WO2015080239A1 - Lead-out electrode and ion source - Google Patents
Lead-out electrode and ion source Download PDFInfo
- Publication number
- WO2015080239A1 WO2015080239A1 PCT/JP2014/081506 JP2014081506W WO2015080239A1 WO 2015080239 A1 WO2015080239 A1 WO 2015080239A1 JP 2014081506 W JP2014081506 W JP 2014081506W WO 2015080239 A1 WO2015080239 A1 WO 2015080239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- holes
- extraction electrode
- ion
- ion beam
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/022—Details
- H01J27/024—Extraction optics, e.g. grids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/08—Ion sources
Definitions
- the present invention relates to an extraction electrode and an ion source, and more particularly to an extraction electrode and an ion source for generating an ion beam.
- an ion source includes an ion generation chamber that generates ions and an extraction electrode that is set to a low potential with respect to the ion generation chamber.
- ions generated in the ion generation chamber positive ions having a positive charge are extracted while accelerating from the ion generation chamber toward the extraction electrode in accordance with the electric field formed between the ion generation chamber and the extraction electrode.
- an ion beam is generated, and the generated ion beam passes through a plurality of through holes formed in the extraction electrode and is emitted to the outside.
- Patent Document 1 states that “an ion extraction electrode that extracts ions from an ion source in which plasma is generated, and the ion extraction electrode includes a plurality of ion extraction holes (through holes) that penetrate the ion extraction electrode.
- An ion extraction electrode characterized by comprising a plate-like body having a curved surface region that protrudes outward from the discharge chamber is disclosed (claim 5).
- an object of the present invention is to provide an extraction electrode and an ion source capable of obtaining an ion beam having high straightness.
- the present inventor has found that a plurality of through holes of the extraction electrode have an aspect ratio in a predetermined range, whereby an ion beam having high straightness can be obtained.
- the present invention provides an extraction electrode and an ion source having the following configuration.
- An extraction electrode for extracting ions to form an ion beam An insulating layer made of an anodized film of a valve metal; An accelerating electrode disposed on one surface of the insulating layer; An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction, An extraction electrode having an aspect ratio, which is a ratio of an average length of through holes and an average opening diameter, of 16 or more and 1000 or less.
- an ion generation chamber for generating ions
- the extraction electrode according to any one of (1) to (7), which is disposed to face the ion generation chamber;
- An ion source having a power source for applying a potential to the extraction electrode.
- an extraction electrode and an ion source capable of obtaining an ion beam with high straightness.
- FIGS. 1A and 1B are simplified views showing an example of a preferred embodiment of an extraction electrode according to the present invention
- FIG. 1A is a front view
- FIG. 1B is a cross-sectional view taken along section line Ib-Ib in FIG. It is.
- It is sectional drawing which shows the modification of the extraction electrode of this invention.
- It is sectional drawing which shows an example of the ion source of this invention.
- It is sectional drawing which shows the modification of the ion source of this invention.
- the extraction electrode of the present invention is an extraction electrode for extracting ions to form an ion beam, an insulating layer made of an anodized film of a valve metal, an acceleration electrode disposed on one surface of the insulating layer, An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction are provided, and the aspect ratio (average length / average opening diameter) of the through holes is 16 or more and 1000 or less.
- FIG. 1 is a simplified diagram showing an example of a preferred embodiment of the extraction electrode of the present invention.
- FIG. 1 (A) is a front view
- FIG. 1 (B) is a section line Ib-Ib in FIG. 1 (A). It is sectional drawing seen from.
- the lead electrode 1 of the present invention includes an insulating layer 2 having a flat plate shape and an acceleration electrode 3 disposed on one surface 2a of the insulating layer 2, and penetrates the insulating layer 2 and the acceleration electrode 3 in the thickness direction.
- a plurality of through holes 4 extending in a straight line are formed in Z. That is, the plurality of through holes 4 are formed such that the plurality of through holes 4 a formed in the insulating layer 2 and the plurality of through holes 4 b formed in the acceleration electrode 3 communicate with each other.
- the acceleration electrode 3 when the acceleration electrode 3 is disposed in an ion source described later, a different potential is applied to the ion generation chamber. Thereby, an electric field is formed between the ion generation chamber and the acceleration electrode 3, and ions generated in the ion generation chamber are extracted while being accelerated according to the electric field, thereby forming an ion beam.
- the ion beam formed by the accelerating electrode 3 enters the plurality of through holes 4, and the ion beam having low rectilinearity is regulated by the inner peripheral surfaces of the plurality of through holes 4 and passes through the plurality of through holes 4. In other words, only the ion beam having a high linearity is emitted through the plurality of through holes 4 to the outside.
- the plurality of through holes 4 are formed so that the aspect ratio indicating the ratio of the average length 5 to the average opening diameter 6 is 16 or more and 1000 or less.
- the aspect ratio of the plurality of through holes 4 By setting the aspect ratio of the plurality of through holes 4 to 16 or more, an ion beam having high straightness can be obtained, and by setting the aspect ratio of the plurality of through holes 4 to 1000 or less, the ion beam can be transmitted. It can be ensured that the amount of ion beam passing through each through-hole 4 is greatly reduced.
- the plurality of through holes 4 preferably have an aspect ratio of 22 or more and 500 or less for the purpose of further improving the straightness of the ion beam. Furthermore, it is preferable that the plurality of through holes 4 have an aspect ratio of 24 or more and 50 or less for the purpose of improving both straightness and passage of the ion beam.
- the lead electrode 1 of the present invention preferably further includes a ground electrode 7 disposed on the other surface 2b opposite to the one surface 2a of the insulating layer 2.
- the aperture ratio of the extraction electrode 1 of the present invention is preferably 3% or more and 90% or less, and more preferably 30% or more and 90% or less.
- the aperture ratio is preferably 3% or more and 90% or less, and more preferably 30% or more and 90% or less.
- the extraction electrode 1 has a ratio of the aperture ratio with respect to the aspect ratio of the plurality of through holes 4 of 0.1 or more and 3 for the purpose of improving the passability while maintaining high straightness of the ion beam transmitted through the plurality of through holes. .5 or less is preferable.
- the ratio of the aperture ratio to the aspect ratio of the plurality of through-holes 4 is 1.0 or more because the ion beam current amount is kept high by further improving the passability while keeping the straightness of the ion beam high. More preferably, it is 5 or less.
- the ratio of the aperture ratio to the aspect ratio of the plurality of through holes 4 is more preferably 2.0 or more and 3.5 or less for the purpose of further improving the passability while keeping the straightness of the ion beam high.
- the values of the average opening diameter and the average length of the plurality of through-holes described above are obtained by analyzing the SEM images of the extraction electrodes acquired at a magnification of 100,000 times, respectively. Specifically, the diameters and lengths of all the through holes existing in the field of view of the SEM image of the extraction electrode are calculated, and the average values are obtained for the diameters and lengths of all the through holes. When the number of through holes existing in one field of view is less than 50, the plurality of fields of view are photographed, and the average value is obtained by calculating the diameter and length of at least 50 through holes. did.
- the aperture ratio of the extraction electrode described above was obtained by calculating the area of the through hole and the area of the visual field existing in the visual field for the SEM image of the extraction electrode.
- the insulating layer is a structure made of an anodized film of a valve metal and improves the straightness of the ion beam.
- the insulating layer preferably has an average thickness of 2 ⁇ m to 300 ⁇ m.
- the average thickness of the insulating layer By setting the average thickness of the insulating layer to 2 ⁇ m or more, it is possible to reliably remove the ion beam having low linearity when the ion beam passes through a plurality of through holes (portion represented by reference numeral 4a in FIG. 1).
- the average thickness of the insulating layer to 300 ⁇ m or less, it is possible to improve the passability of an ion beam passing through a plurality of through holes (portion represented by reference numeral 4a in FIG. 1).
- the average thickness of the insulating layer is within the above range. It is possible to ensure sufficient insulation.
- the insulating layer can be manufactured by anodizing the valve metal substrate and penetrating pores generated by the anodic oxidation.
- the valve metal for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony are used, and aluminum is preferably used.
- the aspect ratio Can be easily formed.
- the anodizing treatment a conventionally known method can be used, but from the viewpoint of increasing the regularity of the plurality of through holes, it is preferable to use a self-ordering method or a constant voltage treatment.
- the self-ordering method and the constant voltage process of the anodizing process the same processes as those described in paragraphs [0056] to [0108] and [FIG. 3] of Japanese Patent Application Laid-Open No. 2008-270158 are performed. Can be applied.
- Examples of the penetration process include the same methods as those described in paragraphs [0110] to [0121] of Japanese Patent Application Laid-Open No. 2008-270158 and [FIG. 3] and [FIG. 4].
- the acceleration electrode is an electrode that draws positive ions having positive charges from an ion generation chamber of an ion source, which will be described later, to form an ion beam.
- the accelerating electrode is not particularly limited as long as it is made of a conductive material.
- refractory metal materials such as tantalum, tungsten, molybdenum, and nickel are preferably exemplified.
- the acceleration electrode can be formed on one surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
- the ground electrode suppresses the ion beam emitted from the plurality of through holes from being pulled back to the extraction electrode side.
- the ground electrode is not particularly limited as long as it is made of a conductive material.
- the ground electrode can be made of the same material as the acceleration electrode described above.
- the ground electrode can be formed on the other surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
- the plurality of through holes preferably have an average opening diameter (portion represented by reference numeral 6 in FIG. 1) of 30 nm or more and 50 ⁇ m or less.
- the plurality of through holes preferably have an average pitch (portion represented by reference numeral 8 in FIG. 1) of 40 nm or more and 500 nm or less.
- the average pitch is 40 nm or more, sufficient strength can be imparted to the extraction electrode, and when the average pitch is 500 nm or less, the amount of the ion beam that collides with the surface of the extraction electrode can be suppressed and more The ion beam can enter the plurality of through holes.
- the density of the plurality of through holes is preferably 2 million pieces / mm 2 or more, more preferably 10 million pieces / mm 2 or more, in order to keep the ion beam current amount high, more preferably 50 million pieces. / Mm 2 or more is more preferable, and 100 million / mm 2 or more is particularly preferable.
- the ion source of the present invention is an ion source having an ion generation chamber for generating ions, the above-described extraction electrode disposed to face the ion generation chamber, and a power source for applying a potential to the extraction electrode.
- FIG. 3 is a schematic cross-sectional view showing an example of a preferred embodiment of the ion source 21 of the present invention.
- the ion source 21 of the present invention includes an ion generation chamber 22, an extraction electrode 1 disposed opposite the ion generation chamber 22, and a power supply that applies a potential so that the extraction electrode 1 has a lower potential than the ion generation chamber 22. 23.
- the ion generation chamber 22 includes a plasma generation chamber 24 that generates plasma P, a gas supply unit 25 that supplies a source gas into the plasma generation chamber 24, and a confinement unit that confine the generated plasma P in the plasma generation chamber 24. 26 and an extraction port 27 formed on a side surface of the plasma generation chamber 24 facing the extraction electrode 1.
- the extraction electrode 1 has the acceleration electrode 3 disposed on one surface 2a of the insulating layer 2 and the installation electrode 7 disposed on the other surface 2b of the insulating layer 2. It is installed so as to face the ion generation chamber 22.
- the extraction electrode 1 may be one in which the acceleration electrode 3 is disposed only on one surface 2a of the insulating layer 2 and the ground electrode 7 is not disposed on the other surface 2b.
- the accelerating electrode 3 can be installed so as to face the ion generation chamber 22.
- the power source 23 connects the plasma generation chamber 24 and the acceleration electrode 3 and applies a voltage to the plasma generation chamber 24 so that the potential of the acceleration electrode 3 is lowered.
- positive ions I in the plasma P confined in the plasma generation chamber 24 are extracted from the plasma generation chamber 24 toward the extraction electrode 1 through the extraction port 27 to form an ion beam.
- the ion beam reaches the extraction electrode 1, it passes through the plurality of through holes 4 and is emitted to the outside.
- the ground electrode 7 can suppress pulling back of the ion beams emitted from the plurality of through holes 4, thereby suppressing a decrease in the amount of the ion beams emitted to the outside.
- a highly linear ion beam is emitted from the plurality of through-holes 4 to the outside, for example, a substrate is disposed on the downstream side of the extraction electrode 1 with respect to the traveling direction of the ion beam, and high accuracy is achieved.
- a film can be formed.
- the ion source 21 of the present invention preferably has a neutralizer for neutralizing the charge of the ion beam on the downstream side of the extraction electrode 1 with respect to the traveling direction of the ion beam.
- the neutralizer include a heating filament that neutralizes the charge of the ion beam with thermionic electrons by heating. Thereby, the electric charge of an ion beam is neutralized and it can suppress that the ion beam discharge
- the ion source 21 of the present invention is arranged on the opposite side of the ion generation chamber 22 with the extraction electrode 1 interposed therebetween, that is, the ion measurement arranged opposite to the ground electrode 7 of the extraction electrode 1.
- a portion 28 can be provided.
- the ion measuring unit 28 is installed when performing ion source maintenance or the like, and can measure the amount of ion beam current.
- the ion measurement unit 28 includes a measurement substrate 29 arranged to face the extraction electrode 1, a plurality of measurement probes 30 arranged side by side on the surface of the measurement substrate 29, and a plurality of measurement probes 30. Each has an ammeter 31 connected thereto.
- the ion beam emitted from the extraction electrode 1 is received by the plurality of measurement probes 30 of the ion measurement unit 28, and the current amount from the measurement probe is detected by the ammeter 31 to measure the current amount of the ion beam. be able to.
- the plasma generation chamber is for generating plasma by ionizing a source gas supplied from a gas supply unit described later.
- the plasma generation chamber can generate plasma by ionizing the source gas by a method such as high-frequency discharge, microwave discharge, or laser irradiation.
- the plasma generation chamber is preferably made of a heat-resistant conductive material.
- the gas supply unit supplies a raw material gas for generating plasma in the above-described plasma generation chamber.
- the supply amount of the raw material gas is adjusted by a valve (a portion represented by reference numeral 30 in FIG. 3).
