JP4383219B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP4383219B2
JP4383219B2 JP2004095922A JP2004095922A JP4383219B2 JP 4383219 B2 JP4383219 B2 JP 4383219B2 JP 2004095922 A JP2004095922 A JP 2004095922A JP 2004095922 A JP2004095922 A JP 2004095922A JP 4383219 B2 JP4383219 B2 JP 4383219B2
Authority
JP
Japan
Prior art keywords
plating
layer
hole
barrier metal
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004095922A
Other languages
Japanese (ja)
Other versions
JP2004319994A (en
Inventor
英二 平田
Original Assignee
日本シイエムケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本シイエムケイ株式会社 filed Critical 日本シイエムケイ株式会社
Priority to JP2004095922A priority Critical patent/JP4383219B2/en
Publication of JP2004319994A publication Critical patent/JP2004319994A/en
Application granted granted Critical
Publication of JP4383219B2 publication Critical patent/JP4383219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明はプリント配線板の製造方法、特に高密度配線化に有利なプリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method for manufacturing a printed wiring board that is advantageous for high density wiring.

プリント配線板の回路形成方法は、銅箔などの金属箔上にエッチングレジストパターンを形成し、当該エッチングレジストパターンから露出した金属箔をエッチング処理して配線回路を形成するサブトラクティブ法と、回路と逆パターンのめっきレジストを形成し、当該めっきレジスト開口部にめっきを析出させて配線回路を形成するアディティブ法の2つに大別される。   A circuit formation method for a printed wiring board includes: a subtractive method of forming an etching resist pattern on a metal foil such as a copper foil, and etching the metal foil exposed from the etching resist pattern to form a wiring circuit; An additive method is roughly classified into two methods, in which a plating resist having a reverse pattern is formed and plating is deposited in the plating resist opening to form a wiring circuit.

サブトラクティブ法はアディティブ法と比較して製造工程が容易なことから、非常に安価に製造することが可能であるが、スルーホール及びブラインドバイアホール等(以降、ビアホールと呼ぶことにする)の形成の際、絶縁基板全体に無電解めっき及び電解めっき処理を施す必要があるため、エッチングする導体厚さ(金属箔+めっき)が非常に厚くなり、良好な配線回路形成が困難であった。特に、パターン幅/パターン間隙=75μm/75μm以下の微細配線回路の形成には不向きな工法であった。   Since the subtractive method is easier to manufacture than the additive method, the subtractive method can be manufactured at a very low cost. However, through holes, blind via holes, etc. (hereinafter referred to as via holes) are formed. At this time, since it is necessary to perform electroless plating and electrolytic plating treatment on the entire insulating substrate, the thickness of the conductor to be etched (metal foil + plating) becomes very thick, making it difficult to form a good wiring circuit. In particular, this method is not suitable for forming a fine wiring circuit having a pattern width / pattern gap = 75 μm / 75 μm or less.

これに対してアディティブ法は、微細配線回路形成には有利であるが、絶縁層にめっきを析出して配線回路を形成するため、サブトラクティブ法のように、元から絶縁層に金属箔が積層された絶縁基板を加工するのと比較して、配線回路の密着性に劣る等の不具合を有していた。   In contrast, the additive method is advantageous for the formation of fine wiring circuits. However, in order to form a wiring circuit by depositing plating on the insulating layer, a metal foil is originally laminated on the insulating layer as in the subtractive method. Compared to processing the insulated substrate, there were problems such as poor adhesion of the wiring circuit.

更に、プリント配線板の設計上、配線回路は基板面内に不均一に形成されるため、アディティブ法のように、選択めっきで配線回路を形成すると、配線回路が粗な部分では必要以上に電流が集中し、配線回路の厚みばらつきが大きくなる結果、インピーダンス整合がとりにくいなどの不具合も有していた。   Furthermore, because of the design of the printed wiring board, the wiring circuit is formed unevenly on the substrate surface. Therefore, when the wiring circuit is formed by selective plating as in the additive method, the current is more than necessary in the rough portion of the wiring circuit. As a result, the thickness variation of the wiring circuit is increased, and as a result, there are problems such as difficulty in impedance matching.

このような不具合を解決するものとして、図9乃至図10に示した如き構成のプリント配線板が既に報告されている(例えば特許文献1参照)。   As a solution to such a problem, a printed wiring board having a configuration as shown in FIGS. 9 to 10 has already been reported (see, for example, Patent Document 1).

図9乃至図10は、図示しない内層コア基板上にビルドアップ配線層を形成する例を示したもので、まず、図9(a)に示したように、内層に形成された下層配線回路4bの形成層上に層間絶縁層1と銅箔等の金属箔2を順次積層し(例えば、樹脂付き銅箔を積層する)、次いで、図9(b)に示したように、エッチング処理によって、上層配線回路4aを形成する。次に、ビアホール形成用の非貫通孔6を、当該上層配線回路4aの内の孔近傍部4cと所定間隔をあけて穿孔する(図9(c)参照)。次に、図9(d)に示したように、当該非貫通孔6を含んだ上層配線層回路4aの形成層に無電解めっき11を形成し、次いで、図9(e)に示したように、当該非貫通孔6とその周囲を露出する開口部12aを有するめっきレジスト12を形成する。次に、当該電解めっき処理を行うことによって、当該開口部に電解めっき7aを析出させた後(図9(f)参照)、当該めっきレジスト12を剥離する(図10(g)参照)。そして、最後にソフトエッチングにより、余分な無電解めっき11を除去することによって、ビアホール9aを備えた図10(h)に示したプリント配線板10を得る。   9 to 10 show an example in which a build-up wiring layer is formed on an inner core substrate (not shown). First, as shown in FIG. 9A, the lower wiring circuit 4b formed in the inner layer. The interlayer insulating layer 1 and a metal foil 2 such as a copper foil are sequentially laminated on the formation layer (for example, a copper foil with resin is laminated), and then, as shown in FIG. Upper layer wiring circuit 4a is formed. Next, a non-through hole 6 for forming a via hole is drilled at a predetermined interval from the hole vicinity portion 4c in the upper layer wiring circuit 4a (see FIG. 9C). Next, as shown in FIG. 9D, the electroless plating 11 is formed on the formation layer of the upper wiring layer circuit 4a including the non-through hole 6, and then, as shown in FIG. 9E. Then, a plating resist 12 having the non-through hole 6 and an opening 12a exposing the periphery thereof is formed. Next, the electrolytic plating process is performed to deposit electrolytic plating 7a in the opening (see FIG. 9F), and then the plating resist 12 is peeled off (see FIG. 10G). Finally, the unnecessary electroless plating 11 is removed by soft etching to obtain the printed wiring board 10 shown in FIG. 10H provided with the via holes 9a.

このように、上層配線パターンを電解めっき処理前に形成するようにしているため、サブトラクティブ法によっても微細配線回路を容易に形成することができる。   Thus, since the upper wiring pattern is formed before the electroplating process, a fine wiring circuit can be easily formed even by a subtractive method.

しかし、上記のようにビアホール形成部のみにめっきを析出する方法では、以下のような不具合を有していた。   However, the method of depositing plating only on the via hole forming portion as described above has the following problems.

