JP2004217961A - Anodized porous alumina composite material and its producing method - Google Patents

Anodized porous alumina composite material and its producing method Download PDF

Info

Publication number
JP2004217961A
JP2004217961A JP2003004072A JP2003004072A JP2004217961A JP 2004217961 A JP2004217961 A JP 2004217961A JP 2003004072 A JP2003004072 A JP 2003004072A JP 2003004072 A JP2003004072 A JP 2003004072A JP 2004217961 A JP2004217961 A JP 2004217961A
Authority
JP
Japan
Prior art keywords
porous alumina
pores
anodized porous
pore
alumina composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004072A
Other languages
Japanese (ja)
Inventor
Hideki Masuda
秀樹 益田
Kazuyuki Nishio
和之 西尾
Kenji Yasui
賢志 安井
Takuya Morikawa
卓哉 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2003004072A priority Critical patent/JP2004217961A/en
Publication of JP2004217961A publication Critical patent/JP2004217961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anodized porous alumina composite material and its producing method with which in the case of filling up the other material into the anodized porous alumina fine holes with a vacuum deposition method, the filling structure having high aspect ratio can simply be obtained at a low cost. <P>SOLUTION: This composite material is produced by filling up the other material into the fine holes of the anodized porous alumina. Then, this complex material is produced so as to fill up the other material into the fine holes with the vacuum deposition after expanding the diameters of the opening hole parts of at least fine holes with an etching treatment. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、陽極酸化ポーラスアルミナの細孔内に金属や半導体、有機物等の他物質を充填した陽極酸化ポーラスアルミナ複合体及びその製造方法に関する。
【0002】
【従来の技術】
アルミニウムを陽極酸化することにより、表面に陽極酸化ポーラスアルミナの層を形成できることが知られている。この陽極酸化ポーラスアルミナは、膜面に対し垂直に配向した均一で微細な細孔が形成されたものであり、この細孔内に金属や半導体、有機物等の他物質を充填することにより、ナノメータースケールで規則的な細孔構造を有する複合体の作製が可能であり、電気・電子、光学、あるいは磁気デバイスへの応用が期待されている。
【0003】
これは、陽極酸化ポーラスアルミナにおいては、膜面に対して垂直に配向し、高いアスペクト比(孔長/孔径比)を有する細孔構造が容易に得られることから、細孔内に様々な物質を充填することで、アルミナと高アスペクト比充填物質からなる複合体が容易に得られることによる。これらの複合体の典型的な応用例の一つとして、陽極酸化ポーラスアルミナ細孔内に強磁性体(強磁性金属)を充填することにより作製される垂直磁気記録媒体が挙げられる。垂直磁気記録媒体では、媒体面内に対し垂直異方性をもたせる必要があるが、膜面に対し各細孔が垂直に配向した構造を有する陽極酸化ポーラスアルミナ細孔内に強磁性金属を充填することで、垂直磁化異方性を有する記録媒体を容易に得ることができる。
【0004】
従来、陽極酸化ポーラスアルミナへの物質充填は、電気化学的手法、酸化物ゾル溶液を充填した後固化させるゾルゲル法、あるいは、化学平衡の変化に誘導された酸化物析出にもとづく化学析出法等が知られている。
【0005】
一方、所望の物質を気化させた後細孔内へ析出させる、いわゆる真空蒸着法に基づいて、細孔内に物質を充填する手法も知られている。この手法によれば、化学反応によらず物質を簡便に細孔内に充填することが可能となるものの、陽極ポーラスアルミナ表面部分の細孔の直行性が低いことから、十分な高アスペクト比(細孔長/細孔径比)での充填は困難であった。すなわち、陽極酸化により作製されるポーラスアルミナにおいては、陽極酸化最初期に形成される酸化皮膜層がそれ以降に形成される酸化物層に比較して溶解性が低いことから、通常、形成された細孔の開口部の孔径が細孔内奥部の孔径よりも小さく、細孔の入口が塞がれたような形態になっているため、蒸着物質を奥まで充填することが困難になっている。また、細孔自身が、その開口部から奥部に向けて曲がって形成されることがあり、この点も、蒸着物質を高アスペクト比で充填することを困難にしている。
