electrolytic copper plating, the inner conductor layer is similarly thickened.

また、直上構造となる内層板の第一の非貫通孔内が、導電材、絶縁樹脂あるいは電気銅めっきにより充填されていない場合は、外層の第二の非貫通孔17に施されためっきにより第一の内層導体層と第二の内層導体層と外層導体層を接続する必要があるため、必然的に、第二の非貫通孔17の内壁径は、第一の非貫通孔の内壁径より小さくなり、また、深くなるため、高アスペクト比となる(図2の(b)参照)。そのため、第二の非貫通孔17内の金属めっき付き回り性の低下やソルダーレジストによる非貫通孔の充填性の低下がおこる。   In addition, when the inside of the first non-through hole of the inner layer plate having a structure directly above is not filled with conductive material, insulating resin or electrolytic copper plating, the plating applied to the second non-through hole 17 of the outer layer Since it is necessary to connect the first inner layer conductor layer, the second inner layer conductor layer, and the outer layer conductor layer, the inner wall diameter of the second non-through hole inevitably is the inner wall diameter of the first non-through hole. Since it becomes smaller and deeper, a high aspect ratio is obtained (see FIG. 2B). For this reason, the metal plating adhesion in the second non-through hole 17 is lowered and the filling property of the non-through hole by the solder resist is lowered.

本発明は、絶縁樹脂により充填された非貫通孔を覆う金属めっきを不要とし、また、外層の非貫通孔を低アスペクト比で形成することにより、微細な回路形成に可能とし、かつめっき付き回り性の良い接続信頼性の高い回路基板及びその製造方法を提供するものである。   The present invention eliminates the need for metal plating to cover the non-through holes filled with the insulating resin, and enables the formation of fine circuits by forming the non-through holes in the outer layer with a low aspect ratio. It is an object of the present invention to provide a highly reliable circuit board with high connection reliability and a method for manufacturing the circuit board.

本発明は、以下のことを特徴とする。
(1)めっきを施した内壁径ΦIの第一の非貫通孔を有する内層板と、前記内層板の第一の非貫通孔の開口部に設けられた径ΦLの内層導体層と、前記内層導体層表面に形成された絶縁樹脂層と、前記絶縁樹脂層に形成された内壁径ΦIの前記第一の非貫通孔の直上に位置し、内層導体層に達する開口径ΦOの第二の非貫通孔とを有する回路基板において、内壁径ΦIの前記第一の非貫通孔が絶縁樹脂により埋め込まれており、かつ内壁径ΦIの第一の非貫通孔と径ΦLの内層導体層と開口径ΦOの第二の非貫通孔が、ΦI<ΦO<ΦLとなる関係を持つ接続孔構造を1つ以上有する回路基板。
(2)めっきを施した内壁径ΦIが、Φ0.001〜0.09mmである(1)に記載の回路基板。
(3)内層回路を有する内層板を準備する工程、前記内層板の内層回路表面に絶縁樹脂層を形成する工程、内層回路に達する第一の非貫通孔を前記絶縁樹脂層に形成し、めっきを施し内壁径ΦIの第一の非貫通孔を前記内層板に形成する工程、前記第一の非貫通孔の開口部に径ΦIより大きな径ΦLの内層導体層を有する導体層を形成する工程、径ΦLの前記内層導体層を含む導体層表面に絶縁樹脂層を形成する工程、前記第一の非貫通孔の直上に径ΦIより大きくかつ径ΦLより小さな内層導体層に達する開口径ΦOの第二の非貫通孔を前記絶縁樹脂層に少なくとも1つ以上形成する工程を含む回路基板の製造方法。
(4)径ΦLの前記内層導体層を含む導体層表面に絶縁樹脂層を形成する工程が、内壁径ΦIの前記第一の非貫通孔を絶縁樹脂で埋め込む工程を含む(3)に記載の回路基板の製造方法。
The present invention is characterized by the following.
(1) An inner layer plate having a first non-through hole with a plated inner wall diameter ΦI, an inner layer conductor layer with a diameter ΦL provided in an opening of the first non-through hole of the inner layer plate, and the inner layer An insulating resin layer formed on the surface of the conductor layer and a second non-opening hole having a diameter ΦO that is located immediately above the first non-through hole having an inner wall diameter ΦI formed in the insulating resin layer. In a circuit board having a through hole, the first non-through hole with an inner wall diameter ΦI is embedded with an insulating resin, and the first non-through hole with an inner wall diameter ΦI, an inner layer conductor layer with a diameter ΦL, and an opening diameter A circuit board having at least one connection hole structure in which the second non-through hole of ΦO has a relationship of ΦI <ΦO <ΦL.
(2) The circuit board according to (1), wherein the plated inner wall diameter ΦI is Φ0.001 to 0.09 mm.
(3) A step of preparing an inner layer plate having an inner layer circuit, a step of forming an insulating resin layer on the inner layer circuit surface of the inner layer plate, a first non-through hole reaching the inner layer circuit is formed in the insulating resin layer, and plating Forming a first non-through hole having an inner wall diameter ΦI in the inner layer plate, and forming a conductor layer having an inner layer conductor layer having a diameter ΦL larger than the diameter ΦI at the opening of the first non-through hole. A step of forming an insulating resin layer on the surface of the conductor layer including the inner conductor layer having the diameter ΦL, an opening diameter ΦO reaching the inner conductor layer larger than the diameter ΦI and smaller than the diameter ΦL immediately above the first non-through hole. A circuit board manufacturing method including a step of forming at least one second non-through hole in the insulating resin layer.
(4) The step of forming an insulating resin layer on the surface of the conductor layer including the inner conductor layer having the diameter ΦL includes a step of filling the first non-through hole having the inner wall diameter ΦI with an insulating resin. A method of manufacturing a circuit board.

本発明によって、接続信頼性の高く、微細な回路形成に対応する回路基板及びその製造方法を提供することができる。そして、開口径ΦOの非貫通孔は、ΦI<ΦO<ΦLとなる関係を有しているため、非貫通孔の直上に非貫通孔を形成しても、絶縁樹脂により充填された貫通孔を覆う金属めっきは不要となり、それにより、内層導体層においてライン/スペース=40/40μmレベル以下の微細配線の形成が効率良くできる。   According to the present invention, it is possible to provide a circuit board that has high connection reliability and is capable of forming a fine circuit, and a method for manufacturing the circuit board. Since the non-through hole with the opening diameter ΦO has a relationship of ΦI <ΦO <ΦL, even if the non-through hole is formed immediately above the non-through hole, the through-hole filled with the insulating resin The covering metal plating is not necessary, whereby the fine wiring of the line / space = 40/40 μm level or less can be efficiently formed in the inner conductor layer.

