以下、図面を参照しながら、本発明の実施形態を説明する。
(実施形態1)
まず、本発明の液晶表示装置が有する電極構造とその作用とを説明する。本発明による液晶表示装置は、優れた表示特性を有するので、アクティブマトリクス型液晶表示装置に好適に利用される。以下では、薄膜トランジスタ(TFT)を用いたアクティブマトリクス型液晶表示装置について、本発明の実施形態を説明する。本発明はこれに限られず、MIMを用いたアクティブマトリクス型液晶表示装置や単純マトリクス型液晶表示装置に適用することができる。また、以下では、透過型液晶表示装置を例に本発明の実施形態を説明するが、本発明はこれに限られず、反射型液晶表示装置や、さらに、後述する透過反射両用型液晶表示装置に適用することができる。
なお、本願明細書においては、表示の最小単位である「絵素」に対応する液晶表示装置の領域を「絵素領域」と呼ぶ。カラー液晶表示装置においては、R,G,Bの「絵素」が1つの「画素」に対応する。絵素領域は、アクティブマトリクス型液晶表示装置においては、絵素電極と絵素電極と対向する対向電極とが絵素領域を規定する。また、単純マトリクス型液晶表示装置においては、ストライプ状に設けられる列電極と列電極と直交するように設けられる行電極とが互いに交差するそれぞれの領域が絵素領域を規定する。なお、ブラックマトリクスが設けられる構成においては、厳密には、表示すべき状態に応じて電圧が印加される領域のうち、ブラックマトリクスの開口部に対応する領域が絵素領域に対応することになる。
図1(a)および(b)を参照しながら、本発明による実施形態1の液晶表示装置100の1つの絵素領域の構造を説明する。以下では、説明の簡単さのためにカラーフィルタやブラックマトリクスを省略する。また、以下の図面においては、液晶表示装置100の構成要素と実質的に同じ機能を有する構成要素を同じ参照符号で示し、その説明を省略する。図1(a)は基板法線方向から見た上面図であり、図1(b)は図1(a)中の1B−1B’線に沿った断面図に相当する。図1(b)は、液晶層に電圧を印加していない状態を示している。
液晶表示装置100は、アクティブマトリクス基板(以下「TFT基板」と呼ぶ。)100aと、対向基板(「カラーフィルタ基板」とも呼ぶ)100bと、TFT基板100aと対向基板100bとの間に設けられた液晶層30とを有している。液晶層30の液晶分子30aは、負の誘電率異方性を有し、TFT基板100aおよび対向基板100bの液晶層30側の表面に設けられた垂直配向層(不図示)によって、液晶層30に電圧が印加されていないとき、図1(b)に示したように、垂直配向膜の表面に対して垂直に配向する。このとき、液晶層30は垂直配向状態にあるという。但し、垂直配向状態にある液晶層30の液晶分子30aは、垂直配向膜の種類や液晶材料の種類によって、垂直配向膜の表面(基板の表面)の法線から若干傾斜することがある。一般に、垂直配向膜の表面に対して、液晶分子軸(「軸方位」とも言う。)が約85°以上の角度で配向した状態が垂直配向状態と呼ばれる。
液晶表示装置100のTFT基板100aは、透明基板(例えばガラス基板)11とその表面に形成された絵素電極14とを有している。対向基板100bは、透明基板(例えばガラス基板)21とその表面に形成された対向電極22とを有している。液晶層30を介して互いに対向するように配置された絵素電極14と対向電極22とに印加される電圧に応じて、絵素領域ごとの液晶層30の配向状態が変化する。液晶層30の配向状態の変化に伴い、液晶層30を透過する光の偏光状態や量が変化する現象を利用して表示が行われる。
液晶表示装置100が有する絵素電極14は、複数の開口部14aと中実部14bとを有している。開口部14aは、導電膜(例えばITO膜)から形成される絵素電極14の内の導電膜が除去された部分を指し、中実部14bは導電膜が存在する部分(開口部14a以外の部分)を指す。開口部14aは1つの絵素電極ごとに複数形成されているが、中実部14bは、基本的には連続した単一の導電膜から形成されている。
複数の開口部14aは、その中心が正方格子を形成するように配置されており、1つの単位格子を形成する4つの格子点上に中心が位置する4つの開口部14aによって実質的に囲まれる中実部(「単位中実部」と称する。)14b’は、略円形の形状を有している。それぞれの開口部14aは、4つの4分の1円弧状の辺(エッジ)を有し、且つ、その中心に4回回転軸を有する略星形である。なお、絵素領域の全体に亘って配向を安定させるために、絵素電極14の端部まで単位格子を形成することが好ましい。従って、図示したように、絵素電極の端部は、開口部14aの約2分の1(辺に対応する領域)および開口部14aの約4分の1(角に対応する領域)に相当する形状にパターニングされていることが好ましい。
絵素領域の中央部に位置する開口部14aは実質的に同じ形状で同じ大きさを有している。開口部14aによって形成される単位格子内に位置する単位中実部14b’は略円形あり、実質的に同じ形状で同じ大きさを有している。互いに隣接する単位中実部14b’は互いに接続されており、実質的に単一の導電膜として機能する中実部14bを構成している。
上述したような構成を有する絵素電極14と対向電極22との間に電圧を印加すると、開口部14aのエッジ部に生成される斜め電界によって、それぞれが放射状傾斜配向を有する複数の液晶ドメインが形成される。液晶ドメインは、それぞれの開口部14aに対応する領域と、単位格子内の中実部14b’に対応する領域とに、それぞれ1つずつ形成される。
ここでは、正方形の絵素電極14を例示しているが、絵素電極14の形状はこれに限られない。絵素電極14の一般的な形状は、矩形(正方形と長方形を含む)に近似されるので、開口部14aを正方格子状に規則正しく配列することができる。絵素電極14が矩形以外の形状を有していても、絵素領域内の全ての領域に液晶ドメインが形成されるように、規則正しく(例えば例示したように正方格子状に)開口部14aを配置すれば、本発明の効果を得ることができる。
上述した斜め電界によって液晶ドメインが形成されるメカニズムを図2(a)および(b)を参照しながら説明する。図2(a)および(b)は、それぞれ図1(b)に示した液晶層30に電圧を印加した状態を示しており、図2(a)は、液晶層30に印加された電圧に応じて、液晶分子30aの配向が変化し始めた状態(ON初期状態)を模式的に示しており、図2(b)は、印加された電圧に応じて変化した液晶分子30aの配向が定常状態に達した状態を模式的に示している。図2(a)および(b)中の曲線EQは等電位線EQを示す。
絵素電極14と対向電極22とが同電位のとき(液晶層30に電圧が印加されていない状態)には、図1(a)に示したように、絵素領域内の液晶分子30aは、両基板11および21の表面に対して垂直に配向している。
液晶層30に電圧を印加すると、図2(a)に示した等電位線EQ(電気力線と直交する)EQで表される電位勾配が形成される。この等電位線EQは、絵素電極14の中実部14bと対向電極22との間に位置する液晶層30内では、中実部14bおよび対向電極22の表面に対して平行であり、絵素電極14の開口部14aに対応する領域で落ち込み、開口部14aのエッジ部(開口部14aの境界(外延)を含む開口部14aの内側周辺)EG上の液晶層30内には、傾斜した等電位線EQで表される斜め電界が形成される。
負の誘電異方性を有する液晶分子30aには、液晶分子30aの軸方位を等電位線EQに対して平行(電気力線に対して垂直)に配向させようとするトルクが作用する。従って、エッジ部EG上の液晶分子30aは、図2(a)中に矢印で示したように、図中の右側エッジ部EGでは時計回り方向に、図中の左側エッジ部EGでは反時計回り方向に、それぞれ傾斜(回転)し、等電位線EQに平行に配向する。
ここで、図3を参照しながら、液晶分子30aの配向の変化を詳細に説明する。
液晶層30に電界が生成されると、負の誘電率異方性を有する液晶分子30aには、その軸方位を等電位線EQに対して平行に配向させようとするトルクが作用する。図3(a)に示したように、液晶分子30aの軸方位に対して垂直な等電位線EQで表される電界が発生すると、液晶分子30aには時計回りまたは反時計回り方向に傾斜させるトルクが等しい確率で作用する。従って、互いに対向する平行平板型配置の電極間にある液晶層30内には、時計回り方向のトルクを受ける液晶分子30aと、反時計回りに方向のトルクを受ける液晶分子30aとが混在する。その結果、液晶層30に印加された電圧に応じた配向状態への変化がスムーズに起こらないことがある。
図2(a)に示したように、本発明による液晶表示装置100の開口部14aのエッジ部EGにおいて、液晶分子30aの軸方位に対して傾斜した等電位線EQで表される電界(斜め電界)が発生すると、図3(b)に示したように、液晶分子30aは、等電位線EQと平行になるための傾斜量が少ない方向(図示の例では反時計回り)に傾斜する。また、液晶分子30aの軸方位に対して垂直方向の等電位線EQで表される電界が発生する領域に位置する液晶分子30aは、図3(c)に示したように、傾斜した等電位線EQ上に位置する液晶分子30aと配向が連続となるように(整合するように)、傾斜した等電位線EQ上に位置する液晶分子30aと同じ方向に傾斜する。図3(d)に示したように、等電位線EQが連続した凹凸形状を形成する電界が印加されると、それぞれの傾斜した等電位線EQ上に位置する液晶分子30aによって規制される配向方向と整合するように、平坦な等電位線EQ上に位置する液晶分子30aが配向する。なお、「等電位線EQ上に位置する」とは、「等電位線EQで表される電界内に位置する」ことを意味する。
上述したように、傾斜した等電位線EQ上に位置する液晶分子30aから始まる配向の変化が進み、定常状態に達すると、図2(b)に模式的に示した配向状態となる。開口部14aの中央付近に位置する液晶分子30aは、開口部14aの互いに対向する両側のエッジ部EGの液晶分子30aの配向の影響をほぼ同等に受けるので、等電位線EQに対して垂直な配向状態を保ち、開口部14aの中央から離れた領域の液晶分子30aは、それぞれ近い方のエッジ部EGの液晶分子30aの配向の影響を受けて傾斜し、開口部14aの中心SAに関して対称な傾斜配向を形成する。この配向状態は、液晶表示装置100の表示面に垂直な方向(基板11および21の表面に垂直な方向)からみると、液晶分子30aの軸方位が開口部14aの中心に関して放射状に配向した状態にある(不図示)。そこで、本願明細書においては、このような配向状態を「放射状傾斜配向」と呼ぶことにする。また、1つの中心に関して放射状傾斜配向をとる液晶層の領域を液晶ドメインと称する。
開口部14aによって実質的に包囲された単位中実部14b’に対応する領域においても、液晶分子30aが放射状傾斜配向をとる液晶ドメインが形成される。単位中実部14b’に対応する領域の液晶分子30aは、開口部14aのエッジ部EGの液晶分子30aの配向の影響を受け、単位中実部14b’の中心SA(開口部14aが形成する単位格子の中心に対応)に関して対称な放射状傾斜配向をとる。