まず第一に、標準的なめっき工法であるパネルめっき法でめっき処理した場合、本来、絶縁基板全体に対してめっきを析出させるパネルめっき法では、当該絶縁基板全体の1%程度の面積率でしかないビアホール形成部のみにめっきを析出させることは、めっきコントロール上、非常に困難であった。   First of all, when the plating process is performed by the panel plating method which is a standard plating method, the panel plating method in which the plating is originally deposited on the entire insulating substrate has an area ratio of about 1% of the entire insulating substrate. It is very difficult to deposit plating only on the via-hole forming portion which is only present in terms of plating control.

第二に、ビアホールはプリント配線板の設計上、基板面内に不均一に配置されており、少数あるいは単独で存在しているところでは、電流が必要以上に集中し、めっき析出形状が基板面内において非常に不安定であった。   Secondly, via holes are unevenly arranged in the board surface due to the design of the printed wiring board. Where a small number or a single hole exists, the current is concentrated more than necessary, and the plating deposition shape appears on the board surface. It was very unstable inside.

ところで、多層プリント配線板では高密度配線化を図るために、両面コア、又は多層コアにおけるビアホール上に、上層のビアホールを配置する場合があり、この場合、コアのビアホール表面を平滑にする必要があるため、ビアホール内に絶縁樹脂や導電性樹脂を充填した後、ビアホール上に蓋めっきを形成して平坦化する、或いは、ビアホール内にめっきを充填して平坦化する方法が取られているが、近年では、高密度配線化の要求により孔径が非常に小さくなってきたため、樹脂の充填が難しくなり、その結果、めっきを充填するケースが増えてきている。   By the way, in order to achieve high density wiring in a multilayer printed wiring board, an upper layer via hole may be disposed on a via hole in a double-sided core or a multilayer core. In this case, it is necessary to smooth the via hole surface of the core. Therefore, after filling the via hole with insulating resin or conductive resin, a method of flattening by forming lid plating on the via hole or filling the via hole with plating is used. In recent years, since the hole diameter has become very small due to the demand for high-density wiring, it is difficult to fill the resin, and as a result, the number of cases in which plating is filled is increasing.

このようにビアホールにめっきを充填するものとして、図11に示した如き構成のプリント配線板の製造方法が既に報告されている(例えば特許文献2参照)。   As described above, a method for manufacturing a printed wiring board having a structure as shown in FIG. 11 has already been reported as filling a via hole with plating (see, for example, Patent Document 2).

図11は上記したプリント配線板の概略断面工程図であり、まず、絶縁基材1aの上下に金属箔2a、2bが積層された絶縁基板3を用意し、上層金属箔2aから下層金属箔2bに達する非貫通孔6を穿孔する(図11(a)参照)。次に、当該下層金属箔2bを給電層として電解めっき処理を行い、当該非貫通孔6にめっき7を充填させる(図11(b)参照)。このとき、上層金属箔2aには給電しないため、当該上層金属箔2aが溶出し、厚みが徐々に薄くなり、また、給電層たる下層金属箔2bは露出しているため、めっき7が徐々に析出し、厚さを増してくる。次に、図11(c)に示したように、当該非貫通孔6内のめっき7が上層金属箔2aに達すると、当該上層金属箔2aにも給電され、めっき7が徐々に析出する。そして、図11(d)に示したように、適時に給電を停止することにより、上下の金属箔2a、2bの厚みを所望の厚みにするというものである。   FIG. 11 is a schematic cross-sectional process diagram of the printed wiring board described above. First, an insulating substrate 3 in which metal foils 2a and 2b are laminated on the upper and lower sides of an insulating base 1a is prepared, and the upper metal foil 2a to the lower metal foil 2b are prepared. The non-through-hole 6 reaching to is drilled (see FIG. 11A). Next, electrolytic plating is performed using the lower layer metal foil 2b as a power feeding layer, and the non-through holes 6 are filled with plating 7 (see FIG. 11B). At this time, since no power is supplied to the upper metal foil 2a, the upper metal foil 2a is eluted, the thickness is gradually reduced, and the lower metal foil 2b serving as the power supply layer is exposed. Precipitate and increase in thickness. Next, as shown in FIG. 11C, when the plating 7 in the non-through hole 6 reaches the upper metal foil 2a, the upper metal foil 2a is also supplied with power, and the plating 7 is gradually deposited. And as shown in FIG.11 (d), by stopping electric power supply timely, the thickness of the upper and lower metal foils 2a and 2b is made into desired thickness.

このように、非貫通孔にめっきを充填させるとともに下層金属箔の表面(即ち、給電層)にもめっきを析出させる構成としているため(即ち、めっき面積率を高くしているため)、安定して非貫通孔にめっきを析出させることができる。
特開2001−308530号公報 特開2000−188471号公報
As described above, the non-through hole is filled with plating and the surface of the lower metal foil (that is, the power feeding layer) is also deposited (that is, the plating area ratio is increased), so that it is stable. Thus, plating can be deposited in the non-through holes.
JP 2001-308530 A JP 2000-188471 A

しかし、上記構成では、金属箔の厚み制御として、電解めっきの給電を適時に停止するようにして制御していたため、金属箔の厚み調整が不十分であった。また、前記特許文献2の他の製造方法として、給電層である下層金属箔の表面にめっきレジストを形成し、下層金属箔表面にはめっきを析出させない構成とすることによって、下層金属箔の厚みをそのままにするという製造方法も既に報告されているが、結局、めっき面積率が極端に低くなり(ビアホール用の非貫通孔のみのめっき形成となる)、尚且つビアホールの配置の粗密により、電流が局所的に集中してしまうため、非貫通孔に均一にめっきを充填するのは非常に困難であった。   However, in the above configuration, since the thickness of the metal foil is controlled by stopping the feeding of the electrolytic plating in a timely manner, the thickness adjustment of the metal foil is insufficient. Further, as another manufacturing method of Patent Document 2, a thickness of the lower layer metal foil is obtained by forming a plating resist on the surface of the lower layer metal foil that is a power feeding layer and not depositing plating on the lower layer metal foil surface. However, in the end, the plating area ratio becomes extremely low (the plating formation of only the non-through holes for via holes) and the density of the via holes is increased. However, it is very difficult to uniformly fill the non-through holes with plating.

本発明は、層間接続用のビアホールを形成する際のめっきを、貫通孔、又は非貫通孔内に安定して(均一に)析出(或いは充填)することができ、且つ、金属箔(又は、配線回路)の厚みを一定に保ち、微細配線回路形成、及びインピーダンス整合を容易に行うことができるプリント配線板の製造方法を提供することを目的とする。   The present invention can stably (uniformly) deposit (or fill) plating in forming a via hole for interlayer connection into a through hole or a non-through hole, and a metal foil (or It is an object of the present invention to provide a method for manufacturing a printed wiring board capable of easily forming a fine wiring circuit and impedance matching while keeping the thickness of the wiring circuit) constant.