【0006】
【非特許文献1】
益田ら、電気化学会秋季大会講演要旨集、2E28(2001)
【0007】
【発明が解決しようとする課題】
本発明の課題は、陽極酸化ポーラスアルミナ細孔内に真空蒸着法により他物質を充填するに際し、高アスペクト比の充填構造を簡便に、かつ、安価に達成可能とした、陽極酸化ポーラスアルミナ複合体及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る陽極酸化ポーラスアルミナ複合体の製造方法は、陽極酸化ポーラスアルミナの細孔内に他物質を充填して複合体を製造する方法において、エッチング処理により少なくとも細孔の開口部を拡径した後、細孔内に真空蒸着により他物質を充填することを特徴とする方法からなる。すなわち、陽極酸化ポーラスアルミナの細孔構造の細孔開口部における、開口部を塞ぐように形成されていた部分をエッチング処理により選択的に溶解除去し、所望の孔径を有する開口部分を確保することで、蒸着物質が容易に細孔内奥部に到達できるようにする方法である。これによって、容易に高アスペクト比の充填構造を有する複合体が得られる。
【0009】
本発明に係る陽極酸化ポーラスアルミナ複合体の製造方法においては、この製造に使用する陽極酸化ポーラスアルミナを他段階陽極酸化により作製することが好ましい。他二段階陽極酸化により、細孔をより高規則化して形成することが可能になる。
【0010】
また、上記エッチング処理の後再び陽極酸化を行うことにより、初期に形成されていた細孔の底部からさらに延長する細孔を形成し、この2段の細孔に対してさらに上記エッチング処理を行うこともできる。また、この陽極酸化とエッチング処理を複数回繰り返すこともできる。このような繰り返し処理により、細孔開口部における溶解がより進行してより確実に所望の細孔開口部の拡径処理が行われるとともに、細孔の開口部側ほど拡径された細孔形状となるので、真空蒸着の際に、細孔の奥深くまで、一層容易に充填されるようになる。
【0011】
また、真空蒸着の際には、蒸着ビームと細孔とが極力平行関係にあることが、十分な充填のためには好ましいが、これは、たとえば真空蒸着の際に、蒸着源と基板である陽極酸化ポーラスアルミナの間にコリメーターを設置し、蒸着源からの原子ビーム(蒸着ビーム)の直進性(直行性)を向上させ、蒸着ビームを細孔延在方向と平行にして、他物質を細孔内により容易に充填できるようにすることによって達成できる。
【0012】
細孔内に充填される上記他物質は複合体の用途に応じて決めればよい。たとえば前述したような垂直磁気記録媒体とする場合には、細孔内に充填する他物質として強磁性体を用いればよい。
【0013】
本発明に係る陽極酸化ポーラスアルミナ複合体は、上記のような方法により製造されたものからなる。このような陽極酸化ポーラスアルミナ複合体は、とくに、電気・電子、光学、または磁気デバイスを構成するのに使用できる。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明における、陽極酸化、真空蒸着、平滑化のプロセスの基本的な概念を模式的に示している。すなわち、アウミニウム素材1に陽極酸化処理を施すことにより、規則的な細孔2を有する陽極酸化ポーラスアルミナ3の層が形成される。二段階陽極酸化処理を施せば、細孔2の均一性、規則性を向上できる。この陽極酸化ポーラスアルミナ3に真空蒸着により、他物質、たとえばニッケルが蒸着される。蒸着物質4は、陽極酸化ポーラスアルミナ3の細孔2内に充填されるが、細孔2以外の表面にも蒸着され、その分表面に凹凸が形成されてしまうので、凸部分を機械的あるいは化学的に除去し、表面を平滑化する。このような方法により、たとえば垂直磁気記録媒体等に好適な陽極酸化ポーラスアルミナ複合体5の構造が完成する。
【0015】
このような基本プロセスにおいては、前述したように、陽極酸化によるポーラスアルミナ3の形成段階において、図2に示すように、陽極酸化最初期に形成される酸化皮膜層がそれ以降に形成される酸化物層に比較して溶解性が低いことから、細孔2の開口部に該開口部を塞ぐような形状の孔径の小さい部分6(酸化皮膜部)が形成されてしまう。この状態のまま、真空蒸着を行うと、図3に示すように、蒸着物質4が細孔2内に均一に充填されず、偏在してしまうか、細孔2内の奥部まで到達しない事態を招く。さらに、細孔2自身が曲がって形成されることもあり、これも不十分な充填を助長する。
【0016】
そこで本発明においては、図4に示すように、真空蒸着法に基づく物質充填に先立ち、エッチング処理を行うことにより、上記細孔2の開口部に存在していた酸化皮膜部6を除去し、それによって十分に拡径された細孔開口部7を確保し、その後に真空蒸着によって物質4を充填するようにしている。十分に拡径された細孔開口部7が確保された状態で物質4が充填されるので、図4に示すように物質4は細孔2内に入口から最奥部までの全体にわたって十分に蜜に充填される。蒸着後には、前述した表面の平滑化を行い、所望の陽極酸化ポーラスアルミナ複合体5の構造が完成する。
【0017】
上記エッチング処理としては、リン酸に代表される陽極酸化ポーラスアルミナを溶解するエッチング溶液の他、イオンミリングをはじめとする乾式エッチングプロセスを利用することもできる。
【0018】
また、図4に示したプロセスでは、エッチング処理により主として酸化皮膜部6のみを除去するようにしたが、このエッチング処理による細孔開口部の拡径作用をより積極的に利用し、たとえば図5に示すように、ラッパ状に開いた細孔開口部8を形成し、より物質4を充填しやすくすることも可能である。このような形態にすると、真空蒸着による細孔2内への物質4の充填深さ(充填量)のコントロールまで容易に行うことができるようになる。
【0019】