本発明に示した回路基板において、内層板22に形成された内壁径ΦI5の第一の非貫通孔2と、径ΦL6の内層導体層1と、絶縁樹脂層7に形成された開口径ΦO4の第二の非貫通孔17が、ΦI<ΦO<ΦLとなる関係を持つ接続孔構造を1つ以上有している(図1の(a)参照)。開口径ΦO4の第二の非貫通孔17は、ΦI<ΦO<ΦLとなる関係を有しているため、第一の非貫通孔2の直上に第二の非貫通孔17を形成しても、絶縁樹脂7により充填された第一の非貫通孔2を覆う金属めっきは不要であり、微細配線の形成が容易である。また、径ΦL6の内層導体層1が、開口径ΦO4の第二の非貫通孔17より、大きいため、接続面積を十分確保することが、可能となる。それに対し、径ΦL6の内層導体層1が、開口径ΦO4の第二の非貫通孔より小さいと、接続面積を十分確保することができず、また非貫通孔の穴あけ時の位置ずれが発生した場合は、接続不良が発生する可能性もある。また、開口径ΦO4の第二の非貫通孔17が、内壁径ΦI5の第一の非貫通孔2より小さければ、第一の非貫通孔2の直上に第二の非貫通孔17を形成するには、必然的に絶縁樹脂7により充填された第一の非貫通孔2を覆う金属めっきが必要なり、内層導体層1が厚くなり、微細配線の形成が困難になる。   In the circuit board shown in the present invention, the first non-through hole 2 having the inner wall diameter ΦI5 formed in the inner layer plate 22, the inner conductor layer 1 having the diameter ΦL6, and the opening diameter ΦO4 formed in the insulating resin layer 7 are used. The second non-through hole 17 has one or more connection hole structures having a relationship of ΦI <ΦO <ΦL (see FIG. 1A). Since the second non-through hole 17 having the opening diameter ΦO 4 has a relationship of ΦI <ΦO <ΦL, even if the second non-through hole 17 is formed immediately above the first non-through hole 2. Metal plating covering the first non-through hole 2 filled with the insulating resin 7 is unnecessary, and the formation of fine wiring is easy. Further, since the inner conductor layer 1 having the diameter ΦL6 is larger than the second non-through hole 17 having the opening diameter ΦO4, it is possible to secure a sufficient connection area. On the other hand, when the inner conductor layer 1 having the diameter ΦL6 is smaller than the second non-through hole having the opening diameter ΦO4, a sufficient connection area cannot be ensured, and a position shift occurs when the non-through hole is drilled. In such a case, a connection failure may occur. Further, if the second non-through hole 17 having the opening diameter ΦO4 is smaller than the first non-through hole 2 having the inner wall diameter ΦI5, the second non-through hole 17 is formed immediately above the first non-through hole 2. Inevitably, metal plating covering the first non-through hole 2 filled with the insulating resin 7 is necessary, and the inner conductor layer 1 becomes thick, making it difficult to form fine wiring.

前記第一の非貫通孔と前記内層導体層と前記第二の非貫通孔の各径が、ΦI<ΦO<ΦLとなる関係を有していればよく、前記関係を維持しているかぎり、前記第一の非貫通孔と前記内層導体層と前記第二の非貫通孔の各径の範囲は、特に制限されるものではない。しかし、回路形成時や非貫通孔形成時の位置合わせや、回路基板の薄型化や配線の高密度化の観点から、前記第二の非貫通孔の開口径ΦOは、前記第一の非貫通孔の内壁径ΦIより、Φ0.05〜0.20mm大きく、また、前記内層導体層の径ΦLは、前記第二の非貫通孔の開口径ΦOより、Φ0.05〜0.20mm大きいことが、好ましい。これにより、内層導体層と第二の非貫通孔の間で、十分な接続面積が確保でき、接続信頼性の高い回路基板を得ることができる。   As long as each diameter of the first non-through hole, the inner layer conductor layer, and the second non-through hole has a relationship of ΦI <ΦO <ΦL, as long as the relationship is maintained, The ranges of the diameters of the first non-through hole, the inner conductor layer, and the second non-through hole are not particularly limited. However, the opening diameter ΦO of the second non-through hole is the first non-through hole from the viewpoint of alignment at the time of circuit formation or non-through hole formation, thinning of the circuit board and high density of wiring. The inner wall diameter ΦI of the hole is Φ0.05-0.20 mm larger, and the diameter ΦL of the inner conductor layer is Φ0.05-0.20 mm larger than the opening diameter ΦO of the second non-through hole. ,preferable. Thereby, a sufficient connection area can be ensured between the inner conductor layer and the second non-through hole, and a circuit board with high connection reliability can be obtained.

めっきを施した第一の非貫通孔の内壁径ΦIは、Φ0.001〜0.09mmが好ましく、Φ0.01〜0.04mmがより好ましい。Φ0.001mm未満では、第一の非貫通孔の穴あけは、困難であり、また、非貫通孔内部が、めっき液に十分浸漬されないため、めっきを施すことも困難である。また、第一の非貫通孔の内壁径をΦ0.001mm未満にするには、めっきを厚く施す必要があり、内層導体層の微細配線形成が困難となる。またΦ0.09mmを超すと、内層導体層の径と第二の非貫通孔の開口径が、必然的に大きくなり、回路基板の薄型化や高密度配線を行う上で不利である。なお、めっきを施した第一の非貫通孔が形成された絶縁層の厚みは、非貫通孔穴あけ及びめっきの観点から、0.01〜0.30mmが好ましく、0.03〜0.1mmがより好ましい。   The inner wall diameter ΦI of the plated first non-through hole is preferably Φ0.001 to 0.09 mm, and more preferably Φ0.01 to 0.04 mm. If it is less than Φ0.001 mm, it is difficult to drill the first non-through hole, and the inside of the non-through hole is not sufficiently immersed in the plating solution, so that it is difficult to perform plating. Further, in order to make the inner wall diameter of the first non-through hole less than Φ0.001 mm, it is necessary to apply a thick plating, and it becomes difficult to form fine wiring of the inner conductor layer. On the other hand, if it exceeds Φ0.09 mm, the diameter of the inner conductor layer and the opening diameter of the second non-through hole are inevitably increased, which is disadvantageous in reducing the thickness of the circuit board and high-density wiring. In addition, the thickness of the insulating layer in which the plated first non-through hole is formed is preferably 0.01 to 0.30 mm, and preferably 0.03 to 0.1 mm from the viewpoints of non-through hole drilling and plating. More preferred.

第一の非貫通孔の開口部に設けられた内層導体層の径ΦLは、Φ0.11mm〜0.65mmが好ましく、Φ0.2mm〜0.50mmがより好ましく、Φ0.25mm〜0.35mmがさらに好ましい。Φ0.11mm未満では、Φ0.09mmの非貫通孔を形成した場合、裕度が、片側Φ0.01mm未満であり、回路形成時の位置合わせが、困難であり、またΦ0.65mmを超すと、回路基板の薄型化や高密度配線を行う上で不利である。   The diameter ΦL of the inner conductor layer provided in the opening of the first non-through hole is preferably Φ0.11 mm to 0.65 mm, more preferably Φ0.2 mm to 0.50 mm, and Φ0.25 mm to 0.35 mm. Further preferred. When the non-through hole of Φ0.09 mm is formed with a diameter of less than Φ0.11 mm, the tolerance is less than Φ0.01 mm on one side, and alignment during circuit formation is difficult, and when Φ0.65 mm is exceeded, This is disadvantageous in reducing the thickness of the circuit board and high-density wiring.