- the source gas can be supplied to the plasma generation chamber at a predetermined pressure.
- the source gas include helium, hydrogen, argon, xenon and the like, and these may be used alone or in combination of two or more.
- the source gas can also contain gallium (Ga) ions, iron (Fe) ions, lithium (Li) ions, and the like.
- the confinement unit confines plasma in the plasma generation chamber by generating a magnetic field, an electric field, and the like in the plasma generation chamber. For example, by disposing a magnet so as to surround the plasma generation chamber and generating a so-called mirror magnetic field in the plasma generation chamber, diffusion of plasma can be suppressed and confined.
- Example 1 Mirror finish (electropolishing)
- a high-purity aluminum substrate manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99% by mass, thickness 0.4 mm
- an electrolytic polishing liquid having the following composition, a voltage of 25 V
- Electropolishing was performed under conditions of a liquid temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
- the cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
- the flow rate of the electrolyte was measured using a vortex type flow monitor FLM22-10PCW (manufactured by ASONE CORPORATION).
- Electrolytic polishing liquid composition ⁇ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ Pure water 160mL ⁇ Sulfuric acid 150mL ⁇ Ethylene glycol 30mL
- NeoCool BD36 manufactured by Yamato Kagaku Co., Ltd.
- Pear Stirrer PS-100 manufactured by EYELA Tokyo Rika Kikai Co., Ltd.
- an anodizing treatment and an oxide film dissolution treatment were performed on a 6-hour anodizing treatment with a 0.5 mol / L malonic acid electrolyte at a voltage of 115 V and a liquid temperature of 0 ° C. Then, it was immersed in a 50 g / L concentration phosphoric acid aqueous solution for 10 minutes to obtain an anodic oxide film having a thickness of 14 ⁇ m. In the obtained anodic oxide film, a plurality of pores having an average center-to-center distance of 300 nm were formed.
- (C) Penetration treatment step aluminum was immersed by using a treatment liquid in which 0.1 mol / L copper chloride was mixed in a 20% by mass hydrochloric acid aqueous solution at a liquid temperature of 15 ° C until the aluminum was visually removed.
- the substrate is dissolved and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 to 180 minutes to remove the bottom of the anodized film, and a structure (insulating layer) comprising an anodized film having a plurality of through holes ) was produced.
- Example 2 When the anodizing treatment and the oxide film dissolving treatment are repeated in the (B) anodizing treatment step of Example 1, the treatment time of the anodizing treatment is set to 6 hours, and (E) the surface of the structure is 4 ⁇ m or more in the surface smoothing treatment A lead electrode was produced in the same manner as in Example 1 except that the opposite surface was polished by 4 ⁇ m or more.
- Example 3 When repeating the anodizing treatment and the oxide film dissolution treatment in the anodizing treatment step (B) of Example 1, except that the malonic acid concentration in the anodizing treatment was 0.5 mol / L and the treatment time was 16 hours.
- a lead electrode was produced in the same manner as in Example 1.
- Example 4 When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 2, the extraction electrode is formed in the same manner as in Example 2 except that the treatment time of the anodizing treatment is 56 hours. Was made.
- Example 5 When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 1, the anodizing treatment uses an electrolyte of phosphoric acid having a concentration of 0.3 mol / L instead of malonic acid.
- a lead electrode was produced in the same manner as in Example 1 except that the treatment was performed for 1 hour under the conditions of 28 V and a liquid temperature of 0 ° C.
- Example 6 The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 45 V and a liquid temperature of 2 ° C. Thus, an extraction electrode was produced.
- Example 7 The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 91 V and the liquid temperature was 10 ° C. Thus, an extraction electrode was produced.
- Example 8 When the anodizing treatment and the oxide film dissolving treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolving treatment was carried out at a liquid temperature of 40 ° C. for 20 minutes in the same manner as in Example 1. A lead electrode was prepared.
- Example 9 When the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolution treatment was performed at a liquid temperature of 40 ° C. for 25 minutes in the same manner as in Example 1. A lead electrode was prepared.
- Comparative Example 2 When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Comparative Example 1, the treatment time for the anodizing treatment is 1 hour and the oxide film dissolving treatment is performed at a liquid temperature of 30 ° C. for 10 minutes.
- a lead electrode was produced in the same manner as in Comparative Example 1 except that the surface of the structure was polished by 5.75 ⁇ m or more and the opposite surface was polished by 5.75 ⁇ m or more in the surface smoothing treatment.
- Comparative Example 3 By repeating the anodizing treatment and the oxide film dissolution treatment in the (B) anodizing treatment step of Comparative Example 1 in the same manner as in Comparative Example 1 except that the oxide film dissolution treatment was performed at a liquid temperature of 30 ° C. for 10 minutes. A lead electrode was prepared.
- the opening diameter of the through hole, the length of the through hole, and the opening ratio were measured.
- an SEM image was analyzed to obtain an average value of the opening diameter and length.
- the results are shown in Table 1 below.
- the aperture ratio was calculated by image analysis of the SEM image observed above. The results are shown in Table 1 below.
- the aspect ratio of the through hole was calculated by determining the ratio of the length to the opening diameter. The results are shown in Table 1 below.
- the aperture ratio / aspect ratio was calculated by obtaining the ratio of the aperture ratio to the aspect ratio calculated above. The results are shown in Table 1 below.
- the straightness of the ion beam is detected by measuring probes with a diameter of 2 mm at a position of 100 mm from the extraction electrode in directions of 3 degrees, 5 degrees, and 10 degrees, respectively, with respect to the central axis of the through hole.
- the current value of the ion beam was measured using a microammeter (34410A, manufactured by Agilent Technologies). When the current value at this time can be obtained only with the measurement probe arranged in the direction of 3 degrees (the ion beam spread is less than 5 degrees), it is obtained with the measurement probe arranged in the directions of A, 3 degrees and 5 degrees.
- the amount of current of the ion beam is detected with a 2 mm ⁇ measuring probe arranged 100 mm away from the extraction electrode directly under the through hole, and the current value at this time is measured by a microammeter (34410A, manufactured by Agilent Technologies). And measured.
- the current amount at this time is greater than or equal to the current amount of Example 1, A, less than the current amount of Example 1 and 50% or more of the current amount of Example 1, B, the current amount of Example 1
- the current amount of the ion beam was evaluated as C when less than 50% and 1% or more, and as D when less than 1% of the current amount of Example 1. The results are shown in Table 1 below. In Comparative Example 1 and Comparative Example 3, the amount of current was less than 1% (Evaluation D), and thus the straightness and stability could not be evaluated.
- the current stability of the ion beam is determined by detecting the ion beam with a 2 mm ⁇ measuring probe placed 100 mm away from the extraction electrode directly under the through-hole, and the current value at this time is a microammeter (34410A, manufactured by Agilent Technologies). It measured using.
- the current stability of the ion beam was evaluated as A when the current value at this time was continuously obtained for 1 minute or longer, and B when it was not continuously obtained for 1 minute or longer. The results are shown in Table 1 below.
- Examples 1 to 9 in which the aspect ratio of the plurality of through holes is 16 or more and 1000 or less are compared with Comparative Examples 2 and 4 in which the aspect ratio of the plurality of through holes is less than 16. It was found that the straightness of the ion beam is improved. Further, in Comparative Examples 1 and 3 in which the aspect ratios of the plurality of through holes exceeded 1000, it was found that the amount of ion beam current was not detected, and most of the ion beams could not pass through the plurality of through holes. From this, it was found that by setting the aspect ratio of the plurality of through holes to 16 or more and 1000 or less, an ion beam having high straightness can be obtained with certainty.
- the current stability of the ion beam is the same as that of Comparative Example 4 having the same aspect ratio as that of the conventional extraction electrode. It was found that an ion beam with high current stability in addition to straight travel is obtained.
- the straightness of the ion beam is further improved as compared with Example 1 in which the aspect ratio of the plurality of through holes is less than 22.
- the ratio of the aperture ratio to the aspect ratio of the plurality of through holes is 1.0 or more and 3.5 or less
- the aperture ratio / aspect ratio is 1.0. It was found that both the straightness of the ion beam and the amount of current were improved as compared with Examples 1, 3 to 6, and Comparative Examples 1 to 3 of less than or exceeding 3.5.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
The present invention provides a lead-out electrode by which it is possible to attain an ion beam having a high degree of straightness. This lead-out electrode (1) is provided with: an insulating layer (2) made of an anodic oxide film; an acceleration electrode (3) disposed on one surface of the insulating layer (2); and a plurality of through-holes (4) passing through the acceleration electrode (3) and the insulating layer (2) in the thickness direction, the aspect ratio (average length (5)/average opening diameter (6)) of the penetrating hole (4) being 16 to 1000 inclusive.
Description
本発明は、引き出し電極およびイオン源に関し、特に、イオンビームを生成するための引き出し電極およびイオン源に関するものである。
The present invention relates to an extraction electrode and an ion source, and more particularly to an extraction electrode and an ion source for generating an ion beam.
近年、イオン源は、真空成膜装置、集束イオンビーム装置(FIB(Focused Ion Beam)装置)、イオンミリング装置、および宇宙産業で用いられるイオンエンジンなど、様々な分野で利用されている。一般的に、イオン源は、イオンを生成するイオン生成室と、イオン生成室に対して低い電位に設定された引き出し電極とを有する。イオン生成室で生成されたイオンのうち正の電荷を有する陽イオンが、イオン生成室と引き出し電極との間で形成される電場に従って、イオン生成室内から引き出し電極に向けて加速しながら引き出される。これにより、イオンビームが生成され、生成されたイオンビームは、引き出し電極に形成された複数の貫通孔を通過して外部に放出される。
In recent years, ion sources have been used in various fields such as vacuum film forming devices, focused ion beam devices (FIB (Focused Ion Beam) devices), ion milling devices, and ion engines used in the space industry. In general, an ion source includes an ion generation chamber that generates ions and an extraction electrode that is set to a low potential with respect to the ion generation chamber. Among the ions generated in the ion generation chamber, positive ions having a positive charge are extracted while accelerating from the ion generation chamber toward the extraction electrode in accordance with the electric field formed between the ion generation chamber and the extraction electrode. As a result, an ion beam is generated, and the generated ion beam passes through a plurality of through holes formed in the extraction electrode and is emitted to the outside.
ここで、引き出し電極は、イオンビームの生成に重要な役割を担っており、所望のイオンビームを生成するための様々な引き出し電極が提案されている。例えば、特許文献1には、「プラズマが発生したイオン源から、イオンを引き出すイオン引き出し電極であって、イオン引き出し電極は、イオン引き出し電極を貫通する複数のイオン引き出し孔(貫通孔)を備えて放電室の外側に向かって凸となる曲面領域を備えた板状体からなることを特徴とするイオン引き出し電極。」が開示されている(請求項5)。
Here, the extraction electrode plays an important role in the generation of an ion beam, and various extraction electrodes for generating a desired ion beam have been proposed. For example, Patent Document 1 states that “an ion extraction electrode that extracts ions from an ion source in which plasma is generated, and the ion extraction electrode includes a plurality of ion extraction holes (through holes) that penetrate the ion extraction electrode. An ion extraction electrode characterized by comprising a plate-like body having a curved surface region that protrudes outward from the discharge chamber "is disclosed (claim 5).
しかしながら、特許文献1の引き出し電極には、ドリルなどを用いて複数の貫通孔が形成されるため、貫通孔のアスペクト比(平均長さ/平均開口径)を高くすることができなかった。このため、直進性が低いイオンビームも貫通孔を通過してしまい、直進性が高いイオンビームを得ることが困難であった。
However, since a plurality of through holes are formed in the extraction electrode of Patent Document 1 using a drill or the like, the aspect ratio (average length / average opening diameter) of the through holes cannot be increased. For this reason, an ion beam with low linearity also passes through the through hole, and it is difficult to obtain an ion beam with high linearity.
そこで、本発明は、直進性が高いイオンビームを得ることができる引き出し電極およびイオン源を提供することを課題とする。
Therefore, an object of the present invention is to provide an extraction electrode and an ion source capable of obtaining an ion beam having high straightness.
本発明者は、上記課題を達成すべく鋭意検討した結果、引き出し電極の複数の貫通孔が、所定の範囲のアスペクト比を有することにより、直進性が高いイオンビームが得られることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成の引き出し電極およびイオン源を提供する。 As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that a plurality of through holes of the extraction electrode have an aspect ratio in a predetermined range, whereby an ion beam having high straightness can be obtained. Completed the invention.
That is, the present invention provides an extraction electrode and an ion source having the following configuration.
すなわち、本発明は、以下の構成の引き出し電極およびイオン源を提供する。 As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that a plurality of through holes of the extraction electrode have an aspect ratio in a predetermined range, whereby an ion beam having high straightness can be obtained. Completed the invention.
That is, the present invention provides an extraction electrode and an ion source having the following configuration.
(1) イオンを引き出してイオンビームを形成するための引き出し電極であって、
バルブ金属の陽極酸化膜からなる絶縁層と、
絶縁層の一方の面に配置される加速電極と、
加速電極と絶縁層を厚さ方向に貫通する複数の貫通孔と
を備え、
貫通孔の平均長さと平均開口径との比であるアスペクト比が、16以上1000以下である引き出し電極。 (1) An extraction electrode for extracting ions to form an ion beam,
An insulating layer made of an anodized film of a valve metal;
An accelerating electrode disposed on one surface of the insulating layer;
An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction,
An extraction electrode having an aspect ratio, which is a ratio of an average length of through holes and an average opening diameter, of 16 or more and 1000 or less.
バルブ金属の陽極酸化膜からなる絶縁層と、
絶縁層の一方の面に配置される加速電極と、
加速電極と絶縁層を厚さ方向に貫通する複数の貫通孔と
を備え、
貫通孔の平均長さと平均開口径との比であるアスペクト比が、16以上1000以下である引き出し電極。 (1) An extraction electrode for extracting ions to form an ion beam,
An insulating layer made of an anodized film of a valve metal;
An accelerating electrode disposed on one surface of the insulating layer;
An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction,
An extraction electrode having an aspect ratio, which is a ratio of an average length of through holes and an average opening diameter, of 16 or more and 1000 or less.