さらに、図6に示すように、上記の如くエッチング処理により拡径された細孔開口部7を確保した後に、さらに陽極酸化処理を行い、それまでに形成されていた細孔2の底部からさらに延びる細孔9を形成し、これら両細孔2、9に対してさらにエッチング処理を施すこともできる。そして、さらに陽極酸化処理を行ってさらなる細孔10を追加することもでき、続いてエッチング処理を行うこともできる。このように、陽極酸化とエッチング処理を繰り返すことにより、たとえば図7に示すような逆台形形状に近い細孔11とすることが可能になり、物質充填上望ましい形態に近づけることが可能になる。
【0020】
また、真空蒸着による物質の充填をより容易に、かつ、細孔の奥深くまでより確実に供給するためには、蒸着源からの蒸着ビームの直進性を確保し、その直行方向と細孔の延在方向とを平行にすることが好ましい。このためには、前述したようにコリメーターを利用すればよい。
【0021】
【実施例】
以下に、本発明を実施例に基づいて説明する。
実施例1
0.3Mシュウ酸を電解とし、16℃の条件下、40Vで、30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、細孔開口部の孔径拡大処理を施した。試料を水洗・乾燥の後、真空蒸着法により金属(Ni)充填を行った。真空蒸着は、圧力1.3×10−3Paの条件のもと、電子ビーム溶解法を用いNiを真空蒸着した。このときの真空蒸着速度は0.2nm/sであった。200nmの厚さのNiを蒸着した後、試料を破断し、走査電子顕微鏡で観察した結果、細孔内にNiが十分に充填されているのが確認された。
【0022】
実施例2
実施例1と同様の方法で、陽極酸化、エッチング処理を施した後、再び、同様の条件で30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、孔径拡大処理を施した。その後、再び同様の陽極酸化、孔径拡大処理を2サイクル施した。2サイクル目の孔径拡大処理では、孔径拡大処理時間を15minとした。試料を水洗・乾燥の後、実施例1と同様の条件で金属(Ni)充填を行った。走査電子顕微鏡観察を行った結果、細孔内にNiが十分に充填されているのが確認された。
【0023】
実施例3
0.3M硫酸を電解とし、0℃の条件下、25Vで、30s陽極酸化を行った。その後、5wt%、30℃リン酸中に試料を10min浸漬し、孔径拡大処理を施した。その後、再び同様の陽極酸化、孔径拡大処理を2サイクル施した。2サイクル目の孔径拡大処理では、孔径拡大処理時間を15minとした。試料を水洗・乾燥の後、実施例1と同様の方法で真空蒸着法によりNiの充填を行った。Ni蒸着の後、試料を破断し、走査電子顕微鏡で観察した結果、細孔内にNiが十分に充填されているのが確認された。
【0024】
実施例4
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いCoを充填させた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にCoが十分に充填されていることが確認された。
【0025】
実施例5
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いSiを充填させた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にSiが十分に充填されていることが確認された。
【0026】
実施例6
実施例1と同様の方法で、陽極酸化ポーラスアルミナ細孔内に真空蒸着法を用いフタロシアニンを充填させた。蒸着源としては、タングステン製熱蒸着源を用いた。真空度、蒸着速度、および蒸着膜厚量は実施例1と同一である。その後走査電子顕微鏡観察を行った結果、細孔内にフタロシアニンが十分に充填されていることが確認された。
【0027】
実施例7
実施例1と同様の方法で陽極酸化を施した後、Niの真空蒸着を行うことにより細孔内にNiの充填を行った。この際、蒸着源と試料の間に高アスペクト比の直行細孔を有するコリメーターを設置した。蒸着に際してコリメーターを用いることにより、より細孔内部にまでNiの充填が可能になることが確認された。
【0028】
実施例8
実施例1と同様の方法で陽極酸化を施した後、イオンミリングにより表面のエッチングを施した。イオンミリングは、アルゴンをエッチング用ガスとして用い、圧力5×10−3Pa、加速電圧5.0kVにて、8min行った。その後、実施例1と同様の条件でNiの充填を行った結果、十分に金属を充填できることが確認された。
【0029】
【発明の効果】
以上説明したように、本発明に係る陽極酸化ポーラスアルミナ複合体及びその製造方法によれば、従来の方法に比較し、陽極酸化ポーラスアルミナ細孔内に容易に、且つ密に物質を充填した複合体の作製が可能となり、この結果、高性能なデバイスの作製が可能となる。
【図面の簡単な説明】
【図1】本発明に係る方法におけるプロセスの基本概念を示す概略構成図である。
【図2】陽極酸化ポーラスアルミナ作製段階における細孔形態を示す概略断面図である。
【図3】図2の形態のまま蒸着を行う場合の状態を示す概略断面図である。
【図4】本発明におけるエッチング処理を含む陽極酸化ポーラスアルミナ複合体の製造プロセスを示す概略構成図である。
【図5】細孔開口部に対するエッチング処理の別の例を示す概略構成図である。
【図6】陽極酸化とエッチング処理を繰り返す場合の例を示す概略構成図である。
【図7】図6のプロセスにより形成される細孔形状の概念図である。
【符号の説明】
1 アルミニウム素材
2 細孔
3 陽極酸化ポーラスアルミナ
4 蒸着物質
5 陽極酸化ポーラスアルミナ複合体
6 孔径が小さい部分(酸化皮膜部)
7 拡径された細孔開口部
8 ラッパ状に開いた細孔開口部
9 さらに延びる細孔
10 さらなる細孔
11 逆台形形状に近い細孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anodized porous alumina composite in which pores of anodized porous alumina are filled with other substances such as metals, semiconductors, and organic substances, and a method for producing the same.