第一の非貫通孔の直上に位置する第二の非貫通孔の開口径ΦOは、Φ0.08〜0.25mmが好ましく、Φ0.08〜0.15mmが特に好ましい。Φ0.25mmを超すと、回路基板の薄型化や高密度配線を行う上で不利である。また、Φ0.08mm未満では、第二の非貫通孔が、最外層に位置した場合、非貫通孔に直接はんだボールを形成することが難しくなる。なお、非貫通孔は、複数の絶縁樹脂層にまたがって、形成されていてもかまわない(図1の(b)参照)。なお、本発明の回路基板において、めっきを施した第一の非貫通孔は、絶縁樹脂により充填されているため、その直上に形成される第二の非貫通孔は、低アスペクト比になり、ソルダーレジストによる非貫通孔の充填や非貫通孔に直接はんだボールを形成することも容易にできる。   The opening diameter ΦO of the second non-through hole located immediately above the first non-through hole is preferably Φ 0.08 to 0.25 mm, and particularly preferably Φ 0.08 to 0.15 mm. If it exceeds Φ0.25 mm, it is disadvantageous in reducing the thickness of the circuit board and performing high-density wiring. If the diameter is less than 0.08 mm, it is difficult to form solder balls directly in the non-through holes when the second non-through hole is located in the outermost layer. Note that the non-through hole may be formed across a plurality of insulating resin layers (see FIG. 1B). In the circuit board of the present invention, since the plated first non-through hole is filled with insulating resin, the second non-through hole formed immediately above has a low aspect ratio, It is also possible to easily fill the non-through holes with the solder resist and directly form the solder balls in the non-through holes.

本発明の回路基板において、内層導体層の厚みは1〜20μmが好ましく、5〜15μmがより好ましい。20μmを超すと、サブトラクティブ法で導体層を形成した場合、サイドエッチにより、微細な配線が形成困難となり、またアディティブ法等で導体層を形成した場合、めっきレジストに一部被さるようにめっきが析出するため、やはり微細な配線の形成が困難となる。   In the circuit board of the present invention, the thickness of the inner conductor layer is preferably 1 to 20 μm, and more preferably 5 to 15 μm. When the thickness exceeds 20 μm, when a conductor layer is formed by a subtractive method, it becomes difficult to form fine wiring by side etching, and when a conductor layer is formed by an additive method or the like, the plating resist is partially covered. Since it precipitates, it becomes difficult to form fine wiring.

本発明に示した回路基板の製造方法において、非貫通孔を形成する工程で、穴あけ加工は、炭酸ガスレーザー、UVレーザー、エキシマレーザーよる方法を用いることができるが、炭酸ガスレーザーが好ましい。さらに、穴あけ後のめっきは、銅、錫、はんだ、ニッケル、金等が挙げられるが、経済性及び加工性の点から、銅めっきが好ましく、電解銅めっきがより好ましい。絶縁樹脂層表面に銅箔が存在する場合は、銅箔にコンフォーマルマスクを形成し、レーザ穴あけを行ってもかまわない。また、存在する銅箔が、厚み5μm以下であれば、コンフォーマルマスクを形成せず、ダイレクトに、レーザ穴あけも可能である。また、レーザ穴あけあるいは、穴あけ樹脂の残りの除去工程により、非貫通孔に充填された絶縁樹脂が、導体層表面より、わずかに凹状になったとしても、回路基板の接続信頼性など、特に問題はない。なお非貫通孔が形成される絶縁樹脂層の厚みは、非貫通孔穴あけ及びめっきの観点から、0.01〜0.30mmが好ましく、0.03〜0.10mmがより好ましい。   In the method for producing a circuit board shown in the present invention, in the step of forming a non-through hole, the boring can be performed by a method using a carbon dioxide laser, UV laser, or excimer laser, but a carbon dioxide laser is preferable. Further, examples of the plating after drilling include copper, tin, solder, nickel, gold and the like. From the viewpoint of economy and workability, copper plating is preferable, and electrolytic copper plating is more preferable. When copper foil exists on the surface of the insulating resin layer, a conformal mask may be formed on the copper foil and laser drilling may be performed. Further, if the existing copper foil is 5 μm or less in thickness, laser drilling can be performed directly without forming a conformal mask. Even if the insulating resin filled in the non-through holes becomes slightly concave from the surface of the conductor layer due to laser drilling or the remaining removal process of the drilling resin, there are particular problems such as connection reliability of the circuit board. There is no. In addition, the thickness of the insulating resin layer in which the non-through hole is formed is preferably 0.01 to 0.30 mm, more preferably 0.03 to 0.10 mm, from the viewpoint of non-through hole drilling and plating.

前記内層板の内壁径ΦIの第一の非貫通孔の開口部に径ΦIより大きな径ΦLの内層導体層を形成する工程おいて、径ΦLの内層導体層は、内層板の他の導体層と同時に形成される。導体層の形成は、サブトラクティブ法を用いても良いし、アディティブ法を用いても良い。また、形成される導体層の厚みは20μm以下が好ましく、15μm以下がより好ましい。20μm以下の導体層の形成するには、内層板に厚さ5μm以下の下地銅箔を用い、さらに15μm以下の銅めっきを行うのが好ましい。   In the step of forming the inner conductor layer having a diameter ΦL larger than the diameter ΦI at the opening of the first non-through hole having the inner wall diameter ΦI of the inner layer plate, the inner layer conductor layer having the diameter ΦL is the other conductor layer of the inner layer plate. At the same time formed. The conductor layer may be formed using a subtractive method or an additive method. Further, the thickness of the formed conductor layer is preferably 20 μm or less, and more preferably 15 μm or less. In order to form a conductor layer having a thickness of 20 μm or less, it is preferable to use a base copper foil having a thickness of 5 μm or less for the inner layer plate and further perform copper plating of 15 μm or less.

前記内層板の導体層表面に絶縁樹脂層を形成する工程において、絶縁樹脂は熱硬化性樹脂または熱可塑性を用いることが好ましい。熱硬化性樹脂としては例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂、マレイミド樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂、ビニル樹脂、などが挙げられるが、これらに限定されるわけではない。熱硬化性樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。熱可塑性樹脂としては例えば、フッ素樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアリレート、ポリアミド、ポリアミドイミド、ポリブタジエン、ポリイミドなどが挙げられるが、これらに限定されるわけではない。熱可塑性樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。また、無機充填剤を含んでいても良い。   In the step of forming the insulating resin layer on the conductor layer surface of the inner layer plate, the insulating resin is preferably a thermosetting resin or a thermoplastic. Examples of the thermosetting resin include, but are not limited to, a phenol resin, an epoxy resin, a polyimide resin, a cyanate resin, a maleimide resin, an isocyanate resin, a benzocyclobutene resin, and a vinyl resin. One type of thermosetting resin may be used alone, or two or more types may be mixed and used. Examples of the thermoplastic resin include fluororesin, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polycarbonate, polyether imide, polyether ether ketone, polyarylate, polyamide, polyamide imide, polybutadiene, and polyimide. It is not limited. One type of thermoplastic resin may be used alone, or two or more types may be mixed and used. Moreover, the inorganic filler may be included.