(2) アスペクト比が、22以上500以下である(1)に記載の引き出し電極。
(2) The extraction electrode according to (1), wherein the aspect ratio is 22 or more and 500 or less.
(3) 貫通孔のアスペクト比に対する開口率の比率が、1.0以上3.5以下である(1)または(2)に記載の引き出し電極。
(3) The extraction electrode according to (1) or (2), wherein the ratio of the aperture ratio to the aspect ratio of the through hole is 1.0 or more and 3.5 or less.
(4) 絶縁層の平均厚みが、2μm以上300μm以下である(1)~(3)のいずれかに記載の引き出し電極。
(4) The extraction electrode according to any one of (1) to (3), wherein the average thickness of the insulating layer is 2 μm or more and 300 μm or less.
(5) 貫通孔による開口率が、3%以上90%以下である(1)~(4)のいずれかに記載の引き出し電極。
(5) The extraction electrode according to any one of (1) to (4), wherein an aperture ratio due to the through hole is 3% or more and 90% or less.
(6) 貫通孔の平均開口径が、30nm以上50μm以下である(1)~(5)のいずれかに記載の引き出し電極。
(6) The extraction electrode according to any one of (1) to (5), wherein an average opening diameter of the through holes is 30 nm or more and 50 μm or less.
(7) 絶縁層の一方の面とは反対側の他方の面に配置される接地電極をさらに有し、
複数の貫通孔は、加速電極、絶縁層および接地電極を厚さ方向に貫通する(1)~(6)のいずれかに記載の引き出し電極。 (7) It further has a ground electrode disposed on the other surface opposite to the one surface of the insulating layer,
The lead electrode according to any one of (1) to (6), wherein the plurality of through holes penetrate the acceleration electrode, the insulating layer, and the ground electrode in the thickness direction.
複数の貫通孔は、加速電極、絶縁層および接地電極を厚さ方向に貫通する(1)~(6)のいずれかに記載の引き出し電極。 (7) It further has a ground electrode disposed on the other surface opposite to the one surface of the insulating layer,
The lead electrode according to any one of (1) to (6), wherein the plurality of through holes penetrate the acceleration electrode, the insulating layer, and the ground electrode in the thickness direction.
(8) イオンを生成するためのイオン生成室と、
イオン生成室に対向して配置される(1)~(7)のいずれかに記載の引き出し電極と、
引き出し電極に電位を付与する電源とを有するイオン源。 (8) an ion generation chamber for generating ions;
The extraction electrode according to any one of (1) to (7), which is disposed to face the ion generation chamber;
An ion source having a power source for applying a potential to the extraction electrode.
イオン生成室に対向して配置される(1)~(7)のいずれかに記載の引き出し電極と、
引き出し電極に電位を付与する電源とを有するイオン源。 (8) an ion generation chamber for generating ions;
The extraction electrode according to any one of (1) to (7), which is disposed to face the ion generation chamber;
An ion source having a power source for applying a potential to the extraction electrode.
本発明によれば、直進性が高いイオンビームを得ることができる引き出し電極およびイオン源を提供することができる。
According to the present invention, it is possible to provide an extraction electrode and an ion source capable of obtaining an ion beam with high straightness.
[引き出し電極]
本発明の引き出し電極は、イオンを引き出してイオンビームを形成するための引き出し電極であって、バルブ金属の陽極酸化膜からなる絶縁層と、絶縁層の一方の面に配置される加速電極と、加速電極と絶縁層を厚さ方向に貫通する複数の貫通孔とを備え、貫通孔のアスペクト比(平均長さ/平均開口径)が、16以上1000以下である。
次に、本発明の引き出し電極について、図1を用いて説明する。 [Extraction electrode]
The extraction electrode of the present invention is an extraction electrode for extracting ions to form an ion beam, an insulating layer made of an anodized film of a valve metal, an acceleration electrode disposed on one surface of the insulating layer, An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction are provided, and the aspect ratio (average length / average opening diameter) of the through holes is 16 or more and 1000 or less.
Next, the extraction electrode of the present invention will be described with reference to FIG.
本発明の引き出し電極は、イオンを引き出してイオンビームを形成するための引き出し電極であって、バルブ金属の陽極酸化膜からなる絶縁層と、絶縁層の一方の面に配置される加速電極と、加速電極と絶縁層を厚さ方向に貫通する複数の貫通孔とを備え、貫通孔のアスペクト比(平均長さ/平均開口径)が、16以上1000以下である。
次に、本発明の引き出し電極について、図1を用いて説明する。 [Extraction electrode]
The extraction electrode of the present invention is an extraction electrode for extracting ions to form an ion beam, an insulating layer made of an anodized film of a valve metal, an acceleration electrode disposed on one surface of the insulating layer, An acceleration electrode and a plurality of through holes penetrating the insulating layer in the thickness direction are provided, and the aspect ratio (average length / average opening diameter) of the through holes is 16 or more and 1000 or less.
Next, the extraction electrode of the present invention will be described with reference to FIG.
図1は、本発明の引き出し電極の好適な実施形態の一例を示す簡略図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線Ib-Ibからみた断面図である。
本発明の引き出し電極1は、平板形状を有する絶縁層2と、絶縁層2の一方の面2aに配置される加速電極3とを備え、絶縁層2と加速電極3を貫通して厚さ方向Zに直線上に延びる複数の貫通孔4が形成されている。すなわち、複数の貫通孔4は、絶縁層2に形成された複数の貫通孔4aと、加速電極3に形成された複数の貫通孔4bとが互いに連通するように形成されている。 FIG. 1 is a simplified diagram showing an example of a preferred embodiment of the extraction electrode of the present invention. FIG. 1 (A) is a front view, and FIG. 1 (B) is a section line Ib-Ib in FIG. 1 (A). It is sectional drawing seen from.
The lead electrode 1 of the present invention includes aninsulating layer 2 having a flat plate shape and an acceleration electrode 3 disposed on one surface 2a of the insulating layer 2, and penetrates the insulating layer 2 and the acceleration electrode 3 in the thickness direction. A plurality of through holes 4 extending in a straight line are formed in Z. That is, the plurality of through holes 4 are formed such that the plurality of through holes 4 a formed in the insulating layer 2 and the plurality of through holes 4 b formed in the acceleration electrode 3 communicate with each other.
本発明の引き出し電極1は、平板形状を有する絶縁層2と、絶縁層2の一方の面2aに配置される加速電極3とを備え、絶縁層2と加速電極3を貫通して厚さ方向Zに直線上に延びる複数の貫通孔4が形成されている。すなわち、複数の貫通孔4は、絶縁層2に形成された複数の貫通孔4aと、加速電極3に形成された複数の貫通孔4bとが互いに連通するように形成されている。 FIG. 1 is a simplified diagram showing an example of a preferred embodiment of the extraction electrode of the present invention. FIG. 1 (A) is a front view, and FIG. 1 (B) is a section line Ib-Ib in FIG. 1 (A). It is sectional drawing seen from.
The lead electrode 1 of the present invention includes an
ここで、加速電極3は、後述するイオン源に配置された際に、イオン生成室に対して異なる電位が付与されるものである。これにより、イオン生成室と加速電極3の間には電場が形成され、イオン生成室内で生成されたイオンが電場に従って加速しながら引き出されることでイオンビームが形成される。加速電極3により形成されたイオンビームは、複数の貫通孔4内に進入し、直進性の低いイオンビームは複数の貫通孔4の内周面に規制されて複数の貫通孔4を通過することができず、直進性が高いイオンビームのみが複数の貫通孔4を通過して外部に放出される。
本発明においては、複数の貫通孔4は、平均開口径6に対する平均長さ5の比率を示すアスペクト比が16以上1000以下となるように形成されている。複数の貫通孔4のアスペクト比を16以上とすることで、直進性が高いイオンビームを得ることができ、複数の貫通孔4のアスペクト比を1000以下とすることで、イオンビームの通過性を確保してそれぞれの貫通孔4を通過するイオンビームの量が大きく減少するのを抑制することができる。なお、複数の貫通孔4は、イオンビームの直進性をより向上させる理由から、22以上500以下のアスペクト比を有することが好ましい。さらに、複数の貫通孔4は、イオンビームの直進性と通過性を共に向上させる理由から、24以上50以下のアスペクト比を有することが好ましい。 Here, when theacceleration electrode 3 is disposed in an ion source described later, a different potential is applied to the ion generation chamber. Thereby, an electric field is formed between the ion generation chamber and the acceleration electrode 3, and ions generated in the ion generation chamber are extracted while being accelerated according to the electric field, thereby forming an ion beam. The ion beam formed by the accelerating electrode 3 enters the plurality of through holes 4, and the ion beam having low rectilinearity is regulated by the inner peripheral surfaces of the plurality of through holes 4 and passes through the plurality of through holes 4. In other words, only the ion beam having a high linearity is emitted through the plurality of through holes 4 to the outside.
In the present invention, the plurality of throughholes 4 are formed so that the aspect ratio indicating the ratio of the average length 5 to the average opening diameter 6 is 16 or more and 1000 or less. By setting the aspect ratio of the plurality of through holes 4 to 16 or more, an ion beam having high straightness can be obtained, and by setting the aspect ratio of the plurality of through holes 4 to 1000 or less, the ion beam can be transmitted. It can be ensured that the amount of ion beam passing through each through-hole 4 is greatly reduced. The plurality of through holes 4 preferably have an aspect ratio of 22 or more and 500 or less for the purpose of further improving the straightness of the ion beam. Furthermore, it is preferable that the plurality of through holes 4 have an aspect ratio of 24 or more and 50 or less for the purpose of improving both straightness and passage of the ion beam.
本発明においては、複数の貫通孔4は、平均開口径6に対する平均長さ5の比率を示すアスペクト比が16以上1000以下となるように形成されている。複数の貫通孔4のアスペクト比を16以上とすることで、直進性が高いイオンビームを得ることができ、複数の貫通孔4のアスペクト比を1000以下とすることで、イオンビームの通過性を確保してそれぞれの貫通孔4を通過するイオンビームの量が大きく減少するのを抑制することができる。なお、複数の貫通孔4は、イオンビームの直進性をより向上させる理由から、22以上500以下のアスペクト比を有することが好ましい。さらに、複数の貫通孔4は、イオンビームの直進性と通過性を共に向上させる理由から、24以上50以下のアスペクト比を有することが好ましい。 Here, when the
In the present invention, the plurality of through
また、図2に示すように、本発明の引き出し電極1は、絶縁層2の一方の面2aとは反対側の他方の面2bに配置される接地電極7をさらに有することが好ましい。これにより、複数の貫通孔4を通過して外部に放出されたイオンビームが加速電極3の電位により引き戻されることを抑制し、複数の貫通孔4から放出されたイオンビームの量が減少するのを抑制することができる。
Further, as shown in FIG. 2, the lead electrode 1 of the present invention preferably further includes a ground electrode 7 disposed on the other surface 2b opposite to the one surface 2a of the insulating layer 2. As a result, the ion beam emitted to the outside through the plurality of through holes 4 is suppressed from being pulled back by the potential of the accelerating electrode 3, and the amount of the ion beams emitted from the plurality of through holes 4 is reduced. Can be suppressed.
また、本発明の引き出し電極1の開口率は、3%以上90%以下であるのが好ましく、30%以上90%以下であるのがより好ましい。開口率を3%以上とすることで、複数の貫通孔4を通過するイオンビームの総量が大きく減少するのを抑制し、イオンビームの電流量を高く保つことができる。また、開口率を90%以下とすることで、引き出し電極1に充分な強度を付与することができ、引き出し電極1の複数回使用による劣化を抑制することができる。
The aperture ratio of the extraction electrode 1 of the present invention is preferably 3% or more and 90% or less, and more preferably 30% or more and 90% or less. By setting the aperture ratio to 3% or more, it is possible to suppress the total amount of ion beams passing through the plurality of through holes 4 from being greatly reduced, and to keep the ion beam current amount high. Further, by setting the aperture ratio to 90% or less, sufficient strength can be imparted to the extraction electrode 1, and deterioration due to multiple use of the extraction electrode 1 can be suppressed.
また、引き出し電極1は、複数の貫通孔を透過するイオンビームの直進性を高く保ちつつ通過性を向上させる理由から、複数の貫通孔4のアスペクト比に対する開口率の比率が0.1以上3.5以下であることが好ましい。また、複数の貫通孔4のアスペクト比に対する開口率の比率は、イオンビームの直進性を高く保ちつつ通過性をより向上させてイオンビームの電流量を高く保つ理由から、1.0以上3.5以下であることがより好ましい。また、複数の貫通孔4のアスペクト比に対する開口率の比率は、イオンビームの直進性を高く保ちつつ通過性をさらに向上させる理由から、2.0以上3.5以下であることがさらに好ましい。
In addition, the extraction electrode 1 has a ratio of the aperture ratio with respect to the aspect ratio of the plurality of through holes 4 of 0.1 or more and 3 for the purpose of improving the passability while maintaining high straightness of the ion beam transmitted through the plurality of through holes. .5 or less is preferable. The ratio of the aperture ratio to the aspect ratio of the plurality of through-holes 4 is 1.0 or more because the ion beam current amount is kept high by further improving the passability while keeping the straightness of the ion beam high. More preferably, it is 5 or less. Further, the ratio of the aperture ratio to the aspect ratio of the plurality of through holes 4 is more preferably 2.0 or more and 3.5 or less for the purpose of further improving the passability while keeping the straightness of the ion beam high.
なお、上述した複数の貫通孔の平均開口径と平均長さの値は、それぞれ倍率10万倍で取得した引き出し電極のSEM画像を解析して平均値を求めたものである。具体的には、引き出し電極のSEM画像について視野内に存在する全ての貫通孔の直径と長さをそれぞれ算出し、その全ての貫通孔の直径と長さについて平均値を求めたものである。なお、一視野内に存在する複数の貫通孔が50個に満たない場合には、複数の視野を撮影し、少なくとも50個の貫通孔について直径と長さを算出して平均値を求めるようにした。
また、上述した引き出し電極の開口率は、引き出し電極のSEM画像について視野内に存在する貫通孔の面積と視野の面積を算出して求めた。 In addition, the values of the average opening diameter and the average length of the plurality of through-holes described above are obtained by analyzing the SEM images of the extraction electrodes acquired at a magnification of 100,000 times, respectively. Specifically, the diameters and lengths of all the through holes existing in the field of view of the SEM image of the extraction electrode are calculated, and the average values are obtained for the diameters and lengths of all the through holes. When the number of through holes existing in one field of view is less than 50, the plurality of fields of view are photographed, and the average value is obtained by calculating the diameter and length of at least 50 through holes. did.