[0002]
[Prior art]
It is known that a layer of anodized porous alumina can be formed on the surface by anodizing aluminum. This anodized porous alumina is formed with uniform and fine pores oriented perpendicular to the film surface, and by filling other substances such as metals, semiconductors, and organic substances into these pores, A composite having a regular pore structure at the meter scale can be produced, and application to electric / electronic, optical, or magnetic devices is expected.
[0003]
This is because, in anodized porous alumina, it is easy to obtain a pore structure that is oriented perpendicular to the film surface and has a high aspect ratio (pore length / pore diameter ratio). By filling, a composite comprising alumina and a high aspect ratio filling material can be easily obtained. As a typical application example of these composites, there is a perpendicular magnetic recording medium produced by filling a ferromagnetic material (ferromagnetic metal) into pores of anodized porous alumina. In perpendicular magnetic recording media, it is necessary to have perpendicular anisotropy in the plane of the medium. However, ferromagnetic metal is filled in the pores of anodized porous alumina that has a structure in which each pore is oriented perpendicular to the film plane By doing so, a recording medium having perpendicular magnetization anisotropy can be easily obtained.
[0004]
Conventionally, material filling into anodized porous alumina is performed by an electrochemical method, a sol-gel method in which an oxide sol solution is filled and then solidified, or a chemical deposition method based on oxide deposition induced by a change in chemical equilibrium. Are known.
[0005]
On the other hand, there is also known a method of filling a substance into pores based on a so-called vacuum deposition method in which a desired substance is vaporized and then deposited in the pores. According to this method, the substance can be easily filled into the pores without depending on the chemical reaction. However, since the perpendicularity of the pores on the surface of the anode porous alumina is low, a sufficiently high aspect ratio ( (Pore length / pore diameter ratio) was difficult. That is, in the porous alumina produced by the anodization, the oxide film layer formed in the initial stage of the anodization has a lower solubility than the oxide layer formed thereafter. Since the pore diameter of the pore opening is smaller than the pore diameter of the inner part of the pore, and the entrance of the pore is closed, it becomes difficult to fill the deposition material deep. I have. In addition, the pores themselves may be formed by bending from the opening to the back, which also makes it difficult to fill the deposition material with a high aspect ratio.
[0006]
[Non-patent document 1]
Masuda et al., Proceedings of the IEICE Autumn Conference, 2E28 (2001)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-aspect-ratio filling structure that can be easily and inexpensively achieved when filling another substance into the pores of anodized porous alumina by a vacuum deposition method. And a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a method for producing an anodized porous alumina composite according to the present invention is a method for producing a composite by filling other substances into pores of anodized porous alumina, wherein at least an etching process is performed. After the diameter of the opening of the pore is increased, the pore is filled with another substance by vacuum deposition. That is, in the pore opening of the pore structure of anodized porous alumina, a portion formed so as to close the opening is selectively dissolved and removed by etching to secure an opening having a desired pore diameter. This is a method for allowing the deposition material to easily reach the inner part of the pore. Thereby, a composite having a filling structure with a high aspect ratio can be easily obtained.
[0009]
In the method for producing an anodized porous alumina composite according to the present invention, it is preferable that the anodized porous alumina used in this production is produced by another-stage anodization. Another two-stage anodic oxidation makes it possible to form the pores in a higher order.
[0010]
Further, by performing anodic oxidation again after the above-described etching treatment, pores extending further from the bottom of the initially formed pores are formed, and the etching treatment is further performed on the two-stage pores. You can also. Further, the anodic oxidation and the etching treatment can be repeated a plurality of times. By such repetitive processing, the dissolution in the pore opening further progresses, and the diameter expansion processing of the desired pore opening is performed more reliably, and the pore shape that is increased in diameter toward the opening side of the pore. Therefore, during vacuum deposition, the pores can be more easily filled deep into the pores.