絶縁樹脂層を形成する場合、市販のプリプレグ、樹脂ワニスあるいは、樹脂フィルムなどを用いることができる。市販のプリプレグとしては、GEA−679FZPE(日立化成工業株式会社製、商品名)などが、挙げられる。銅箔と前記内層板の間にプリプレグ等を介し、プレスなどにより、前記内層板の導体層表面に、絶縁樹脂層を形成する際、めっきを行った非貫通孔を、プリプレグ等の絶縁樹脂により、同時に充填することが、好ましい。また、プレス以外でも、内層板に樹脂ワニスを塗布し、同様に、導体層表面に、絶縁樹脂層を形成し、かつ非貫通孔を、絶縁樹脂により充填してもかまわない。   When forming an insulating resin layer, a commercially available prepreg, resin varnish, resin film, or the like can be used. Examples of commercially available prepregs include GEA-679FZPE (trade name, manufactured by Hitachi Chemical Co., Ltd.). When an insulating resin layer is formed on the surface of the conductor layer of the inner layer plate by pressing or the like through a prepreg between the copper foil and the inner layer plate, the plated non-through holes are simultaneously formed by an insulating resin such as a prepreg. Filling is preferred. In addition to the press, a resin varnish may be applied to the inner layer plate, similarly, an insulating resin layer may be formed on the surface of the conductor layer, and the non-through holes may be filled with the insulating resin.

また、予め、めっきを行った第一の非貫通孔を、穴埋め用絶縁樹脂などにより、充填しておいてもかまわない。穴埋め用絶縁樹脂は、市販品が使用可能である。この場合、内層板に導体層を形成する前、第一の非貫通孔のめっき後、穴埋め用絶縁樹脂などにより、充填する。そして、その後回路導体層を形成、さらにその表面に絶縁樹脂層を形成する。   Alternatively, the first non-through hole plated may be filled with an insulating resin for filling a hole in advance. Commercially available products can be used as the insulating resin for filling holes. In this case, before forming the conductor layer on the inner layer plate, after the plating of the first non-through hole, it is filled with an insulating resin for filling a hole. Thereafter, a circuit conductor layer is formed, and an insulating resin layer is formed on the surface.

本発明におけるめっきを施した内層板の第一の非貫通孔内は、絶縁樹脂によって非貫通孔の容積の50%以上充填されているのが好ましく、孔の容積の80%以上充填されているのがより好ましく、孔の容積の100%充填されているのが特に好ましい。   The first non-through hole of the plated inner layer plate according to the present invention is preferably filled with 50% or more of the volume of the non-through hole with an insulating resin, and is filled with 80% or more of the volume of the hole. And more preferably 100% of the pore volume.

本発明における内層板の内壁径ΦIの第一の非貫通孔の直上に位置する開口径ΦOの第二の非貫通孔は、ΦI<ΦO<ΦLとなる関係を有していればよく、前記関係を維持しているかぎり、非貫通孔の径の範囲は、特に制限されるものでない。また、複数の絶縁樹脂層にまたがって、形成してもかまわない(図1の(b)参照)。なお、回路基板の薄型化及び高密度配線の観点から、めっきを施した第一の非貫通孔の内壁径ΦIは、Φ0.001〜0.09mmが好ましく、Φ0.01〜0.04mmがより好ましい。また、第二の非貫通孔の開口径ΦOは、Φ0.08〜0.25mmが好ましく、Φ0.08〜0.20mmがより好ましい。   In the present invention, the second non-through hole with the opening diameter ΦO located immediately above the first non-through hole with the inner wall diameter ΦI of the inner layer plate is only required to have a relationship of ΦI <ΦO <ΦL, As long as the relationship is maintained, the range of the diameter of the non-through hole is not particularly limited. Further, it may be formed over a plurality of insulating resin layers (see FIG. 1B). In addition, from the viewpoint of thinning the circuit board and high-density wiring, the inner wall diameter ΦI of the plated first non-through hole is preferably Φ0.001 to 0.09 mm, more preferably Φ0.01 to 0.04 mm. preferable. Further, the opening diameter ΦO of the second non-through hole is preferably Φ0.08 to 0.25 mm, more preferably Φ0.08 to 0.20 mm.

以下、実施例により本発明を説明する(図3a、図3b参照)。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples (see FIGS. 3a and 3b). The present invention is not limited to the following examples.

厚さ3μmの銅箔を張り合わせた絶縁樹脂層公称厚さ0.06mmのガラス布基材エポキシ樹脂銅張積層板MCL−E−679F(日立化成工業株式会社製、商品名)にドリル加工にてΦ0.15mmの貫通孔を形成し、10μmの電解銅めっきを施してめっき導体層を形成し、エッチングレジスト用ドライフィルムNIT215(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して両面に配線を形成して、内層板となる第1の回路基板8とした(図3a(a))。   Insulating resin layer laminated with 3 μm thick copper foil Glass cloth base epoxy resin copper clad laminate MCL-E-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) with nominal thickness of 0.06 mm A through hole of Φ0.15 mm is formed, electrolytic copper plating of 10 μm is applied to form a plated conductor layer, and a dry film for etching resist NIT215 (trade name, manufactured by Nichigo Morton Co., Ltd.) is temporarily pressure-bonded with a laminator. A mold mask is laminated and exposed to ultraviolet rays to bak the circuit on both sides, developed with 1% aqueous sodium carbonate solution to form an etching resist, and the copper portion without the etching resist is removed with ferric chloride aqueous solution, and 3% water The etching resist was stripped and removed with an aqueous solution of sodium oxide to form wiring on both surfaces, thereby forming a first circuit board 8 serving as an inner layer plate (FIG. 3a ( )).

第1の回路基板8の配線表面を粗化処理し、第1の回路基板に両面に対し、ガラス布にエポキシ樹脂を含浸させた公称厚さ0.04mmのプリプレグGEA−679FZPE(日立化成工業株式会社製、商品名)を介して、35μmのキャリア銅箔付3μm銅箔MT35S3(三井金属鉱業株式会社製、商品名)を真空プレスにて圧力24.5×105Pa(25kgf/cm)、温度175℃、保持時間1.5hrの条件で積層し、配線(導体層)上に絶縁樹脂層7′を形成、キャリア銅箔を剥離して、3μm銅箔9を残し、第2の回路基板10とした。この時、第一の回路基板の貫通孔は、全て、絶縁樹脂7′で埋め込んだ(図3a(b))。 The wiring surface of the first circuit board 8 is roughened, and a prepreg GEA-679FZPE having a nominal thickness of 0.04 mm obtained by impregnating glass cloth with an epoxy resin on both sides of the first circuit board (Hitachi Chemical Co., Ltd.) (Trade name), 35 μm 3 μm copper foil with carrier copper foil MT35S3 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) is vacuum-pressed at 24.5 × 10 5 Pa (25 kgf / cm 2 ). And a temperature of 175 ° C. and a holding time of 1.5 hours, an insulating resin layer 7 ′ is formed on the wiring (conductor layer), the carrier copper foil is peeled off, leaving the 3 μm copper foil 9, and the second circuit. A substrate 10 was obtained. At this time, all the through holes of the first circuit board were filled with the insulating resin 7 '(FIG. 3a (b)).