上記目的を達成すべく請求項1に係る本発明は、層間接続用のビアホールを備えたプリント配線板の製造方法であって、少なくとも、ビアホール形成のためのめっき処理前に、絶縁基板の外層に形成された配線回路及び/又は金属箔の露出面に、当該配線回路及び/又は金属箔が後のビアホール部の回路形成の際のエッチング処理によりエッチングされることを防止するために、当該後のビアホール形成の際の電解めっき及び無電解めっきとはエッチング条件の異なる金属薄膜からなるバリア金属層を設ける工程と、ビアホール形成のためのめっき処理により当該バリア金属層上にめっきを析出させる工程と、当該めっきをエッチング処理してバリア金属層を露出せしめると共に、ビアホールとそのランドを形成する工程と、当該露出したバリア金属層をエッチング処理して除去する工程とを有することを特徴とするものである。 In order to achieve the above object, the present invention according to claim 1 is a method for manufacturing a printed wiring board having via holes for interlayer connection, and at least before the plating process for forming the via holes, the outer layer of the insulating substrate. In order to prevent the wiring circuit and / or the metal foil from being etched on the exposed surface of the formed wiring circuit and / or the metal foil by an etching process at the time of subsequent circuit formation of the via hole portion, A step of providing a barrier metal layer made of a metal thin film having different etching conditions from electrolytic plating and electroless plating in forming a via hole, and a step of depositing plating on the barrier metal layer by plating for forming a via hole; Etching the plating to expose the barrier metal layer, forming a via hole and its land, and the exposed bar. It is characterized in that a step of removing the A metal layer is etched.

これにより、ビアホール形成部に安定してめっきを析出(或いは充填)することができ、且つ、外層に一定の厚みの微細配線回路を容易に形成することができる。   Thereby, plating can be stably deposited (or filled) in the via hole forming portion, and a fine wiring circuit having a certain thickness can be easily formed on the outer layer.

また、請求項2に係る本発明は、前記請求項1に係る発明において、バリア金属層を設けた後、ビアホール形成のためのめっき処理を、当該ビアホール用非貫通孔の底部側に形成されたバリア金属層を給電層とする電解めっき処理で行ない、当該電解めっきを、ビアホール用の非貫通孔に充填させるとともに当該給電層の表面にも析出させることを特徴とするプリント配線板の製造方法である。 Further, in the present invention according to claim 2, in the invention according to claim 1, after providing the barrier metal layer, the plating process for forming the via hole is formed on the bottom side of the non-through hole for the via hole. A method of manufacturing a printed wiring board, characterized in that it is performed by an electrolytic plating process using a barrier metal layer as a power feeding layer, and the electrolytic plating is filled in via holes for via holes and deposited on the surface of the power feeding layer. is there.

これにより、片側給電層からめっきを安定して孔内に充填することができ、尚且つ、外層に一定の厚みの微細配線回路を容易に形成することができる。   Accordingly, the plating can be stably filled from the one-side power feeding layer, and a fine wiring circuit having a certain thickness can be easily formed on the outer layer.

層間接続用のビアホールを有するプリント配線板を、本発明の製造方法で製造することで、当該ビアホールに安定してめっきを析出(或いは充填)することができ、且つ、金属箔(又は、配線パターン)の厚みを一定に保ち、ファインパターン形成、及びインピーダンス整合を容易に行うことができる。   By manufacturing a printed wiring board having via holes for interlayer connection by the manufacturing method of the present invention, plating can be stably deposited (or filled) in the via holes, and a metal foil (or wiring pattern) ) Can be kept constant, and fine pattern formation and impedance matching can be easily performed.

本発明の第一の実施の形態を、図1乃至図2を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1乃至図2は、上記図9乃至図10で示した例と同様に、図示しない内層コア基板上にビルドアップ配線層を形成する例(ビアホールにめっきを充填)を示したもので、まず、図1(a)に示したように、内層に形成された下層配線回路4bの形成層上に層間絶縁層1と銅箔等の金属箔2を順次積層し(例えば、樹脂付き銅箔を積層する)、次いで、図1(b)に示したように、エッチング処理によって、上層配線回路4aを形成する。次に、図1(c)に示したように、上層配線回路4aを含んだ外層全面に、後のビアホール形成の際の電解めっき7、及び図示しない無電解めっきとはエッチング条件の異なる金属薄膜からなるバリア金属層5を形成する。当該バリア金属層5としては、後のビアホール部の回路形成の際に、上層配線回路4aがエッチングされなければいずれの金属でも良く、例えば、無電解めっき処理による、Ni、Sn、Ag等が挙げられる。また、当該バリア金属層5としては、剥離性を留意して選択することが製造工程上好ましい。例えば、Niを例にとると、NiやNi−Bめっきでは剥離が容易であるが、Ni−Pめっきでは、リン濃度が高いと剥離が困難になるため、3%以下の低リンのものが好ましいといった具合である。次に、図1(d)に示したように、レーザ照射により、下層配線回路4bに達する非貫通孔6を穿孔した後、当該非貫通孔6内のデスミア処理を行い、次いで、当該非貫通孔6を含んだ外層全面に、図示しない無電解めっき(例えば無電解銅めっき)を形成し、当該無電解めっきを給電層として電解めっき(例えばフィルドビア用のめっき液を用いた電解銅めっき)処理を行い、当該非貫通孔6にめっき7を充填するとともに、外層にもめっき7を析出させる。次に、図2(f)に示したように、ビアホール9とそのランド部の回路形成を行った後、外層に露出しているバリア金属層5をエッチング除去することによって、図2(g)に示したプリント配線板10を得る。   1 to 2 show an example of forming a build-up wiring layer on an inner core substrate (not shown) (filling a via hole with plating), similar to the example shown in FIGS. 9 to 10. As shown in FIG. 1A, an interlayer insulating layer 1 and a metal foil 2 such as a copper foil are sequentially laminated on the formation layer of the lower layer wiring circuit 4b formed in the inner layer (for example, a copper foil with resin is used). Then, as shown in FIG. 1B, an upper wiring circuit 4a is formed by etching. Next, as shown in FIG. 1C, a metal thin film having etching conditions different from those of the electroplating 7 in the later formation of the via hole and the electroless plating (not shown) on the entire outer layer including the upper wiring circuit 4a. A barrier metal layer 5 is formed. The barrier metal layer 5 may be any metal as long as the upper wiring circuit 4a is not etched during the subsequent formation of the via hole circuit. Examples thereof include Ni, Sn, Ag, and the like by electroless plating. It is done. The barrier metal layer 5 is preferably selected in consideration of releasability in terms of the manufacturing process. For example, taking Ni as an example, peeling is easy with Ni or Ni-B plating, but with Ni-P plating, peeling becomes difficult when the phosphorus concentration is high. It is preferable. Next, as shown in FIG. 1D, after the non-through hole 6 reaching the lower wiring circuit 4b is drilled by laser irradiation, desmear processing in the non-through hole 6 is performed, and then the non-through hole Electroless plating (for example, electroless copper plating) (not shown) is formed on the entire outer layer including the holes 6, and electrolytic plating (for example, electrolytic copper plating using a filled via plating solution) is performed using the electroless plating as a power supply layer. And filling the non-through hole 6 with the plating 7 and depositing the plating 7 on the outer layer. Next, as shown in FIG. 2 (f), after the circuit formation of the via hole 9 and its land portion is performed, the barrier metal layer 5 exposed to the outer layer is removed by etching, whereby FIG. The printed wiring board 10 shown in FIG.

続いて、図3乃至図4を用いて、第二の実施の形態について説明する。   Next, a second embodiment will be described with reference to FIGS.