単位中実部14b’に形成される液晶ドメインにおける放射状傾斜配向と開口部14aに形成される放射状傾斜配向は連続しており、いずれも開口部14aのエッジ部EGの液晶分子30aの配向と整合するように配向している。開口部14aに形成された液晶ドメイン内の液晶分子30aは、上側(基板100b側)が開いたコーン状に配向し、単位中実部14b’に形成された液晶ドメイン内の液晶分子30aは下側(基板100a側)が開いたコーン状に配向する。このように、開口部14aに形成される液晶ドメインおよび単位中実部14b’に形成される液晶ドメインに形成される放射状傾斜配向は、互いに連続であるので、これらの境界にディスクリネーションライン(配向欠陥)が形成されることがなく、それによって、ディスクリネーションラインの発生による表示品位の低下は起こらない。
液晶表示装置の表示品位の視角依存性を全方位において改善するためには、それぞれの絵素領域内において、全ての方位角方向のそれぞれに沿って配向する液晶分子の存在確率が回転対称性を有することが好ましく、軸対称性を有することがさらに好ましい。すなわち、絵素領域の全体に亘って形成される液晶ドメインが回転対称性、さらには軸対称性を有するように配置されていることが好ましい。但し、絵素領域の全体に亘って回転対称性を有する必要は必ずしも無く、回転対称性(または軸対称性)を有するように配列された液晶ドメイン(例えば、正方格子状に配列された複数の液晶ドメイン)の集合体として絵素領域の液晶層が形成されればよい。従って、絵素領域に形成される複数の開口部14aの配置も絵素領域の全体に亘って回転対称性を有する必要は必ずしも無く、回転対称性(または軸対称性)を有するように配列された開口部(例えば正方格子状に配列された複数の開口部)の集合体として表せれればよい。勿論、複数の開口部14aに実質的に包囲される単位中実部14b’の配置も同様である。また、それぞれの液晶ドメインの形状も回転対称性さらには軸対称性を有することが好ましいので、それぞれの開口部14aおよびおよび単位中実部14b’の形状も回転対称性さらには軸対称性を有することが好ましい。
なお、開口部14aの中央付近の液晶層30には十分な電圧が印加されず、開口部14aの中央付近の液晶層30が表示に寄与しない場合がある。すなわち、開口部14aの中央付近の液晶層30の放射状傾斜配向が多少乱れても(例えば、中心軸が開口部14aの中心からずれても)、表示品位が低下しないことがある。従って、少なくとも単位中実部14b’に対応して形成される液晶ドメインが回転対称性、さらには軸対称性を有するように配置されていればよい。
図2(a)および(b)を参照しながら説明したように、本発明による液晶表示装置100の絵素電極14は複数の開口部14aを有しており、絵素領域内の液晶層30内に、傾斜した領域を有する等電位線EQで表される電界を形成する。電圧無印加時に垂直配向状態にある液晶層30内の負の誘電異方性を有する液晶分子30aは、傾斜した等電位線EQ上に位置する液晶分子30aの配向変化をトリガーとして配向方向を変化し、安定な放射状傾斜配向を有する液晶ドメインが開口部14aおよび中実部14bに形成される。液晶層に印加される電圧に応じて、この液晶ドメインの液晶分子の配向が変化することによって、表示が行われる。
本実施形態の液晶表示装置100が有する絵素電極14が有する開口部14aの形状(基板法線方向から見た形状)およびその配置について説明する。
液晶表示装置の表示特性は、液晶分子の配向状態(光学的異方性)に起因して、方位角依存性を示す。表示特性の方位角依存性を低減するためには、液晶分子が全ての方位角に対して同等の確率で配向していることが好ましい。また、それぞれの絵素領域内の液晶分子が全ての方位角に対して同等の確率で配向していることがさらに好ましい。従って、開口部14aは、それぞれの絵素領域内の液晶分子30aがすべての方位角に対して同等の確率で配向するように、液晶ドメインを形成するような形状を有していることが好ましい。具体的には、開口部14aの形状は、それぞれの中心(法線方向)を対称軸とする回転対称性(好ましくは2回回転軸以上の対称性)を有することが好ましく、また、複数の開口部14aが回転対称性を有するように配置されていることが好ましい。また、これらの開口部によって実質的に包囲される単位中実部14b’の形状も回転対称性を有することが好ましく、単位中実部14bも回転対称性を有するように配置されることが好ましい。
但し、開口部14aや単位中実部14bが絵素領域全体に亘って回転対称性を有するように配置される必要は必ずしも無く、図1(a)に示したように、例えば正方格子(4回回転軸を有する対称性)を最小単位とし、それらの組合せによって絵素領域が構成されれば、絵素領域全体に亘って液晶分子がすべての方位角に対して実質的に同等の確率で配向させることができる。
図1(a)に示した、回転対称性を有する略星形の開口部14aおよび略円形の単位中実部14bが正方格子状に配列された場合の液晶分子30aの配向状態を図4(a)〜図4(c)を参照しながら説明する。
図4(a)〜(c)は、それぞれ、基板法線方向から見た液晶分子30aの配向状態を模式的に示している。図4(b)および(c)など、基板法線方向から見た液晶分子30aの配向状態を示す図において、楕円状に描かれた液晶分子30aの先が黒く示されている端は、その端が他端よりも、開口部14aを有する絵素電極14が設けられている基板側に近いように、液晶分子30aが傾斜していることを示している。以下の図面においても同様である。ここでは、図1(a)に示した絵素領域の内の1つの単位格子(4つの開口部14aによって形成される)について説明する。図4(a)〜図4(c)中の対角線に沿った断面は、図1(b)、図2(a)および(b)にそれぞれ対応し、これらの図を合わせて参照しながら説明する。
絵素電極14および対向電極22が同電位のとき、すなわち液晶層30に電圧が印加されていない状態においては、TFT基板100aおよび対向基板100bの液晶層30側表面に設けられた垂直配向層(不図示)によって配向方向が規制されている液晶分子30aは、図4(a)に示したように、垂直配向状態を取る。
液晶層30に電界を印加し、図2(a)に示した等電位線EQで表される電界が発生すると、負の誘電率異方性を有する液晶分子30aには、軸方位が等電位線EQに平行になるようなトルクが発生する。図3(a)および(b)を参照しながら説明したように、液晶分子30aの分子軸に対して垂直な等電位線EQで表される電場下の液晶分子30aは、液晶分子30aが傾斜(回転)する方向が一義的に定まっていないため(図3(a))、配向の変化(傾斜または回転)が容易に起こらないのに対し、液晶分子30aの分子軸に対して傾斜した等電位線EQ下に置かれた液晶分子30aは、傾斜(回転)方向が一義的に決まるので、配向の変化が容易に起こる。従って、図4(b)に示したように、等電位線EQに対して液晶分子30aの分子軸が傾いている開口部14aのエッジ部から液晶分子30aが傾斜し始める。そして、図3(c)を参照しながら説明したように、開口部14aのエッジ部の傾斜した液晶分子30aの配向と整合性をとるように周囲の液晶分子30aも傾斜し、図4(c)に示したような状態で液晶分子30aの軸方位は安定する(放射状傾斜配向)。
このように、開口部14aが回転対称性を有する形状であると、絵素領域内の液晶分子30aは、電圧印加時に、開口部14aのエッジ部から開口部14aの中心に向かって液晶分子30aが傾斜するので、エッジ部からの液晶分子30aの配向規制力が釣り合う開口部14aの中心付近の液晶分子30aは基板面に対して垂直に配向した状態を維持し、その回りの液晶分子30aが開口部14aの中心付近の液晶分子30aを中心に放射状に液晶分子30aが連続的に傾斜した状態が得られる。
また、正方格子状に配列された4つの略星形の開口部14aに包囲された略円形の単位中実部14b’に対応する領域の液晶分子30aも、開口部14aのエッジ部に生成される斜め電界で傾斜した液晶分子30aの配向と整合するように傾斜する。エッジ部からの液晶分子30aの配向規制力が釣り合う単位中実部14b’の中心付近の液晶分子30aは基板面に対して垂直に配向した状態を維持し、その回りの液晶分子30aが単位中実部14b’の中心付近の液晶分子30aを中心に放射状に液晶分子30aが連続的に傾斜した状態が得られる。
このように、絵素領域全体に亘って、液晶分子30aが放射状傾斜配向をとる液晶ドメインが正方格子状に配列されると、それぞれの軸方位の液晶分子30aの存在確率が回転対称性を有することになり、あらゆる視角方向に対して、ざらつきのない高品位の表示を実現することができる。放射状傾斜配向を有する液晶ドメインの視角依存性を低減するためには、液晶ドメインが高い回転対称性(2回回転軸以上が好ましく、4回回転軸以上がさらに好ましい。)を有することが好ましい。また、絵素領域全体の視角依存性を低減するためには、絵素領域に形成される複数の液晶ドメインが、高い回転対称性(2回回転軸以上が好ましく、4回回転軸以上がさらに好ましい。)を有する単位(例えば単位格子)の組合せで表される配列(例えば正方格子)を構成することが好ましい。
なお、液晶分子30aの放射状傾斜配向は、図5(a)に示したような単純な放射状傾斜配向よりも、図5(b)および(c)に示したような、左回りまたは右回りの渦巻き状の放射状傾斜配向の方が安定である。この渦巻き状配向は、通常のツイスト配向のように液晶層30の厚さ方向に沿って液晶分子30aの配向方向が螺旋状に変化するのではなく、液晶分子30aの配向方向は微小領域でみると、液晶層30の厚さ方向に沿ってほとんど変化していない。すなわち、液晶層30の厚さ方向のどこの位置の断面(層面に平行な面内での断面)においても、図5(b)または(c)と同じ配向状態にあり、液晶層30の厚さ方向に沿ったツイスト変形をほとんど生じていない。但し、液晶ドメインの全体でみると、ある程度のツイスト変形が発生している。
負の誘電異方性を有するネマチック液晶材料にカイラル剤を添加した材料を用いると、電圧印加時に、液晶分子30aは、開口部14aおよび単位中実部14b’を中心に、図5(b)および(c)に示した、左回りまたは右回りの渦巻き状放射状傾斜配向をとる。右回りか左回りかは用いるカイラル剤の種類によって決まる。従って、電圧印加時に開口部14a内の液晶層30を渦巻き状放射状傾斜配向させることによって、放射状傾斜している液晶分子30aの、基板面に垂直に立っている液晶分子30aの周りを巻いている方向を全ての液晶ドメイン内で一定にすることができるので、ざらつきの無い均一な表示が可能になる。さらに、基板面に垂直に立っている液晶分子30aの周りを巻いている方向が定まっているので、液晶層30に電圧を印加した際の応答速度も向上する。