[0011]
Further, at the time of vacuum deposition, it is preferable that the deposition beam and the pores have a parallel relationship as much as possible, for sufficient filling, but this is, for example, at the time of vacuum deposition, a deposition source and a substrate. A collimator is installed between the anodized porous alumina to improve the straightness (orthogonality) of the atomic beam (evaporation beam) from the evaporation source, and to make the evaporation beam parallel to the direction in which the pores extend, to remove other substances This can be achieved by making it easier to fill in the pores.
[0012]
The other substance to be filled in the pores may be determined according to the use of the composite. For example, in the case of a perpendicular magnetic recording medium as described above, a ferromagnetic material may be used as another substance to fill the pores.
[0013]
The anodized porous alumina composite according to the present invention is produced by the above method. Such anodized porous alumina composites can be used, inter alia, to construct electrical, electronic, optical, or magnetic devices.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows the basic concept of the processes of anodic oxidation, vacuum deposition, and smoothing in the present invention. That is, by applying an anodizing treatment to the aluminium material 1, a layer of anodized porous alumina 3 having regular pores 2 is formed. By performing the two-stage anodic oxidation treatment, the uniformity and regularity of the pores 2 can be improved. Another substance, for example, nickel is deposited on the anodized porous alumina 3 by vacuum deposition. The deposition material 4 is filled in the pores 2 of the anodic oxidized porous alumina 3, but is also deposited on surfaces other than the pores 2, and irregularities are formed on the surface. It is chemically removed and the surface is smoothed. By such a method, for example, the structure of the anodized porous alumina composite 5 suitable for a perpendicular magnetic recording medium or the like is completed.
[0015]
In such a basic process, as described above, at the stage of forming the porous alumina 3 by anodic oxidation, as shown in FIG. Since the solubility is lower than that of the material layer, a portion 6 (oxide film portion) having a small hole diameter and having a shape that closes the opening is formed in the opening of the pore 2. If vacuum deposition is performed in this state, as shown in FIG. 3, the deposition material 4 is not uniformly filled in the pores 2 and is unevenly distributed or does not reach the inner part of the pores 2. Invite. Furthermore, the pores 2 themselves may be bent, which also promotes insufficient filling.
[0016]
Therefore, in the present invention, as shown in FIG. 4, prior to material filling based on the vacuum evaporation method, an oxide film portion 6 existing in the opening of the pore 2 is removed by performing an etching process. This ensures a sufficiently large pore opening 7 and then fills the substance 4 by vacuum evaporation. Since the substance 4 is filled in a state in which the pore opening 7 having a sufficiently enlarged diameter is secured, the substance 4 is sufficiently filled in the pore 2 from the inlet to the innermost part as shown in FIG. Filled with honey. After the vapor deposition, the surface is smoothed as described above, and the desired structure of the anodized porous alumina composite 5 is completed.
[0017]
As the etching treatment, in addition to an etching solution for dissolving anodized porous alumina represented by phosphoric acid, a dry etching process such as ion milling can be used.
[0018]
In addition, in the process shown in FIG. 4, only the oxide film portion 6 is mainly removed by the etching process. However, the effect of expanding the diameter of the pore opening by the etching process is more positively utilized. As shown in (1), it is also possible to form the pore opening 8 opened in a trumpet shape so that the substance 4 can be more easily filled. With such a configuration, it is possible to easily control the filling depth (filling amount) of the substance 4 into the pores 2 by vacuum deposition.
[0019]
Further, as shown in FIG. 6, after securing the pore opening 7 whose diameter has been increased by the etching treatment as described above, an anodic oxidation treatment is further performed to further remove the pore from the bottom of the pore 2 formed up to that point. It is also possible to form the elongated pores 9 and to perform an etching process on both the pores 2 and 9. Then, further pores 10 can be added by performing anodic oxidation treatment, and subsequently, etching treatment can be performed. As described above, by repeating the anodic oxidation and the etching treatment, it becomes possible to form the pores 11 close to, for example, an inverted trapezoidal shape as shown in FIG.
[0020]
Also, in order to more easily fill the substance by vacuum deposition and supply it to the depth of the pores more reliably, ensure the straightness of the vapor deposition beam from the deposition source, and extend the pores in the direction perpendicular to the perpendicular direction. It is preferred that the direction of presence is parallel. For this purpose, a collimator may be used as described above.
[0021]
【Example】
Hereinafter, the present invention will be described based on examples.
Example 1
Anodization was performed for 30 seconds at 40 V under the condition of 16 ° C. using 0.3 M oxalic acid as electrolysis. Thereafter, the sample was immersed in 5% by weight, phosphoric acid at 30 ° C. for 10 minutes to perform a pore diameter enlargement process at the pore opening. After washing and drying the sample, metal (Ni) filling was performed by a vacuum evaporation method. In vacuum deposition, Ni was vacuum-deposited using an electron beam melting method under a condition of a pressure of 1.3 × 10 −3 Pa. The vacuum deposition rate at this time was 0.2 nm / s. After evaporating Ni having a thickness of 200 nm, the sample was broken and observed with a scanning electron microscope. As a result, it was confirmed that Ni was sufficiently filled in the pores.