図3乃至図4は、上記と同様に、図示しない内層コア基板上にビルドアップ配線層を形成する例を示したもので、まず、図3(a)に示したように、内層に形成された下層配線回路4bの形成層上に層間絶縁層1と銅箔等の金属箔2を順次積層し(例えば樹脂付き銅箔を積層する)、次いで、レーザ照射により、下層配線回路4bに達する非貫通孔6を穿孔する(図3(b)参照)。次に、図3(c)に示したように、電解めっき、或いは無電解めっき(本実施の形態では、置換めっきを用いた例を示しており、金属箔2の表側面と非貫通孔6から露出した下層配線回路4bの表面に、バリア金属層が形成されている。因みに、電解めっきを用いた場合には、金属箔2の表側面のみに形成される。)により、バリア金属層5を形成し、次いで、非貫通孔6を含んだ外層全面に、図示しない無電解めっき(例えば無電解銅めっき)を形成した後、電解めっき(例えばフィルドビア用のめっき液を用いた電解銅めっき)処理を行い、非貫通孔6にめっき7を充填するとともに外層にも当該めっき7を析出させる(図3(d)参照)。次に、図3(e)に示したように、ビアホール9とそのランド部の回路形成を行った後、図4(f)に示したように、外層に露出しているバリア金属層5をエッチング除去し(バリア金属層5を除去する前に、ビアホール9とそのランド部に、5〜10μm程度のエッチング処理を施して、当該ビアホール9とそのランド部のめっき段差を小さくすることもできる)、次いで、露出した金属箔2に回路形成を行うことによって、外層に上層配線回路4aが形成された図4(g)のプリント配線板10を得る。 3 to 4 show an example in which a build-up wiring layer is formed on an inner core substrate (not shown), as described above. First, as shown in FIG. Then, an interlayer insulating layer 1 and a metal foil 2 such as a copper foil are sequentially laminated on the formation layer of the lower wiring circuit 4b (for example, a copper foil with resin is laminated), and then reaches the lower wiring circuit 4b by laser irradiation. The through hole 6 is drilled (see FIG. 3B). Next, as shown in FIG. 3 (c), electrolytic plating or electroless plating (in this embodiment, an example using displacement plating is shown, and the front side surface of the metal foil 2 and the non-through hole 6 are shown. The barrier metal layer is formed on the surface of the lower layer wiring circuit 4b exposed from the surface of the metal foil 2. When the electrolytic plating is used, the barrier metal layer 5 is formed only on the front side surface of the metal foil 2. Next, an electroless plating (not shown) (for example, electroless copper plating) (not shown) is formed on the entire outer layer including the non-through holes 6, and then electroplating (for example, electrolytic copper plating using a plating solution for filled vias) Processing is performed to fill the non-through holes 6 with the plating 7 and deposit the plating 7 on the outer layer (see FIG. 3D). Next, as shown in FIG. 3E, after the via hole 9 and its land portion are formed, the barrier metal layer 5 exposed to the outer layer is formed as shown in FIG. Etching removed (Before removing the barrier metal layer 5, the via hole 9 and its land portion can be etched by about 5 to 10 μm to reduce the plating step between the via hole 9 and its land portion) Then, by forming a circuit on the exposed metal foil 2, the printed wiring board 10 of FIG. 4G in which the upper wiring circuit 4a is formed on the outer layer is obtained.

上記第一、第二の実施の形態とすることにより、ビアホールにめっきを充填する際、外層にもめっきを析出させているため、安定してビアホールにめっきを充填することができる。また、上層配線回路、及び金属箔は、バリア金属箔で保護されているため、一定の厚みを確保することができ、その結果、微細配線回路を容易に形成することができる。   By adopting the first and second embodiments, when the via hole is filled with plating, the plating is also deposited on the outer layer, so that the via hole can be filled with stability. Further, since the upper wiring circuit and the metal foil are protected by the barrier metal foil, a certain thickness can be secured, and as a result, a fine wiring circuit can be easily formed.

また、上記第一、第二の実施の形態では、非貫通孔6のデスミア処理の際に、外層に露出する層間絶縁層1が全く存在しないこととなる。従って、図9乃至図10に示した構成では、非貫通孔6のデスミア処理の際に、配線回路非形成部(層間絶縁層1の表面)も同時にデスミア処理されるため、デスミア処理液の汚染がひどく、ライフ期間が著しく短縮するという不具合があったが、上記第一、第二の実施の形態では、デスミア処理液の汚染を最小限(非貫通孔部のみ)に抑えることができるので、通常使用と変わらぬライフ期間とすることができるというメリットもある。   In the first and second embodiments, the interlayer insulating layer 1 exposed to the outer layer does not exist at all in the desmear process of the non-through hole 6. Accordingly, in the configuration shown in FIGS. 9 to 10, the desmear treatment of the non-through hole 6 is also performed simultaneously with the desmear treatment of the wiring circuit non-formed portion (the surface of the interlayer insulating layer 1). However, in the first and second embodiments, contamination of the desmear treatment liquid can be suppressed to the minimum (only the non-through hole portion). There is also an advantage that it can be a life period that is the same as normal use.

上記第一、第二の実施の形態では、ビアホール9にめっきを充填する例を示したが、通常のめっき液で電解めっき処理を行うことで、図5に示したような、スルーホール9bとそのランド部のみにめっき7aが形成されたプリント配線板10、及び図6に示したような、ブラインドバイアホール9aとそのランド部のみにめっき7aが形成されたプリント配線板10とすることもできる。   In the first and second embodiments, an example in which the via hole 9 is filled is shown. However, by performing an electrolytic plating process with a normal plating solution, the through hole 9b as shown in FIG. The printed wiring board 10 in which the plating 7a is formed only on the land portion, and the printed wiring board 10 in which the plating via 7a is formed only on the blind via hole 9a and the land portion as shown in FIG. .

続いて、図7乃至図8を用いて、第三の実施の形態について説明する。   Next, a third embodiment will be described with reference to FIGS.