カイラル剤を添加すると、更に、通常のツイスト配向のように、液晶層30の厚さ方向に沿って液晶分子30aの配向が螺旋状に変化するようになる。液晶層30の厚さ方向に沿って液晶分子30aの配向が螺旋状に変化しない配向状態では、偏光板の偏光軸に対して垂直方向または平行方向に配向している液晶分子30aは、入射光に対して位相差を与えないための、この様な配向状態の領域を通過する入射光は透過率に寄与しない。これに対し、液晶層30の厚さ方向に沿って液晶分子30aの配向が螺旋状に変化する配向状態においては、偏光板の偏光軸に垂直方向または平行方向に配向している液晶分子30aも、入射光に対して位相差を与えるとともに、光の旋光性を利用することもできる。従って、この様な配向状態の領域を通過する入射光も透過率に寄与するので、明るい表示が可能な液晶表示装置を得ることができる。
図1(a)では、開口部14aが略星形を有し、単位中実部14b’が略円形を有し、これらが正方格子状に配列された例を示したが、開口部14aおよび単位中実部14b’の形状ならびにこれらの配置は、上記の例に限られない。
図6(a)および(b)に、異なる形状の開口部14aおよび単位中実部14b’を有する絵素電極14Aおよび14Bの上面図をそれぞれ示す。
図6(a)および(b)にそれぞれ示した絵素電極14Aおよび14Bの開口部14aおよび単位中実部14b’は、図1(a)に示した絵素電極の開口部14aおよび単位中実部14b’が若干ひずんだ形を有している。絵素電極14Aおよび14Bの開口部14aおよび単位中実部14b’は、2回回転軸を有し(4回回転軸は有しない)、長方形の単位格子を形成するように規則的に配列されている。開口部14aは、いずれも歪んだ星形を有し、単位中実部14b’は、いずれも略楕円形(歪んだ円形)を有している。絵素電極14Aおよび14Bを用いても、表示品位が高い、視角特性に優れた液晶表示装置を得ることができる。
さらに、図7(a)および(b)にそれぞれ示すような絵素電極14Cおよび14Dを用いることもできる。
絵素電極14Cおよび14Dは、単位中実部14b’が略正方形となるように、略十字の開口部14aが正方格子状に配置されている。勿論、これらを歪ませて、長方形の単位格子を形成するように配置してもよい。このように、略矩形(矩形は正方形と長方形を含むとする。)の単位中実部14b’を規則正しく配列しても、表示品位が高い、視角特性に優れた液晶表示装置を得ることができる。
但し、開口部14aおよび/または単位中実部14b’の形状は、矩形よりも円形または楕円形の方が放射状傾斜配向を安定化できるので好ましい。これは、開口部14aの辺が連続的に(滑らかに)変化するので、液晶分子30aの配向方向も連続的に(滑らかに)変化するためと考えられる。
上述した液晶分子30aの配向方向の連続性の観点から、図8(a)および(b)に示す絵素電極14Eおよび14Fも考えられる。図8(a)に示した絵素電極14Eは、図1(a)に示した絵素電極14の変形例で、4つの円弧だけからなる開口部14aを有している。また、図8(b)に示した絵素電極14Fは、図7(b)に示した絵素電極14Dの変形例で、開口部14aの単位中実部14b’側が円弧で形成されている。絵素電極14Eおよび14Fが有する開口部14aならびに単位中実部14b’は、いずれも4回回転軸を有しており、且つ、正方格子状(4回回転軸を有する)に配列されているが、図6(a)および(b)に示したように、開口部14aの単位中実部14b’の形状を歪ませて2回回転軸を有する形状とし、長方形の格子(2回回転軸を有する)を形成するように配置してもよい。
上述の例では、略星形や略十字形の開口部14aを形成し、単位中実部14b’の形状を略円形、略楕円形、略正方形(矩形)および角の取れた略矩形とした構成を説明した。これに対して、開口部14aと単位中実部14b’との関係をネガ−ポジ反転させてもよい。例えば、図1(a)に示した絵素電極14の開口部14aと単位中実部14bとをネガ−ポジ反転したパターンを有する絵素電極14Gを図9に示す。このように、ネガ−ポジ反転したパターンを有する絵素電極14Gも図1に示した絵素電極14と実質的に同様の機能を有する。なお、図10(a)および(b)にそれぞれ示す絵素電極14Hおよび14Iのように、開口部14aおよび単位中実部14b’がともに略正方形の場合には、ネガ−ポジ反転しても、もとのパターンと同じパターンとなるものもある。
図9に示したパターンのように、図1(a)に示したパターンをネガ−ポジ反転させた場合にも、絵素電極14のエッジ部に、回転対称性を有する単位中実部14b'が形成されるように、開口部14aの一部(約2分の1または約4分の1)を形成することが好ましい。このようなパターンとすることによって、絵素領域のエッジ部においても、絵素領域の中央部と同様に、斜め電界による効果が得られ、絵素領域の全体に亘って安定した放射状傾斜配向を実現することができる。
次に、図1(a)の絵素電極14と、絵素電極14の開口部14aと単位中実部14b’のパターンをネガ−ポジ反転させたパターンを有する図9に示した絵素電極14Gを例に、ネガ−ポジパターンのいずれを採用すべきかを説明する。
ネガ−ポジいずれのパターンを採用しても、開口部14aの辺の長さはどちらのパターンも同じである。従って、斜め電界を生成するという機能においては、これらのパターンによる差はない。しかしながら、単位中実部14b’の面積比率(絵素電極14の全面積に対する比率)は、両者の間で異なり得る。すなわち、液晶層の液晶分子に採用する電界を生成する中実部16(実際に導電膜が存在する部分)の面積が異なり得る。
開口部14aに形成される液晶ドメインに印加される電圧は、中実部14bに形成される液晶ドメインに印加される電圧よりも低くなるので、例えば、ノーマリブラックモードの表示を行うと、開口部14aに形成された液晶ドメインは暗くなる。すなわち、開口部14aの面積比率が高くなると表示輝度が低下する傾向になる。従って、中実部14bの面積比率が高い方が好ましい。
図1(a)のパターンと図9のパターンとのいずれにおいて中実部14bの面積比率が高くなるかは、単位格子のピッチ(大きさ)に依存する。
図11(a)は、図1(a)に示したパターンの単位格子を示し、図11(b)は、図9に示したパターンの単位格子(但し、開口部14aを中心とする。)を示してる。なお、図11(a)においては、図1における単位中実部14b’の相互に接続する役割を果たしている部分(円形部から四方にのびる枝部)を省略している。正方単位格子の一辺の長さ(ピッチ)をpとし、開口部14aまたは単位中実部14b’と単位格子との間隙の長さ(片側のスペース)をsとする。
ピッチpおよび片側スペースsの値が異なる種々の絵素電極14を形成し、放射状傾斜配向の安定性などを検討した。その結果、まず、図11(a)に示したパターン(以下、「ポジ型パターン」と称する。)を有する絵素電極14を用いて、放射状傾斜配向を得るために必要な斜め電界を生成するためには、片側スペースsが約2.75μm以上必要であることを見出した。一方、図11(b)に示したパターン(以下、「ネガ型パターン」と称する。)を有する絵素電極14について、放射状傾斜配向を得るための斜め電界を生成するために、片側スペースsが約2.25μm以上必要であることを見出した。片側スペースsをそれぞれこの下限値として、ピッチpの値を変化させたときの中実部14bの面積比率を検討した。結果を表1および図11(c)に示す。
表1および図11(c)から分かるように、ピッチpが約25μm以上のときにはポジ型(図11(a))パターンの方が中実部14bの面積比率が高くなり、約25μmよりも短くなるとネガ型(図11(b))の方が中実部14bの面積比率が大きくなる。従って、表示輝度および配向の安定性の観点から、ピッチpが約25μmを境にして、採用すべきパターンが変わる。例えば、幅75μmの絵素電極14の幅方向に、3個以下の単位格子を設ける場合には、図11(a)に示したポジ型パターンが好ましく、4個以上の単位格子を設ける場合には、図11(b)に示したネガ型パターンが好ましい。例示したパターン以外の場合においても、中実部14bの面積比率が大きくなるように、ポジ型またはネガ型の何れかを選択すればよい。
単位格子の数は、以下のようにして求められる。絵素電極14の幅(横または縦)に対して、1つまたは2以上の整数個の単位格子が配置されるように、単位格子のサイズを計算し、それぞれの単位格子サイズについて中実部面積比率を計算し、中実部面積比率が最大となる単位格子サイズを選ぶ。但し、ポジ型パターンの場合には単位中実部14b’の直径が15μm未満、ネガ型パターンの場合には開口部14aの直径が15μm未満になると、斜め電界による配向規制力が低下し、安定した放射状傾斜配向が得られ難くなる。なお、これら直径の下限値は、液晶層30の厚さが約3μmの場合であり、液晶層30の厚さがこれよりも薄いと、単位中実部14b’および開口部14aの直径は、上記の下限値よりもさらに小さくとも安定な放射状傾斜配向が得られ、液晶層30の厚さがこれよりも厚い場合に安定な放射状傾斜配向を得るために必要な、単位中実部14b’および開口部14aの直径の下限値は、上記の下限値よりも大きくなる。
なお、実施形態2で後述するように、開口部14aの内側に凸部を形成することによって、放射状傾斜配向の安定性を高めることができる。上述の条件は、いずれも、凸部を形成していない場合についてである。
図11(a)に示したようなポジ型パターンを採用する場合について、単位中実部14b’の形状および片側スペースsの値が異なる種々の絵素電極14を形成し、放射状傾斜配向の安定性や透過率の値などを検討した。また、セル厚(液晶層30の厚さ)を変化させたときの配向安定性についても検討した。なお、以下の検討においては、18.1型のSXGAパネルを備えたノーマリブラックモードの液晶表示装置を用いた。
まず、図12(a)〜(d)に示すような形状の単位中実部14b’を有する絵素電極14について、ピッチpを42.5μmとし、片側スペースsを4.25μm、3.5μm、2.75μm、セル厚を3.70μm、4.15μmと変化させたときの配向安定性を評価した。18.1型のSXGAパネルにおいては、ピッチpが42.5μmであると、単位格子をもっとも効率よく(絵素領域において無駄なく)配置することができる。
図12(a)は、略円形に形成された単位中実部14b’を有する絵素電極14の単位格子を模式的に示す図であり、図12(b)および図12(c)は、角部が略円弧状の略正方形に形成された単位中実部14b’を有する絵素電極14の単位格子を模式的に示す図であり、図12(d)は、略正方形に形成された単位中実部14b’を有する絵素電極14の単位格子を模式的に示す図である。図12(b)および(c)に示す単位中実部は、略円弧状の角部の形状を近似的に表す曲率半径rと、単位中実部の一辺の長さLとの比が、それぞれ1:3および1:4である点で互いに異なる。なお、図12(a)〜(d)においては、図1における単位中実部14b’の相互に接続する役割を果たしている部分(円形部から四方にのびる枝部)を省略している。