The aperture ratio of the extraction electrode described above was obtained by calculating the area of the through hole and the area of the visual field existing in the visual field for the SEM image of the extraction electrode.
また、上述した引き出し電極の開口率は、引き出し電極のSEM画像について視野内に存在する貫通孔の面積と視野の面積を算出して求めた。 In addition, the values of the average opening diameter and the average length of the plurality of through-holes described above are obtained by analyzing the SEM images of the extraction electrodes acquired at a magnification of 100,000 times, respectively. Specifically, the diameters and lengths of all the through holes existing in the field of view of the SEM image of the extraction electrode are calculated, and the average values are obtained for the diameters and lengths of all the through holes. When the number of through holes existing in one field of view is less than 50, the plurality of fields of view are photographed, and the average value is obtained by calculating the diameter and length of at least 50 through holes. did.
The aperture ratio of the extraction electrode described above was obtained by calculating the area of the through hole and the area of the visual field existing in the visual field for the SEM image of the extraction electrode.
[絶縁層]
上記絶縁層は、バルブ金属の陽極酸化膜からなる構造体であり、イオンビームの直進性を向上させるものである。
本発明においては、上記絶縁層は、2μm以上300μm以下の平均厚みを有することが好ましい。絶縁層の平均厚みを2μm以上とすることで、イオンビームが複数の貫通孔(図1においては符号4aで表される部分)を通過する際に直進性が低いイオンビームを確実に除くことができ、絶縁層の平均厚みを300μm以下とすることで、複数の貫通孔(図1においては符号4aで表される部分)を通過するイオンビームの通過性を向上させることができる。また、図2に示すように、絶縁層の一方の面に加速電極を配置すると共に他方の面に接地電極を配置した場合に、絶縁層の平均厚みを上記範囲内とすることで、電極間の絶縁性を充分に確保することができる。 [Insulation layer]
The insulating layer is a structure made of an anodized film of a valve metal and improves the straightness of the ion beam.
In the present invention, the insulating layer preferably has an average thickness of 2 μm to 300 μm. By setting the average thickness of the insulating layer to 2 μm or more, it is possible to reliably remove the ion beam having low linearity when the ion beam passes through a plurality of through holes (portion represented byreference numeral 4a in FIG. 1). In addition, by setting the average thickness of the insulating layer to 300 μm or less, it is possible to improve the passability of an ion beam passing through a plurality of through holes (portion represented by reference numeral 4a in FIG. 1). In addition, as shown in FIG. 2, when the acceleration electrode is disposed on one surface of the insulating layer and the ground electrode is disposed on the other surface, the average thickness of the insulating layer is within the above range. It is possible to ensure sufficient insulation.
上記絶縁層は、バルブ金属の陽極酸化膜からなる構造体であり、イオンビームの直進性を向上させるものである。
本発明においては、上記絶縁層は、2μm以上300μm以下の平均厚みを有することが好ましい。絶縁層の平均厚みを2μm以上とすることで、イオンビームが複数の貫通孔(図1においては符号4aで表される部分)を通過する際に直進性が低いイオンビームを確実に除くことができ、絶縁層の平均厚みを300μm以下とすることで、複数の貫通孔(図1においては符号4aで表される部分)を通過するイオンビームの通過性を向上させることができる。また、図2に示すように、絶縁層の一方の面に加速電極を配置すると共に他方の面に接地電極を配置した場合に、絶縁層の平均厚みを上記範囲内とすることで、電極間の絶縁性を充分に確保することができる。 [Insulation layer]
The insulating layer is a structure made of an anodized film of a valve metal and improves the straightness of the ion beam.
In the present invention, the insulating layer preferably has an average thickness of 2 μm to 300 μm. By setting the average thickness of the insulating layer to 2 μm or more, it is possible to reliably remove the ion beam having low linearity when the ion beam passes through a plurality of through holes (portion represented by
絶縁層は、バルブ金属基材を陽極酸化し、陽極酸化により生じた細孔を貫通化することにより製造することができる。バルブ金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンが用いられ、アルミニウムが好ましく用いられる。
このような、陽極酸化により生じる細孔を利用して引き出し電極に後述する複数の貫通孔を形成することにより、従来のドリルなどを用いて複数の貫通孔を形成する場合と比べて、アスペクト比が高い複数の貫通孔を容易に形成することができる。また、陽極酸化により生じる細孔を利用して引き出し電極に後述する複数の貫通孔を形成することにより、複数の貫通孔を小さいピッチで容易に形成することができる。
陽極酸化処理については、従来公知の方法を用いることができるが、複数の貫通孔の規則性を高くする観点から、自己規則化法や定電圧処理を用いるのが好ましい。ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
また、貫通化処理については、例えば、特開2008-270158号公報の[0110]~[0121]段落ならびに[図3]および[図4]に記載された各方法と同様の方法が挙げられる。 The insulating layer can be manufactured by anodizing the valve metal substrate and penetrating pores generated by the anodic oxidation. As the valve metal, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony are used, and aluminum is preferably used.
Compared to the case where a plurality of through-holes are formed using a conventional drill or the like by forming a plurality of through-holes to be described later on the extraction electrode using the pores generated by anodization, the aspect ratio Can be easily formed. Further, by forming a plurality of through holes, which will be described later, in the extraction electrode using pores generated by anodization, the plurality of through holes can be easily formed at a small pitch.
As the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the plurality of through holes, it is preferable to use a self-ordering method or a constant voltage treatment. Here, as for the self-ordering method and the constant voltage process of the anodizing process, the same processes as those described in paragraphs [0056] to [0108] and [FIG. 3] of Japanese Patent Application Laid-Open No. 2008-270158 are performed. Can be applied.
Examples of the penetration process include the same methods as those described in paragraphs [0110] to [0121] of Japanese Patent Application Laid-Open No. 2008-270158 and [FIG. 3] and [FIG. 4].
このような、陽極酸化により生じる細孔を利用して引き出し電極に後述する複数の貫通孔を形成することにより、従来のドリルなどを用いて複数の貫通孔を形成する場合と比べて、アスペクト比が高い複数の貫通孔を容易に形成することができる。また、陽極酸化により生じる細孔を利用して引き出し電極に後述する複数の貫通孔を形成することにより、複数の貫通孔を小さいピッチで容易に形成することができる。
陽極酸化処理については、従来公知の方法を用いることができるが、複数の貫通孔の規則性を高くする観点から、自己規則化法や定電圧処理を用いるのが好ましい。ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
また、貫通化処理については、例えば、特開2008-270158号公報の[0110]~[0121]段落ならびに[図3]および[図4]に記載された各方法と同様の方法が挙げられる。 The insulating layer can be manufactured by anodizing the valve metal substrate and penetrating pores generated by the anodic oxidation. As the valve metal, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony are used, and aluminum is preferably used.
Compared to the case where a plurality of through-holes are formed using a conventional drill or the like by forming a plurality of through-holes to be described later on the extraction electrode using the pores generated by anodization, the aspect ratio Can be easily formed. Further, by forming a plurality of through holes, which will be described later, in the extraction electrode using pores generated by anodization, the plurality of through holes can be easily formed at a small pitch.
As the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the plurality of through holes, it is preferable to use a self-ordering method or a constant voltage treatment. Here, as for the self-ordering method and the constant voltage process of the anodizing process, the same processes as those described in paragraphs [0056] to [0108] and [FIG. 3] of Japanese Patent Application Laid-Open No. 2008-270158 are performed. Can be applied.
Examples of the penetration process include the same methods as those described in paragraphs [0110] to [0121] of Japanese Patent Application Laid-Open No. 2008-270158 and [FIG. 3] and [FIG. 4].
[加速電極]
上記加速電極は、後述するイオン源のイオン生成室から正の電荷を有する陽イオンを引き出してイオンビームを形成する電極である。
上記加速電極は、電導性材料から構成されていれば特に限定されず、例えば、タンタル、タングステン、モリブデン、およびニッケルなどの高融点金属材料が好適に例示される。
上記加速電極は、例えばスパッタリングなどを利用して、上記絶縁層である陽極酸化膜の一方の面上に形成することができる。 [Acceleration electrode]
The acceleration electrode is an electrode that draws positive ions having positive charges from an ion generation chamber of an ion source, which will be described later, to form an ion beam.
The accelerating electrode is not particularly limited as long as it is made of a conductive material. For example, refractory metal materials such as tantalum, tungsten, molybdenum, and nickel are preferably exemplified.
The acceleration electrode can be formed on one surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
上記加速電極は、後述するイオン源のイオン生成室から正の電荷を有する陽イオンを引き出してイオンビームを形成する電極である。
上記加速電極は、電導性材料から構成されていれば特に限定されず、例えば、タンタル、タングステン、モリブデン、およびニッケルなどの高融点金属材料が好適に例示される。
上記加速電極は、例えばスパッタリングなどを利用して、上記絶縁層である陽極酸化膜の一方の面上に形成することができる。 [Acceleration electrode]
The acceleration electrode is an electrode that draws positive ions having positive charges from an ion generation chamber of an ion source, which will be described later, to form an ion beam.
The accelerating electrode is not particularly limited as long as it is made of a conductive material. For example, refractory metal materials such as tantalum, tungsten, molybdenum, and nickel are preferably exemplified.
The acceleration electrode can be formed on one surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
[接地電極]
上記接地電極は、複数の貫通孔から放出されたイオンビームが引き出し電極側に引き戻されることを抑制するものである。上記接地電極は、導電性材料から構成されていれば特に限定されず、例えば、上述した加速電極と同様の材料から構成することができる。
上記接地電極は、例えばスパッタリングなどを利用して、上記絶縁層である陽極酸化膜の他方の面上に形成することができる。 [Ground electrode]
The ground electrode suppresses the ion beam emitted from the plurality of through holes from being pulled back to the extraction electrode side. The ground electrode is not particularly limited as long as it is made of a conductive material. For example, the ground electrode can be made of the same material as the acceleration electrode described above.
The ground electrode can be formed on the other surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
上記接地電極は、複数の貫通孔から放出されたイオンビームが引き出し電極側に引き戻されることを抑制するものである。上記接地電極は、導電性材料から構成されていれば特に限定されず、例えば、上述した加速電極と同様の材料から構成することができる。
上記接地電極は、例えばスパッタリングなどを利用して、上記絶縁層である陽極酸化膜の他方の面上に形成することができる。 [Ground electrode]
The ground electrode suppresses the ion beam emitted from the plurality of through holes from being pulled back to the extraction electrode side. The ground electrode is not particularly limited as long as it is made of a conductive material. For example, the ground electrode can be made of the same material as the acceleration electrode described above.
The ground electrode can be formed on the other surface of the anodic oxide film, which is the insulating layer, using, for example, sputtering.
[複数の貫通孔]
上記複数の貫通孔は、平均開口径(図1においては符号6で表される部分)が30nm以上50μm以下であるのが好ましい。平均開口径が30nm以上であると、複数の貫通孔を通過するイオンビームの通過性を向上することができ、平均開口径が50μm以下であると、直進性が低いイオンビームを確実に除くことができる。
また、上記複数の貫通孔は、平均ピッチ(図1においては符号8で表される部分)が40nm以上500nm以下であるのが好ましい。平均ピッチが40nm以上であると、引き出し電極に充分な強度を付与することができ、平均ピッチが500nm以下であると、引き出し電極の表面に衝突されるイオンビームの量を抑制してより多くのイオンビームを複数の貫通孔に進入させることができる。 [Multiple through holes]
The plurality of through holes preferably have an average opening diameter (portion represented by reference numeral 6 in FIG. 1) of 30 nm or more and 50 μm or less. When the average aperture diameter is 30 nm or more, the passability of the ion beam passing through the plurality of through holes can be improved, and when the average aperture diameter is 50 μm or less, the ion beam with low straightness is surely removed. Can do.
The plurality of through holes preferably have an average pitch (portion represented byreference numeral 8 in FIG. 1) of 40 nm or more and 500 nm or less. When the average pitch is 40 nm or more, sufficient strength can be imparted to the extraction electrode, and when the average pitch is 500 nm or less, the amount of the ion beam that collides with the surface of the extraction electrode can be suppressed and more The ion beam can enter the plurality of through holes.
上記複数の貫通孔は、平均開口径(図1においては符号6で表される部分)が30nm以上50μm以下であるのが好ましい。平均開口径が30nm以上であると、複数の貫通孔を通過するイオンビームの通過性を向上することができ、平均開口径が50μm以下であると、直進性が低いイオンビームを確実に除くことができる。
また、上記複数の貫通孔は、平均ピッチ(図1においては符号8で表される部分)が40nm以上500nm以下であるのが好ましい。平均ピッチが40nm以上であると、引き出し電極に充分な強度を付与することができ、平均ピッチが500nm以下であると、引き出し電極の表面に衝突されるイオンビームの量を抑制してより多くのイオンビームを複数の貫通孔に進入させることができる。 [Multiple through holes]
The plurality of through holes preferably have an average opening diameter (portion represented by reference numeral 6 in FIG. 1) of 30 nm or more and 50 μm or less. When the average aperture diameter is 30 nm or more, the passability of the ion beam passing through the plurality of through holes can be improved, and when the average aperture diameter is 50 μm or less, the ion beam with low straightness is surely removed. Can do.
The plurality of through holes preferably have an average pitch (portion represented by
上記複数の貫通孔の密度は、イオンビームの電流量を高く保つ理由から、200万個/mm2以上であるのが好ましく、1000万個/mm2以上であるのがより好ましく、5000万個/mm2以上であるのがさらに好ましく、1億個/mm2以上であるのが特に好ましい。
The density of the plurality of through holes is preferably 2 million pieces / mm 2 or more, more preferably 10 million pieces / mm 2 or more, in order to keep the ion beam current amount high, more preferably 50 million pieces. / Mm 2 or more is more preferable, and 100 million / mm 2 or more is particularly preferable.