第2の回路基板10の両面にドライフィルムNIT225(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して、非貫通孔設置箇所にレーザー照射用マスクとなるΦ0.05mmのコンフォーマルマスク11及びレーザー位置認識用のパターンを形成し、第3の回路基板12とした。   A dry film NIT225 (trade name, manufactured by Nichigo Morton Co., Ltd.) is temporarily bonded to both surfaces of the second circuit board 10 with a laminator, a negative mask is laminated, exposed to ultraviolet light, and the circuit is baked on both surfaces. Developing with an aqueous sodium solution to form an etching resist, removing the copper portion without the etching resist with an aqueous ferric chloride solution, stripping and removing the etching resist with a 3% aqueous sodium hydroxide solution, and applying laser to the non-through hole location A Φ0.05 mm conformal mask 11 serving as an irradiation mask and a laser position recognition pattern were formed as a third circuit board 12.

第3の回路基板12の両面に炭酸ガスレーザー加工機LC−1C/21(日立ビアメカニクス株式会社製、商品名)により、ビーム照射径Φ0.15mm、周波数500Hz、パルス幅4μs、4ショットの条件で1穴ずつ加工し、Φ0.05mmの第一の非貫通孔2(未メッキ)を形成して第4の回路基板13(図3a(d))とした。   Conditions of beam irradiation diameter Φ0.15 mm, frequency 500 Hz, pulse width 4 μs, 4 shots on both surfaces of the third circuit board 12 by a carbon dioxide laser processing machine LC-1C / 21 (trade name, manufactured by Hitachi Via Mechanics Co., Ltd.) The first non-through hole 2 (unplated) having a diameter of 0.05 mm was formed as a fourth circuit board 13 (FIG. 3a (d)).

第4の回路基板13に10μm電解銅めっきを施して、第一の非貫通孔2の内壁径ΦI5を0.03mmにし、次いでエッチングレジスト用ドライフィルムNIT215(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して、ライン/スペース=40/40μmの配線(導体層)を形成して、内層板となる第5の回路基板14とした。その際、前記第一の非貫通孔2にΦL6の0.30mmのランド(内層導体層)1を形成した(図3a(e))。   10 μm electrolytic copper plating is applied to the fourth circuit board 13 so that the inner wall diameter ΦI5 of the first non-through hole 2 is 0.03 mm, and then an etching resist dry film NIT215 (trade name, manufactured by Nichigo Morton Co., Ltd.) Is temporarily bonded with a laminator, a negative mask is laminated, exposed with ultraviolet rays, the circuit is baked on both sides, developed with 1% aqueous sodium carbonate solution to form an etching resist, and the copper portion without the etching resist is ferric chloride. Then, the etching resist was stripped and removed with a 3% aqueous sodium hydroxide solution to form a wiring (conductor layer) of line / space = 40/40 μm to form a fifth circuit board 14 serving as an inner layer plate. . At that time, a 0.30 mm land (inner layer conductor layer) 1 of ΦL6 was formed in the first non-through hole 2 (FIG. 3a (e)).

第5の回路基板14の配線(導体層)表面を粗化処理し、第5の回路基板14に両面に対し、ガラス布にエポキシ樹脂を含浸させた公称厚さ0.04mmのプリプレグGEA−679FZPE(日立化成工業株式会社製、商品名)を介して、35μmのキャリア銅箔付3μm銅箔MT35S3(三井金属鉱業株式会社製、商品名)を真空プレスにて圧力24.5×105Pa(25kgf/cm)、温度175℃、保持時間1.5hrの条件で積層し、絶縁樹脂層7を形成した。その際、前記第一の非貫通孔2をプリプレグGEA−679FZPEの絶縁樹脂7により充填した。キャリア銅箔を剥離して、3μm銅箔9を残し、第6の回路基板15とした(図3a(f))。 A prepreg GEA-679FZPE having a nominal thickness of 0.04 mm, in which the wiring (conductor layer) surface of the fifth circuit board 14 is roughened, and the glass circuit cloth is impregnated with epoxy resin on both sides of the fifth circuit board 14. (Trade name, manufactured by Hitachi Chemical Co., Ltd.), a 35 μm 3 μm copper foil MT35S3 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) with carrier copper foil is vacuum-pressed at a pressure of 24.5 × 10 5 Pa ( 25 kgf / cm 2 ), a temperature of 175 ° C., and a holding time of 1.5 hours, and the insulating resin layer 7 was formed. At that time, the first non-through hole 2 was filled with an insulating resin 7 of prepreg GEA-679FZPE. The carrier copper foil was peeled off, leaving a 3 μm copper foil 9 to form a sixth circuit board 15 (FIG. 3a (f)).

第6の回路基板15の両面にドライフィルムNIT225(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して、第6の回路基板の第一の非貫通孔上の第二の非貫通孔設置箇所にレーザー照射用マスクとなるΦ0.15mmのコンフォーマルマスク20及びレーザー位置認識用のパターンを形成して第7の回路基板16(図3b(g))とした。   A dry film NIT225 (product name, manufactured by Nichigo Morton Co., Ltd.) is temporarily bonded to both surfaces of the sixth circuit board 15 with a laminator, a negative mask is laminated, exposed to ultraviolet light, and the circuit is printed on both surfaces by baking with 1% carbonic acid. An etching resist is formed by developing with a sodium aqueous solution, a copper portion without the etching resist is removed with a ferric chloride aqueous solution, and the etching resist is peeled and removed with a 3% sodium hydroxide aqueous solution. A third mask substrate 16 (FIG. 3b) is formed by forming a Φ0.15 mm conformal mask 20 serving as a laser irradiation mask and a laser position recognition pattern at the second non-through hole installation location on one non-through hole. (G)).

第7の回路基板16の両面に炭酸ガスレーザー加工機LC−1C/21(日立ビアメカニクス株式会社製、商品名)により、ビーム照射径Φ0.3mm、周波数500Hz、パルス幅17μs、4ショットの条件で1穴ずつ加工し、第7の回路基板の第一の非貫通孔2上にΦO0.15mmの第二の非貫通孔17を形成し、第8の回路基板18とした(図3b(h))。   The conditions of the beam irradiation diameter Φ0.3 mm, the frequency 500 Hz, the pulse width 17 μs, and the four shots on the both surfaces of the seventh circuit board 16 by a carbon dioxide laser processing machine LC-1C / 21 (trade name, manufactured by Hitachi Via Mechanics Co., Ltd.) Then, a second non-through hole 17 of ΦO 0.15 mm is formed on the first non-through hole 2 of the seventh circuit board to form an eighth circuit board 18 (FIG. 3b (h) )).