[0022]
Example 2
After anodizing and etching were performed in the same manner as in Example 1, anodizing was performed again for 30 seconds under the same conditions. Thereafter, the sample was immersed in 5% by weight phosphoric acid at 30 ° C. for 10 minutes to perform a pore diameter enlargement treatment. Thereafter, the same anodic oxidation and pore diameter enlargement treatments were again performed for two cycles. In the hole diameter enlargement process in the second cycle, the hole diameter enlargement time was 15 minutes. After washing and drying the sample, metal (Ni) filling was performed under the same conditions as in Example 1. As a result of scanning electron microscope observation, it was confirmed that the pores were sufficiently filled with Ni.
[0023]
Example 3
Using 0.3 M sulfuric acid as an electrolysis, anodic oxidation was performed at 25 V for 30 seconds at 0 ° C. Thereafter, the sample was immersed in 5% by weight phosphoric acid at 30 ° C. for 10 minutes to perform a pore diameter enlargement treatment. Thereafter, the same anodic oxidation and pore diameter enlargement treatments were again performed for two cycles. In the hole diameter enlargement process in the second cycle, the hole diameter enlargement time was 15 minutes. After washing and drying the sample, Ni was charged by a vacuum deposition method in the same manner as in Example 1. After Ni deposition, the sample was broken and observed with a scanning electron microscope. As a result, it was confirmed that the pores were sufficiently filled with Ni.
[0024]
Example 4
In the same manner as in Example 1, the pores of the anodic oxidized porous alumina were filled with Co using a vacuum evaporation method. The degree of vacuum, deposition rate, and deposited film thickness are the same as those in Example 1. After that, scanning electron microscope observation was performed, and it was confirmed that the pores were sufficiently filled with Co.
[0025]
Example 5
In the same manner as in Example 1, the pores of the anodized porous alumina were filled with Si using a vacuum deposition method. The degree of vacuum, deposition rate, and deposited film thickness are the same as those in Example 1. After that, scanning electron microscope observation was performed, and it was confirmed that the pores were sufficiently filled with Si.
[0026]
Example 6
In the same manner as in Example 1, the pores of anodized porous alumina were filled with phthalocyanine using a vacuum evaporation method. As the evaporation source, a thermal evaporation source made of tungsten was used. The degree of vacuum, deposition rate, and deposited film thickness are the same as those in Example 1. After that, scanning electron microscope observation confirmed that phthalocyanine was sufficiently filled in the pores.
[0027]
Example 7
After anodizing was performed in the same manner as in Example 1, Ni was filled in the pores by performing vacuum deposition of Ni. At this time, a collimator having a perpendicular pore with a high aspect ratio was provided between the evaporation source and the sample. It was confirmed that the use of a collimator at the time of vapor deposition makes it possible to fill Ni into the pores.
[0028]
Example 8
After anodization was performed in the same manner as in Example 1, the surface was etched by ion milling. The ion milling was performed using argon as an etching gas at a pressure of 5 × 10 −3 Pa and an acceleration voltage of 5.0 kV for 8 minutes. Thereafter, Ni was filled under the same conditions as in Example 1, and as a result, it was confirmed that the metal could be sufficiently filled.
[0029]
【The invention's effect】
As described above, according to the anodized porous alumina composite and the method of manufacturing the same according to the present invention, the composite in which the substance is easily and densely filled in the pores of the anodized porous alumina, compared to the conventional method. A body can be manufactured, and as a result, a high-performance device can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a basic concept of a process in a method according to the present invention.
FIG. 2 is a schematic cross-sectional view showing a pore morphology at a stage of producing anodized porous alumina.
FIG. 3 is a schematic cross-sectional view showing a state in which vapor deposition is performed in the state of FIG.
FIG. 4 is a schematic structural view showing a process for producing an anodized porous alumina composite including an etching treatment in the present invention.
FIG. 5 is a schematic configuration diagram showing another example of an etching process for a pore opening.
FIG. 6 is a schematic configuration diagram showing an example of a case where anodic oxidation and etching are repeated.