[イオン源]
以下に、本発明のイオン源について詳細に説明する。
本発明のイオン源は、イオンを生成するためのイオン生成室と、イオン生成室に対向して配置される上述した引き出し電極と、引き出し電極に電位を付与する電源とを有するイオン源である。 [Ion source]
The ion source of the present invention will be described in detail below.
The ion source of the present invention is an ion source having an ion generation chamber for generating ions, the above-described extraction electrode disposed to face the ion generation chamber, and a power source for applying a potential to the extraction electrode.
以下に、本発明のイオン源について詳細に説明する。
本発明のイオン源は、イオンを生成するためのイオン生成室と、イオン生成室に対向して配置される上述した引き出し電極と、引き出し電極に電位を付与する電源とを有するイオン源である。 [Ion source]
The ion source of the present invention will be described in detail below.
The ion source of the present invention is an ion source having an ion generation chamber for generating ions, the above-described extraction electrode disposed to face the ion generation chamber, and a power source for applying a potential to the extraction electrode.
図3は、本発明のイオン源21の好適な実施態様の一例を示す模式的な断面図である。
本発明のイオン源21は、イオン生成室22と、イオン生成室22に対向して配置される引き出し電極1と、イオン生成室22より引き出し電極1の電位が低くなるように電位を付与する電源23とを有する。
イオン生成室22は、プラズマPを発生させるプラズマ発生室24と、プラズマ発生室24内に原料ガスを供給するガス供給部25と、発生したプラズマPをプラズマ発生室24内に閉じ込めるための閉じ込め部26と、プラズマ発生室24において引き出し電極1と対向する側面に形成された引き出し口27とを有する。
上記引き出し電極1は、上述したように、絶縁層2の一方の面2aに加速電極3を配置すると共に絶縁層2の他方の面2bに設置電極7を配置したものであり、加速電極3がイオン生成室22に対向するように設置されている。なお、図1に示すように、引き出し電極1は、絶縁層2の一方の面2aにのみ加速電極3を配置して、他方の面2bには接地電極7を配置しないものでもよく、同様にして、加速電極3がイオン生成室22に対向するように設置することができる。 FIG. 3 is a schematic cross-sectional view showing an example of a preferred embodiment of theion source 21 of the present invention.
Theion source 21 of the present invention includes an ion generation chamber 22, an extraction electrode 1 disposed opposite the ion generation chamber 22, and a power supply that applies a potential so that the extraction electrode 1 has a lower potential than the ion generation chamber 22. 23.
Theion generation chamber 22 includes a plasma generation chamber 24 that generates plasma P, a gas supply unit 25 that supplies a source gas into the plasma generation chamber 24, and a confinement unit that confine the generated plasma P in the plasma generation chamber 24. 26 and an extraction port 27 formed on a side surface of the plasma generation chamber 24 facing the extraction electrode 1.
As described above, the extraction electrode 1 has theacceleration electrode 3 disposed on one surface 2a of the insulating layer 2 and the installation electrode 7 disposed on the other surface 2b of the insulating layer 2. It is installed so as to face the ion generation chamber 22. As shown in FIG. 1, the extraction electrode 1 may be one in which the acceleration electrode 3 is disposed only on one surface 2a of the insulating layer 2 and the ground electrode 7 is not disposed on the other surface 2b. Thus, the accelerating electrode 3 can be installed so as to face the ion generation chamber 22.
本発明のイオン源21は、イオン生成室22と、イオン生成室22に対向して配置される引き出し電極1と、イオン生成室22より引き出し電極1の電位が低くなるように電位を付与する電源23とを有する。
イオン生成室22は、プラズマPを発生させるプラズマ発生室24と、プラズマ発生室24内に原料ガスを供給するガス供給部25と、発生したプラズマPをプラズマ発生室24内に閉じ込めるための閉じ込め部26と、プラズマ発生室24において引き出し電極1と対向する側面に形成された引き出し口27とを有する。
上記引き出し電極1は、上述したように、絶縁層2の一方の面2aに加速電極3を配置すると共に絶縁層2の他方の面2bに設置電極7を配置したものであり、加速電極3がイオン生成室22に対向するように設置されている。なお、図1に示すように、引き出し電極1は、絶縁層2の一方の面2aにのみ加速電極3を配置して、他方の面2bには接地電極7を配置しないものでもよく、同様にして、加速電極3がイオン生成室22に対向するように設置することができる。 FIG. 3 is a schematic cross-sectional view showing an example of a preferred embodiment of the
The
The
As described above, the extraction electrode 1 has the
また、電源23は、プラズマ発生室24と加速電極3の間を接続して、プラズマ発生室24に対して加速電極3の電位が低くなるように電圧を印加する。これにより、プラズマ発生室24内に閉じ込められたプラズマP中の陽イオンIが、プラズマ発生室24内から引き出し口27を介して引き出し電極1に向けて引き出されてイオンビームが形成される。
イオンビームは、引き出し電極1に到達すると、複数の貫通孔4を通過して外部に放出される。この時、複数の貫通孔4は、16以上1000以下の高いアスペクト比で形成されているため、直進性の高いイオンビームを外部に放出することができる。また、接地電極7が、複数の貫通孔4から放出されたイオンビームの引き戻しを抑制して、外部に放出されたイオンビームの量が減少するのを抑制することができる。 Thepower source 23 connects the plasma generation chamber 24 and the acceleration electrode 3 and applies a voltage to the plasma generation chamber 24 so that the potential of the acceleration electrode 3 is lowered. As a result, positive ions I in the plasma P confined in the plasma generation chamber 24 are extracted from the plasma generation chamber 24 toward the extraction electrode 1 through the extraction port 27 to form an ion beam.
When the ion beam reaches the extraction electrode 1, it passes through the plurality of throughholes 4 and is emitted to the outside. At this time, since the plurality of through-holes 4 are formed with a high aspect ratio of 16 or more and 1000 or less, an ion beam with high straightness can be emitted to the outside. In addition, the ground electrode 7 can suppress pulling back of the ion beams emitted from the plurality of through holes 4, thereby suppressing a decrease in the amount of the ion beams emitted to the outside.
イオンビームは、引き出し電極1に到達すると、複数の貫通孔4を通過して外部に放出される。この時、複数の貫通孔4は、16以上1000以下の高いアスペクト比で形成されているため、直進性の高いイオンビームを外部に放出することができる。また、接地電極7が、複数の貫通孔4から放出されたイオンビームの引き戻しを抑制して、外部に放出されたイオンビームの量が減少するのを抑制することができる。 The
When the ion beam reaches the extraction electrode 1, it passes through the plurality of through
このようにして、直進性の高いイオンビームを複数の貫通孔4から外部に放出することにより、例えば、イオンビームの進行方向に対して引き出し電極1の下流側に基板を配置して高精度な成膜を行うことができる。
In this way, a highly linear ion beam is emitted from the plurality of through-holes 4 to the outside, for example, a substrate is disposed on the downstream side of the extraction electrode 1 with respect to the traveling direction of the ion beam, and high accuracy is achieved. A film can be formed.
なお、本発明のイオン源21は、イオンビームの進行方向に対して引き出し電極1の下流側に、イオンビームの電荷を中和するためのニュートラライザーを有するのが好ましい。ニュートラライザーとしては、例えば、加熱による熱電子でイオンビームの電荷を中和する加熱フィラメントなどが挙げられる。これにより、イオンビームの電荷が中和され、複数の貫通孔4から放出されたイオンビームが互いの電荷に影響されて拡散するのを抑制することができる。
Note that the ion source 21 of the present invention preferably has a neutralizer for neutralizing the charge of the ion beam on the downstream side of the extraction electrode 1 with respect to the traveling direction of the ion beam. Examples of the neutralizer include a heating filament that neutralizes the charge of the ion beam with thermionic electrons by heating. Thereby, the electric charge of an ion beam is neutralized and it can suppress that the ion beam discharge | released from the several through-hole 4 is influenced by a mutual electric charge and spread | diffused.
また、図4に示すように、本発明のイオン源21は、引き出し電極1を挟んでイオン生成室22の反対側に配置、すなわち引き出し電極1の接地電極7に対向して配置されるイオン測定部28を備えることができる。
イオン測定部28は、イオン源のメンテナンスなどを実施する際に設置されるものでイオンビームの電流量を測定することができる。具体的には、イオン測定部28は、引き出し電極1に対向して配置される測定基板29と、測定基板29の表面上に並べて配置される複数の測定プローブ30と、複数の測定プローブ30にそれぞれ接続される電流計31とを有する。
引き出し電極1から放出されたイオンビームが、イオン測定部28の複数の測定プローブ30で受信され、この測定プローブからの電流量を電流計31で検出することにより、イオンビームの電流量を測定することができる。 Further, as shown in FIG. 4, theion source 21 of the present invention is arranged on the opposite side of the ion generation chamber 22 with the extraction electrode 1 interposed therebetween, that is, the ion measurement arranged opposite to the ground electrode 7 of the extraction electrode 1. A portion 28 can be provided.
Theion measuring unit 28 is installed when performing ion source maintenance or the like, and can measure the amount of ion beam current. Specifically, the ion measurement unit 28 includes a measurement substrate 29 arranged to face the extraction electrode 1, a plurality of measurement probes 30 arranged side by side on the surface of the measurement substrate 29, and a plurality of measurement probes 30. Each has an ammeter 31 connected thereto.
The ion beam emitted from the extraction electrode 1 is received by the plurality of measurement probes 30 of theion measurement unit 28, and the current amount from the measurement probe is detected by the ammeter 31 to measure the current amount of the ion beam. be able to.
イオン測定部28は、イオン源のメンテナンスなどを実施する際に設置されるものでイオンビームの電流量を測定することができる。具体的には、イオン測定部28は、引き出し電極1に対向して配置される測定基板29と、測定基板29の表面上に並べて配置される複数の測定プローブ30と、複数の測定プローブ30にそれぞれ接続される電流計31とを有する。
引き出し電極1から放出されたイオンビームが、イオン測定部28の複数の測定プローブ30で受信され、この測定プローブからの電流量を電流計31で検出することにより、イオンビームの電流量を測定することができる。 Further, as shown in FIG. 4, the
The
The ion beam emitted from the extraction electrode 1 is received by the plurality of measurement probes 30 of the
[イオン生成室]
<プラズマ発生室>
上記プラズマ発生室は、後述するガス供給部から供給される原料ガスを電離してプラズマを発生させるものである。例えば、プラズマ発生室は、高周波放電、マイクロ波放電およびレーザー照射などの方法により原料ガスを電離してプラズマを発生させることができる。
なお、プラズマ発生室は、耐熱性を有する導電性材料から構成するのが好ましい。 [Ion generation chamber]
<Plasma generation chamber>
The plasma generation chamber is for generating plasma by ionizing a source gas supplied from a gas supply unit described later. For example, the plasma generation chamber can generate plasma by ionizing the source gas by a method such as high-frequency discharge, microwave discharge, or laser irradiation.
Note that the plasma generation chamber is preferably made of a heat-resistant conductive material.
<プラズマ発生室>
上記プラズマ発生室は、後述するガス供給部から供給される原料ガスを電離してプラズマを発生させるものである。例えば、プラズマ発生室は、高周波放電、マイクロ波放電およびレーザー照射などの方法により原料ガスを電離してプラズマを発生させることができる。
なお、プラズマ発生室は、耐熱性を有する導電性材料から構成するのが好ましい。 [Ion generation chamber]
<Plasma generation chamber>
The plasma generation chamber is for generating plasma by ionizing a source gas supplied from a gas supply unit described later. For example, the plasma generation chamber can generate plasma by ionizing the source gas by a method such as high-frequency discharge, microwave discharge, or laser irradiation.
Note that the plasma generation chamber is preferably made of a heat-resistant conductive material.
<ガス供給部>
上記ガス供給部は、上述したプラズマ発生室にプラズマを発生させるための原料ガスを供給するもので、例えば、原料ガスの供給量を調整バルブ(図3においては符号30で表される部分)などで調整することにより、所定の圧力で原料ガスをプラズマ発生室に供給することができる。
原料ガスとしては、例えば、ヘリウム、水素、アルゴン、キセノンなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、原料ガスには、ガリウム(Ga)イオン、鉄(Fe)イオン、リチウム(Li)イオンなどを含有させることもできる。 <Gas supply unit>
The gas supply unit supplies a raw material gas for generating plasma in the above-described plasma generation chamber. For example, the supply amount of the raw material gas is adjusted by a valve (a portion represented byreference numeral 30 in FIG. 3). By adjusting in step 1, the source gas can be supplied to the plasma generation chamber at a predetermined pressure.
Examples of the source gas include helium, hydrogen, argon, xenon and the like, and these may be used alone or in combination of two or more. The source gas can also contain gallium (Ga) ions, iron (Fe) ions, lithium (Li) ions, and the like.
上記ガス供給部は、上述したプラズマ発生室にプラズマを発生させるための原料ガスを供給するもので、例えば、原料ガスの供給量を調整バルブ(図3においては符号30で表される部分)などで調整することにより、所定の圧力で原料ガスをプラズマ発生室に供給することができる。
原料ガスとしては、例えば、ヘリウム、水素、アルゴン、キセノンなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、原料ガスには、ガリウム(Ga)イオン、鉄(Fe)イオン、リチウム(Li)イオンなどを含有させることもできる。 <Gas supply unit>
The gas supply unit supplies a raw material gas for generating plasma in the above-described plasma generation chamber. For example, the supply amount of the raw material gas is adjusted by a valve (a portion represented by
Examples of the source gas include helium, hydrogen, argon, xenon and the like, and these may be used alone or in combination of two or more. The source gas can also contain gallium (Ga) ions, iron (Fe) ions, lithium (Li) ions, and the like.