第8の回路基板18に10μm電解銅めっきを施し、次いでエッチングレジスト用ドライフィルムNIT215(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して配線(導体層)3を形成し、第9の回路基板19とした(図3b(i))。   10 μm electrolytic copper plating is applied to the eighth circuit board 18, and then an etching resist dry film NIT215 (product name, manufactured by Nichigo-Morton Co., Ltd.) is temporarily bonded with a laminator, a negative mask is laminated, and exposed to ultraviolet rays. The circuit is baked on both sides, developed with 1% sodium carbonate aqueous solution to form an etching resist, the copper part without the etching resist is removed with ferric chloride aqueous solution, and the etching resist is peeled off with 3% sodium hydroxide aqueous solution. Then, a wiring (conductor layer) 3 was formed to form a ninth circuit board 19 (FIG. 3b (i)).

作製した内層板である第5の回路基板14のライン/スペース=40/40μmの配線の形成性を、評価した結果、断線、短絡等の不良はなく、またライン幅も40±5μm以内であった。また、回路基板の断面を観察し、第一の非貫通孔の絶縁樹脂の充填性を調べた結果、全数充填しているのを確認した。   As a result of evaluating the formability of the line / space = 40/40 μm of the fifth circuit board 14 which is the produced inner layer board, there was no defect such as disconnection or short circuit, and the line width was within 40 ± 5 μm. It was. Moreover, the cross section of the circuit board was observed, and the filling property of the insulating resin in the first non-through hole was examined. As a result, it was confirmed that all the substrates were filled.

(比較例1)
厚さ3μmの銅箔を張り合わせた絶縁樹脂層公称厚さ0.06mmのガラス布基材エポキシ樹脂銅張積層板MCL−E−679F(日立化成工業株式会社製、商品名)にドリル加工にてΦ0.15mmの貫通孔を形成し、10μmの電解銅めっきを施してめっき導体層を形成し、エッチングレジスト用ドライフィルムNIT215(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して両面に配線を形成して第1の回路基板とした。
(Comparative Example 1)
Insulating resin layer laminated with 3 μm thick copper foil Glass cloth base epoxy resin copper clad laminate MCL-E-679F (trade name, manufactured by Hitachi Chemical Co., Ltd.) with nominal thickness of 0.06 mm A through hole of Φ0.15 mm is formed, electrolytic copper plating of 10 μm is applied to form a plated conductor layer, and a dry film for etching resist NIT215 (trade name, manufactured by Nichigo Morton Co., Ltd.) is temporarily pressure-bonded with a laminator. A mold mask is laminated and exposed to ultraviolet rays to bak the circuit on both sides, developed with 1% aqueous sodium carbonate solution to form an etching resist, and the copper portion without the etching resist is removed with ferric chloride aqueous solution, and 3% water The etching resist was stripped and removed with an aqueous sodium oxide solution to form wirings on both sides to form a first circuit board.

第1の回路基板の配線表面を粗化処理し、第1の回路基板に両面に対し、ガラス布にエポキシ樹脂を含浸させた公称厚さ0.04mmのプリプレグGEA−679FZPE(日立化成工業株式会社製、商品名)を介して、35μmのキャリア銅箔付3μm銅箔MT35S3(三井金属鉱業株式会社製、商品名)を真空プレスにて圧力24.5×105Pa(25kgf/cm)、温度175℃、保持時間1.5hrの条件で積層し、キャリア銅箔を剥離して第2の回路基板とした。 A prepreg GEA-679FZPE (Hitachi Chemical Industry Co., Ltd.) having a nominal thickness of 0.04 mm obtained by roughening the wiring surface of the first circuit board and impregnating glass cloth with epoxy resin on both sides of the first circuit board. Product, trade name), a 35 μm carrier copper foil-attached 3 μm copper foil MT35S3 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) with a vacuum press at a pressure of 24.5 × 10 5 Pa (25 kgf / cm 2 ), Lamination was performed under conditions of a temperature of 175 ° C. and a holding time of 1.5 hours, and the carrier copper foil was peeled off to obtain a second circuit board.

第2の回路基板の両面にドライフィルムNIT225(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して、非貫通孔設置箇所にレーザー照射用マスクとなるΦ0.20mmのコンフォーマルマスク及びレーザー位置認識用のパターンを形成し、第3の回路基板とした。   A dry film NIT225 (trade name, manufactured by Nichigo Morton Co., Ltd.) is temporarily bonded to both sides of the second circuit board with a laminator, a negative mask is laminated, exposed to ultraviolet rays, and the circuit is printed on both sides, and 1% sodium carbonate. Develop with aqueous solution to form etching resist, remove copper part without etching resist with ferric chloride aqueous solution, peel off and remove etching resist with 3% sodium hydroxide aqueous solution, and irradiate the non-through hole installation location with laser A Φ0.20 mm conformal mask and a laser position recognition pattern were formed to form a third circuit board.

第3の回路基板の両面に炭酸ガスレーザー加工機LC−1C/21(日立ビアメカニクス株式会社製、商品名)により、ビーム照射径Φ0.3mm、周波数500Hz、パルス幅20μs、4ショットの条件で1穴ずつ加工し、Φ0.20mmの非貫通孔を形成して第4の回路基板とした。   On both surfaces of the third circuit board, carbon dioxide laser processing machine LC-1C / 21 (trade name, manufactured by Hitachi Via Mechanics Co., Ltd.) under conditions of beam irradiation diameter Φ0.3 mm, frequency 500 Hz, pulse width 20 μs, 4 shots Each hole was processed to form a non-through hole with a diameter of 0.20 mm to form a fourth circuit board.

第4の回路基板に10μm電解銅めっきを施して内壁径Φ0.18mmの第一の非貫通孔を形成した。第一の非貫通孔を、穴埋めインクSER−490BNH(山栄化学株式会社製、商品名)で充填し、さらに10μmの電解銅めっきを施して、めっき導体層をさらに形成した。   The fourth circuit board was plated with 10 μm electrolytic copper to form a first non-through hole with an inner wall diameter of Φ0.18 mm. The first non-through hole was filled with hole-filling ink SER-490BNH (manufactured by Yamaei Chemical Co., Ltd., trade name), and further subjected to electrolytic copper plating of 10 μm to further form a plated conductor layer.