図7乃至図8は、ビアホールの底部側に形成された金属層を給電層として電解めっき(例えば電解銅めっき)処理を行い、当該非貫通孔内にめっきを充填する例を示したもので、まず、図7(a)に示したように、絶縁基材1aの上下に銅箔等の金属箔2を備えた絶縁基板3を用意し、エッチング処理により、上下の配線回路4a、4bを形成する(図7(b)参照)。次に、図7(c)に示したように、外層全面に後のビアホール形成の際の電解めっき8a、8b及び図示しない無電解めっきとはエッチング条件の異なるバリア金属層5を形成し、次いで、レーザ照射により、当該下層配線回路4bに達する非貫通孔6を穿孔する(図7(d)参照)。ここで、バリア金属層5は、プリント配線板の端面にも析出されてしまい、後の電解めっき処理の際に、上層にも給電されてしまうため、当該電解めっき処理前(例えば図7(c)の工程後)に端面カット処理等を行い、端面に析出したバリア金属層5を予め除去しておく。次に、非貫通孔6のデスミア処理を行った後、当該下層配線回路4b側に形成されたバリア金属層5を給電層として電解めっき(例えば電解銅めっき)処理を行い、当該非貫通孔6の途中まで第一電解めっき8aを充填するとともに、当該給電層たるバリア金属層5の表面にも当該第一電解めっき8aを析出させる(図7(e)参照)。次に、非貫通孔6を含んだ外層全面に、図示しない無電解めっき(例えば無電解銅めっき)を形成した後、電解めっき(例えばフィルドビア用のめっき液を用いた電解銅めっき)処理を行い、残りの非貫通孔6内に第二電解めっき8bを充填するとともに、外層全面に当該第二電解めっき8bを析出させる(図8(f)参照)。次に、図8(g)に示したように、ビアホール9とそのランド部の回路形成を行うと同時に余分な第一、第二電解めっき8a、8bを除去し、次いで、外層に露出しているバリア金属層5をエッチング除去することによって、絶縁基材1aの上下に配線回路4a、4bが形成された、図8(h)のプリント配線板10を得る。   7 to 8 show an example in which electrolytic plating (for example, electrolytic copper plating) is performed using the metal layer formed on the bottom side of the via hole as a power feeding layer, and the plating is filled in the non-through holes. First, as shown in FIG. 7A, an insulating substrate 3 provided with metal foil 2 such as copper foil is prepared above and below an insulating base 1a, and upper and lower wiring circuits 4a and 4b are formed by etching. (See FIG. 7B). Next, as shown in FIG. 7 (c), the barrier metal layer 5 having etching conditions different from those of the electroplating 8a and 8b and the electroless plating (not shown) in the subsequent formation of the via hole is formed on the entire outer layer, Then, the non-through hole 6 reaching the lower layer wiring circuit 4b is drilled by laser irradiation (see FIG. 7D). Here, the barrier metal layer 5 is also deposited on the end face of the printed wiring board, and power is also supplied to the upper layer in the subsequent electrolytic plating process. Therefore, before the electrolytic plating process (for example, FIG. After the step of), an end face cutting process or the like is performed, and the barrier metal layer 5 deposited on the end face is removed in advance. Next, after desmearing the non-through hole 6, electrolytic plating (for example, electrolytic copper plating) is performed using the barrier metal layer 5 formed on the lower wiring circuit 4 b side as a power supply layer, and the non-through hole 6 The first electrolytic plating 8a is filled in the middle of the process, and the first electrolytic plating 8a is also deposited on the surface of the barrier metal layer 5 as the power feeding layer (see FIG. 7E). Next, an electroless plating (not shown) (for example, electroless copper plating) (not shown) is formed on the entire outer layer including the non-through holes 6, and then an electrolytic plating (for example, electrolytic copper plating using a filled via plating solution) is performed. The remaining non-through holes 6 are filled with the second electrolytic plating 8b, and the second electrolytic plating 8b is deposited on the entire outer layer (see FIG. 8 (f)). Next, as shown in FIG. 8G, the via hole 9 and its land portion are formed, and at the same time, the excess first and second electrolytic platings 8a and 8b are removed, and then exposed to the outer layer. By removing the existing barrier metal layer 5 by etching, the printed wiring board 10 shown in FIG. 8H in which the wiring circuits 4a and 4b are formed above and below the insulating base 1a is obtained.

このように、非貫通孔にめっきを充填すると同時に給電層の表面にもめっきを析出させる構成としたため(即ち、めっき面積率を広くし、均等に分布させたため)、ビアホールに安定してめっきを充填することができる。また、上下層に形成された配線回路は、バリア金属層に保護されているため、一定の厚みを確保することができ、その結果、微細配線回路を容易に形成することができる。   As described above, the plating is deposited on the surface of the power feeding layer at the same time that the non-through hole is filled with plating (that is, the plating area ratio is widened and distributed uniformly), so that plating can be stably applied to the via holes. Can be filled. In addition, since the wiring circuits formed in the upper and lower layers are protected by the barrier metal layer, a certain thickness can be secured, and as a result, a fine wiring circuit can be easily formed.

第三の実施の形態では、予め配線回路を形成してからバリア金属層を形成する例を説明したが、図3乃至図4に倣って、ビアホール部の回路形成が終った後に、上下層の配線回路を形成することもできる。   In the third embodiment, the example in which the barrier metal layer is formed after the wiring circuit is formed in advance has been described. However, after the circuit formation of the via hole portion is completed in accordance with FIGS. A wiring circuit can also be formed.

また、予め配線回路を形成する第一、第三の実施の形態において、パラジウム等を用いる全面の無電解めっき処理によって、配線回路の表側面を含んだ外層全体にバリア金属層を形成する例を説明したが、構成としてはこの限りでなく、置換型の無電解めっき処理によって、少なくとも配線回路の表側面のみにバリア金属層を形成する構成とすることも可能である。しかし、この構成の場合、配線回路の表側面にバリア金属層を形成した後、非貫通孔のデスミア処理の際に配線回路非形成部がデスミア処理されるのを防止するために、当該バリア金属層を含んだ外層全面に無電解めっき(例えば、無電解銅めっき)を形成する必要がある。従って、非貫通孔の孔明け、及びデスミア処理後に形成する無電解めっきと合せて、当該無電解めっき工程が2回必要となるため、第一、第三の実施の工程と比較して、製造工程が若干長くなってしまうというデメリットを有する。   Further, in the first and third embodiments in which the wiring circuit is formed in advance, an example in which the barrier metal layer is formed on the entire outer layer including the front side surface of the wiring circuit by the electroless plating process on the entire surface using palladium or the like. As described above, the configuration is not limited to this, and it is also possible to form a barrier metal layer only at least on the front side of the wiring circuit by substitutional electroless plating. However, in the case of this configuration, after the barrier metal layer is formed on the front side surface of the wiring circuit, in order to prevent the wiring circuit non-formed portion from being desmeared when the non-through hole is desmeared, It is necessary to form electroless plating (for example, electroless copper plating) on the entire outer layer including the layer. Therefore, since the electroless plating process is required twice in combination with the electroless plating formed after the drilling of the non-through hole and the desmear treatment, it is manufactured in comparison with the first and third implementation processes. There is a demerit that the process becomes slightly longer.

また、第三の実施の形態においては、板厚が0.1mm以上で、孔径がφ100μm以下の非貫通孔に対してめっきを安定して充填する例を示した。従って、電解めっき処理を2回に分けて行う工程を示したが、板厚が0.06mm以下であれば、第一、第二の実施の形態と同様に、一度の電解めっき処理で充填することができる。   In the third embodiment, an example in which plating is stably filled into a non-through hole having a plate thickness of 0.1 mm or more and a hole diameter of φ100 μm or less is shown. Therefore, although the process of performing the electrolytic plating process in two steps was shown, if the plate thickness is 0.06 mm or less, it is filled with a single electrolytic plating process as in the first and second embodiments. be able to.

更に、第三の実施の形態においては、絶縁基材の表裏に金属箔を備えた両面プリント配線板を例にして説明したが、多層プリント配線板においても、同様の効果が得られるのはいうまでもない。   Furthermore, in the third embodiment, the description has been given by taking the double-sided printed wiring board having the metal foil on the front and back of the insulating base material as an example, but the same effect can be obtained even in the multilayer printed wiring board. Not too long.