<閉じ込め部>
上記閉じ込め部は、上述したプラズマ発生室内に磁場および電界などを発生させることにより、プラズマをプラズマ発生室内に閉じ込めるものである。例えば、プラズマ発生室を囲むように磁石を配置してプラズマ発生室内に、いわゆるミラー磁場を発生させることによりプラズマの拡散を抑制して閉じ込めることができる。 <Containment part>
The confinement unit confines plasma in the plasma generation chamber by generating a magnetic field, an electric field, and the like in the plasma generation chamber. For example, by disposing a magnet so as to surround the plasma generation chamber and generating a so-called mirror magnetic field in the plasma generation chamber, diffusion of plasma can be suppressed and confined.
上記閉じ込め部は、上述したプラズマ発生室内に磁場および電界などを発生させることにより、プラズマをプラズマ発生室内に閉じ込めるものである。例えば、プラズマ発生室を囲むように磁石を配置してプラズマ発生室内に、いわゆるミラー磁場を発生させることによりプラズマの拡散を抑制して閉じ込めることができる。 <Containment part>
The confinement unit confines plasma in the plasma generation chamber by generating a magnetic field, an electric field, and the like in the plasma generation chamber. For example, by disposing a magnet so as to surround the plasma generation chamber and generating a so-called mirror magnetic field in the plasma generation chamber, diffusion of plasma can be suppressed and confined.
以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
(実施例1)
(A)鏡面仕上げ処理(電解研磨処理)
高純度アルミニウム基板(住友軽金属株式会社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。 Example 1
(A) Mirror finish (electropolishing)
A high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99% by mass, thickness 0.4 mm) was cut so that it could be anodized in an area of 10 cm square, using an electrolytic polishing liquid having the following composition, a voltage of 25 V, Electropolishing was performed under conditions of a liquid temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. The flow rate of the electrolyte was measured using a vortex type flow monitor FLM22-10PCW (manufactured by ASONE CORPORATION).
(A)鏡面仕上げ処理(電解研磨処理)
高純度アルミニウム基板(住友軽金属株式会社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。 Example 1
(A) Mirror finish (electropolishing)
A high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99% by mass, thickness 0.4 mm) was cut so that it could be anodized in an area of 10 cm square, using an electrolytic polishing liquid having the following composition, a voltage of 25 V, Electropolishing was performed under conditions of a liquid temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. The flow rate of the electrolyte was measured using a vortex type flow monitor FLM22-10PCW (manufactured by ASONE CORPORATION).
(電解研磨液組成)
・85質量%リン酸(和光純薬工業株式会社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL (Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
・85質量%リン酸(和光純薬工業株式会社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL (Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
(B)陽極酸化処理工程
次いで、鏡面仕上げ処理を行ったアルミニウム基板は、5.0mol/L濃度のマロン酸の電解質において、電圧115Vおよび液温度0℃の条件で、1時間の陽極酸化処理を施した後、50g/L濃度のリン酸水溶液に浸漬されて、液温度30℃の条件で10分間の酸化被膜溶解処理を施した。この陽極酸化処理と酸化被膜溶解処理を4回繰り返し行った。
なお、陽極酸化処理は、陰極をステンレス電極とし、電源には株式会社高砂製作所社製の直流安定化電源を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、攪拌加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。 (B) Anodizing treatment step Next, the mirror-finished aluminum substrate was subjected to anodizing treatment for 1 hour in a 5.0 mol / L malonic acid electrolyte at a voltage of 115 V and a liquid temperature of 0 ° C. After the application, the film was immersed in an aqueous phosphoric acid solution having a concentration of 50 g / L and subjected to an oxide film dissolution treatment for 10 minutes under the condition of a liquid temperature of 30 ° C. This anodizing treatment and oxide film dissolution treatment were repeated four times.
In the anodizing treatment, the cathode was a stainless electrode, and a DC stabilized power source manufactured by Takasago Seisakusho Co., Ltd. was used as the power source. Further, NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and Pear Stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device.
次いで、鏡面仕上げ処理を行ったアルミニウム基板は、5.0mol/L濃度のマロン酸の電解質において、電圧115Vおよび液温度0℃の条件で、1時間の陽極酸化処理を施した後、50g/L濃度のリン酸水溶液に浸漬されて、液温度30℃の条件で10分間の酸化被膜溶解処理を施した。この陽極酸化処理と酸化被膜溶解処理を4回繰り返し行った。
なお、陽極酸化処理は、陰極をステンレス電極とし、電源には株式会社高砂製作所社製の直流安定化電源を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、攪拌加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。 (B) Anodizing treatment step Next, the mirror-finished aluminum substrate was subjected to anodizing treatment for 1 hour in a 5.0 mol / L malonic acid electrolyte at a voltage of 115 V and a liquid temperature of 0 ° C. After the application, the film was immersed in an aqueous phosphoric acid solution having a concentration of 50 g / L and subjected to an oxide film dissolution treatment for 10 minutes under the condition of a liquid temperature of 30 ° C. This anodizing treatment and oxide film dissolution treatment were repeated four times.
In the anodizing treatment, the cathode was a stainless electrode, and a DC stabilized power source manufactured by Takasago Seisakusho Co., Ltd. was used as the power source. Further, NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and Pear Stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device.
続いて、陽極酸化処理と酸化被膜溶解処理を施したアルミニウム基板に、0.5mol/L濃度のマロン酸の電解質で、電圧115V、液温度0℃の条件で、6時間の陽極酸化処理を施した後、50g/L濃度のリン酸水溶液に10分間浸漬して、厚さ14μmの陽極酸化膜を得た。得られた陽極酸化膜には、中心間距離の平均値が300nmの複数の細孔が形成されていた。複数の細孔の中心間距離の測定は、走査型電子顕微鏡S-4800(株式会社日立ハイテクノロジーズ社製)を用いて、50k倍の画像を任意の場所で5枚撮影し、各々画像から任意に選択された細孔の中心間距離を10点測定して、その平均数値を細孔の中心間距離とした。
Subsequently, an anodizing treatment and an oxide film dissolution treatment were performed on a 6-hour anodizing treatment with a 0.5 mol / L malonic acid electrolyte at a voltage of 115 V and a liquid temperature of 0 ° C. Then, it was immersed in a 50 g / L concentration phosphoric acid aqueous solution for 10 minutes to obtain an anodic oxide film having a thickness of 14 μm. In the obtained anodic oxide film, a plurality of pores having an average center-to-center distance of 300 nm were formed. To measure the center-to-center distance of multiple pores, use a scanning electron microscope S-4800 (manufactured by Hitachi High-Technologies Corporation) to shoot 5 images at 50k magnification at any location, and select any from each image. The distance between the centers of the selected pores was measured at 10 points, and the average value was taken as the distance between the centers of the pores.
(C)貫通化処理工程
次いで、20質量%塩酸水溶液に0.1mol/Lの塩化銅を混合した処理液を用い、液温15℃で、目視によりアルミニウムが除去されるまで浸漬することによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分~180分間浸漬させることにより陽極酸化膜の底部を除去し、複数の貫通孔を有する陽極酸化膜からなる構造体(絶縁層)を作製した。 (C) Penetration treatment step Next, aluminum was immersed by using a treatment liquid in which 0.1 mol / L copper chloride was mixed in a 20% by mass hydrochloric acid aqueous solution at a liquid temperature of 15 ° C until the aluminum was visually removed. The substrate is dissolved and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 to 180 minutes to remove the bottom of the anodized film, and a structure (insulating layer) comprising an anodized film having a plurality of through holes ) Was produced.
次いで、20質量%塩酸水溶液に0.1mol/Lの塩化銅を混合した処理液を用い、液温15℃で、目視によりアルミニウムが除去されるまで浸漬することによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分~180分間浸漬させることにより陽極酸化膜の底部を除去し、複数の貫通孔を有する陽極酸化膜からなる構造体(絶縁層)を作製した。 (C) Penetration treatment step Next, aluminum was immersed by using a treatment liquid in which 0.1 mol / L copper chloride was mixed in a 20% by mass hydrochloric acid aqueous solution at a liquid temperature of 15 ° C until the aluminum was visually removed. The substrate is dissolved and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 to 180 minutes to remove the bottom of the anodized film, and a structure (insulating layer) comprising an anodized film having a plurality of through holes ) Was produced.
(D)加熱処理
次いで、上記で得られた構造体に、温度400℃で1時間の加熱処理を施した。 (D) Heat treatment Next, the structure obtained above was subjected to a heat treatment at a temperature of 400 ° C for 1 hour.
次いで、上記で得られた構造体に、温度400℃で1時間の加熱処理を施した。 (D) Heat treatment Next, the structure obtained above was subjected to a heat treatment at a temperature of 400 ° C for 1 hour.
(E)表面平滑化処理
次いで、構造体の表面を5μm以上研磨し、その反対の面を5μm以上研磨する表面平滑化処理を施した。
具体的には、研磨剤の種類がシリコンカーバイトのシート(#1200)でラッピング研磨を行なった後、粒子径2μmのダイヤモンドスラリーでポリッシングを行い、さらに、粒子径0.25μmのダイヤモンドスラリーでポリッシングを行なって鏡面状態とした。 (E) Surface smoothing treatment Next, the surface of the structure was polished by 5 μm or more, and the opposite surface was polished by 5 μm or more.
Specifically, after lapping polishing with a sheet of silicon carbide (# 1200), polishing is performed with diamond slurry having a particle diameter of 2 μm, and further polishing is performed with diamond slurry having a particle diameter of 0.25 μm. To obtain a mirror state.
次いで、構造体の表面を5μm以上研磨し、その反対の面を5μm以上研磨する表面平滑化処理を施した。
具体的には、研磨剤の種類がシリコンカーバイトのシート(#1200)でラッピング研磨を行なった後、粒子径2μmのダイヤモンドスラリーでポリッシングを行い、さらに、粒子径0.25μmのダイヤモンドスラリーでポリッシングを行なって鏡面状態とした。 (E) Surface smoothing treatment Next, the surface of the structure was polished by 5 μm or more, and the opposite surface was polished by 5 μm or more.
Specifically, after lapping polishing with a sheet of silicon carbide (# 1200), polishing is performed with diamond slurry having a particle diameter of 2 μm, and further polishing is performed with diamond slurry having a particle diameter of 0.25 μm. To obtain a mirror state.
(F)電極形成処理
次いで、表面平滑化処理後の陽極酸化膜の両面に、スパッタリング装置(HSR-351L、株式会社島津製作所社製)を用いてアルゴンガスを0.5Paで導入しつつ投入電力100Wで600秒間モリブデン(純度99.95%)を0.5μm蒸着することにより、絶縁層の一方の面と他方の面にそれぞれ加速電極と接地電極を配置して引き出し電極を作製した。 (F) Electrode formation treatment Next, input power while introducing argon gas at 0.5 Pa on both surfaces of the anodized film after the surface smoothing treatment using a sputtering apparatus (HSR-351L, manufactured by Shimadzu Corporation) Molybdenum (purity 99.95%) was vapor-deposited at 100 W for 600 seconds to form an extraction electrode by arranging an acceleration electrode and a ground electrode on one surface and the other surface of the insulating layer, respectively.
次いで、表面平滑化処理後の陽極酸化膜の両面に、スパッタリング装置(HSR-351L、株式会社島津製作所社製)を用いてアルゴンガスを0.5Paで導入しつつ投入電力100Wで600秒間モリブデン(純度99.95%)を0.5μm蒸着することにより、絶縁層の一方の面と他方の面にそれぞれ加速電極と接地電極を配置して引き出し電極を作製した。 (F) Electrode formation treatment Next, input power while introducing argon gas at 0.5 Pa on both surfaces of the anodized film after the surface smoothing treatment using a sputtering apparatus (HSR-351L, manufactured by Shimadzu Corporation) Molybdenum (purity 99.95%) was vapor-deposited at 100 W for 600 seconds to form an extraction electrode by arranging an acceleration electrode and a ground electrode on one surface and the other surface of the insulating layer, respectively.
(実施例2)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に陽極酸化処理の処理時間を6時間とし、(E)表面平滑化処理において構造体の表面を4μm以上研磨すると共にその反対の面を4μm以上研磨した以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 2)
When the anodizing treatment and the oxide film dissolving treatment are repeated in the (B) anodizing treatment step of Example 1, the treatment time of the anodizing treatment is set to 6 hours, and (E) the surface of the structure is 4 μm or more in the surface smoothing treatment A lead electrode was produced in the same manner as in Example 1 except that the opposite surface was polished by 4 μm or more.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に陽極酸化処理の処理時間を6時間とし、(E)表面平滑化処理において構造体の表面を4μm以上研磨すると共にその反対の面を4μm以上研磨した以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 2)
When the anodizing treatment and the oxide film dissolving treatment are repeated in the (B) anodizing treatment step of Example 1, the treatment time of the anodizing treatment is set to 6 hours, and (E) the surface of the structure is 4 μm or more in the surface smoothing treatment A lead electrode was produced in the same manner as in Example 1 except that the opposite surface was polished by 4 μm or more.
(実施例3)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理のマロン酸の濃度を0.5mol/Lとし且つ処理時間を16時間とした以外は、実施例1と同様の方法により、引き出し電極を作製した。 Example 3
When repeating the anodizing treatment and the oxide film dissolution treatment in the anodizing treatment step (B) of Example 1, except that the malonic acid concentration in the anodizing treatment was 0.5 mol / L and the treatment time was 16 hours. A lead electrode was produced in the same manner as in Example 1.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理のマロン酸の濃度を0.5mol/Lとし且つ処理時間を16時間とした以外は、実施例1と同様の方法により、引き出し電極を作製した。 Example 3
When repeating the anodizing treatment and the oxide film dissolution treatment in the anodizing treatment step (B) of Example 1, except that the malonic acid concentration in the anodizing treatment was 0.5 mol / L and the treatment time was 16 hours. A lead electrode was produced in the same manner as in Example 1.
(実施例4)
実施例2の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の処理時間を56時間とした以外は、実施例2と同様の方法により、引き出し電極を作製した。 Example 4
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 2, the extraction electrode is formed in the same manner as in Example 2 except that the treatment time of the anodizing treatment is 56 hours. Was made.
実施例2の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の処理時間を56時間とした以外は、実施例2と同様の方法により、引き出し電極を作製した。 Example 4
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 2, the extraction electrode is formed in the same manner as in Example 2 except that the treatment time of the anodizing treatment is 56 hours. Was made.
(実施例5)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理は、マロン酸に代えて0.3mol/L濃度のリン酸の電解質を用い、電圧28Vおよび液温度0℃の条件で1時間処理された以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 5)
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 1, the anodizing treatment uses an electrolyte of phosphoric acid having a concentration of 0.3 mol / L instead of malonic acid. A lead electrode was produced in the same manner as in Example 1 except that the treatment was performed for 1 hour under the conditions of 28 V and a liquid temperature of 0 ° C.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理は、マロン酸に代えて0.3mol/L濃度のリン酸の電解質を用い、電圧28Vおよび液温度0℃の条件で1時間処理された以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 5)
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Example 1, the anodizing treatment uses an electrolyte of phosphoric acid having a concentration of 0.3 mol / L instead of malonic acid. A lead electrode was produced in the same manner as in Example 1 except that the treatment was performed for 1 hour under the conditions of 28 V and a liquid temperature of 0 ° C.
(実施例6)
実施例5の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の条件を電圧45Vで液温度2℃とした以外は、実施例5と同様の方法により、引き出し電極を作製した。 (Example 6)
The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 45 V and a liquid temperature of 2 ° C. Thus, an extraction electrode was produced.
実施例5の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の条件を電圧45Vで液温度2℃とした以外は、実施例5と同様の方法により、引き出し電極を作製した。 (Example 6)
The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 45 V and a liquid temperature of 2 ° C. Thus, an extraction electrode was produced.
(実施例7)
実施例5の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の条件を電圧91Vで液温度10℃とした以外は、実施例5と同様の方法により、引き出し電極を作製した。 (Example 7)
The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 91 V and the liquid temperature was 10 ° C. Thus, an extraction electrode was produced.
実施例5の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の条件を電圧91Vで液温度10℃とした以外は、実施例5と同様の方法により、引き出し電極を作製した。 (Example 7)
The same method as in Example 5 except that, when the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 5, the conditions of the anodizing treatment were set at a voltage of 91 V and the liquid temperature was 10 ° C. Thus, an extraction electrode was produced.
(実施例8)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度40℃で20分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 8)
When the anodizing treatment and the oxide film dissolving treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolving treatment was carried out at a liquid temperature of 40 ° C. for 20 minutes in the same manner as in Example 1. A lead electrode was prepared.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度40℃で20分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Example 8)
When the anodizing treatment and the oxide film dissolving treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolving treatment was carried out at a liquid temperature of 40 ° C. for 20 minutes in the same manner as in Example 1. A lead electrode was prepared.
(実施例9)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度40℃で25分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 Example 9
When the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolution treatment was performed at a liquid temperature of 40 ° C. for 25 minutes in the same manner as in Example 1. A lead electrode was prepared.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度40℃で25分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 Example 9
When the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 1, the oxide film dissolution treatment was performed at a liquid temperature of 40 ° C. for 25 minutes in the same manner as in Example 1. A lead electrode was prepared.
(比較例1)
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の処理時間を220時間とし且つ酸化被膜溶解処理を液温度40℃で25分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 1)
When the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 1, the treatment time of the anodization treatment was set to 220 hours, and the oxide film dissolution treatment was performed at a liquid temperature of 40 ° C. for 25 minutes. Except for the above, an extraction electrode was produced in the same manner as in Example 1.
実施例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、陽極酸化処理の処理時間を220時間とし且つ酸化被膜溶解処理を液温度40℃で25分間行った以外は、実施例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 1)
When the anodizing treatment and the oxide film dissolution treatment were repeated in the (B) anodizing treatment step of Example 1, the treatment time of the anodization treatment was set to 220 hours, and the oxide film dissolution treatment was performed at a liquid temperature of 40 ° C. for 25 minutes. Except for the above, an extraction electrode was produced in the same manner as in Example 1.
(比較例2)
比較例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に陽極酸化処理の処理時間を1時間とし且つ酸化被膜溶解処理を液温度30℃で10分間行い、(E)表面平滑化処理において構造体の表面を5.75μm以上研磨すると共にその反対の面を5.75μm以上研磨した以外は、比較例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 2)
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Comparative Example 1, the treatment time for the anodizing treatment is 1 hour and the oxide film dissolving treatment is performed at a liquid temperature of 30 ° C. for 10 minutes. E) A lead electrode was produced in the same manner as in Comparative Example 1 except that the surface of the structure was polished by 5.75 μm or more and the opposite surface was polished by 5.75 μm or more in the surface smoothing treatment.
比較例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に陽極酸化処理の処理時間を1時間とし且つ酸化被膜溶解処理を液温度30℃で10分間行い、(E)表面平滑化処理において構造体の表面を5.75μm以上研磨すると共にその反対の面を5.75μm以上研磨した以外は、比較例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 2)
When the anodizing treatment and the oxide film dissolution treatment are repeated in the anodizing treatment step (B) of Comparative Example 1, the treatment time for the anodizing treatment is 1 hour and the oxide film dissolving treatment is performed at a liquid temperature of 30 ° C. for 10 minutes. E) A lead electrode was produced in the same manner as in Comparative Example 1 except that the surface of the structure was polished by 5.75 μm or more and the opposite surface was polished by 5.75 μm or more in the surface smoothing treatment.
(比較例3)
比較例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度30℃で10分間行った以外は、比較例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 3)
By repeating the anodizing treatment and the oxide film dissolution treatment in the (B) anodizing treatment step of Comparative Example 1 in the same manner as in Comparative Example 1 except that the oxide film dissolution treatment was performed at a liquid temperature of 30 ° C. for 10 minutes. A lead electrode was prepared.
比較例1の(B)陽極酸化処理工程において陽極酸化処理と酸化被膜溶解処理を繰り返す際に、酸化被膜溶解処理を液温度30℃で10分間行った以外は、比較例1と同様の方法により、引き出し電極を作製した。 (Comparative Example 3)
By repeating the anodizing treatment and the oxide film dissolution treatment in the (B) anodizing treatment step of Comparative Example 1 in the same manner as in Comparative Example 1 except that the oxide film dissolution treatment was performed at a liquid temperature of 30 ° C. for 10 minutes. A lead electrode was prepared.
(比較例4)
厚さ1mmのモリブデン板材を10cm四方の面積でカットし、2mmφのドリルを使用して水冷しつつ穴あけ加工を施した。 (Comparative Example 4)
A 1 mm thick molybdenum plate was cut into an area of 10 cm square, and drilled with water cooling using a 2 mmφ drill.
厚さ1mmのモリブデン板材を10cm四方の面積でカットし、2mmφのドリルを使用して水冷しつつ穴あけ加工を施した。 (Comparative Example 4)
A 1 mm thick molybdenum plate was cut into an area of 10 cm square, and drilled with water cooling using a 2 mmφ drill.
上記の実施例1~9、比較例1~4について、貫通孔の開口径、貫通孔の長さおよび開口率を測定した。
貫通孔の開口径および長さは、SEM画像を解析して開口径および長さの平均値を求めた。この結果を下記第1表に示す。
開口率は、上記で観察したSEM像を画像解析して算出した。この結果を下記第1表に示す。 With respect to Examples 1 to 9 and Comparative Examples 1 to 4, the opening diameter of the through hole, the length of the through hole, and the opening ratio were measured.
As for the opening diameter and length of the through hole, an SEM image was analyzed to obtain an average value of the opening diameter and length. The results are shown in Table 1 below.
The aperture ratio was calculated by image analysis of the SEM image observed above. The results are shown in Table 1 below.
貫通孔の開口径および長さは、SEM画像を解析して開口径および長さの平均値を求めた。この結果を下記第1表に示す。
開口率は、上記で観察したSEM像を画像解析して算出した。この結果を下記第1表に示す。 With respect to Examples 1 to 9 and Comparative Examples 1 to 4, the opening diameter of the through hole, the length of the through hole, and the opening ratio were measured.
As for the opening diameter and length of the through hole, an SEM image was analyzed to obtain an average value of the opening diameter and length. The results are shown in Table 1 below.
The aperture ratio was calculated by image analysis of the SEM image observed above. The results are shown in Table 1 below.
また、貫通孔のアスペクト比は、開口径に対する長さの比率を求めることにより算出した。この結果を下記第1表に示す。
また、開口率/アスペクト比は、上記で算出されたアスペクト比に対する開口率の比率を求めることにより算出した。この結果を下記第1表に示す。 The aspect ratio of the through hole was calculated by determining the ratio of the length to the opening diameter. The results are shown in Table 1 below.
The aperture ratio / aspect ratio was calculated by obtaining the ratio of the aperture ratio to the aspect ratio calculated above. The results are shown in Table 1 below.
また、開口率/アスペクト比は、上記で算出されたアスペクト比に対する開口率の比率を求めることにより算出した。この結果を下記第1表に示す。 The aspect ratio of the through hole was calculated by determining the ratio of the length to the opening diameter. The results are shown in Table 1 below.
The aperture ratio / aspect ratio was calculated by obtaining the ratio of the aperture ratio to the aspect ratio calculated above. The results are shown in Table 1 below.
(評価方法)
カウフマン型イオン源に引き出し電極を設置し、プラズマ発生室を0.6mPaまで排気した後、ガス供給部からアルゴンガスを30mPaでプラズマ発生室内に供給しつつプラズマ発生室内に配置されたフィラメントに100Wの電力を印加してプラズマを発生させた。続いて、引き出し電極の加速電極に1.2kVの加速電位を付与することで、プラズマ発生室内から陽イオンを引き出すことによりイオンビームを形成した。 (Evaluation methods)
After the extraction electrode is installed in the Kaufman type ion source and the plasma generation chamber is evacuated to 0.6 mPa, 100 W is applied to the filament disposed in the plasma generation chamber while supplying argon gas from the gas supply unit at 30 mPa. Electric power was applied to generate plasma. Subsequently, an ion beam was formed by extracting positive ions from the plasma generation chamber by applying an acceleration potential of 1.2 kV to the acceleration electrode of the extraction electrode.
カウフマン型イオン源に引き出し電極を設置し、プラズマ発生室を0.6mPaまで排気した後、ガス供給部からアルゴンガスを30mPaでプラズマ発生室内に供給しつつプラズマ発生室内に配置されたフィラメントに100Wの電力を印加してプラズマを発生させた。続いて、引き出し電極の加速電極に1.2kVの加速電位を付与することで、プラズマ発生室内から陽イオンを引き出すことによりイオンビームを形成した。 (Evaluation methods)
After the extraction electrode is installed in the Kaufman type ion source and the plasma generation chamber is evacuated to 0.6 mPa, 100 W is applied to the filament disposed in the plasma generation chamber while supplying argon gas from the gas supply unit at 30 mPa. Electric power was applied to generate plasma. Subsequently, an ion beam was formed by extracting positive ions from the plasma generation chamber by applying an acceleration potential of 1.2 kV to the acceleration electrode of the extraction electrode.
イオンビームの直進性は、引き出し電極から100mmの位置に2mmφの測定プローブを、貫通孔の中心軸に対してそれぞれ3度、5度および10度の方向に配置し、それぞれの測定プローブで検出されたイオンビームの電流値を微小電流計(34410A、アジレントテクノロジー社製)を用いて測定した。この時の電流値が、3度の方向に配置された測定プローブでのみ得られる場合(イオンビームの広がりが5度未満)をA、3度および5度の方向に配置された測定プローブで得られる場合(イオンビームの広がりが5度以上10度未満)をB、3度、5度および10度の方向に配置された測定プローブで得られる場合(イオンビームの広がりが10度以上)をCとしてイオンビームの直進性を評価した。この結果を下記第1表に示す。
The straightness of the ion beam is detected by measuring probes with a diameter of 2 mm at a position of 100 mm from the extraction electrode in directions of 3 degrees, 5 degrees, and 10 degrees, respectively, with respect to the central axis of the through hole. The current value of the ion beam was measured using a microammeter (34410A, manufactured by Agilent Technologies). When the current value at this time can be obtained only with the measurement probe arranged in the direction of 3 degrees (the ion beam spread is less than 5 degrees), it is obtained with the measurement probe arranged in the directions of A, 3 degrees and 5 degrees. (If the ion beam spread is 5 degrees or more and less than 10 degrees), and B is obtained with a measurement probe arranged in directions of 3 degrees, 5 degrees, and 10 degrees (ion beam spread is 10 degrees or more). The straightness of the ion beam was evaluated. The results are shown in Table 1 below.
イオンビームの電流量は、貫通孔の直下に引き出し電極から100mm離して配置された2mmφの測定プローブでイオンビームを検出し、この時の電流値を微小電流計(34410A、アジレントテクノロジー社製)を用いて測定した。この時の電流量が、実施例1の電流量以上である場合をA、実施例1の電流量未満実施例1の電流量の50%以上である場合をB、実施例1の電流量の50%未満1%以上である場合をC、実施例1の電流量の1%未満である場合をDとしてイオンビームの電流量を評価した。この結果を下記第1表に示す。
なお、比較例1および比較例3は、電流量が1%未満であったため(評価D)、直進性および安定性は評価できなかった。 The amount of current of the ion beam is detected with a 2 mmφ measuring probe arranged 100 mm away from the extraction electrode directly under the through hole, and the current value at this time is measured by a microammeter (34410A, manufactured by Agilent Technologies). And measured. When the current amount at this time is greater than or equal to the current amount of Example 1, A, less than the current amount of Example 1 and 50% or more of the current amount of Example 1, B, the current amount of Example 1 The current amount of the ion beam was evaluated as C when less than 50% and 1% or more, and as D when less than 1% of the current amount of Example 1. The results are shown in Table 1 below.
In Comparative Example 1 and Comparative Example 3, the amount of current was less than 1% (Evaluation D), and thus the straightness and stability could not be evaluated.
なお、比較例1および比較例3は、電流量が1%未満であったため(評価D)、直進性および安定性は評価できなかった。 The amount of current of the ion beam is detected with a 2 mmφ measuring probe arranged 100 mm away from the extraction electrode directly under the through hole, and the current value at this time is measured by a microammeter (34410A, manufactured by Agilent Technologies). And measured. When the current amount at this time is greater than or equal to the current amount of Example 1, A, less than the current amount of Example 1 and 50% or more of the current amount of Example 1, B, the current amount of Example 1 The current amount of the ion beam was evaluated as C when less than 50% and 1% or more, and as D when less than 1% of the current amount of Example 1. The results are shown in Table 1 below.
In Comparative Example 1 and Comparative Example 3, the amount of current was less than 1% (Evaluation D), and thus the straightness and stability could not be evaluated.
イオンビームの電流安定性は、貫通孔の直下に引き出し電極から100mm離して配置された2mmφの測定プローブでイオンビームを検出し、この時の電流値を微小電流計(34410A、アジレントテクノロジー社製)を用いて測定した。この時の電流値が、1分以上連続して得られる場合をA、1分以上連続して得られない場合をBとしてイオンビームの電流安定性を評価した。この結果を下記第1表に示す。
The current stability of the ion beam is determined by detecting the ion beam with a 2 mmφ measuring probe placed 100 mm away from the extraction electrode directly under the through-hole, and the current value at this time is a microammeter (34410A, manufactured by Agilent Technologies). It measured using. The current stability of the ion beam was evaluated as A when the current value at this time was continuously obtained for 1 minute or longer, and B when it was not continuously obtained for 1 minute or longer. The results are shown in Table 1 below.
なお、下記第1表において、「-」は、測定値が得られずに評価できなかったことを示している。
In Table 1 below, “-” indicates that the measurement value was not obtained and the evaluation could not be performed.
第1表に示す結果から、複数の貫通孔のアスペクト比が16以上1000以下である実施例1~9は、複数の貫通孔のアスペクト比が16未満の比較例2および4と比較して、イオンビームの直進性が向上することがわかった。また、複数の貫通孔のアスペクト比が1000を超える比較例1および3では、イオンビームの電流量が検出されず、ほとんどのイオンビームが複数の貫通孔を通過できないことがわかった。このことから、複数の貫通孔のアスペクト比を16以上1000以下とすることで、直進性が高いイオンビームを確実に得られることがわかった。
From the results shown in Table 1, Examples 1 to 9 in which the aspect ratio of the plurality of through holes is 16 or more and 1000 or less are compared with Comparative Examples 2 and 4 in which the aspect ratio of the plurality of through holes is less than 16. It was found that the straightness of the ion beam is improved. Further, in Comparative Examples 1 and 3 in which the aspect ratios of the plurality of through holes exceeded 1000, it was found that the amount of ion beam current was not detected, and most of the ion beams could not pass through the plurality of through holes. From this, it was found that by setting the aspect ratio of the plurality of through holes to 16 or more and 1000 or less, an ion beam having high straightness can be obtained with certainty.
さらに、複数の貫通孔のアスペクト比が16以上1000以下である実施例1~9は、従来用いられている引き出し電極と同等のアスペクト比を有する比較例4と同様に、イオンビームの電流安定性が高く、直進性に加えて電流安定性の高いイオンビームが得られることがわかった。
Further, in Examples 1 to 9 in which the aspect ratio of the plurality of through holes is 16 or more and 1000 or less, the current stability of the ion beam is the same as that of Comparative Example 4 having the same aspect ratio as that of the conventional extraction electrode. It was found that an ion beam with high current stability in addition to straight travel is obtained.
また、複数の貫通孔のアスペクト比が22以上500以下である実施例2~9は、複数の貫通孔のアスペクト比が22未満の実施例1と比較して、イオンビームの直進性がより向上することがわかった。
また、複数の貫通孔のアスペクト比に対する開口率の比率(開口率/アスペクト比)が1.0以上3.5以下である実施例2、7~9は、開口率/アスペクト比が1.0未満あるいは3.5を超える実施例1、3~6、比較例1~3と比較して、イオンビームの直進性と電流量が共に向上することがわかった。 Further, in Examples 2 to 9 in which the aspect ratio of the plurality of through holes is 22 or more and 500 or less, the straightness of the ion beam is further improved as compared with Example 1 in which the aspect ratio of the plurality of through holes is less than 22. I found out that
In Examples 2 and 7 to 9, in which the ratio of the aperture ratio to the aspect ratio of the plurality of through holes (opening ratio / aspect ratio) is 1.0 or more and 3.5 or less, the aperture ratio / aspect ratio is 1.0. It was found that both the straightness of the ion beam and the amount of current were improved as compared with Examples 1, 3 to 6, and Comparative Examples 1 to 3 of less than or exceeding 3.5.
また、複数の貫通孔のアスペクト比に対する開口率の比率(開口率/アスペクト比)が1.0以上3.5以下である実施例2、7~9は、開口率/アスペクト比が1.0未満あるいは3.5を超える実施例1、3~6、比較例1~3と比較して、イオンビームの直進性と電流量が共に向上することがわかった。 Further, in Examples 2 to 9 in which the aspect ratio of the plurality of through holes is 22 or more and 500 or less, the straightness of the ion beam is further improved as compared with Example 1 in which the aspect ratio of the plurality of through holes is less than 22. I found out that
In Examples 2 and 7 to 9, in which the ratio of the aperture ratio to the aspect ratio of the plurality of through holes (opening ratio / aspect ratio) is 1.0 or more and 3.5 or less, the aperture ratio / aspect ratio is 1.0. It was found that both the straightness of the ion beam and the amount of current were improved as compared with Examples 1, 3 to 6, and Comparative Examples 1 to 3 of less than or exceeding 3.5.
1 引き出し電極、2 絶縁層、2a 一方の面、2b 他方の面、3 加速電極、4,4a,4b 複数の貫通孔、5 平均長さ、6 平均開口径、7 接地電極、8 平均ピッチ、21 イオン源、22 イオン生成室、23 電源、24 プラズマ発生室、25 ガス供給部、26 閉じ込め部、27 引き出し口、28 イオン測定部、29 測定基板、30 測定プローブ、31 電流計、P プラズマ、I 陽イオン。
1 lead electrode, 2 insulating layer, 2a one side, 2b other side, 3 acceleration electrode, 4, 4a, 4b multiple through-holes, 5 average length, 6 average opening diameter, 7 ground electrodes, 8 average pitch, 21 ion source, 22 ion generation chamber, 23 power supply, 24 plasma generation chamber, 25 gas supply unit, 26 confinement unit, 27 outlet, 28 ion measurement unit, 29 measurement substrate, 30 measurement probe, 31 ammeter, P plasma, I Cation.
Claims (8)
- イオンを引き出してイオンビームを形成するための引き出し電極であって、
バルブ金属の陽極酸化膜からなる絶縁層と、
前記絶縁層の一方の面に配置される加速電極と、
前記加速電極と前記絶縁層を厚さ方向に貫通する複数の貫通孔と、
を備え、
前記貫通孔の平均長さと平均開口径との比であるアスペクト比が、16以上1000以下である引き出し電極。 An extraction electrode for extracting ions to form an ion beam,
An insulating layer made of an anodized film of a valve metal;
An accelerating electrode disposed on one surface of the insulating layer;
A plurality of through holes penetrating the acceleration electrode and the insulating layer in the thickness direction;
With
The extraction electrode whose aspect ratio which is ratio of the average length of the said through-hole, and an average opening diameter is 16-1000. - 前記アスペクト比が、22以上500以下である請求項1に記載の引き出し電極。 The extraction electrode according to claim 1, wherein the aspect ratio is 22 or more and 500 or less.
- 前記貫通孔のアスペクト比に対する開口率の比率が、1.0以上3.5以下である請求項1または2に記載の引き出し電極。 The lead electrode according to claim 1 or 2, wherein a ratio of an aperture ratio to an aspect ratio of the through hole is 1.0 or more and 3.5 or less.
- 前記絶縁層の平均厚みが、2μm以上300μm以下である請求項1~3のいずれか一項に記載の引き出し電極。 The lead electrode according to any one of claims 1 to 3, wherein an average thickness of the insulating layer is 2 袖 m or more and 300 袖 m or less.
- 前記貫通孔による開口率が、3%以上90%以下である請求項1~4のいずれか一項に記載の引き出し電極。 The extraction electrode according to any one of claims 1 to 4, wherein an aperture ratio by the through hole is 3% or more and 90% or less.
- 前記貫通孔の平均開口径が、30nm以上50μm以下である請求項1~5のいずれか一項に記載の引き出し電極。 The lead electrode according to any one of claims 1 to 5, wherein an average opening diameter of the through holes is 30 nm or more and 50 µm or less.
- 前記絶縁層の前記一方の面とは反対側の他方の面に配置される接地電極をさらに有し、
前記複数の貫通孔は、前記加速電極、前記絶縁層および前記接地電極を厚さ方向に貫通する請求項1~6のいずれか一項に記載の引き出し電極。 A ground electrode disposed on the other surface opposite to the one surface of the insulating layer;
The lead electrode according to any one of claims 1 to 6, wherein the plurality of through holes penetrate the acceleration electrode, the insulating layer, and the ground electrode in a thickness direction. - イオンを生成するためのイオン生成室と、
前記イオン生成室に対向して配置される請求項1~7のいずれか一項に記載の引き出し電極と、
前記引き出し電極に電位を付与する電源とを有するイオン源。 An ion generation chamber for generating ions;
The extraction electrode according to any one of claims 1 to 7, disposed opposite the ion generation chamber,
An ion source having a power source for applying a potential to the extraction electrode;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015551007A JPWO2015080239A1 (en) | 2013-11-29 | 2014-11-28 | Extraction electrode and ion source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-248312 | 2013-11-29 | ||
JP2013248312 | 2013-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015080239A1 true WO2015080239A1 (en) | 2015-06-04 |
Family
ID=53199174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081506 WO2015080239A1 (en) | 2013-11-29 | 2014-11-28 | Lead-out electrode and ion source |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2015080239A1 (en) |
TW (1) | TW201521068A (en) |
WO (1) | WO2015080239A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217961A (en) * | 2003-01-10 | 2004-08-05 | Kanagawa Acad Of Sci & Technol | Anodized porous alumina composite material and its producing method |
JP2004281229A (en) * | 2003-03-14 | 2004-10-07 | Ebara Corp | Electrode for beam source and manufacturing method of electrode for beam source |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3601632A1 (en) * | 1986-01-21 | 1987-07-23 | Leybold Heraeus Gmbh & Co Kg | METHOD FOR PRODUCING EXTRACTION GRIDS FOR ION SOURCES AND EXTRACTION GRID PRODUCED BY THE METHOD |
JP3008852B2 (en) * | 1996-06-21 | 2000-02-14 | 日本電気株式会社 | Electron emitting device and method of manufacturing the same |
JP4554293B2 (en) * | 2004-07-20 | 2010-09-29 | 株式会社リコー | Discharge control electrode integrated charging member |
US7540717B2 (en) * | 2005-06-03 | 2009-06-02 | The Hong Kong University Of Science And Technology | Membrane nanopumps based on porous alumina thin films, membranes therefor and a method of fabricating such membranes |
DE112011102055T5 (en) * | 2010-06-18 | 2013-05-08 | Gbc Scientific Equipment Pty. Ltd. | Nanoporous vacuum pump |
-
2014
- 2014-11-28 WO PCT/JP2014/081506 patent/WO2015080239A1/en active Application Filing
- 2014-11-28 TW TW103141394A patent/TW201521068A/en unknown
- 2014-11-28 JP JP2015551007A patent/JPWO2015080239A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217961A (en) * | 2003-01-10 | 2004-08-05 | Kanagawa Acad Of Sci & Technol | Anodized porous alumina composite material and its producing method |
JP2004281229A (en) * | 2003-03-14 | 2004-10-07 | Ebara Corp | Electrode for beam source and manufacturing method of electrode for beam source |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015080239A1 (en) | 2017-03-16 |
TW201521068A (en) | 2015-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yi et al. | Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density | |
US20210207283A1 (en) | Anodized titanium material and method for producing the same | |
Furuta et al. | Reduction of field emission dark current for high-field gradient electron gun by using a molybdenum cathode and titanium anode | |
US9418814B2 (en) | Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond | |
US9017562B2 (en) | Particle sources and methods for manufacturing the same | |
Wang et al. | Study on the effect of laser parameters on the SEY of aluminum alloy | |
Al Soud et al. | Composite metallic nano emitters coated With a layer of insulator covered by Au layer | |
WO2015080239A1 (en) | Lead-out electrode and ion source | |
Parson et al. | Conditioning of carbon fiber cathodes in UHV-sealed tubes at 200 A/cm 2 | |
JP2011157624A (en) | Surface-treated aluminum member having high voltage resistance, and method for manufacturing the same | |
Perez-Martinez et al. | Alternative emitter substrates for Ionic Liquid Ion Source implementation in focused ion beams | |
Knápek et al. | Preparation and noise analysis of polymer graphite cathode | |
Redshaw et al. | Fabrication and characterization of field emission points for ion production in Penning trap applications | |
Oks et al. | Some effects of magnetic field on a hollow cathode ion source | |
JP5119457B2 (en) | Field emission electron source and manufacturing method thereof | |
Suzuki et al. | Fabrication of ultra-clean copper surface to minimize field emission dark currents | |
JP2019045410A (en) | Sample analysis method | |
He et al. | Influence of copper nanowires grown in a dielectric layer on the performance of dielectric barrier discharge | |
Alam et al. | Unusual secondary electron emission behavior in Carbon nanotube forests | |
Yoon et al. | Atomic-scale chemical-analyses of niobium for superconducting radio-frequency cavities | |
JP2019045409A (en) | Sample analysis method | |
Al-Qudah et al. | Relationship of the distribution thickness of dielectric layer on the nano-tip apex and distribution of emitted electrons | |
Kislov et al. | XPS studies on surfaces of field-emission cathodes of artificial carbon materials | |
Galaly et al. | Characterstics of ultra low frequancy plasma (ULFP) producing cathode etching process | |
US20230307204A1 (en) | A gas ion gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14866444 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015551007 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14866444 Country of ref document: EP Kind code of ref document: A1 |