次いでエッチングレジスト用ドライフィルムNIT215(ニチゴー・モートン株式会社製、商品名)をラミネータで仮圧着し、ネガ型マスクを張り合わせて紫外線で露光して両面に回路を焼付け、1%炭酸ナトリウム水溶液で現像してエッチングレジストを形成し、エッチングレジストのない銅部分を塩化第二鉄水溶液で除去し、3%水酸化ナトリウム水溶液でエッチングレジストを剥離除去して、ライン/スペース=40/40μmの配線(内層導体層)を形成して、第5の回路基板とした。その際、前記非貫通孔にΦ0.40mmのランド(内層導体層)を形成した。   Next, dry film NIT215 (product name, manufactured by Nichigo Morton Co., Ltd.) for etching resist is temporarily pressure-bonded with a laminator, a negative mask is laminated, exposed to ultraviolet rays, the circuit is printed on both sides, and developed with a 1% aqueous sodium carbonate solution. An etching resist is formed, and the copper portion without the etching resist is removed with a ferric chloride aqueous solution, and the etching resist is peeled and removed with a 3% sodium hydroxide aqueous solution, and a line / space = 40/40 μm wiring (inner conductor) Layer) to form a fifth circuit board. At that time, a land (inner conductor layer) having a diameter of 0.40 mm was formed in the non-through hole.

以下、実施例1と同様に回路基板を作製した。作製した内層板である第5の回路基板のライン/スペース=40/40μmの配線の形成性を、評価した結果、断線、短絡等の不良が一部発生し、またライン幅も40±10μm以内であった。   Thereafter, a circuit board was produced in the same manner as in Example 1. As a result of evaluating the formability of the line / space = 40/40 μm of the fifth circuit board which is the produced inner layer board, some defects such as disconnection and short circuit occurred, and the line width was within 40 ± 10 μm Met.

以上、実施例1に示したとおり、第一の非貫通孔もΦ0.09mm以下と小さく、第一の非貫通孔も回路基板の高密度化を損なわない程度にこれより大きいため、非貫通孔の絶縁樹脂に対するめっきが不要であり、よって内層板の導体層が薄く、微細配線が形成可能であった。また、非貫通孔の絶縁樹脂の充填も、内層板の導体層表面の絶縁樹脂層の形成と同時であり、充填性も良く、回路基板の作製が効率よく行える。それに対し、比較例1は、非貫通孔も大きく、非貫通孔の絶縁樹脂の充填後のめっきが必要なため、内層板の導体層が厚くなり、微細配線の形成が困難であった。   As described above in Example 1, the first non-through hole is also as small as Φ0.09 mm or less, and the first non-through hole is larger than this without impairing the high density of the circuit board. Therefore, it is not necessary to perform plating on the insulating resin, so that the conductor layer of the inner layer plate is thin and fine wiring can be formed. Further, the filling of the insulating resin in the non-through holes is performed simultaneously with the formation of the insulating resin layer on the surface of the conductor layer of the inner layer plate, the filling property is good, and the circuit board can be manufactured efficiently. On the other hand, Comparative Example 1 has a large non-through hole and requires plating after filling the non-through hole with the insulating resin, so that the conductor layer of the inner layer plate becomes thick and it is difficult to form fine wiring.

本発明の回路基板の接続孔構造の断面図である。It is sectional drawing of the connection hole structure of the circuit board of this invention. 従来の回路基板の断面図である。It is sectional drawing of the conventional circuit board. 本発明の実施例の製造工程における回路基板の断面図である。It is sectional drawing of the circuit board in the manufacturing process of the Example of this invention. 本発明の実施例の製造工程における回路基板の断面図である。It is sectional drawing of the circuit board in the manufacturing process of the Example of this invention.

符号の説明Explanation of symbols

1・・・内層導体層
2・・・第一の非貫通孔
3・・・導体層
4・・・第二の非貫通孔の開口径ΦO
5・・・第一の非貫通孔の内壁径ΦI
6・・・内層導体層の径ΦL
7・・・絶縁樹脂(絶縁樹脂層)
7′・・・絶縁樹脂(絶縁樹脂層)
8・・・第1の回路基板
9・・・銅箔
10・・・第2の回路基板
11・・・コンフォーマルマスク
12・・・第3の回路基板
13・・・第4の回路基板
14・・・第5の回路基板
15・・・第6の回路基板
16・・・第7の回路基板
17・・・第二の非貫通孔
18・・・第8の回路基板
19・・・第9の回路基板
20・・・コンフォーマルマスク
21・・・穴埋め用絶縁樹脂
22・・・内層板
DESCRIPTION OF SYMBOLS 1 ... Inner layer conductor layer 2 ... 1st non-through-hole 3 ... Conductor layer 4 ... Opening diameter (PHI) O of 2nd non-through-hole
5 ... Inner wall diameter ΦI of the first non-through hole
6 ... Diameter of inner conductor layer ΦL
7 ... Insulating resin (insulating resin layer)
7 '... Insulating resin (insulating resin layer)
DESCRIPTION OF SYMBOLS 8 ... 1st circuit board 9 ... Copper foil 10 ... 2nd circuit board 11 ... Conformal mask 12 ... 3rd circuit board 13 ... 4th circuit board 14 ... Fifth circuit board 15 ... Sixth circuit board 16 ... Seventh circuit board 17 ... Second non-through hole 18 ... Eighth circuit board 19 ... No. 9 circuit board 20 ... conformal mask 21 ... insulating resin 22 for filling holes ... inner layer board

Claims (5)