実施例1
図7乃至図8に示したプリント配線板10をコア基板とし、当該コア基板の表裏に、図1乃至図2に示したビルドアップ配線層を積層したビルトアップ多層プリント配線板を以下の製造方法によって製造した。
まず、ガラス繊維にエポキシ樹脂を含浸した0.1mmのガラスエポキシ樹脂基板の両面に、厚さ12μmの銅箔が積層されたガラスエポキシ銅張り積層板(日立化成社製:MCL−E679F)を用意し(図7(a)に相当)、20μmのドライフィルム(旭化成社製:SPG202)を用いたサブトラクティブ法により、両面にL/S(配線幅/配線間隙)=30μm/30μmの微細配線回路を有する配線回路を形成した(図7(b)に相当)。
Example 1
A built-up multilayer printed wiring board in which the printed wiring board 10 shown in FIGS. 7 to 8 is used as a core substrate and the build-up wiring layers shown in FIGS. Manufactured by.
First, prepare a glass epoxy copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd .: MCL-E679F) with a 12 mm thick copper foil laminated on both sides of a 0.1 mm glass epoxy resin substrate impregnated with epoxy resin in glass fiber (Corresponding to FIG. 7A), a fine wiring circuit of L / S (wiring width / wiring gap) = 30 μm / 30 μm on both sides by a subtractive method using a 20 μm dry film (Asahi Kasei Co., Ltd .: SPG202). Was formed (corresponding to FIG. 7B).

次に、配線回路の表側面を含んだ絶縁基板全面にバリア金属層を形成した(図7(c)に相当)。当該バリア金属層としては、絶縁基板全面にパラジウム触媒を付与した後、次亜リン酸ナトリウムを還元剤とする無電解Ni−Pめっき(厚さ0.5μm)を形成するようにした。   Next, a barrier metal layer was formed on the entire surface of the insulating substrate including the front side surface of the wiring circuit (corresponding to FIG. 7C). As the barrier metal layer, an electroless Ni—P plating (thickness 0.5 μm) using sodium hypophosphite as a reducing agent was formed after a palladium catalyst was applied to the entire surface of the insulating substrate.

次に、所望の位置に炭酸ガスレーザを照射して、トップ径φ95μm、ボトム径φ60μmの非貫通孔を穿孔し、次いで、過マンガン酸カリウム系溶液を用いたデスミア処理により、非貫通孔内壁の粗化、及び底部の樹脂残膜の除去を行った(図7(d)に相当)。
次に、端面を僅かにカットし、絶縁基板の端面に析出したバリア金属層を除去して、上下の配線回路の絶縁処理を行った。
Next, a carbon dioxide laser is irradiated to a desired position to drill non-through holes with a top diameter of φ95 μm and a bottom diameter of φ60 μm, and then the inner wall of the non-through holes is roughened by desmear treatment using a potassium permanganate solution. And removal of the resin residual film at the bottom (corresponding to FIG. 7D).
Next, the end face was slightly cut, the barrier metal layer deposited on the end face of the insulating substrate was removed, and the upper and lower wiring circuits were insulated.

次に、下層配線回路の表面に形成されたバリア金属層を給電層とし、また、当該バリア金属層側にのみ陽極を配置して、ハイスロー浴にて電解銅めっきを行った。この時、電解銅めっきは、非貫通孔の底部からボトムアップさせるとともに、下層配線回路上のバリア金属層の表面にも析出させるようにした(図7(e)に相当)。電解銅めっきの厚さは、非貫通孔内及びバリア金属層の表面ともに60μm析出させた。尚、バリア金属層表面に析出させる電解銅めっきは、非貫通孔への電流密度の集中を抑制するためのダミーめっきである。   Next, a barrier metal layer formed on the surface of the lower wiring circuit was used as a power feeding layer, and an anode was disposed only on the barrier metal layer side, and electrolytic copper plating was performed in a high throw bath. At this time, the electrolytic copper plating was made to bottom up from the bottom of the non-through hole and also deposited on the surface of the barrier metal layer on the lower wiring circuit (corresponding to FIG. 7 (e)). The electrolytic copper plating was deposited to a thickness of 60 μm in both the non-through holes and the surface of the barrier metal layer. The electrolytic copper plating deposited on the barrier metal layer surface is a dummy plating for suppressing the concentration of current density in the non-through holes.

次に、上下の配線回路を導通させるために、絶縁基板全面に厚さ0.5μmの無電解銅めっきを施し、次いで、ビアフィリング浴にて電解銅めっき処理を行い、非貫通孔内にめっきを完全に充填させた(図8(f)に相当)。尚、電解銅めっき処理は、外層に15μm析出する設定とした。   Next, in order to make the upper and lower wiring circuits conductive, electroless copper plating with a thickness of 0.5 μm is applied to the entire surface of the insulating substrate, followed by electrolytic copper plating in a via filling bath, and plating in the non-through holes. Was completely filled (corresponding to FIG. 8F). The electrolytic copper plating treatment was set to deposit 15 μm on the outer layer.

次に、レーザ照射側のビアホールとそのランド形成部にエッチングレジストパターンを形成し、銅アンモニウム錯イオンを主成分とするアルカリエッチング液(メルテックス社製:エープロセス)にてエッチング処理を行い、ビアホールとそのランドを形成するとともに、ニッケルからなるバリア金属層が露出するまで余分な銅めっきを除去した。そして、当該エッチング処理を行った後、当該エッチングレジストパターンを剥離除去した(図8(g)に相当)。   Next, an etching resist pattern is formed on the via hole on the laser irradiation side and the land forming portion thereof, and etching is performed with an alkaline etching solution (Meltex Co., Ltd .: A process) mainly composed of copper ammonium complex ions. The excess copper plating was removed until the barrier metal layer made of nickel was exposed. And after performing the said etching process, the said etching resist pattern was peeled and removed (equivalent to FIG.8 (g)).

次に、ニッケル剥離液(メック社製:NH−1862)を用いて、表面に露出しているニッケル(バリア金属層)を剥離することによってコア基板を得た(図8(h)に相当)。   Next, a nickel substrate (manufactured by MEC: NH-1862) was used to peel the nickel (barrier metal layer) exposed on the surface to obtain a core substrate (corresponding to FIG. 8 (h)). .

次に、当該コア基板の両面に、50μmのプリプレグ(日立化成社製:GEA−679F)と12μmの銅箔を順次積層した(図1(a)に相当)。   Next, 50 μm prepreg (manufactured by Hitachi Chemical Co., Ltd .: GEA-679F) and 12 μm copper foil were sequentially laminated on both surfaces of the core substrate (corresponding to FIG. 1A).

次に、上記コア基板の製造と同じように、サブトラクティブ法によって、外層(両面)にL/S=30μm/30μmの微細配線回路を有する配線回路を形成した(図1(b)に相当)。   Next, a wiring circuit having a fine wiring circuit of L / S = 30 μm / 30 μm on the outer layer (both sides) was formed by a subtractive method (corresponding to FIG. 1B) as in the manufacture of the core substrate. .

次に、上記コア基板の製造と同条件で無電解ニッケルめっき(図1(c)に相当)、レーザ、デスミア処理を行った(図1(d)に相当)。尚、非貫通孔径は、トップ径φ80μm、ボトム径φ50μmとした。   Next, electroless nickel plating (corresponding to FIG. 1C), laser, and desmear treatment were performed under the same conditions as in the manufacture of the core substrate (corresponding to FIG. 1D). In addition, the non-through-hole diameter was made into top diameter (phi) 80micrometer and bottom diameter (phi) 50micrometer.

次に、非貫通孔を含んだ外層全面に無電解銅めっき(0.5μm)を施し、次いで、ビアフィリング浴にて電解銅めっき処理を行った(図1(e)に相当)。電解銅めっき条件はコア基板の時と同条件である。   Next, electroless copper plating (0.5 μm) was applied to the entire outer layer including non-through holes, and then electrolytic copper plating was performed in a via filling bath (corresponding to FIG. 1 (e)). The electrolytic copper plating conditions are the same as those for the core substrate.