7 is a conceptual diagram of a pore shape formed by the process of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aluminum material 2 Pores 3 Anodized porous alumina 4 Deposition material 5 Anodized porous alumina composite 6 Portion with small pore size (oxide film portion)
7 Large-pore opening 8 Large-pore opening 9 opened in a trumpet shape Further extending pore 10 Further pore 11 Fine pore close to inverted trapezoidal shape

Claims (8)

陽極酸化ポーラスアルミナの細孔内に他物質を充填して複合体を製造する方法において、エッチング処理により少なくとも細孔の開口部を拡径した後、細孔内に真空蒸着により他物質を充填することを特徴とする、陽極酸化ポーラスアルミナ複合体の製造方法。In a method of manufacturing a composite by filling other substances into the pores of anodized porous alumina, after expanding at least the opening of the pores by etching, filling the pores with another substance by vacuum evaporation A method for producing an anodized porous alumina composite, comprising: 使用する陽極酸化ポーラスアルミナを二段階陽極酸化により作製する、請求項1の陽極酸化ポーラスアルミナ複合体の製造方法。The method for producing an anodized porous alumina composite according to claim 1, wherein the anodized porous alumina to be used is produced by two-stage anodization. 前記エッチング処理の後再び陽極酸化を行うことにより、初期に形成されていた細孔の底部から延長する細孔を形成し、この2段の細孔に対してさらに前記エッチング処理を行う、請求項1または2の陽極酸化ポーラスアルミナ複合体の製造方法。The anodic oxidation is performed again after the etching to form pores extending from the bottom of the initially formed pores, and the etching is further performed on the two-stage pores. A method for producing the anodized porous alumina composite according to 1 or 2. 前記陽極酸化とエッチング処理を複数回繰り返す、請求項3の陽極酸化ポーラスアルミナ複合体の製造方法。4. The method for producing an anodized porous alumina composite according to claim 3, wherein the anodizing and etching are repeated a plurality of times. 真空蒸着の際にコリメーターを用い、蒸着ビームを平行にして前記他物質を細孔内に充填する、請求項1〜4のいずれかに記載の陽極酸化ポーラスアルミナ複合体の製造方法。The method for producing an anodized porous alumina composite according to any one of claims 1 to 4, wherein the other substance is filled in the pores by using a collimator at the time of vacuum deposition and making the deposition beam parallel. 細孔内に充填される前記他物質として強磁性体を用いる、請求項1〜5のいずれかに記載の陽極酸化ポーラスアルミナ複合体の製造方法。The method for producing an anodized porous alumina composite according to any one of claims 1 to 5, wherein a ferromagnetic material is used as the other substance filled in the pores. 請求項1〜6のいずれかに記載の方法により製造された陽極酸化ポーラスアルミナ複合体。An anodized porous alumina composite produced by the method according to claim 1. 請求項7の陽極酸化ポーラスアルミナ複合体を用いて構成された電気・電子、光学、または磁気デバイス。An electric / electronic, optical, or magnetic device formed using the anodized porous alumina composite according to claim 7.
JP2003004072A 2003-01-10 2003-01-10 Anodized porous alumina composite material and its producing method Pending JP2004217961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004072A JP2004217961A (en) 2003-01-10 2003-01-10 Anodized porous alumina composite material and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004072A JP2004217961A (en) 2003-01-10 2003-01-10 Anodized porous alumina composite material and its producing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007164771A Division JP4838201B2 (en) 2007-06-22 2007-06-22 Method for producing anodized porous alumina

Publications (1)

Publication Number Publication Date
JP2004217961A true JP2004217961A (en) 2004-08-05

Family

ID=32895150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004072A Pending JP2004217961A (en) 2003-01-10 2003-01-10 Anodized porous alumina composite material and its producing method

Country Status (1)

Country Link
JP (1) JP2004217961A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323975A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Method of producing self-aligning nanochannel-array, and method of producing nanodot using self-aligning nanochannel array
JP2006328467A (en) * 2005-05-25 2006-12-07 Al Green Kk Anodic oxidation film applied aluminum substrate and method of manufacturing the same
JP2007098563A (en) * 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure
JP2007323736A (en) * 2006-05-31 2007-12-13 Sharp Corp Information recording medium
JP2008156705A (en) * 2006-12-25 2008-07-10 Fujifilm Corp Method of manufacturing microstructure, and microstructure
JP2008156716A (en) * 2006-12-25 2008-07-10 Fujifilm Corp Method of manufacturing microstructure and microstructure
JP2008270157A (en) * 2007-03-27 2008-11-06 Fujifilm Corp Anisotropic conductive member, and manufacturing method thereof
JP2009004061A (en) * 2006-08-11 2009-01-08 Canon Inc Patterned media, method of manufacturing magnetic recording medium, and method of manufacturing base
JP2009166502A (en) * 2004-12-03 2009-07-30 Sharp Corp Reflection preventing material, stamper, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2009536688A (en) * 2006-05-11 2009-10-15 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing member having multiple nanocylinders on substrate and use of the member
US7648760B2 (en) 2006-02-28 2010-01-19 Fujifilm Corporation Microstructure and method of manufacturing the same
US7722754B2 (en) 2006-06-16 2010-05-25 Fujifilm Corporation Microstructure and method of manufacturing the same
US8524607B2 (en) 2007-03-27 2013-09-03 Fujifilm Corporation Anisotropically conductive member and method of manufacture
WO2015080239A1 (en) * 2013-11-29 2015-06-04 富士フイルム株式会社 Lead-out electrode and ion source

