JP4836539B2 - Fuel cell electrolyte - Google Patents

Fuel cell electrolyte Download PDF

Info

Publication number
JP4836539B2
JP4836539B2 JP2005304521A JP2005304521A JP4836539B2 JP 4836539 B2 JP4836539 B2 JP 4836539B2 JP 2005304521 A JP2005304521 A JP 2005304521A JP 2005304521 A JP2005304521 A JP 2005304521A JP 4836539 B2 JP4836539 B2 JP 4836539B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
general formula
polymer
side chain
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005304521A
Other languages
Japanese (ja)
Other versions
JP2007115476A (en
Inventor
昌 木口
正弘 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005304521A priority Critical patent/JP4836539B2/en
Publication of JP2007115476A publication Critical patent/JP2007115476A/en
Application granted granted Critical
Publication of JP4836539B2 publication Critical patent/JP4836539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Conductive Materials (AREA)

Description

本発明は、固体高分子形燃料電池の電解質膜およびバインダーとして有用な、新規高分子電解質に関する。   The present invention relates to a novel polymer electrolyte useful as an electrolyte membrane and a binder for a polymer electrolyte fuel cell.

これまで、固体高分子形燃料電池用の電解質材料としては、(1)ナフィオン(デュポン社製)等のパーフルオロアルキルスルホン酸高分子(例えば、特許文献1参照)や、(2)ポリエーテルエーテルケトン等の耐熱性高分子の主鎖をスルホン化した高分子(例えば、特許文献2参照)、(3)スルホン酸化された側鎖を有する高分子(例えば、特許文献3、特許文献4、特許文献5参照)が知られている。しかしながら、これらの高分子は固体高分子形燃料電池用の電解質材料として、いずれも問題を有していた。すなわち、燃料電池の出力向上の点から100℃以上の運転温度が望まれているが、上記(1)のパーフルオロアルキルスルホン酸ポリマーはガラス転移点が約120℃と低いため、使用温度が100℃未満という制約がある。また、上記(2)および(3)の高分子は、耐酸化性が充分ではない。耐酸化性を向上させる方法としては、高分子電解質に酸化防止剤を添加する方法(例えば、特許文献6および特許文献7参照)が提案されている。しかしながら、添加量が不十分なためと推定されるが、効果はあまり高くない。また、特許文献8では側鎖の芳香族環を電子吸引性基で連結し、芳香族環の反応性を低下させて耐酸化性を発現させている。しかしながらまだ十分とは言えず、さらに耐酸化性の高い電解質材料が望まれていた。   Up to now, electrolyte materials for polymer electrolyte fuel cells include (1) perfluoroalkylsulfonic acid polymers such as Nafion (manufactured by DuPont) (see, for example, Patent Document 1), and (2) polyether ether. Polymers obtained by sulfonating the main chain of a heat-resistant polymer such as ketone (for example, see Patent Document 2), (3) polymers having a sulfonated side chain (for example, Patent Document 3, Patent Document 4, Patent) Document 5) is known. However, these polymers all have problems as electrolyte materials for polymer electrolyte fuel cells. That is, an operating temperature of 100 ° C. or higher is desired from the viewpoint of improving the output of the fuel cell. However, since the perfluoroalkylsulfonic acid polymer (1) has a low glass transition point of about 120 ° C., the operating temperature is 100. There is a restriction of less than ℃. Further, the polymers (2) and (3) have insufficient oxidation resistance. As a method for improving the oxidation resistance, a method of adding an antioxidant to the polymer electrolyte (for example, see Patent Document 6 and Patent Document 7) has been proposed. However, although it is estimated that the amount added is insufficient, the effect is not so high. Moreover, in patent document 8, the aromatic ring of a side chain is connected with an electron withdrawing group, the reactivity of an aromatic ring is reduced and oxidation resistance is expressed. However, it is still not sufficient, and an electrolyte material with higher oxidation resistance has been desired.