次に、ビアホールとそのランド形成部にエッチングレジストパターンを形成し、アルカリエッチング処理にて、ビアホールとそのランドを形成するとともに、ニッケルからなるバリア金属層が露出するまで余分な銅めっきを除去した(図2(f)に相当)。   Next, an etching resist pattern was formed in the via hole and its land formation portion, and the via hole and its land were formed by alkali etching, and the excess copper plating was removed until the barrier metal layer made of nickel was exposed ( Corresponding to FIG.

そして、当該エッチング処理の後、当該エッチングレジストパターンを剥離除去し、次いで、表面に露出しているニッケルを剥離することによって、両面のコア基板の表裏にビルドアップ配線層が1層づつ積層されたビルドアップ多層プリント配線板を得た(図2(g)に相当)。   Then, after the etching process, the etching resist pattern is peeled and removed, and then the nickel exposed on the surface is peeled off, whereby build-up wiring layers are laminated one by one on the front and back of the core substrate on both sides. A build-up multilayer printed wiring board was obtained (corresponding to FIG. 2 (g)).

実施例2
図5に示したプリント配線板10を4層の多層構造とし、尚且つスルーホール9b内に樹脂(導電性樹脂或いは絶縁樹脂)を充填し、当該スルーホールに蓋めっきを施したコア基板と、当該コア基板の表裏に図1乃至図2に示したビルドアップ配線層を積層した図12のビルドアップ多層プリント配線板を、以下の製造方法により製造した。
Example 2
The printed wiring board 10 shown in FIG. 5 has a four-layer multi-layer structure, and a core substrate in which a resin (conductive resin or insulating resin) is filled in the through hole 9b and the through hole is plated with a lid, The buildup multilayer printed wiring board of FIG. 12 in which the buildup wiring layers shown in FIGS. 1 and 2 were laminated on the front and back of the core substrate was manufactured by the following manufacturing method.

まず、ガラス繊維にエポキシ樹脂を含浸した0.2mmのガラスエポキシ樹脂基板の両面に、厚さ18μmの銅箔が積層されたガスラエポキシ銅張り積層板(日立化成社製:MCL−E67)を用意し、20μmのドライフィルム(旭化成社製:SPG202)を用いたサブトラクティブ法により、両面にL/S(配線幅/配線間隙)=30μm/30μmの微細配線回路を有する配線回路を形成した。   First, a gasra epoxy copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd .: MCL-E67) in which a copper foil with a thickness of 18 μm is laminated on both sides of a 0.2 mm glass epoxy resin substrate impregnated with epoxy resin in glass fiber. A wiring circuit having a fine wiring circuit of L / S (wiring width / wiring gap) = 30 μm / 30 μm on both surfaces was prepared by a subtractive method using a 20 μm dry film (manufactured by Asahi Kasei Corporation: SPG202).

次に、当該配線回路が形成された上記両面基板の両面に、厚さ100μmのプリプレグ(日立化成社製:GEA−67N)と厚さ12μmの銅箔を順次積層した。   Next, a prepreg having a thickness of 100 μm (manufactured by Hitachi Chemical Co., Ltd .: GEA-67N) and a copper foil having a thickness of 12 μm were sequentially laminated on both surfaces of the double-sided substrate on which the wiring circuit was formed.

次に、上記積層板に0.2mmのドリル孔明けを施し、過マンガン酸カリウム系溶液を用いたデスミア処理により、貫通孔内のスミアを除去した。   Next, 0.2 mm drilling was performed on the laminate, and smears in the through holes were removed by desmearing using a potassium permanganate solution.

次に、上記と同様にサブトラクティブ法によって、両面にL/S=30μm/30μmの微細配線回路を有する配線回路を形成し、次いで、配線回路の表側面、及び貫通孔内を含んだ積層基板全面に、0.5μm厚のNi−Pめっきを形成した。   Next, a wiring circuit having fine wiring circuits of L / S = 30 μm / 30 μm on both sides is formed by the subtractive method in the same manner as described above, and then the laminated substrate including the front side surface of the wiring circuit and the inside of the through hole Ni-P plating with a thickness of 0.5 μm was formed on the entire surface.

次に、厚さ20μmの電解銅めっきをハイスロー浴によって、上記積層基板全面に形成し、次いで、バフ研磨処理により、配線回路による電解めっきの段差分8μmを除去し、表面をフラットな状態とした。   Next, electrolytic copper plating with a thickness of 20 μm is formed on the entire surface of the laminated substrate by a high-throw bath, and then a step of 8 μm of electrolytic plating due to the wiring circuit is removed by buffing to make the surface flat. .

次に、貫通孔内に樹脂を充填し、硬化後、当該貫通孔から露出している樹脂をバフ研磨により除去し、次いで、積層基板の全面に0.5μmの無電解めっきを施した後、厚さ10μmの電解銅めっきをハイスロー浴によって積層基板の全面に形成した。   Next, the resin is filled in the through hole, and after curing, the resin exposed from the through hole is removed by buffing, and then the entire surface of the multilayer substrate is subjected to electroless plating of 0.5 μm, An electrolytic copper plating having a thickness of 10 μm was formed on the entire surface of the multilayer substrate by a high-throw bath.

次に、スルーホールとそのランド形成部にエッチングレジストパターンを形成し、アルカリエッチング処理によって、スルーホールの蓋めっきとそのランドを形成するとともに、ニッケルからなるバリア金属層が露出するまで余分な銅めっきを除去した。そして、当該エッチング処理を行った後、当該エッチングレジストパターンを剥離除去し、次いで、表面に露出しているニッケルを剥離することによって、図12に示したコア基板を得た。
そして、実施例1に倣って、当該コア基板の両面にビルドアップ配線層を形成することによって、図12に示したビルドアップ多層プリント配線板を得た。
Next, an etching resist pattern is formed on the through hole and its land formation part, and the through hole lid plating and its land are formed by an alkali etching process, and excess copper plating is performed until the barrier metal layer made of nickel is exposed. Was removed. And after performing the said etching process, the said etching resist pattern was peeled and removed, and the core board | substrate shown in FIG. 12 was obtained by peeling the nickel exposed on the surface then.
Then, in accordance with Example 1, build-up multilayer printed wiring boards shown in FIG. 12 were obtained by forming build-up wiring layers on both surfaces of the core substrate.

本発明の第一の実施の形態における工程(a)〜(e)を示す概略断面工程説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic cross-sectional process explanatory drawing which shows process (a)-(e) in 1st embodiment of this invention. 本発明の第一の実施の形態における工程(f)〜(g)を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows process (f)-(g) in 1st embodiment of this invention. 本発明の第二の実施の形態における工程(a)〜(e)を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows process (a)-(e) in 2nd embodiment of this invention. 本発明の第二の実施の形態における工程(f)〜(g)を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows process (f)-(g) in 2nd embodiment of this invention. スルーホールにめっきを充填させない本発明方法により得られたプリント配線板例を示す概略断面説明図。Schematic cross-sectional explanatory drawing which shows the example of a printed wiring board obtained by the method of this invention which does not fill a through hole with plating. ブラインドバイアホールにめっきを充填させない本発明方法により得られたプリント配線板例を示す概略断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic cross-sectional explanatory drawing which shows the example of the printed wiring board obtained by this invention method which does not fill a blind via hole with plating. 本発明の第三の実施の形態における工程(a)〜(e)を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows process (a)-(e) in 3rd embodiment of this invention. 本発明の第三の実施の形態における工程(f)〜(h)を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows process (f)-(h) in 3rd embodiment of this invention. 従来のプリント配線板の製造方法における工程(a)〜(f)を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows process (a)-(f) in the manufacturing method of the conventional printed wiring board. 従来のプリント配線板の製造方法における工程(g)〜(h)を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows process (g)-(h) in the manufacturing method of the conventional printed wiring board. 他の従来のプリント配線板の製造方法を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows the manufacturing method of the other conventional printed wiring board. 本発明方法により得られたビルドアップ多層プリント配線板例を示す概略断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic cross-section explanatory drawing which shows the example of the buildup multilayer printed wiring board obtained by this invention method.

符号の説明Explanation of symbols

1:層間絶縁層
1a:絶縁基材
2:金属箔
2a:上層金属箔
2b:下層金属箔
3:絶縁基板
4a:上層配線回路
4b:下層配線回路
4c:孔近傍部
5:バリア金属層
6:非貫通孔
7、7a:電解めっき
8a:第一電解めっき
8b:第二電解めっき
9、9a:ビアホール
9b:スルーホール
10:プリント配線板
11:無電解めっき
12:めっきレジスト
12a:開口部
1: Interlayer insulating layer 1a: Insulating substrate 2: Metal foil 2a: Upper layer metal foil 2b: Lower layer metal foil 3: Insulating substrate 4a: Upper layer wiring circuit 4b: Lower layer wiring circuit 4c: Near hole portion 5: Barrier metal layer 6: Non-through holes 7, 7a: Electrolytic plating 8a: First electrolytic plating 8b: Second electrolytic plating 9, 9a: Via hole 9b: Through hole 10: Printed wiring board 11: Electroless plating 12: Plating resist 12a: Opening

Claims (2)

層間接続用のビアホールを備えたプリント配線板の製造方法であって、少なくとも、ビアホール形成のためのめっき処理前に、絶縁基板の外層に形成された配線回路及び/又は金属箔の露出面に、当該配線回路及び/又は金属箔が後のビアホール部の回路形成の際のエッチング処理によりエッチングされることを防止するために、当該後のビアホール形成の際の電解めっき及び無電解めっきとはエッチング条件の異なる金属薄膜からなるバリア金属層を設ける工程と、ビアホール形成のためのめっき処理により当該バリア金属層上にめっきを析出させる工程と、当該めっきをエッチング処理してバリア金属層を露出せしめると共に、ビアホールとそのランドを形成する工程と、当該露出したバリア金属層をエッチング処理して除去する工程とを有することを特徴とするプリント配線板の製造方法。 A method of manufacturing a printed wiring board provided with via holes for interlayer connection, at least on the exposed surface of a wiring circuit and / or metal foil formed on an outer layer of an insulating substrate before plating for forming via holes, In order to prevent the wiring circuit and / or the metal foil from being etched by the etching process in the subsequent via hole circuit formation, the electrolytic plating and the electroless plating in the subsequent via hole formation are the etching conditions. A step of providing a barrier metal layer made of a different metal thin film, a step of depositing a plating on the barrier metal layer by a plating process for forming a via hole, and etching the plating to expose the barrier metal layer, Forming via holes and lands, and removing the exposed barrier metal layer by etching; Method for manufacturing a printed wiring board characterized in that it has. バリア金属層を設けた後、ビアホール形成のためのめっき処理を、当該ビアホール用非貫通孔の底部側に形成されたバリア金属層を給電層とする電解めっき処理で行ない、当該電解めっきを、ビアホール用の非貫通孔に充填させるとともに当該給電層の表面にも析出させることを特徴とする請求項1に記載のプリント配線板の製造方法。 After providing the barrier metal layer, a plating process for forming the via hole is performed by an electrolytic plating process using the barrier metal layer formed on the bottom side of the non-through hole for the via hole as a power feeding layer, and the electrolytic plating is performed on the via hole. The method for manufacturing a printed wiring board according to claim 1, wherein the non-through hole is filled and deposited on the surface of the power supply layer.
JP2004095922A 2003-04-01 2004-03-29 Method for manufacturing printed wiring board Expired - Lifetime JP4383219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095922A JP4383219B2 (en) 2003-04-01 2004-03-29 Method for manufacturing printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003097759 2003-04-01
JP2004095922A JP4383219B2 (en) 2003-04-01 2004-03-29 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2004319994A JP2004319994A (en) 2004-11-11
JP4383219B2 true JP4383219B2 (en) 2009-12-16

Family

ID=33478779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095922A Expired - Lifetime JP4383219B2 (en) 2003-04-01 2004-03-29 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP4383219B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179822A (en) 2004-12-24 2006-07-06 Cmk Corp Printed wiring board and its manufacturing method
JP4319976B2 (en) 2004-12-27 2009-08-26 日本シイエムケイ株式会社 Multilayer printed wiring board and manufacturing method thereof
JP5066427B2 (en) * 2007-11-02 2012-11-07 日本シイエムケイ株式会社 Method for manufacturing printed wiring board
CN101472404B (en) * 2007-12-25 2011-12-07 富葵精密组件(深圳)有限公司 Multi-layer circuit board and manufacturing method thereof
JP2013123035A (en) * 2011-11-09 2013-06-20 Ngk Spark Plug Co Ltd Manufacturing method for multilayer wiring board
JP2017135193A (en) 2016-01-26 2017-08-03 イビデン株式会社 Printed wiring board and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JP2004319994A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3807312B2 (en) Printed circuit board and manufacturing method thereof
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
KR20060073434A (en) Printed wiring board and method of manufacturing the same
CN100518444C (en) Method for forming through-hole that utilizes lazer drill
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4383219B2 (en) Method for manufacturing printed wiring board
JP2006186029A (en) Multilayer printed wiring board and its production process
JP2007317823A (en) Printed wiring board and its manufacturing method
JP4153328B2 (en) Manufacturing method of multilayer printed wiring board
JP2006294956A (en) Multilayer printed circuit board and its manufacturing method
JP4045120B2 (en) Multilayer printed wiring board and manufacturing method thereof
CN114303447A (en) Method for preparing high-density interconnected printed circuit board containing micro-through holes filled with copper
JP2005044914A (en) Printed wiring board and manufacturing method therefor
JP2008205070A (en) Printed wiring board and manufacturing method therefor
JP3984092B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005311244A (en) Partial multilayer interconnection board and manufacturing method thereof
JPH1187886A (en) Production of printed wiring board
JPH08148810A (en) Manufacture of printed wiring board
JP2005251894A (en) Method of manufacturing printed circuit board
JP2005333050A (en) Printed wiring board and method for forming via hole using via-fill plating
JP2003304067A (en) Multilayer printed wiring board and its manufacturing method
JP4934901B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2008305906A (en) Method for manufacturing multilayer printed-wiring board
JP4838977B2 (en) Circuit board and circuit board manufacturing method
JP4051923B2 (en) Manufacturing method of build-up multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071210

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250