配向安定性の強弱は、例えば、動画表示時の残像の有無を調べることによって評価することができる。中間調表示状態の背景中に黒い四角(ボックス)が移動する画像を表示した場合、配向安定性の強弱の差が反映されやすく、配向安定性が比較的弱いと、白い尾引き残像が発生することがある。この白い尾引き残像は、液晶材料として、カイラル剤が添加されたネマチック液晶材料を用いた場合に発生することがある。白い尾引き残像が発生する原因については、後述するので、ここではその説明を省略する。
表2に、上述のように種々のパラメータを変化させて、この白い尾引き残像の発生の程度の目視評価を行った結果を示す。なお、表2中においては、図12(a)〜(d)に示した単位中実部14b’の形状のそれぞれを、円形、樽型A、樽型B、正方形として示している。また、表2中において、◎は、尾引き残像が観察されないことを示し、○は、尾引き残像がほとんど観察されないことを示し、△は、尾引き残像が観察されることを示す。
表2に示したように、単位中実部14b’の形状については、円形、樽型A、樽型B、正方形の順に、配向安定性が高い。これは、単位中実部14b’の形状が円形に近いほど、放射状傾斜配向状態における液晶分子30aの配向方向の連続性が高いためである。また、表2に示したように、片側スペースsの値が大きいほど、配向安定性が高い。これは、片側スペースsの値が大きいほど、斜め電界による配向規制効果が大きいためである。さらに、セル厚が薄いほど、配向安定性が高い。これは、セル厚が薄いほど、斜め電界による配向規制効果が大きいためである。
配向安定性を評価するために、押圧によるムラの発生度合い(押圧残像)についても評価を行ったところ、セル厚が薄いほど配向安定性が高いことが確認された。押圧残像の評価は、液晶表示装置のパネル面に応力を加えたときに発生する配向乱れが、応力を除いたときに表示ムラとして残存する程度を調べることによって評価した。
次に、配向安定性を評価したのと同様に種々のパラメータを変化させて、透過率の評価を行った。表3に、セル厚3.70μmの液晶表示装置について、白表示時(ここでは、液晶層に6.0Vの電圧印加時)の透過率測定の結果を示す。なお、表3中では、単位中実部14b’の形状が樽型Bであり、片側スペースsが4.25μmである絵素電極14を用いた液晶表示装置の透過率を1として、透過率比を示している。また、表3中の括弧内の数値は透過率の実測値(白表示時のバックライト光源の光の強度を100としたときの正面透過率)を示している。
表3に示したように、単位中実部14b’の形状については、正方形、樽型B、樽型A、円形の順に、透過率が高い。これは、片側スペースsの値が同じである場合には、単位中実部14b’の形状が正方形に近いほど、中実部14bの面積比率が高いので、電極によって生成される電界の影響を直接的に受ける液晶層の面積(基板法線方向から見たときの平面内に規定される)が大きくなり、実効開口率が高くなるためである。また、表3に示したように、片側スペースsの値が小さいほど、透過率が高い。これは、片側スペースsの値が小さいほど、中実部14bの面積比率が高いので、実効開口率が高くなるためである。
上述したように、単位中実部14b’の形状が円形に近いほど、配向安定性が高く、片側スペースsの値が大きいほど、配向安定性が高い。また、セル厚が薄いほど、配向安定性が高い。
さらに、中実部14bの面積比率が高いほど、実効開口率が向上するので、単位中実部14b’の形状が正方形(あるいは矩形)に近いほど、透過率が高く、片側スペースsの値が小さいほど、透過率が高い。
従って、所望する配向安定性と、透過率とを考慮して、単位中実部14b’の形状、片側スペースsの値およびセル厚を決定すればよい。
図12(b)および(c)に示したように、単位中実部14b’が、角部が略円弧状の略正方形であると、配向安定性および透過率の両方を比較的高くすることができる。勿論、単位中実部14b’が、角部が略円弧状の略矩形であっても上述の効果が得られる。なお、導電膜から形成される単位中実部14b’の角部は、製造工程上の制約から、厳密には、円弧状ではなく、鈍角化された多角形状(90°を超える複数の角で構成された形状)となることもあり、4分の1円弧状や規則的な多角形状(例えば正多角形の一部)だけでなく、若干ひずんだ円弧状(楕円の一部など)やいびつな多角形状となることもある。また、曲線と鈍角との組み合わせによって構成された形状となることもある。本願明細書においては、上述した形状も含めて略円弧状と称する。なお、同様の製造工程上の理由から、図12(a)に示したような略円形の単位中実部14b’の場合にも、厳密な円ではなく、多角形状や若干ひずんだ形状となることがある。
表2および表3に配向安定性および透過率を示した液晶表示装置においては、例えば、単位中実部の形状が樽型B、片側スペースsが4.25μmの絵素電極14を用いることによって、配向安定性および透過率の両方を比較的高くすることができる。
上述した実施形態1の液晶表示装置の構成は、絵素電極14が開口部14aを有する電極であること以外は、公知の垂直配向型液晶表示装置と同じ構成を採用することができ、公知の製造方法で製造することができる。
なお、典型的には、負の誘電異方性を有する液晶分子を垂直配向させるために、絵素電極14および対向電極22の液晶層30側表面には垂直配向層(不図示)が形成されている。
液晶材料としては、負の誘電異方性を有するネマチック液晶材料が用いられる。また、負の誘電異方性を有するネマチック液晶材料に2色性色素添加することによって、ゲスト−ホストモードの液晶表示装置を得ることもできる。ゲスト−ホストモードの液晶表示装置は、偏光板を必要としない。
(実施形態2)
図13(a)および(b)を参照しながら、本発明による実施形態2の液晶表示装置200の1つの絵素領域の構造を説明する。また、以下の図面においては、液晶表示装置100の構成要素と実質的に同じ機能を有する構成要素を同じ参照符号で示し、その説明を省略する。図13(a)は基板法線方向から見た上面図であり、図13(b)は図1(a)中の13B−13B’線に沿った断面図に相当する。図13(b)は、液晶層に電圧を印加していない状態を示している。
図13(a)および(b)に示したように、液晶表示装置200は、TFT基板200aが、絵素電極14の開口部14aの内側に凸部40を有する点において、図1(a)および(b)に示した実施形態1の液晶表示装置100と異なっている。凸部40の表面には、垂直配向膜(不図示)が設けられている。
凸部40の基板11の面内方向の断面形状は、図13(a)に示したように、開口部14aの形状と同じであり、ここでは略星形である。但し、隣接する凸部40は互いに繋がっており、単位中実部14b’を略円形に完全に包囲するように形成されている。この凸部40の基板11に垂直な面内方向の断面形状は、図13(b)に示したように台形である。すなわち、基板面に平行な頂面40tと基板面に対してテーパ角θ(<90°)で傾斜した側面40sとを有している。凸部40を覆うように垂直配向膜(不図示)が形成されているので、凸部40の側面40sは、液晶層30の液晶分子30aに対して、斜め電界による配向規制方向と同じ方向の配向規制力を有することになり、放射状傾斜配向を安定化させるように作用する。
この凸部40の作用を図14(a)〜(d)、および図15(a)および(b)を参照しながら説明する。
まず、図14(a)〜(d)を参照しながら、液晶分子30aの配向と垂直配向性を有する表面の形状との関係を説明する。
図14(a)に示したように、水平な表面上の液晶分子30aは、垂直配向性を有する表面(典型的には、垂直配向膜の表面)の配向規制力によって、表面に対して垂直に配向する。このように垂直配向状態にある液晶分子30aに液晶分子30aの軸方位に対して垂直な等電位線EQで表される電界が印加されると、液晶分子30aには時計回りまたは反時計回り方向に傾斜させるトルクが等しい確率で作用する。従って、互いに対向する平行平板型配置の電極間にある液晶層30内には、時計回り方向のトルクを受ける液晶分子30aと、反時計回りに方向のトルクを受ける液晶分子30aとが混在する。その結果、液晶層30に印加された電圧に応じた配向状態への変化がスムーズに起こらないことがある。
図14(b)に示したように、傾斜した表面に対して垂直に配向している液晶分子30aに対して、水平な等電位線EQで表される電界が印加されると、液晶分子30aは、等電位線EQと平行になるための傾斜量が少ない方向(図示の例では時計回り)に傾斜する。また、水平な表面に対して垂直に配向している液晶分子30aは、図14(c)に示したように、傾斜した表面に対して垂直に配向している液晶分子30aと配向が連続となるように(整合するように)、傾斜した表面上に位置する液晶分子30aと同じ方向(時計回り)に傾斜する。
図14(d)に示したように、断面が台形の連続した凹凸状の表面に対しては、それぞれの傾斜した表面上の液晶分子30aによって規制される配向方向と整合するように、頂面および底面上の液晶分子30aが配向する。
本実施形態の液晶表示装置は、このような表面の形状(凸部)による配向規制力の方向と、斜め電界による配向規制方向とを一致させることによって、放射状傾斜配向を安定化させる。
図15(a)および(b)は、それぞれ図13(b)に示した液晶層30に電圧を印加した状態を示しており、図15(a)は、液晶層30に印加された電圧に応じて、液晶分子30aの配向が変化し始めた状態(ON初期状態)を模式的に示しており、図15(b)は、印加された電圧に応じて変化した液晶分子30aの配向が定常状態に達した状態を模式的に示している。図15(a)および(b)中の曲線EQは等電位線EQを示す。
絵素電極14と対向電極22とが同電位のとき(液晶層30に電圧が印加されていない状態)には、図13(b)に示したように、絵素領域内の液晶分子30aは、両基板11および21の表面に対して垂直に配向している。このとき、凸部40の側面40sの垂直配向膜(不図示)に接する液晶分子30aは、側面40sに対して垂直に配向し、側面40sの近傍の液晶分子30aは、周辺の液晶分子30aとの相互作用(弾性体としての性質)によって、図示したように、傾斜した配向をとる。
液晶層30に電圧を印加すると、図15(a)に示した等電位線EQで表される電位勾配が形成される。この等電位線EQは、絵素電極14の中実部14bと対向電極22との間に位置する液晶層30内では、中実部14bおよび対向電極22の表面に対して平行であり、絵素電極14の開口部14aに対応する領域で落ち込み、開口部14aのエッジ部(開口部14aの境界(外延)を含む開口部14aの内側周辺)EG上の液晶層30内には、傾斜した等電位線EQで表される斜め電界が形成される。
この斜め電界によって、上述したように、エッジ部EG上の液晶分子30aは、図15(a)中に矢印で示したように、図中の右側エッジ部EGでは時計回り方向に、図中の左側エッジ部EGでは反時計回り方向に、それぞれ傾斜(回転)し、等電位線EQに平行に配向する。この斜め電界による配向規制方向は、それぞれのエッジ部EGに位置する側面40sによる配向規制方向と同じである。
上述したように、傾斜した等電位線EQ上に位置する液晶分子30aから始まる配向の変化が進み、定常状態に達すると、図15(b)に模式的に示した配向状態となる。開口部14aの中央付近、すなわち、凸部40の頂面40tの中央付近に位置する液晶分子30aは、開口部14aの互いに対向する両側のエッジ部EGの液晶分子30aの配向の影響をほぼ同等に受けるので、等電位線EQに対して垂直な配向状態を保ち、開口部14a(凸部40の頂面40t)の中央から離れた領域の液晶分子30aは、それぞれ近い方のエッジ部EGの液晶分子30aの配向の影響を受けて傾斜し、開口部14a(凸部40の頂面40t)の中心SAに関して対称な傾斜配向を形成する。また、開口部14aおよび凸部40によって実質的に包囲された単位中実部14b’に対応する領域においても、単位中実部14b’の中心SAに関して対称な傾斜配向を形成する。
このように、実施形態2の液晶表示装置200においても、実施形態1の液晶表示装置100と同様に、放射状傾斜配向を有する液晶ドメインが開口部14aおよび単位中実部14b’に対応して形成される。凸部40は単位中実部14b’を略円形に完全に包囲するように形成されているので、液晶ドメインは凸部40で包囲された略円形の領域に対応して形成される。さらに、開口部14aの内側に設けられた凸部40の側面は、開口部14aのエッジ部EG付近の液晶分子30aを、斜め電界による配向方向と同じ方向に傾斜させるように作用するので、放射状傾斜配向を安定化させる。
斜め電界による配向規制力は、当然のことながら、電圧印加時にしか作用せず、その強さは電界の強さ(印加電圧の大きさ)に依存する。したがって、電界強度が弱い(すなわち、印加電圧が低い)と、斜め電界による配向規制力は弱く、液晶パネルに外力が加わると、液晶材料の流動によって放射状傾斜配向が崩れることがある。一旦、放射状傾斜配向が崩れると、十分に強い配向規制力を発揮する斜め電界を生成するだけの電圧が印加されないと、放射状傾斜配向は復元されない。これに対し、凸部40の側面40sによる配向規制力は、印加電圧に関係なく作用し、配向膜のアンカリング効果として知られているように、非常に強い。従って、液晶材料の流動が生じて、一旦放射状傾斜配向が崩れても、凸部40の側面40sの近傍の液晶分子30aは放射状傾斜配向のときと同じ配向方向を維持している。従って、液晶材料の流動が止まりさえすれば、放射状傾斜配向が容易に復元される。
この様に、実施形態2の液晶表示装置200は、実施形態1の液晶表示装置100が有する特徴に加え、外力に対して強いという特徴を有している。従って、液晶表示装置200は、外力が印加されやすい、携帯して使用される機会の多いPCやPDAに好適に用いられる。
なお、凸部40は透明性の高い誘電体を用いて形成すると、開口部14aに対応して形成される液晶ドメインの表示への寄与率が向上しするという利点が得られる。一方、凸部40を不透明な誘電体を用いて形成すると、凸部40の側面340sによって傾斜配向している液晶分子30aのリタデーションに起因する光漏れを防止できるという利点が得られる。いずれを採用するかは、液晶表示装置の用途などの応じて決めればよい。いずれの場合にも、感光性樹脂を用いると、開口部14aに対応してパターニングする工程を簡略化できる利点がある。十分な配向規制力を得るためには、凸部40の高さは、液晶層30の厚さが約3μmの場合、約0.5μm〜約2μmの範囲にあることが好ましい。一般に、凸部40の高さは、液晶層30の厚さの約1/6〜約2/3の範囲内にあることが好ましい。
上述したように、液晶表示装置200は、絵素電極14の開口部14aの内側に凸部40を有し、凸部40の側面40sは、液晶層30の液晶分子30aに対して、斜め電界による配向規制方向と同じ方向の配向規制力を有する。側面40sが斜め電界による配向規制方向と同じ方向の配向規制力を有するための好ましい条件を図16(a)〜(c)を参照しながら説明する。
図16(a)〜(c)は、それぞれ液晶表示装置200A、200Bおよび200Cの断面図を模式的に示し、図15(a)に対応する。液晶表示装置200A、200Bおよび200Cは、いずれも開口部40の内側に凸部を有するが、1つの構造体としての凸部40全体と開口部40との配置関係が液晶表示装置200と異なっている。
上述した液晶表示装置200においては、図15(a)に示したように、構造体としての凸部40の全体が開口部40aの内側に形成されており、且つ、凸部40の底面は開口部40aよりも小さい。図16(a)に示した液晶表示装置200Aにおいては、凸部40Aの底面は開口部14aと一致しており、図16(b)に示した液晶表示装置200Bにおいては、凸部40Bは開口部14aよりも大きい底面を有し、開口部14aの周辺の中実部(導電膜)14bを覆うように形成されている。これらの凸部40、40Aおよび40Bのいずれの側面40s上にも中実部14bが形成されていない。その結果、それぞれの図に示したように、等電位線EQは、中実部14b上ではほぼ平坦で、そのまま開口部14aで落ち込む。従って、液晶表示装置200Aおよび200Bの凸部40Aおよび40Bの側面40sは、上述した液晶表示装置200の凸部40と同様に、斜め電界による配向規制力と同じ方向の配向規制力を発揮し、放射状傾斜配向を安定化する。
これに対し、図16(c)に示した液晶表示装置200Cの凸部40Cの底面は開口部14aよりも大きく、開口部14aの周辺の中実部14bは凸部40Cの側面40s上に形成されている。この側面40s上に形成された中実部14bの影響で、等電位線EQに山が形成される。等電位線EQの山は、開口部14aで落ち込む等電位線EQと反対の傾きを有しており、これは、液晶分子30aを放射状傾斜配向させる斜め電界とは逆向きの斜め電界を生成していることを示している。従って、側面40sが斜め電界による配向規制方向と同じ方向の配向規制力を有するためには、側面40s上に中実部(導電膜)14bが形成されていないことが好ましい。
次に、図17を参照しながら、図13(a)に示した凸部40の17A−17A’線に沿った断面構造を説明する。
上述したように、図13(a)に示した凸部40は、単位中実部14b’を略円形に完全に包囲するように形成されているので、隣接する単位中実部14b’の相互に接続する役割を果たしている部分(円形部から四方に枝部)は、図17に示したように、凸部40上に形成される。従って、絵素電極14の中実部14bを形成する導電膜を堆積する工程において、凸部40上で断線が生じたり、あるいは、製造プロセスの後工程で剥離が生じる危険性が高い。
そこで、図18(a)および(b)に示す液晶表示装置200Dのように、開口部14a内に、それぞれ独立した凸部40Dが完全に含まれるように形成すると、中実部14bを形成する導電膜は、基板11の平坦な表面に形成されるので断線や剥離が起こる危険性が無くなる。なお、凸部40Dは、単位中実部14b’を略円形に完全に包囲するようには形成されていないが、単位中実部14b’に対応した略円形の液晶ドメインが形成され、先の例と同様に、その放射状傾斜配向は安定化される。
開口部14a内に凸部40を形成することによって、放射状傾斜配向を安定化させる効果は、例示したパターンの開口部14aに限られず、実施形態1で説明した全てのパターンの開口部14aに対して同様に適用でき、同様の効果を得ることができる。なお、凸部40による外力に対する配向安定化効果を十分に発揮させるためには、凸部40のパターン(基板法線方向から見たときにパターン)は、できるだけ広い領域の液晶層30を包囲する形状であることが好ましい。従って、例えば、円形の開口部14aを有するネガ型パターンよりも、円形の単位中実部14b’を有するポジ型パターンの方が、凸部40による配向安定化効果が大きい。
(偏光板、位相差板の配置)
負の誘電率異方性を有する液晶分子が電圧無印加時に垂直配向する液晶層を備える、いわゆる垂直配向型液晶表示装置は、種々の表示モードで表示を行うことができる。例えば、液晶層の複屈折率を電界によって制御することによって表示する複屈折モードの他に、旋光モードや旋光モードと複屈折モードとを組み合わせて表示モードに適用される。先の実施形態1および2で説明した全ての液晶表示装置の一対の基板(例えば、TFT基板と対向基板)の外側(液晶層30と反対側)に一対の偏光板を設けることによって、複屈折モードの液晶表示装置を得ることができる。また、必要に応じて、位相差補償素子(典型的には位相差板)を設けてもよい。更に、略円偏光を用いても明るい液晶表示装置を得ることができる。
図5(b)および(c)に示したように、液晶ドメインが渦巻き状の放射状傾斜配向状態をとる構成を有する液晶表示装置においては、偏光板の配置を最適化することによって、表示品位をさらに向上することが可能となる。以下、偏光板の好ましい配置について説明する。ここでは、一対の基板(例えばTFT基板および対向基板)の外側に設けられ、偏光軸が互いに略直交するように配置された一対の偏光板を有し、ノーマリブラックモードで表示を行う液晶表示装置を例に説明する。渦巻き状の放射状傾斜配向状態は、例えば、負の誘電異方性を有するネマチック液晶材料にカイラル剤が添加された材料を用いることによって実現される。なお、以下の説明においては、「渦巻き状の放射状傾斜配向」を、単に「渦巻き配向」ともよぶ。
まず、図19(a)、(b)および(c)を参照しながら、液晶ドメインが渦巻き配向状態をとるときの液晶分子の配向状態について説明する。図19(a)は、液晶層に電圧が印加された直後の液晶分子の配向状態を模式的に示す図であり、図19(b)および(c)は配向安定時(定常状態)の液晶分子の配向状態を模式的に示す図である。
液晶層に電圧が印加された直後には、複数の液晶ドメインにおいて、液晶分子30aは、図19(a)に示すように単純な放射状傾斜配向をとる。その後、さらに配向が進むと、液晶分子30aは液晶層の面内方向において所定の方向に傾斜し、配向安定時(定常状態)には、図19(b)または(c)に示すように、液晶分子30aは右回りまたは左回りの渦巻き配向状態をとる。
このとき、液晶分子30aが左回り(反時計回り)に傾斜すると、図19(b)に示すように液晶ドメインは右回りの渦巻き配向状態となり、液晶分子30aが右回り(時計回り)に傾斜すると、図19(c)に示すように左回りの渦巻き配向状態となる。右回りとなるか左回りとなるかは、例えば、添加するカイラル剤の種類によって決定される。
液晶分子30aの面内方向における傾斜の程度は、図19(b)および図19(c)に示すように、複数の液晶ドメインのそれぞれにおいて、これらの液晶ドメインの中心に対して表示面12時方向(表示面の上方向であり、以下、単に12時方向ともよぶ。)に位置する液晶分子30a’が表示面12時方向に対してなす角度θによって規定される。液晶ドメインの中心は、典型的には、開口部の中心または中実部の中心とほぼ一致する。
上述の位置に存在する液晶分子30a’には、実際には、θと異なる角度で傾斜しているものもある。本願明細書においては、表示面12時方向と上述の液晶分子30a’とがなす角度(傾斜角度)に対するそれぞれの液晶分子30a’の存在確率を調べたときに、もっとも存在確率の高い液晶分子30a’に対応する傾斜角度をθと定義する。典型的には、液晶層の厚さ方向における中央付近の液晶分子30a’が、12時方向となす角度がθとほぼ一致する。なお、液晶分子30a’が12時方向に対してなす角度は、厳密には、液晶分子30a’の配向方向の方位角方向と、12時方向とがなす角度である。
上述のように液晶ドメインが渦巻き配向状態をとるような構成を有する液晶表示装置においては、一対の偏光板の一方の偏光軸が、上述の液晶分子が傾斜している方向と同一の方向に、12時方向に対して0°を超え2θ未満の角度で傾斜しているように偏光板を配置することによって、液晶ドメインが渦巻き配向状態をとるときの光の透過率を向上することができ、明るい表示が実現される。以下、例示しながらさらに詳しく説明する。
まず、図20を参照しながら、白表示状態、すなわち、液晶層に所定の電圧が印加されて液晶ドメインが渦巻き状の放射状傾斜配向状態をとっている状態において、一対の偏光板をクロスニコル状態を保ったまま液晶パネルに対して回転させ、偏光軸の12時方向に対する傾斜角度を変化させたときの透過率変化について説明する。図20は、カイラルピッチが16μmの液晶材料からなる液晶層(厚さが3.8μm)を備えた液晶表示装置の白表示状態における透過率を縦軸に示し、偏光軸が12時方向に対してなす角度を縦軸に示すグラフである。ここでは、偏光軸が12時方向に対してなす角度が0°のときの透過率を100%としている。また、この液晶表示装置が有する液晶層の液晶分子は、配向安定時に図19(b)に示したように右回りの渦巻き配向をとり、12時方向に位置する液晶分子は、12時方向に対して左回りに約13°傾斜する(すなわち、θ≒13°である)。なお、以降の図面においては、とくにことわらない限り、上述の液晶表示装置(配向安定時に液晶分子が右回りの渦巻き配向をとり、12時方向に位置する液晶分子が12時方向に対して左回りに約13°傾斜する構成を有する液晶表示装置)について示している。
図20に示すように、偏光軸を12時方向に対して左回りに傾斜させていくにつれて透過率が向上し、偏光軸が12時方向に対してなす角度が約13°(すなわちθ)のときに透過率が最大となる。偏光軸をさらに傾斜させていくと透過率が減少し、偏光軸が12時方向に対してなす角度が約26°(すなわち2θ)のときに0°のときの透過率と同じになり、26°を超えると0°のときよりも透過率が低下する。
光の透過率が上述のように変化するのは、12時方向に対する偏光軸の傾斜角度に応じて、液晶ドメインにおける遮光領域の面積が変化するためである。遮光領域は、偏光軸に対して垂直方向または平行方向に配向している液晶分子によって規定される領域であり、この領域の液晶層は入射光に対してほとんど位相差を与えない。従って、この領域を通過する入射光はほとんど透過率に寄与しない。そのため、液晶ドメインが渦巻き配向状態をとるときの透過率は遮光領域の面積に依存し、遮光領域の面積が大きいほど透過率は低く、遮光領域の面積が小さいほど透過率は高い。
図21(a)および(b)と、図22(a)および(b)とを参照しながら、偏光軸の傾斜角度に応じた遮光領域の変化について説明する。図21(a)および(b)は、偏光軸が12時方向に対して平行に設けられているときの液晶ドメインにおける遮光領域SRを模式的に示す図であり、図22(a)および(b)は、偏光軸が12時方向に対して約13°の角度をなすように設けられているときの液晶ドメインにおける遮光領域SRを模式的に示す図である。
図21(a)に示すように、偏光軸が12時方向に対して平行に設けられている場合には、遮光領域SRは、図21(b)に示すように、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向から右回りにずれた方向に観察される。これに対して、図22(a)に示すように、偏光軸が12時方向に対して約13°の角度をなすように設けられている場合には、図22(b)に示すように、遮光領域SRは、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向に観察される。
図21(b)に示したように偏光軸が12時方向に対して平行に設けられている場合の遮光領域SRの面積をS1とし、図22(b)に示したように偏光軸が12時方向に対して約13°(すなわちθ)の角度をなすように設けられている場合の遮光領域SRの面積をS2とすると、S1はS2よりも大きい(S1>S2)。これは、偏光軸が12時方向に対して平行に設けられている場合よりも、偏光軸が12時方向に対して約13°の角度をなすように設けられている場合の方が、偏光軸に対して垂直方向または平行方向に配向している液晶分子の存在確率が低いためである。
上述したように液晶ドメインの中心に対して12時方向に位置する液晶分子が12時方向に対してなす角度をθとするとき、偏光板の偏光軸(一対の偏光板の一方の偏光軸)が、上述の液晶分子が12時方向に対して傾斜している方向と同一の方向に、12時方向に対して0°を超え2θ未満の角度で傾斜しているように偏光板を配置すると、偏光軸が12時方向に対して平行に設けられているときよりも、偏光軸に対して垂直方向または平行方向に配向している液晶分子の存在確率が低くなる。そのため、上述のように偏光板を配置することによって、液晶ドメインが渦巻き状の放射状傾斜配向状態をとるときの光の透過率が向上し、明るい表示が実現される。
さらに、図22(a)に示したように、偏光板の偏光軸がθと略同一の角度で傾斜しているように偏光板を配置すると、図22(b)に示したように、遮光領域SRは液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向に位置し、偏光軸に対して垂直方向または平行方向に配向している液晶分子の存在確率がもっとも低くなる。そのため、このように偏光板を配置することによって、光の透過率がさらに向上し、一層明るい表示が実現される。
上記の説明においては、透過率の向上の観点から偏光板の好ましい配置について説明したが、一対の偏光板の一方の偏光軸が、上述の液晶分子が傾斜している方向と同一の方向に、12時方向に対して0°を超えθ以下の角度で傾斜しているように偏光板を配置することによって、明るい表示が実現されるとともに、後述する白尾引き現象(白い尾引き残像が観察される現象)および黒尾引き現象(黒い尾引き残像が観察される現象)の発生が抑制され、高品位の表示が実現される。
白尾引き現象は、例えば、中間調表示状態の背景中に黒い四角(ボックス)が移動する画像を液晶表示装置に表示した場合に発生することがある。図23は、白尾引き現象を模式的に示す図である。図23に示すように、中間調の背景中に黒い四角(ボックス)が図中左から右に移動する画像を表示すると、黒い四角の左側に中間調よりも輝度の高い領域が存在し、白い尾引き残像として観察されることがある。
上述の白尾引き現象は、例えば、偏光板の偏光軸が12時方向に対して平行に設けられている場合に比較的発生しやすい。これに対して、例えば、図20にその透過率変化を示した液晶表示装置においては、偏光軸を12時方向に対して約13°の角度で傾斜しているように配置することによって、図24に示すように、中間調の背景中に黒い四角(ボックス)が図中左から右に移動する画像を表示したときの白尾引き現象の発生が防止される。
この理由を、図25(a)〜(c)および図26(a)〜(c)を参照しながら説明する。図25(a)〜(c)は、偏光板の偏光軸が12時方向に対して平行に設けられている場合の液晶ドメインにおける遮光領域SRを模式的に示す図であり、図25(a)は、このときの偏光板の偏光軸を示し、図25(b)は、液晶層に電圧が印加された直後の遮光領域SRを示し、図25(c)は、配向安定時(定常状態)における遮光領域SRを示す。図26(a)〜(c)は、偏光板の偏光軸が12時方向に対して約13°の角度で傾斜しているように設けられている場合の液晶ドメインにおける遮光領域SRを模式的に示す図であり、図26(a)は、このときの偏光板の偏光軸を示し、図26(b)は、液晶層に電圧が印加された直後の遮光領域SRを示し、図26(c)は、配向安定時(定常状態)における遮光領域SRを示す。
まず、図25(a)に示すように、一対の偏光板の一方の偏光軸が12時方向に対して平行に設けられている場合について説明する。このように偏光板が設けられていると、電圧印加直後の液晶分子が単純な放射状傾斜配向をとっているときには、遮光領域SRは、図25(b)に示すように、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向に観察される。また、配向安定時には、遮光領域SRは、図25(c)に示すように、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向から右回りにずれた方向に観察される。
図25(b)に示した電圧印加直後の遮光領域SRの面積をS1’、図25(c)に示した配向安定時の遮光領域SRの面積をS1とすると、S1はS1’よりも大きく、配向安定時の透過率よりも電圧印加直後の透過率の方が高い。そのため、図23に示したように、中間調の背景中に黒い四角(ボックス)が図中左から右に移動する画像を表示する場合、黒い四角が通過した直後の絵素領域、すなわち、黒表示状態から中間調表示状態に変化する絵素領域は、過渡的に、中間調状態の透過率(配向安定時の透過率)よりも透過率が高い状態となるので、白い尾引き残像として観察される。
これに対して、図26(a)に示すように、一対の偏光板の一方の偏光軸が12時方向に対して約13°の角度で傾斜しているように設けられていると、電圧印加直後の液晶分子が単純な放射状傾斜配向をとっているときには、遮光領域SRは、図26(b)に示すように、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向から左回りにずれた方向に観察される。また、配向安定時には、遮光領域SRは、図26(c)に示すように、液晶ドメインの中心に対して12時方向、3時方向、6時方向および9時方向に観察される。
図26(b)に示した電圧印加直後の遮光領域SRの面積をS2’、図25(c)に示した配向安定時の遮光領域SRの面積をS2とすると、S2はS2’よりも小さく、電圧印加直後の透過率よりも配向安定時の透過率の方が高い。さらに、偏光板がこのように配置されている場合には、配向安定時において透過率がもっとも高くなる。そのため、図24に示したように中間調の背景中に黒い四角(ボックス)が図中左から右に移動する画像を表示する場合、黒い四角が通過した直後の絵素領域、すなわち、黒表示状態から中間調表示状態に変化する絵素領域は、中間調状態の透過率(配向安定時の透過率)よりも透過率が高い状態を過渡的に経ることがない。その結果、このように偏光板が配置されている液晶表示装置においては白尾引き現象の発生が確実に防止される。
図27に、偏光軸が12時方向に対して平行に設けられている場合と、偏光軸が12時方向に対して約13°の角度で傾斜しているように設けられている場合とについて、ある絵素領域を黒表示状態から中間調表示状態に変化させたときの透過率の時間変化を示す。ここでは、中間調状態の透過率を1.00とし、この絵素領域の液晶層に電圧が印加されたときを0secとしている。
偏光軸が12時方向に対して平行に設けられている場合には、図27中に実線で示すように、電圧印加直後に透過率が1.00を大きく超え、その後、所定の透過率(中間調状態の透過率)になる。そのため、このように偏光板を配置した場合には白尾引き現象が発生することがある。
これに対して、偏光軸が12時方向に対して約13°の角度で傾斜しているように設けられている場合には、図27中に一点鎖線で示すように、電圧印加直後に透過率が1.00を大きく超えることがない。そのため、このように偏光板を配置した場合には白尾引き現象の発生が確実に防止される。
上記の説明においては、白尾引き現象の発生を防止するための偏光板の配置例として、偏光軸が12時方向に対して約13°の角度(すなわちθ)で傾斜している場合を例に説明した。偏光板がこのように配置されている場合には、上述したように、配向安定時にもっとも透過率が高くなるので、白尾引き現象の発生が確実に防止される。
しかしながら、白尾引き現象の発生を抑制するための構成は、このように配向安定時にもっとも透過率が高くなるような構成に限定されず、過渡的にとるもっとも高い透過率と配向安定時の透過率との差が、偏光軸が12時方向に対して平行に設けられている場合に比べて小さくなるような構成とすることによって、白尾引き現象の発生が抑制される。
例えば、偏光軸が12時方向に対して液晶分子の傾斜方向と同一の方向に0°を超えθ以下の角度で傾斜しているように構成すると、白尾引き現象の発生が抑制され、高品位の表示が実現される。また、偏光軸を上述の角度範囲内に設定すると、白尾引き現象の発生が抑制されるだけでなく、配向安定時の透過率が向上し、明るい表示が実現される。上述の角度範囲内においては、偏光軸の傾斜角が大きいほど、白尾引き現象がより発生しにくくなる。偏光軸の傾斜角がθ/2と略同一の角度で傾斜していると、白尾引き現象の発生が実質的に防止される。
白尾引き現象の発生を抑制するための構成は、例示した構成に限定されないが、偏光板の配置によっては、絵素領域を黒表示状態から中間調表示状態に変化させる際の透過率の変化がゆるやかになりすぎ、黒尾引き現象が発生することがある。
黒尾引き現象は、白尾引き現象と同様に、例えば、中間調表示状態の背景中に黒い四角(ボックス)が移動する画像を液晶表示装置に表示した場合に発生することがある。図28は、黒尾引き現象を模式的に示す図である。図28に示すように、中間調の背景中に黒い四角(ボックス)が図中左から右に移動する画像を表示すると、黒い四角の左側に、黒表示状態よりは輝度が高く中間調状態よりは輝度が低い領域が存在し、黒い尾引き残像として観察されることがある。
上述の黒尾引き現象は、偏光板の偏光軸が12時方向に対してθを超える角度で設けられている場合に比較的発生しやすい。例えば、偏光軸が12時方向に対して約20°で傾斜していると、図27中に二点鎖線で模式的に示すように、黒表示状態から中間調状態への透過率の変化がゆるやかになりすぎる。そのため、上述のように黒い四角が移動する画像を表示した場合、黒い四角が通過した直後の絵素領域は、速やかに中間調表示状態となることができず、黒尾引き現象が発生することがある。
例えば、偏光軸が12時方向に対して液晶分子の傾斜方向と同一の方向に0°を超えθ以下の角度で傾斜しているように構成すると、黒尾引き現象の発生が抑制され、高品位の表示が実現される。また、偏光軸を上述の角度範囲内に設定すると、黒尾引き現象の発生が抑制されるだけでなく、配向安定時の透過率が向上し、明るい表示が実現される。偏光軸の12時方向に対する傾斜角が液晶分子の傾斜方向と同一の方向に0°を超えθ以下の角度範囲においては、偏光軸の傾斜角が小さいほど、黒尾引き現象がより発生しにくくなる。偏光軸の傾斜角がθ/2と略同一の角度で傾斜していると、黒尾引き現象の発生が実質的に防止される。
上述したように、偏光板の配置を最適化することによって、白尾引き現象や黒尾引き現象の発生が抑制される。尾引き現象の発生の抑制および透過率の向上の観点からは、偏光板の偏光軸(一対の偏光板の一方の偏光軸)が、液晶分子が傾斜している方向と同一の方向に、0°を超えθ以下の角度で傾斜しているように偏光板を配置することが好ましい。このように偏光板を配置すると、明るい表示が実現されるとともに、尾引き現象(白尾引き現象および黒尾引き現象)の発生が抑制され、高品位の表示が実現される。さらに、偏光板の偏光軸がθ/2と略同一の角度で傾斜しているように偏光板を配置すると、白尾引き現象および黒尾引き現象の発生が実質的に防止されて、一層高品位の表示が実現される。
なお、液晶ドメインが渦巻き配向状態をとる構成は、上述したように、例えば、液晶材料として、カイラル剤が添加された液晶材料を用いることによって実現されるが、このとき、カイラル剤の添加量に応じて、液晶層の厚さ方向に沿って液晶分子の配向が螺旋状に変化する場合と、そのような螺旋状の配向変化がほとんど生じない場合とがある。いずれの場合においても、偏光板の配置を上述のように最適化することによって、表示品位を向上することができる。
(枝部の幅、個数)
上述したように、本発明による液晶表示装置100および200が備える絵素電極14は、複数の開口部14aと中実部14bとを有している。開口部14aによって形成される単位格子内に位置する単位中実部14b’は、典型的には隣接する単位中実部14b’と互いに電気的に接続されているが、互いに隣接する単位中実部14b’を相互に接続する役割を果たしている部分、例えば、図1(a)に示したような円形部から四方にのびる枝部にも、当然のことながら他の部分と同じ電位が与えられるので、この枝部も斜め電界による配向規制効果に影響を与える。
図29に示すように、中実部14bは、典型的には、複数の島状部14cと、それぞれが隣接する島状部14cを互いに電気的に接続する複数の枝部14dとを有している。ここで、島状部14cとは、単位格子内に位置する導電膜のうちの枝部14dを除いた部分を指す。
島状部14c上に位置する液晶層30の液晶分子30aは、島状部14cと開口部14aとの境界(開口部14aのエッジ部)に生成される斜め電界によって配向を制御される。安定な配向状態や良好な応答特性を実現するためには、液晶分子30aの配向を制御するための斜め電界を多くの液晶分子30aに作用させる必要があり、島状部14cと開口部14aとの境界が多く形成されていることが好ましい。
図29に示したように島状部14c間に枝部14dが存在すると、枝部14dが存在している分だけ、島状部14cと開口部14aとの境界が少なくなり、島状部14c上の液晶分子30aを配向制御するための斜め電界を形成するエッジ部が少なくなる。すなわち、島状部14c間に存在する枝部14dは、斜め電界による配向規制効果を低下させる。従って、枝部14dの幅が狭いほど、あるいは、枝部14dの個数が少ないほど、配向規制効果の低下が抑制され、応答特性が向上する。
また、枝部14dと開口部14aとの境界には斜め電界が生成されるので、枝部14d上に位置する液晶分子30aは配向方向を規制される。枝部14d上の液晶分子30aの配向は、島状部14c上の液晶分子30aの配向状態にも影響を及ぼし、応答性に影響を与える。以下、さらに詳細に説明する。
まず、図30および図31を参照しながら、島状部14c上に位置する液晶層30の配向状態について説明する。図30は、電圧印加時の液晶分子30aの配向状態を模式的に示す上面図であり、図31は、図30中の31A−31A’線および31B−31B’線に沿った断面図である。なお、ここでは、島状部14cの形状が樽型(角部が円弧状の正方形)であり、液晶材料としてカイラル剤を添加された材料が用いられ、液晶層30が渦巻き状の放射状傾斜配向状態をとっている液晶表示装置を示している。また、ここでは、図31に示すように、対向基板100b上に設けられた対向電極22上には、単位中実部14b’の中心付近の位置に、放射状傾斜配向の中心を固定し、配向安定性を向上させるためのお碗状の突起物(球面の一部からなる面を有する突起物)24が設けられているが、このような突起物24が設けられていない場合においても以下の説明に異なるところはない。
図30に示すように、液晶層30に電圧が印加されると、開口部14aと島状部14cとの境界(開口部14aのエッジ部)に生成される斜め電界によって液晶分子30aの配向方向が規制され、島状部14c上の液晶層30は渦巻き状の放射状傾斜配向状態となる。
図30中の31A−31A’線および31B−31B’線に沿った断面のように、枝部14dが存在しない方向に沿った断面においては、図31に示すように、液晶分子30aがすべて開口部14aのエッジ部から島状部14cの中心に向かって傾斜するように配向規制力が働いている。なお、島状部14cの形状が円形である場合には、枝部14dが存在しない方向に沿ったどの断面においても配向規制力の大きさは同じであるが、図30に示したように島状部14cの形状が樽型である場合には、配向規制力の大きさは、島状部14cの中心からエッジ部までの距離に依存する。
このように、島状部14c上に位置する液晶層30は、電圧印加時には、島状部14cの中心付近に配向中心を有する渦巻き状の放射状傾斜配向を安定して形成する。後述する説明のわかりやすさのため、この状態を、第1の安定状態とよぶ。
次に、図32および図33を参照しながら、開口部14a上に位置する液晶層30の配向状態について説明する。図32は、電圧印加時の液晶分子30aの配向状態を模式的に示す上面図であり、図33は、図32中の33A−33A’線および33B−33B’線に沿った断面図である。
図32中の33A−33A’線および33B−33B’線に沿った断面のように、枝部14dが存在しない方向に沿った断面においては、図33に示すように、液晶分子30aがすべて開口部14aのエッジ部から開口部14aの中心に向かって傾斜するように配向規制力が働いている。ただし、開口部14a状に位置する液晶層30の液晶分子30aは、電極によって生成される電界の影響を直接的には受けないので、島状部14c上に位置する液晶分子30aに比べて傾斜する角度が小さい。
このように、開口部14a上に位置する液晶層30は、電圧印加時には、開口部14aの中心付近に配向中心を有する放射状傾斜配向を安定して形成する。
続いて、図34、図35(a)および(b)を参照しながら、枝部14d上に位置する液晶層30の配向状態について説明する。図34は、電圧印加時の液晶分子30aの配向状態を模式的に示す上面図であり、図35(a)は図34中の35A−35A’線に沿った断面図であり、図35(b)は図34中の35B−35B’線に沿った断面図である。
図34中の35A−35A’線に沿った断面のように、枝部14dと開口部14aとの境界を横断する方向に沿った断面においては、図35(a)に示すように、枝部14dと開口部14aとの境界に生成される斜め電界によって、液晶分子30aの配向方向が規制されている。これに対して、図34中の35B−35B’線に沿った断面のように、枝部14dおよび島状部14cを縦断する方向に沿った断面においては、図35(b)に示すように、隣接する島状部14c上の液晶層30の配向状態と整合するように液晶分子30aが傾斜する。
従って、枝部14d上に位置する液晶層30の液晶分子30aは、図36に示すように、隣接する島状部14c上の液晶分子30aの配向および開口部14a上の液晶分子30aの配向と整合するように配向する(上述した第1の安定状態に対応)。なお、図36においては、配向軸方向が表示面の上下方向(12時方向および6時方向)の液晶分子30aと、表示面左右方向(3時方向および9時方向)の液晶分子30aとを示している。
35B−35B’線に沿った断面における配向規制力(周囲の配向の連続性を保つように働くきわめて弱い配向規制力)は、開口部14aのエッジ部に形成される斜め電界の配向規制力に比べて著しく弱く、さらに、上述の配向規制力による液晶分子30aの傾斜方向は、枝部14dと開口部14aとの境界に生成される斜め電界による液晶分子30aの傾斜方向(上側(基板100b側)が開いたコーン状に液晶分子30aが配向する)とは逆の方向(下側(基板100a側)が開いたコーン状に液晶分子30aが配向する)であるため、枝部14d上の液晶分子30aに働く配向規制力のバランスが崩れやすい。
このため、枝部14dと開口部14aとの境界を横断する方向に沿った断面(図34中の35A−35A’線に沿った断面に対応)において垂直に配向している液晶分子30a(配向中心となる液晶分子30a)は、図37(a)および(b)に示すように、枝部14dと開口部14aとの境界側に移動しやすい。
このような枝部14d上の液晶分子30aの配向のずれ(垂直に配向する液晶分子30aの位置のずれ)の影響を受けて、島状部14c上の液晶層30の渦巻き配向は、図36に示した第1の安定状態から、図38に示す第2の安定状態へと変化する。このことが、液晶表示装置の応答特性に影響を与え、配向が安定し定常状態となるために比較的長時間を要するようになる。
上述したように応答特性に影響を与える枝部14d上の液晶分子30aの配向状態は、枝部14dの有無(個数)や枝部14dの幅に大きく依存する。図39(b)に示すように枝部14dの幅が比較的広いと、枝部14d上の液晶分子30aに対する配向規制力のバランスが崩れやすく、島状部14上の液晶分子30aの配向安定状態にも大きく影響を与える。これに対して、図39(a)に示すように、枝部14dの幅が比較的狭いと、枝部14d上の液晶分子30aに対する配向規制力のバランスがよく、島状部14c上の液晶分子30aの配向状態も比較的早く安定し、液晶表示装置の応答特性が向上する。
図40を参照しながら、枝部14dの幅が応答特性に与える影響についてさらに具体的に説明する。図40は、枝部14dの幅が比較的狭い場合(例えば5.5μm)と比較的広い場合(例えば7.5μm)とについて、液晶層30に電圧を印加したときの透過率の時間変化を模式的に示すグラフである。なお、ここでは一対の偏光板の偏光軸がそれぞれ12時方向および3時方向に平行に設定されているものとする。
図27を参照しながら説明したように、偏光板の偏光軸が12時方向に平行に設定されている場合、透過率は、電圧印加直後にいったん最大(図40中の最大透過率Ip)となり、その後ほぼ一定となる。液晶層30は、電圧印加直後にいったん単純な放射状傾斜状配向をとった後、渦巻き状の放射状傾斜配向に変化するが、このとき、図36に示した第1の安定状態を経て、図38に示した第2の安定状態となる。
図40に示すように、枝部14dの幅が比較的狭い場合に第2の安定状態に達するまでの時間Taは、枝部14dの幅が比較的広い場合に第2の安定状態に達するまでの時間Tbよりも短い(Ta<Tb)。このように、枝部14dの幅が狭いほど、良好な応答特性が得られる(応答速度が速い。)
また、枝部14dの幅が比較的狭い場合の第2の安定状態における透過率Iaは、枝部14dの幅が比較的広い場合の第2の安定状態における透過率Ibよりも高い(Ia>Ib)。
この理由を図41(a)および(b)を参照しながら説明する。図41(a)および(b)は、第2の安定状態において偏光軸と平行な方向に配向している液晶分子30aを模式的に示す図であり、図41(a)は、枝部14dの幅が比較的狭い場合を示し、図41(b)は、枝部14dの幅が比較的広い場合を示している。なお、図41(a)および(b)中に示す矢印は、一対の偏光板の偏光軸の方向を示しており、ここでは、一対の偏光板の偏光軸は、それぞれ12時方向および3時方向に平行に設定されている。
上述したように偏光板が配置されている場合、偏光板の偏光軸と平行な方向に配向している液晶分子30aが存在する領域は、光がほとんど透過しない遮光領域となる。
図41(a)に示すように、枝部14dの幅が比較的狭い場合には、偏光軸と平行な方向に配向している液晶分子30aは、12時方向、3時方向、6時方向および9時方向にほぼ沿って存在するので、遮光領域は偏光軸にほぼ沿って観察される。これに対して、図41(b)に示すように、枝部14dの幅が比較的広い場合には、偏光軸と平行な方向に配向している液晶分子30aは、12時方向、3時方向、6時方向および9時方向からずれた位置にも存在するので、遮光領域が観察される位置は、図41(a)に示した場合とは異なる。
遮光領域の面積は、遮光領域が偏光軸に沿って観察されるときにもっとも小さくなるので、図41(b)に示したように枝部14dの幅が比較的広い場合よりも、図41(a)に示したように枝部14dの幅が比較的狭い場合の方が、遮光領域の面積は小さい。従って、枝部14dの幅が比較的狭い場合の方が、第2の安定状態における透過率が高くなる。
上述したように、枝部14dの幅が比較的狭い場合の第2の安定状態における透過率Iaが、枝部14dの幅が比較的広い場合の第2の安定状態における透過率Ibよりも高いので、枝部14dの幅が比較的狭い場合における、電圧印加直後と第2の安定状態とでの透過率の変化量ΔIaは、枝部14dの幅が比較的広い場合における、電圧印加直後と第2の安定状態とでの透過率の変化量ΔIbよりも小さい(ΔIa<ΔIb)。そのため、枝部14dの幅が比較的狭い場合には、比較的広い場合に比べて、図23に示したような白尾引き現象が観察されにくいので、優れた応答特性が得られる。
上述したように、枝部14dの幅が狭いほど、応答特性が向上するが、枝部14dの個数を比較的少なくすることによっても、応答特性を向上させることができる。
本発明による液晶表示装置が備える絵素電極14は、図42に示すように、互いに隣接する島状部14cがすべて枝部14dによって互いに接続されているように構成されていてもよいが、この枝部14dを適宜省略することによって、応答特性を向上させることができる。なお、絵素電極14は、例えば、図42中に示す遮光領域18に設けられたコンタクトホール19においてスイッチング素子に接続されており、各島状部14cは、枝部14dによって相互に電気的に接続されて実質的に1つの導電膜として機能する。この遮光領域18は、例えば、TFT基板における補助容量配線上の領域などであり、バックライトからの光が透過せず、表示に寄与しない領域である。
具体的には、例えば、図43および図44に示すように、枝部14dの個数を島状部14c1つにつき2つ以下にすると、優れた応答特性が得られる。
表示に寄与しない領域、例えば、遮光領域18に位置する枝部14dは、ほとんど応答特性に影響を与えないので、図45に示すように、表示に寄与する領域において枝部14dの個数が島状部14c1つにつき2つ以下になるような構成としてもよい。
勿論、中実部14bの構成は、上述したような構成に限定されない。図46に示すような、図42に示した構成に比べて枝部14dが一部省略され、且つ、島状部14cが冗長性を有するような構成を採用すると、優れた応答特性を有し、且つ、良品率が高い液晶表示装置が提供される。
図42に示したように、互いに隣接する島状部14cがすべて枝部14dによって互いに接続されているように構成されている場合よりも、枝部14dの数を少なくすることによって、応答特性を向上させることができる。枝部14dの個数、すなわち枝部14dをどれだけ省略するかは、所望する応答特性などに応じて決定すればよい。
例えば、複数の島状部14cがm行n列(mおよびnは2以上の自然数)のマトリクス状に配列されている場合には、互いに隣接する島状部14cがすべて枝部14dによって互いに接続されているように構成すると、枝部14dの数は(2mn−m−n)個となる。従って、島状部14cがm行n列のマトリクス状に配列されている場合には、枝部の個数を(2mn−mn)個よりも少なくなるように構成することによって、応答特性を向上させることができる。
上述したように、枝部14dの幅および個数を最適化することによって、優れた応答特性が得られる。
なお、本発明は、例示した液晶表示装置に限定されず、絵素領域の液晶層に電圧を印加する一対の電極の内の一方が、少なくとも絵素領域の角部に配置された複数の開口部と、中実部とを有している構成とすることによって、広視野角特性を有する液晶表示装置が実現される。上述のような構成とすることによって、電圧印加時に、電極の開口部のエッジ部に斜め電界が形成される。従って、少なくとも角部に配置された複数の開口部のエッジ部に生成されたこの斜め電界によって、液晶層は、電圧印加状態において、放射状傾斜配向状態をとる液晶ドメインを形成し、そのため、広視野角特性が得られる。
ある絵素領域に存在する単位中実部(開口部に実質的に包囲される中実部の領域)は、複数の単位中実部であってもよいし、角部に配置された開口部によって包囲される1つの単位中実部であってもよい。ある絵素領域に存在する単位中実部が1つの単位中実部である場合、単位中実部を包囲する開口部は、角部に配置された複数の開口部であってもよいし、角部に配置された複数の開口部が連続した、実質的に1つの開口部であってもよい。
開口部に実質的に包囲される中実部の領域(単位中実部)が、回転対称性を有することによって、中実部に形成される液晶ドメインの放射状傾斜配向の安定性を高めることができる。例えば、単位中実部の形状を略円形や略正方形、あるいは略矩形としてもよい。
単位中実部の形状を略円形とすると、電極の中実部に形成される液晶ドメインの放射状傾斜配向を安定化させることができる。連続した導電膜から形成される中実部に形成されるある1つの液晶ドメインは、単位中実部に対応して形成されるので、単位中実部の形状が略円形となるように、開口部の形状およびその配置を決めればよい。また、単位中実部の形状が、角部が略円弧状の略矩形である構成を採用することによって、配向安定性および透過率(実効開口率)が比較的高い液晶表示装置が得られる。