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508711B2 (en) * 2003-04-21 2010-07-21 三星電子株式会社 Method for manufacturing self-aligned nanochannel array and method for manufacturing nanodot using self-aligned nanochannel array
US7901586B2 (en) 2003-04-21 2011-03-08 Samsung Electronics Co., Ltd. Method of manufacturing self-ordered nanochannel-array and method of manufacturing nanodot using the nanochannel-array
JP2004323975A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Method of producing self-aligning nanochannel-array, and method of producing nanodot using self-aligning nanochannel array
US9429686B2 (en) 2004-12-03 2016-08-30 Sharp Kabushiki Kaisha Antireflective member, optical element, display device, method of making stamper and method of making antireflective member using the stamper
US8431004B2 (en) 2004-12-03 2013-04-30 Sharp Kabushiki Kaisha Antireflective member, optical element, display device, method of making stamper and method of making antireflective member using the stamper
US8262382B2 (en) 2004-12-03 2012-09-11 Sharp Kabushiki Kaisha Antireflective member, optical element, display device, method of making stamper and method of making antireflective member using the stamper
JP2009166502A (en) * 2004-12-03 2009-07-30 Sharp Corp Reflection preventing material, stamper, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
US7835080B2 (en) 2004-12-03 2010-11-16 Sharp Kabushiki Kaisha Antireflective member, optical element, display device, method of making stamper and method of making antireflective member using the stamper
JP2006328467A (en) * 2005-05-25 2006-12-07 Al Green Kk Anodic oxidation film applied aluminum substrate and method of manufacturing the same
JP4619197B2 (en) * 2005-05-25 2011-01-26 進次 三浦 Aluminum substrate with anodized film and method for producing the same
JP2007098563A (en) * 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure
US7648760B2 (en) 2006-02-28 2010-01-19 Fujifilm Corporation Microstructure and method of manufacturing the same
JP2009536688A (en) * 2006-05-11 2009-10-15 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing member having multiple nanocylinders on substrate and use of the member
JP4668126B2 (en) * 2006-05-31 2011-04-13 シャープ株式会社 Information recording medium
JP2007323736A (en) * 2006-05-31 2007-12-13 Sharp Corp Information recording medium
US7722754B2 (en) 2006-06-16 2010-05-25 Fujifilm Corporation Microstructure and method of manufacturing the same
JP2009004061A (en) * 2006-08-11 2009-01-08 Canon Inc Patterned media, method of manufacturing magnetic recording medium, and method of manufacturing base
JP2008156716A (en) * 2006-12-25 2008-07-10 Fujifilm Corp Method of manufacturing microstructure and microstructure
JP2008156705A (en) * 2006-12-25 2008-07-10 Fujifilm Corp Method of manufacturing microstructure, and microstructure
JP2008270157A (en) * 2007-03-27 2008-11-06 Fujifilm Corp Anisotropic conductive member, and manufacturing method thereof
US8524607B2 (en) 2007-03-27 2013-09-03 Fujifilm Corporation Anisotropically conductive member and method of manufacture
WO2015080239A1 (en) * 2013-11-29 2015-06-04 富士フイルム株式会社 Lead-out electrode and ion source

Similar Documents

Publication Publication Date Title
Nishinaga et al. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing
Gao et al. Diamond-based supercapacitors: realization and properties
JP2004217961A (en) Anodized porous alumina composite material and its producing method
JP4838201B2 (en) Method for producing anodized porous alumina
Jo et al. Fabrication of through-hole TiO2 nanotubes by potential shock
JP4681938B2 (en) Method for producing nanostructure
Ding et al. Fabrication of porous anodic alumina with ultrasmall nanopores
Zierold et al. Magnetic, multilayered nanotubes of low aspect ratios for liquid suspensions
Kudelski et al. Surface‐enhanced Raman scattering investigations on silver nanoparticles deposited on alumina and titania nanotubes: influence of the substrate material on surface‐enhanced Raman scattering activity of Ag nanoparticles
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
Qin et al. Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid
JP4681939B2 (en) Method for producing nanostructure
Mebed et al. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates
JP3729449B2 (en) Structure and device having pores
JP2007247070A5 (en) Method for producing anodized porous alumina and anodized porous alumina
Djenizian et al. Electrochemical fabrication of tin nanowires: a short review
JP4641442B2 (en) Method for producing porous body
Vorobjova et al. Highly ordered porous alumina membranes for Ni–Fe nanowires fabrication
JP4136730B2 (en) Structure having pores and method for producing the same
JP4595043B2 (en) Method for producing anodized porous alumina
Yanagishita et al. Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization
Antohe et al. Annealing effects on the magnetic properties of highly-packed vertically-aligned nickel nanotubes
KR100999255B1 (en) Manufacturing nano-pillars magnetism-membrane with perpendicular anisotropy
JP4136723B2 (en) Structure and manufacturing method of structure
Taşaltin et al. simple fabrication of highly ordered AAO nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A02