厚さ15μm以下のめっきを施した内壁径ΦIの第一の非貫通孔を有する内層板と、前記内層板の第一の非貫通孔の開口部に設けられた径ΦLの内層導体層と、前記内層導体層表面に形成された絶縁樹脂層と、前記絶縁樹脂層に形成された内壁径ΦIの前記第一の非貫通孔の直上に位置し、内層導体層に達する開口径ΦOの前記第一の非貫通孔よりもアスペクト比の小さい第二の非貫通孔とを有する回路基板において、前記内層導体層が前記内層板の絶縁樹脂層形成時に絶縁樹脂と共にプレスされた厚さ5μm以下の銅箔とこの銅箔表面及び前記第一の非貫通孔の内壁に施された厚さ15μm以下のめっきとをエッチングすることにより形成されており、内壁径ΦIの前記第一の非貫通孔が前記内層導体層表面に形成された絶縁樹脂により埋め込まれており、かつ内壁径ΦIの第一の非貫通孔と径ΦLの内層導体層と開口径ΦOの第二の非貫通孔が、ΦI<ΦO<ΦLであって、ΦOがΦIよりΦ0.05〜0.20mm大きいという関係を持つ接続孔構造を1つ以上有する回路基板。 An inner layer plate having a first non-through hole with an inner wall diameter of ΦI plated with a thickness of 15 μm or less, an inner layer conductor layer with a diameter of ΦL provided at an opening of the first non-through hole of the inner layer plate, The insulating resin layer formed on the surface of the inner layer conductor layer and the first hole of the opening diameter ΦO that is located immediately above the first non-through hole of the inner wall diameter ΦI formed in the insulating resin layer and reaches the inner layer conductor layer . In a circuit board having a second non-through hole having an aspect ratio smaller than that of one non-through hole , the inner conductor layer is pressed with an insulating resin when forming the insulating resin layer of the inner layer plate, and the copper having a thickness of 5 μm or less and foil, the foil surface and are formed by etching the thickness 15μm following plating applied to the inner wall of the first blind holes, said first non-penetrating pores of the inner wall diameter ΦI Embedded with insulating resin formed on the inner conductor layer surface The first non-through hole with the inner wall diameter ΦI, the inner conductor layer with the diameter ΦL, and the second non-through hole with the opening diameter ΦO satisfy ΦI <ΦO <ΦL , and ΦO is Φ0. A circuit board having one or more connection hole structures having a relationship of larger from 0.5 to 0.20 mm . 第一の非貫通孔に埋め込まれた絶縁樹脂が、内層導体層の表面に対して略平坦となるように形成されている請求項1に記載の回路基板。   The circuit board according to claim 1, wherein the insulating resin embedded in the first non-through hole is formed to be substantially flat with respect to the surface of the inner conductor layer. 第二の非貫通孔が、複数の絶縁樹脂層にまたがって形成されている請求項1又は2に記載の回路基板。   The circuit board according to claim 1, wherein the second non-through hole is formed across a plurality of insulating resin layers. 内層回路を有する内層板を準備する工程、前記内層板に絶縁樹脂を介して厚さ5μm以下の銅箔をプレスすることにより、前記内層回路表面に、前記銅箔が積層された絶縁樹脂層を形成する工程、前記銅箔を部分的に除去し、前記内層回路に達する未めっきの第一の非貫通孔を銅箔が除去された部分で前記絶縁樹脂層に形成し、前記銅箔表面及び未めっきの第一の非貫通孔の内壁に厚さ15μm以下のめっきを施し内壁径ΦIの第一の非貫通孔を前記内層板に形成する工程、前記第一の非貫通孔の開口部に径ΦIより大きな径ΦLの内層導体層を含む導体層をエッチングにより形成する工程、径ΦLの前記内層導体層を含む導体層表面に絶縁樹脂層を形成するとともに、前記第一の非貫通孔内に前記絶縁樹脂層を形成する絶縁樹脂を充填する工程、前記第一の非貫通孔の直上に径ΦIよりΦ0.05〜0.20mm大きくかつ径ΦLより小さな開口径ΦOを有し、かつ前記第一の非貫通孔よりもアスペクト比の小さい第二の非貫通孔を、前記内層導体層に達し、かつ前記第一の非貫通孔内に充填された絶縁樹脂が埋め込まれたまま残るように、前記絶縁樹脂層に少なくとも1つ以上形成する工程を含む回路基板の製造方法。 A step of preparing an inner layer board having an inner layer circuit, by pressing a copper foil having a thickness of 5 μm or less to the inner layer board through an insulating resin, thereby forming an insulating resin layer in which the copper foil is laminated on the inner layer circuit surface; forming, the copper foil was partially removed, said first non-penetrating pores of the non plating reaching the inner layer circuit formed in the insulating resin layer at a portion where the copper foil is removed, the copper foil surface and Plating the inner wall of the unplated first non-through hole with a thickness of 15 μm or less to form a first non-through hole with an inner wall diameter of ΦI in the inner layer plate, at the opening of the first non-through hole; Forming a conductive layer including an inner conductive layer having a diameter ΦL larger than the diameter ΦI by etching, forming an insulating resin layer on the surface of the conductive layer including the inner conductive layer having a diameter ΦL, and in the first non-through hole A step of filling the insulating resin layer with the insulating resin Has a smaller opening diameter ΦO than Φ0.05~0.20mm larger and diameter ΦL than the diameter ΦI directly above the first non-through-hole, and a small second aspect ratio than the first blind holes Forming at least one non-through hole in the insulating resin layer so as to reach the inner conductor layer and remain embedded with the insulating resin filled in the first non-through hole. A method of manufacturing a circuit board. 前記第一の非貫通孔の真上に径ΦIよりΦ0.05〜0.20mm大きくかつ径ΦLより小さな開口径ΦOの第二の非貫通孔を、内層導体層に達し、かつ前記第一の非貫通孔内に充填された絶縁樹脂が埋め込まれたまま残るように、前記絶縁樹脂層に少なくとも1つ以上形成する工程の際に、前記埋め込まれたまま残る絶縁樹脂が、前記内層導体層の表面に対して略平坦となるように形成される請求項4に記載の回路基板の製造方法。 A second non-through-hole of the small opening diameter ΦO than Φ0.05~0.20mm larger and diameter ΦL than the diameter ΦI directly above the first non-through hole, reach the inner conductor layer, and the first In the step of forming at least one insulating resin in the insulating resin layer so that the insulating resin filled in the non-through hole remains embedded, the embedded insulating resin remains in the inner conductor layer. The circuit board manufacturing method according to claim 4, wherein the circuit board is formed so as to be substantially flat with respect to the surface.
JP2003356635A 2003-10-16 2003-10-16 Circuit board and circuit board manufacturing method Expired - Fee Related JP4838977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356635A JP4838977B2 (en) 2003-10-16 2003-10-16 Circuit board and circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356635A JP4838977B2 (en) 2003-10-16 2003-10-16 Circuit board and circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2005123401A JP2005123401A (en) 2005-05-12
JP4838977B2 true JP4838977B2 (en) 2011-12-14

Family

ID=34613818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356635A Expired - Fee Related JP4838977B2 (en) 2003-10-16 2003-10-16 Circuit board and circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP4838977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552037B2 (en) 2020-07-28 2023-01-10 Samsung Electronics Co., Ltd. Semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552037B2 (en) 2020-07-28 2023-01-10 Samsung Electronics Co., Ltd. Semiconductor package
US11862596B2 (en) 2020-07-28 2024-01-02 Samsung Electronics Co., Ltd. Semiconductor package

Also Published As

Publication number Publication date
JP2005123401A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US7681310B2 (en) Method for fabricating double-sided wiring board
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
JP2007042666A (en) Printed wiring board and its manufacturing method
WO2016136222A1 (en) Printed wiring board and method for manufacturing same
CN100518444C (en) Method for forming through-hole that utilizes lazer drill
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4972753B2 (en) Method for manufacturing printed circuit board
JP4838977B2 (en) Circuit board and circuit board manufacturing method
JP2009176897A (en) Multilayer printed wiring board and manufacturing method therefor
JP4862682B2 (en) Printed wiring board and manufacturing method thereof
JP4383219B2 (en) Method for manufacturing printed wiring board
JP2006294956A (en) Multilayer printed circuit board and its manufacturing method
KR20070082492A (en) Multi-layer circuit board and method for manufacturing the same
JP6502106B2 (en) Method of manufacturing printed wiring board
KR100754061B1 (en) Method of fabricating printed circuit board
JP4045120B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2007227648A (en) Printed wiring board, and method for manufacturing printed wiring board
KR100945080B1 (en) Method For Manufacturing Printed Circuit Board
KR100274662B1 (en) Method for manufacturing interlayer vias of multilayer printed circuit boards
KR100632579B1 (en) How to Form Via Holes in Printed Circuit Boards
JP2018107172A (en) Manufacturing method of inner layer wiring board, inner layer wiring board and semiconductor package substrate
JP2005123400A (en) Circuit board and method of manufacturing the same
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP2017152493A (en) Method for manufacturing printed wiring board
JP2016127251A (en) Printed-circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100120

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4838977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees