JP4838201B2 - Method for producing anodized porous alumina - Google Patents

Method for producing anodized porous alumina Download PDF

Info

Publication number
JP4838201B2
JP4838201B2 JP2007164771A JP2007164771A JP4838201B2 JP 4838201 B2 JP4838201 B2 JP 4838201B2 JP 2007164771 A JP2007164771 A JP 2007164771A JP 2007164771 A JP2007164771 A JP 2007164771A JP 4838201 B2 JP4838201 B2 JP 4838201B2
Authority
JP
Japan
Prior art keywords
pore
pores
porous alumina
anodized porous
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007164771A
Other languages
Japanese (ja)
Other versions
JP2007247070A (en
JP2007247070A5 (en
Inventor
秀樹 益田
和之 西尾
賢志 安井
卓哉 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2007164771A priority Critical patent/JP4838201B2/en
Publication of JP2007247070A publication Critical patent/JP2007247070A/en
Publication of JP2007247070A5 publication Critical patent/JP2007247070A5/en
Application granted granted Critical
Publication of JP4838201B2 publication Critical patent/JP4838201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、陽極酸化ポーラスアルミナ製造方法に関する。 The present invention relates to a process for the preparation of anodic porous alumina.

アルミニウムを陽極酸化することにより、表面に陽極酸化ポーラスアルミナの層を形成できることが知られている。この陽極酸化ポーラスアルミナは、膜面に対し垂直に配向した均一で微細な細孔が形成されたものであり、この細孔内に金属や半導体、有機物等の他物質を充填することにより、ナノメータースケールで規則的な細孔構造を有する複合体の作製が可能であり、電気・電子、光学、あるいは磁気デバイスへの応用が期待されている。   It is known that an anodized porous alumina layer can be formed on the surface by anodizing aluminum. This anodized porous alumina is formed with uniform and fine pores oriented perpendicular to the film surface. By filling the pores with other substances such as metals, semiconductors and organic matter, It is possible to produce composites having a regular pore structure on a meter scale, and application to electric / electronic, optical, or magnetic devices is expected.

これは、陽極酸化ポーラスアルミナにおいては、膜面に対して垂直に配向し、高いアスペクト比(孔長/孔径比)を有する細孔構造が容易に得られることから、細孔内に様々な物質を充填することで、アルミナと高アスペクト比充填物質からなる複合体が容易に得られることによる。これらの複合体の典型的な応用例の一つとして、陽極酸化ポーラスアルミナ細孔内に強磁性体(強磁性金属)を充填することにより作製される垂直磁気記録媒体が挙げられる。垂直磁気記録媒体では、媒体面内に対し垂直異方性をもたせる必要があるが、膜面に対し各細孔が垂直に配向した構造を有する陽極酸化ポーラスアルミナ細孔内に強磁性金属を充填することで、垂直磁化異方性を有する記録媒体を容易に得ることができる。   This is because, in anodized porous alumina, a pore structure having a high aspect ratio (pore length / pore diameter ratio) that is oriented perpendicularly to the film surface can be easily obtained. It is because the composite which consists of an alumina and a high aspect ratio filling substance is easily obtained by filling. As one of typical applications of these composites, there is a perpendicular magnetic recording medium manufactured by filling a ferromagnetic material (ferromagnetic metal) in anodized porous alumina pores. In a perpendicular magnetic recording medium, it is necessary to have perpendicular anisotropy in the medium plane, but anodized porous alumina pores having a structure in which each pore is oriented perpendicular to the film surface is filled with a ferromagnetic metal. Thus, a recording medium having perpendicular magnetization anisotropy can be easily obtained.

従来、陽極酸化ポーラスアルミナへの物質充填は、電気化学的手法、酸化物ゾル溶液を充填した後固化させるゾルゲル法、あるいは、化学平衡の変化に誘導された酸化物析出にもとづく化学析出法等が知られている。   Conventionally, substances are filled into anodized porous alumina by an electrochemical method, a sol-gel method in which an oxide sol solution is filled and then solidified, or a chemical precipitation method based on oxide precipitation induced by a change in chemical equilibrium. Are known.

一方、所望の物質を気化させた後細孔内へ析出させる、いわゆる真空蒸着法に基づいて、細孔内に物質を充填する手法も知られている。この手法によれば、化学反応によらず物質を簡便に細孔内に充填することが可能となるものの、陽極ポーラスアルミナ表面部分の細孔の直行性が低いことから、十分な高アスペクト比(細孔長/細孔径比)での充填は困難であった。すなわち、陽極酸化により作製されるポーラスアルミナにおいては、陽極酸化最初期に形成される酸化皮膜層がそれ以降に形成される酸化物層に比較して溶解性が低いことから、通常、形成された細孔の開口部の孔径が細孔内奥部の孔径よりも小さく、細孔の入口が塞がれたような形態になっているため、蒸着物質を奥まで充填することが困難になっている。また、細孔自身が、その開口部から奥部に向けて曲がって形成されることがあり、この点も、蒸着物質を高アスペクト比で充填することを困難にしている。
益田ら、電気化学会秋季大会講演要旨集、2E28(2001)
On the other hand, based on a so-called vacuum deposition method in which a desired substance is vaporized and then deposited in the pores, a method of filling the substance in the pores is also known. According to this method, although it is possible to easily fill the pores without depending on the chemical reaction, since the directity of the pores on the surface of the anode porous alumina is low, a sufficiently high aspect ratio ( Filling with a pore length / pore diameter ratio) was difficult. That is, in the porous alumina produced by anodic oxidation, the oxide film layer formed at the initial stage of anodic oxidation is usually formed because the solubility is lower than the oxide layer formed thereafter. Since the pore diameter at the opening of the pore is smaller than the pore diameter at the back of the pore and the inlet of the pore is blocked, it becomes difficult to fill the vapor deposition substance to the back. Yes. In addition, the pores themselves may be bent from the opening to the back, which also makes it difficult to fill the vapor deposition material with a high aspect ratio.
Masuda et al., Abstracts of Autumn Meeting of the Electrochemical Society of Japan, 2E28 (2001)

本発明の課題は、陽極酸化ポーラスアルミナの製造方法提供することにあり、例えば、陽極酸化ポーラスアルミナ細孔内に真空蒸着法により他物質を充填するに際し、高アスペクト比の充填構造を簡便に、かつ、安価に達成可能とした、陽極酸化ポーラスアルミナ複合体の製造に用いて好適な陽極酸化ポーラスアルミナの製造方法提供することにある。 An object of the present invention is to provide a method for producing an anodized porous alumina. For example, when filling other materials into the pores of an anodized porous alumina by a vacuum deposition method, a high aspect ratio filling structure can be easily provided. Another object of the present invention is to provide a method for producing an anodized porous alumina suitable for use in producing an anodized porous alumina composite that can be achieved at low cost.

上記課題を解決するために、本発明に係る陽極酸化ポーラスアルミナの製造方法は、陽極酸化ポーラスアルミナの製造方法であって、
(1)アルミニウム素材に陽極酸化を施す工程
(2)前記工程で形成された陽極酸化ポーラスアルミナの細孔の開口部を、エッチング処理により拡径する工程
(3)再び陽極酸化を行い、それまでに形成された細孔の底部から延長する細孔を形成する工程
(4)さらに、それまでに形成された細孔に対してエッチング処理を行う工程、を含み、
前記工程(3)及び(4)は、複数回繰り返されることを特徴とし、
前記細孔の前記開口部をラッパ状とし、前記細孔の断面形状を階段状とすることを特徴とする方法からなる。
すなわち、まず、陽極酸化ポーラスアルミナの細孔構造の細孔開口部における、開口部を塞ぐように形成されていた部分をエッチング処理により選択的に溶解除去し、所望の孔径を有する開口部分を確保する。これにより、例えば細孔内に真空蒸着により他物質を充填する場合には、蒸着物質が容易に細孔内奥部に到達できるようになり、これによって、容易に高アスペクト比の充填構造を有する複合体が得られる。
In order to solve the above problems, a method for producing an anodized porous alumina according to the present invention is a method for producing an anodized porous alumina,
(1) A process of anodizing an aluminum material ,
(2) A step of expanding the pore opening of the anodized porous alumina formed in the step by an etching process ,
(3) performing anodization again and forming pores extending from the bottom of the pores formed so far ;
(4) Furthermore, the process of performing the etching process with respect to the pore formed so far ,
The steps (3) and (4) are repeated a plurality of times,
The method is characterized in that the opening of the pore has a trumpet shape and the cross-sectional shape of the pore has a step shape .
That is, first, the portion of the pore opening portion of the pore structure of the anodized porous alumina that was formed so as to close the opening portion is selectively dissolved and removed by an etching process to secure an opening portion having a desired pore diameter. To do. Thereby, for example, when filling other materials into the pores by vacuum deposition, the deposited material can easily reach the inner part of the pores, thereby easily having a high aspect ratio filling structure. A complex is obtained.

そしてとくに本発明では、上記エッチング処理の後再び陽極酸化を行うことにより、初期に形成されていた細孔の底部からさらに延長する細孔を形成し、この2段の細孔に対してさらに上記エッチング処理を行う。また、この陽極酸化とエッチング処理を複数回繰り返すことにより、細孔開口部における溶解がより進行してより確実に所望の細孔開口部の拡径処理が行われるとともに、細孔の開口部側ほど拡径された断面形状が階段状の細孔形状となるので、例えば真空蒸着の際に、細孔の奥深くまで、一層容易に充填されるようになる。さらに本発明では、後述の図5に例示するように、エッチング処理による細孔開口部の拡径作用をより積極的に利用し、ラッパ状に開いた細孔開口部を形成し、より物質を充填しやすくすることができる。このような形態にすると、真空蒸着による細孔内への物質の充填深さ(充填量)のコントロールまで容易に行うことができるようになる。 In the present invention, in particular, by performing anodization again after the etching process, a pore extending further from the bottom of the pore that was initially formed is formed. Etching is performed. In addition, by repeating this anodization and etching treatment a plurality of times, dissolution at the pore openings proceeds more and the desired pore opening is expanded more reliably, and the pore opening side Since the cross-sectional shape that has been increased in diameter becomes a stepped pore shape, for example, in the case of vacuum vapor deposition, it is more easily filled deep into the pore. Furthermore, in the present invention, as illustrated in FIG. 5 to be described later, the pore opening portion that is opened in a trumpet shape is formed more actively by utilizing the diameter expanding action of the pore opening portion by the etching process, and the substance is more Easy to fill. With such a configuration, it becomes possible to easily perform control of the filling depth (filling amount) of the substance into the pores by vacuum deposition.

また、真空蒸着の際には、蒸着ビームと細孔とが極力平行関係にあることが、十分な充填のためには好ましいが、これは、たとえば真空蒸着の際に、蒸着源と基板である陽極酸化ポーラスアルミナの間にコリメーターを設置し、蒸着源からの原子ビーム(蒸着ビーム)の直進性(直行性)を向上させ、蒸着ビームを細孔延在方向と平行にして、他物質を細孔内により容易に充填できるようにすることによって達成できる。   Further, in vacuum deposition, it is preferable that the deposition beam and the pores be in a parallel relationship as much as possible for sufficient filling, but this is, for example, a deposition source and a substrate in vacuum deposition. A collimator is installed between the anodized porous alumina to improve the straightness (straightness) of the atomic beam (deposition beam) from the deposition source, make the deposition beam parallel to the pore extension direction, This can be achieved by making it easier to fill the pores.

細孔内に充填される上記他物質は複合体の用途に応じて決めればよい。たとえば前述したような垂直磁気記録媒体とする場合には、細孔内に充填する他物質として強磁性体を用いればよい。このような本発明方法を用いて製造された陽極酸化ポーラスアルミナ複合体は、とくに、電気・電子、光学、または磁気デバイスを構成するのに使用できる。   What is necessary is just to determine the said other substance with which it fills in a pore according to the use of a composite_body | complex. For example, in the case of the perpendicular magnetic recording medium as described above, a ferromagnetic material may be used as another substance filled in the pores. Such an anodized porous alumina composite produced by using the method of the present invention can be used to constitute, in particular, an electric / electronic, optical or magnetic device.

本発明により、例えば後述の図6に示すように、陽極酸化処理及びエッチング処理を行うことにより複数の細孔部分が形成された陽極酸化ポーラスアルミナであって、該細孔の断面形状が階段状であることを特徴とする陽極酸化ポーラスアルミナ提供される。 According to the present invention, for example, as shown in FIG. 6 described later, anodized porous alumina in which a plurality of pore portions are formed by performing anodizing treatment and etching treatment, and the cross-sectional shape of the pores is stepped. An anodized porous alumina is provided .

以上説明したように、本発明に係る陽極酸化ポーラスアルミナの製造方法よれば、例えば細孔内に他物質を充填して陽極酸化ポーラスアルミナ複合体を製造する場合、従来の方法に比較し、陽極酸化ポーラスアルミナ細孔内に容易に、且つ密に物質を充填した複合体の作製が可能となり、この結果、高性能なデバイスの作製が可能となる。 As described above , according to the method for producing an anodized porous alumina according to the present invention, for example, when producing an anodized porous alumina composite by filling other substances in the pores, compared to the conventional method, It becomes possible to fabricate a complex in which the material is easily and densely filled in the pores of the anodized porous alumina. As a result, it is possible to fabricate a high-performance device.

以下に、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明を利用して細孔内に他物質を充填して陽極酸化ポーラスアルミナ複合体を製造する場合における、陽極酸化、真空蒸着、平滑化のプロセスの基本的な概念を模式的に示している。すなわち、アミニウム素材1に陽極酸化処理を施すことにより、規則的な細孔2を有する陽極酸化ポーラスアルミナ3の層が形成される。二段階陽極酸化処理を施せば、細孔2の均一性、規則性を向上できる。この陽極酸化ポーラスアルミナ3に真空蒸着により、他物質、たとえばニッケルが蒸着される。蒸着物質4は、陽極酸化ポーラスアルミナ3の細孔2内に充填されるが、細孔2以外の表面にも蒸着され、その分表面に凹凸が形成されてしまうので、凸部分を機械的あるいは化学的に除去し、表面を平滑化する。このような方法により、たとえば垂直磁気記録媒体等に好適な陽極酸化ポーラスアルミナ複合体5の構造が完成する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows the basic concept of anodizing, vacuum deposition, and smoothing processes when anodized porous alumina composite is produced by filling the pores with other substances using the present invention. It shows. That is, by anodizing the A Le Miniumu material 1, a layer of anodized porous alumina 3 having regular pores 2 are formed. If the two-step anodizing treatment is performed, the uniformity and regularity of the pores 2 can be improved. Another material such as nickel is deposited on the anodized porous alumina 3 by vacuum deposition. The vapor deposition material 4 is filled in the pores 2 of the anodized porous alumina 3, but is also deposited on the surface other than the pores 2, and as a result, irregularities are formed on the surface. Remove chemically and smooth the surface. By such a method, for example, the structure of the anodized porous alumina composite 5 suitable for a perpendicular magnetic recording medium or the like is completed.

このような基本プロセスにおいては、前述したように、陽極酸化によるポーラスアルミナ3の形成段階において、図2に示すように、陽極酸化最初期に形成される酸化皮膜層がそれ以降に形成される酸化物層に比較して溶解性が低いことから、細孔2の開口部に該開口部を塞ぐような形状の孔径の小さい部分6(酸化皮膜部)が形成されてしまう。この状態のまま、真空蒸着を行うと、図3に示すように、蒸着物質4が細孔2内に均一に充填されず、偏在してしまうか、細孔2内の奥部まで到達しない事態を招く。さらに、細孔2自身が曲がって形成されることもあり、これも不十分な充填を助長する。   In such a basic process, as described above, in the step of forming porous alumina 3 by anodic oxidation, as shown in FIG. 2, an oxide film layer formed in the initial stage of anodic oxidation is oxidized thereafter. Since the solubility is lower than that of the physical layer, a portion 6 (oxide film portion) having a small pore diameter is formed in the opening of the pore 2 so as to close the opening. When vacuum deposition is performed in this state, as shown in FIG. 3, the vapor deposition material 4 is not uniformly filled in the pores 2 and is unevenly distributed or does not reach the inner part of the pores 2. Invite. In addition, the pores 2 themselves may be bent, which also encourages insufficient filling.

そこで本発明においては、後述の図6、図7に示すような特定の処理を行う。後述の図6、図7を用いて説明を行う前に、まず、本発明において前提となる基本技術思想について説明する。図4に示すように、真空蒸着法に基づく物質充填に先立ち、エッチング処理を行うことにより、上記細孔2の開口部に存在していた酸化皮膜部6を除去し、それによって十分に拡径された細孔開口部7を確保し、その後に真空蒸着によって物質4を充填するようにしている。十分に拡径された細孔開口部7が確保された状態で物質4が充填されるので、図4に示すように物質4は細孔2内に入口から最奥部までの全体にわたって十分に蜜に充填される。蒸着後には、前述した表面の平滑化を行い、所望の陽極酸化ポーラスアルミナ複合体5の構造が完成する。   Therefore, in the present invention, specific processing as shown in FIGS. 6 and 7 described later is performed. Prior to the description with reference to FIGS. 6 and 7 to be described later, first, the basic technical concept which is a premise in the present invention will be described. As shown in FIG. 4, the oxide film portion 6 existing at the opening of the pore 2 is removed by performing an etching process prior to the material filling based on the vacuum deposition method, thereby sufficiently expanding the diameter. The formed pore opening 7 is secured, and then the substance 4 is filled by vacuum deposition. Since the substance 4 is filled in the state where the sufficiently enlarged pore opening 7 is secured, the substance 4 is sufficiently filled in the pore 2 from the inlet to the innermost part as shown in FIG. Filled with honey. After vapor deposition, the above-described surface smoothing is performed, and the desired structure of the anodized porous alumina composite 5 is completed.

上記陽極酸化ポーラスアルミナの製造におけるエッチング処理としては、リン酸に代表される陽極酸化ポーラスアルミナを溶解するエッチング溶液の他、イオンミリングをはじめとする乾式エッチングプロセスを利用することもできる。 As an etching treatment in the production of the anodized porous alumina, a dry etching process such as ion milling can be used in addition to an etching solution for dissolving an anodized porous alumina represented by phosphoric acid.

また、図4に示したプロセスでは、エッチング処理により主として酸化皮膜部6のみを除去するようにしたが、本発明ではとくに、このエッチング処理による細孔開口部の拡径作用をより積極的に利用し、たとえば図5に示すように、ラッパ状に開いた細孔開口部8を形成し、より物質4を充填しやすくするこのような形態にすると、真空蒸着による細孔2内への物質4の充填深さ(充填量)のコントロールまで容易に行うことができるようになる。 Further, in the process shown in FIG. 4, only the oxide film portion 6 is mainly removed by the etching process , but in the present invention, in particular, the effect of expanding the pore opening by the etching process is more actively used. For example, as shown in FIG. 5, a pore opening 8 that is opened in a trumpet shape is formed to make it easier to fill the substance 4 . With such a configuration, it becomes possible to easily control the filling depth (filling amount) of the substance 4 into the pores 2 by vacuum deposition.

そして本発明においては、細孔2は次のように形成される。図6に示すように、上記の如くエッチング処理により拡径された細孔開口部7を確保した後に、さらに陽極酸化処理を行い、それまでに形成されていた細孔2の底部からさらに延びる細孔9を形成し、これら両細孔2、9に対してさらにエッチング処理を施す。そして、さらに陽極酸化処理を行ってさらなる細孔10を追加する。さらに、続いてエッチング処理を行うこともできる。このような陽極酸化処理とエッチング処理により形成された複数の細孔の、各細孔の断面形状は、図6に示すように、階段状の断面形状に形成される。また、上記のように、陽極酸化とエッチング処理を繰り返すことにより、たとえば図7に示すような逆台形形状に近い細孔11とすることも可能になり、物質充填上より望ましい形態に近づけることも可能になる。 In the present invention, the pores 2 are formed as follows. As shown in FIG. 6, after securing the pore opening 7 whose diameter has been expanded by the etching process as described above, anodization is further performed, and a finer extending further from the bottom of the pore 2 formed so far. Holes 9 are formed, and these two pores 2 and 9 are further etched. Then, further pores 10 are added by further anodizing . Further, an etching process can be performed subsequently. The cross-sectional shape of each of the plurality of pores formed by such anodizing treatment and etching treatment is formed into a step-like cross-sectional shape as shown in FIG. Further, by repeating the anodic oxidation and the etching process as described above, it becomes possible to make the pores 11 close to an inverted trapezoidal shape as shown in FIG. It becomes possible.

また、真空蒸着による物質の充填をより容易に、かつ、細孔の奥深くまでより確実に供給するためには、蒸着源からの蒸着ビームの直進性を確保し、その直行方向と細孔の延在方向とを平行にすることが好ましい。このためには、前述したようにコリメーターを利用すればよい。   In addition, in order to more easily supply the material by vacuum deposition and more reliably supply deep into the pores, the straightness of the vapor deposition beam from the vapor deposition source is ensured, and the straight direction and the extension of the pores are secured. It is preferable that the current direction is parallel. For this purpose, a collimator may be used as described above.

以下に、本発明を実施例に基づいて説明する。
参考実施例1
0.3Mシュウ酸を電解とし、16℃の条件下、40Vで、30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、細孔開口部の孔径拡大処理を施した。試料を水洗・乾燥の後、真空蒸着法により金属(Ni)充填を行った。真空蒸着は、圧力1.3×10-3Paの条件のもと、電子ビーム溶解法を用いNiを真空蒸着した。このときの真空蒸着速度は0.2nm/sであった。200nmの厚さのNiを蒸着した後、試料を破断し、走査電子顕微鏡で観察した結果、細孔内にNiが十分に充填されているのが確認された。
Hereinafter, the present invention will be described based on examples.
Reference Example 1
0.3M oxalic acid was electrolyzed, and anodization was performed at 40V and 40s for 30s under the condition of 16 ° C. Thereafter, the sample was immersed in 5 wt%, 30 ° C. phosphoric acid for 10 min, and subjected to a pore diameter enlargement treatment of the pore opening. The sample was washed with water and dried, and then filled with metal (Ni) by vacuum deposition. In vacuum deposition, Ni was vacuum deposited using an electron beam melting method under the condition of a pressure of 1.3 × 10 −3 Pa. The vacuum deposition rate at this time was 0.2 nm / s. After vapor-depositing Ni having a thickness of 200 nm, the sample was broken and observed with a scanning electron microscope. As a result, it was confirmed that Ni was sufficiently filled in the pores.

実施例2
実施例1と同様の方法で、陽極酸化、エッチング処理を施した後、再び、同様の条件で30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、孔径拡大処理を施した。その後、再び同様の陽極酸化、孔径拡大処理を2サイクル施した。2サイクル目の孔径拡大処理では、孔径拡大処理時間を15minとした。試料を水洗・乾燥の後、実施例1と同様の条件で金属(Ni)充填を行った。走査電子顕微鏡観察を行った結果、細孔内にNiが十分に充填されているのが確認された。
Example 2
Anodization and etching were performed in the same manner as in Example 1, and then 30s anodization was performed again under the same conditions. Thereafter, the sample was immersed for 10 min in 5 wt%, 30 ° C. phosphoric acid, and subjected to a pore diameter expansion treatment. Thereafter, the same anodic oxidation and pore diameter expansion treatment were again performed for two cycles. In the hole diameter enlargement process in the second cycle, the hole diameter enlargement process time was set to 15 minutes. The sample was washed with water and dried, and then filled with metal (Ni) under the same conditions as in Example 1. As a result of scanning electron microscope observation, it was confirmed that Ni was sufficiently filled in the pores.

実施例3
0.3M硫酸を電解とし、0℃の条件下、25Vで、30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、孔径拡大処理を施した。その後、再び同様の陽極酸化、孔径拡大処理を2サイクル施した。2サイクル目の孔径拡大処理では、孔径拡大処理時間を15minとした。試料を水洗・乾燥の後、実施例1と同様の方法で真空蒸着法によりNiの充填を行った。Ni蒸着の後、試料を破断し、走査電子顕微鏡で観察した結果、細孔内にNiが十分に充填されているのが確認された。
Example 3
0.3M sulfuric acid was electrolyzed, and anodization was performed for 30 s at 25 V under the condition of 0 ° C. Thereafter, the sample was immersed for 10 min in 5 wt%, 30 ° C. phosphoric acid, and subjected to a pore diameter expansion treatment. Thereafter, the same anodic oxidation and pore diameter expansion treatment were again performed for two cycles. In the hole diameter enlargement process in the second cycle, the hole diameter enlargement process time was set to 15 minutes. After the sample was washed with water and dried, Ni was filled by vacuum deposition in the same manner as in Example 1. After Ni deposition, the sample was broken and observed with a scanning electron microscope. As a result, it was confirmed that Ni was sufficiently filled in the pores.

参考実施例4
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いCoを充填させた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にCoが十分に充填されていることが確認された。
Reference Example 4
In the same manner as in Example 1, Co was filled into the pores of the anodized porous alumina using a vacuum deposition method. The degree of vacuum, the deposition rate, and the deposited film thickness are the same as in Example 1. As a result of observation with a scanning electron microscope, it was confirmed that the pores were sufficiently filled with Co.

参考実施例5
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いSiを充填させた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にSiが十分に充填されていることが確認された。
Reference Example 5
In the same manner as in Example 1, Si was filled into the pores of the anodized porous alumina using a vacuum deposition method. The degree of vacuum, the deposition rate, and the deposited film thickness are the same as in Example 1. Thereafter, as a result of observation with a scanning electron microscope, it was confirmed that the pores were sufficiently filled with Si.

参考実施例6
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いフタロシアニンを充填させた。蒸着源としては、タングステン製熱蒸着源を用いた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にフタロシアニンが十分に充填されていることが確認された。
Reference Example 6
In the same manner as in Example 1, phthalocyanine was filled into the anodized porous alumina pores using a vacuum deposition method. A tungsten thermal evaporation source was used as the evaporation source. The degree of vacuum, the deposition rate, and the deposited film thickness are the same as in Example 1. Thereafter, as a result of observation with a scanning electron microscope, it was confirmed that the phthalocyanine was sufficiently filled in the pores.

参考実施例7
実施例1と同様の方法で陽極酸化を施した後、Niの真空蒸着を行うことにより細孔内にNiの充填を行った。この際、蒸着源と試料の間に高アスペクト比の直行細孔を有するコリメーターを設置した。蒸着に際してコリメーターを用いることにより、より細孔内部にまでNiの充填が可能になることが確認された。
Reference Example 7
After anodizing by the same method as in Example 1, Ni was vacuum filled to fill the pores with Ni. At this time, a collimator having high-aspect-ratio direct pores was installed between the vapor deposition source and the sample. It was confirmed that Ni could be filled into the pores by using a collimator during vapor deposition.

参考実施例8
実施例1と同様の方法で陽極酸化を施した後、イオンミリングにより表面のエッチングを施した。イオンミリングは、アルゴンをエッチング用ガスとして用い、圧力5×10-3Pa、加速電圧5.0kVにて、8min行った。その後、実施例1と同様の条件でNiの充填を行った結果、十分に金属を充填できることが確認された。
Reference Example 8
After anodizing by the same method as in Example 1, the surface was etched by ion milling. Ion milling was performed for 8 min at a pressure of 5 × 10 −3 Pa and an acceleration voltage of 5.0 kV using argon as an etching gas. Thereafter, as a result of filling with Ni under the same conditions as in Example 1, it was confirmed that the metal could be sufficiently filled.

本発明に係る方法におけるプロセスの基本概念を示す概略構成図である。It is a schematic block diagram which shows the basic concept of the process in the method which concerns on this invention. 陽極酸化ポーラスアルミナ作製段階における細孔形態を示す概略断面図である。It is a schematic sectional drawing which shows the pore form in the anodized porous alumina preparation stage. 図2の形態のまま蒸着を行う場合の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state in the case of performing vapor deposition with the form of FIG. 本発明におけるエッチング処理を含む陽極酸化ポーラスアルミナ複合体の製造プロセスを示す概略構成図である。It is a schematic block diagram which shows the manufacturing process of the anodized porous alumina composite containing the etching process in this invention. 細孔開口部に対するエッチング処理の別の例を示す概略構成図である。It is a schematic block diagram which shows another example of the etching process with respect to a pore opening part. 本発明の一実施態様に係る方法において、陽極酸化とエッチング処理を繰り返す場合の例を示す概略構成図である。It is a schematic block diagram which shows the example in the case of repeating the anodizing and etching process in the method which concerns on one embodiment of this invention. 図6のプロセスにより形成される細孔形状の概念図である。It is a conceptual diagram of the pore shape formed by the process of FIG.

符号の説明Explanation of symbols

1 アルミニウム素材
2 細孔
3 陽極酸化ポーラスアルミナ
4 蒸着物質
5 陽極酸化ポーラスアルミナ複合体
6 孔径が小さい部分(酸化皮膜部)
7 拡径された細孔開口部
8 ラッパ状に開いた細孔開口部
9 さらに延びる細孔
10 さらなる細孔
11 逆台形形状に近い細孔
1 Aluminum Material 2 Pore 3 Anodized Porous Alumina 4 Vapor Deposition Material 5 Anodized Porous Alumina Composite 6 Portion with Small Pore Diameter (Oxide Film Part)
7 Expanded pore openings 8 Trumpet-shaped pore openings 9 Further extending pores 10 Further pores 11 Pores close to inverted trapezoidal shape

Claims (2)

陽極酸化ポーラスアルミナの製造方法であって、
(1)アルミニウム素材に陽極酸化を施す工程、
(2)前記工程で形成された陽極酸化ポーラスアルミナの細孔の開口部を、エッチング処理により拡径する工程、
(3)再び陽極酸化を行い、それまでに形成された細孔の底部から延長する細孔を形成する工程、
(4)さらに、それまでに形成された細孔に対してエッチング処理を行う工程、を含み、
前記工程(3)及び(4)は、複数回繰り返されることを特徴とし、
前記細孔の前記開口部をラッパ状とし、前記細孔の断面形状を階段状とすることを特徴とする、陽極酸化ポーラスアルミナの製造方法。
A method for producing anodized porous alumina, comprising:
(1) A process of anodizing an aluminum material,
(2) A step of expanding the pore opening of the anodized porous alumina formed in the step by an etching process,
(3) performing anodization again and forming pores extending from the bottom of the pores formed so far;
(4) Furthermore, the process of performing the etching process with respect to the pore formed so far,
The steps (3) and (4) are repeated a plurality of times,
A method for producing anodized porous alumina, characterized in that the opening of the pore has a trumpet shape and the cross-sectional shape of the pore has a stepped shape.
最終工程が陽極酸化工程であることを特徴とする、請求項1に記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to claim 1, wherein the final step is an anodizing step.
JP2007164771A 2007-06-22 2007-06-22 Method for producing anodized porous alumina Expired - Lifetime JP4838201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164771A JP4838201B2 (en) 2007-06-22 2007-06-22 Method for producing anodized porous alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164771A JP4838201B2 (en) 2007-06-22 2007-06-22 Method for producing anodized porous alumina

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003004072A Division JP2004217961A (en) 2003-01-10 2003-01-10 Anodized porous alumina composite material and its producing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009210837A Division JP4595043B2 (en) 2009-09-11 2009-09-11 Method for producing anodized porous alumina

Publications (3)

Publication Number Publication Date
JP2007247070A JP2007247070A (en) 2007-09-27
JP2007247070A5 JP2007247070A5 (en) 2009-10-22
JP4838201B2 true JP4838201B2 (en) 2011-12-14

Family

ID=38591676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164771A Expired - Lifetime JP4838201B2 (en) 2007-06-22 2007-06-22 Method for producing anodized porous alumina

Country Status (1)

Country Link
JP (1) JP4838201B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122769A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2012088051A (en) * 2012-01-26 2012-05-10 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
WO2016024803A1 (en) * 2014-08-14 2016-02-18 한국전기연구원 Relief mould production method, membrane produced by using relief mould and production method therefor
KR101747856B1 (en) 2017-02-09 2017-06-15 (주)포인트엔지니어링 Cutting method for Anodic oxide film structure and Unit Anodic oxide film structure using the same
US11189474B2 (en) 2018-02-09 2021-11-30 Hamamatsu Photonics K.K. Sample support, ionization method, and mass spectrometry method
WO2019155834A1 (en) 2018-02-09 2019-08-15 浜松ホトニクス株式会社 Sample support, ionization method, and mass spectrometry method
US11404256B2 (en) 2018-02-09 2022-08-02 Hamamatsu Photonics K.K. Sample support, ionization method, and mass spectrometry method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113169A (en) * 1993-10-13 1995-05-02 Mitsubishi Electric Corp Device for forming thin film
JP3756664B2 (en) * 1998-04-15 2006-03-15 富士写真フイルム株式会社 Method for producing support for lithographic printing plate
JP4536866B2 (en) * 1999-04-27 2010-09-01 キヤノン株式会社 Nanostructure and manufacturing method thereof
JP3754876B2 (en) * 2000-07-03 2006-03-15 キヤノン株式会社 Method for producing structure having pores and structure having pores

Also Published As

Publication number Publication date
JP2007247070A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4838201B2 (en) Method for producing anodized porous alumina
Gao et al. Diamond-based supercapacitors: realization and properties
JP2004217961A (en) Anodized porous alumina composite material and its producing method
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
JP5851165B2 (en) Method for forming microstructure and method for producing porous alumina composite
KR20120028674A (en) Method of fabricating anodic aluminium oxide
JP2007247070A5 (en) Method for producing anodized porous alumina and anodized porous alumina
Sacco et al. Fabrication of porous anodic alumina (PAA) templates with straight pores and with hierarchical structures through exponential voltage decrease technique
Maria Chong et al. Soft imprinting: creating highly ordered porous anodic alumina templates on substrates for nanofabrication
JP5344850B2 (en) Anodized porous alumina and method for producing the same
JP2012162769A (en) Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method
JP4595043B2 (en) Method for producing anodized porous alumina
JP4641442B2 (en) Method for producing porous body
JP6760640B2 (en) Manufacturing method of anodic oxide porous alumina
KR101202017B1 (en) Method for manufacturing Ag nano-wire by using plasma sputtering
CN105977122B (en) The preparation of porous silicon nitride support membrane pane
CN100529196C (en) Preparation process of metal aluminium template for assembling nano-micron array material
JP5642362B2 (en) Anodized porous alumina and method for producing the same
Chahrour et al. Influence of the Voltage on Pore Diameter and Growth Rate of Thin Anodic Aluminium Oxide (AAO) Pattern on Silicon Substrate
JP4136723B2 (en) Structure and manufacturing method of structure
KR20110139851A (en) Nano template and fabrication method thereof
JP5642585B2 (en) Method for producing anodized porous alumina and anodized porous alumina produced by the method
KR100779141B1 (en) A method for preparing carbon nanotubes field emitter arrays fabricated on anodic aluminum oxide membrane bonded on silicon wafer
JP4125151B2 (en) Manufacturing method of structure
TWI480393B (en) The structure and fabrication process of nano steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090903

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100705

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4838201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term