米国特許第3,282,875号明細書US Pat. No. 3,282,875 米国特許第5,795,496号明細書US Pat. No. 5,795,496 米国特許第5,403,675号明細書US Pat. No. 5,403,675 特開2001−329053号公報JP 2001-329053 A 特開2002−289222号公報JP 2002-289222 A 特開2003−201352号公報JP 2003-201352 A 特開2003−201403号公報JP 2003-201403 A WO2005−76397WO2005-76397

本発明は、固体高分子形燃料電池の電解質膜およびバインダーとして、耐酸化性が高く、プロトン伝導性の高い、新規な高分子電解質を提供することを目的とするものである。   An object of the present invention is to provide a novel polymer electrolyte having high oxidation resistance and high proton conductivity as an electrolyte membrane and a binder for a polymer electrolyte fuel cell.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、スルホン酸が置換した芳香環がリン原子で連なる特定構造の側鎖を有する高分子スルホン酸からなる高分子電解質がその目的に適合しうることを見いだし、この知見に基づいて本発明をなすに至った。
すなわち、本発明は、以下の通りである。
1.少なくとも下記一般式(1)で表される繰り返し単位を有する事を特徴とする燃料電池用高分子電解質。
As a result of intensive studies to solve the above problems, the present inventors have found that a polymer electrolyte comprising a polymer sulfonic acid having a side chain having a specific structure in which an aromatic ring substituted with a sulfonic acid is linked by a phosphorus atom is obtained. It has been found that it can be adapted to the purpose, and the present invention has been made based on this finding.
That is, the present invention is as follows.
1. A polymer electrolyte for a fuel cell having at least a repeating unit represented by the following general formula (1).

Figure 0004836539
Figure 0004836539

(Yは芳香族残基を表し、Wは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基であり、kは1〜4の整数であって、式中の側鎖部分Zは、下記一般式(2)で表される。
Z=−L−(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar ・・・(2)
(Y represents an aromatic residue, and W is selected from —CO—, —O—, —S—, —SO—, —SO 2 —, —CONH—, —C (CF 3 ) 2 —, and a single bond. K is an integer of 1 to 4, and the side chain portion Z in the formula is represented by the following general formula (2).
Z = -L- (Ar 1 T 1 (B 1)) - (Ar 2 T 2 (B 2)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ... (2)

上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar
=−〔(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar



n−1=−〔Ar
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(Ar 2 T 2 (B 2 )) - (Ar 3 T 3 (B 3)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] F
B 2 = - [(Ar 3 T 3 (B 3 )) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] f



B n−1 = − [Ar n ] f

上記一般式(2)中
nは各々独立に2〜5の整数、
fは各々独立に0または1、
Ar〜Arは各々独立に芳香族残基、
〜Tn−1は連結基POx(xは0〜4の整数)であり、
Lは−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−から選ばれる連結基である。
そして、−SOH基が二個以上導入されたZを有する。)
In said general formula (2), n is an integer of 2-5 each independently,
f is independently 0 or 1,
Ar 1 to Ar n are each independently an aromatic residue,
T 1 to T n-1 are linking groups POx (x is an integer of 0 to 4),
L is -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO -, - SO 2 - selected from A linking group.
And it has Z in which two or more —SO 3 H groups are introduced. )

2.Wが −CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であることを特徴とする請求項1記載の燃料電池用高分子電解質
3.kが1〜2の整数であることを特徴とする請求項1または2記載の燃料電池用高分子電解質。
4.nが2、fが1である請求項1記載の燃料電池用高分子電解質
5.請求項1〜4のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。
6.請求項1〜4のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池。
2. 2. The polymer electrolyte for fuel cells according to claim 1, wherein W is a linking group selected from —CO—, —O—, —S—, —SO 2 —, and —C (CF 3 ) 2 —. 3. 3. The polymer electrolyte for a fuel cell according to claim 1, wherein k is an integer of 1 to 2.
4). 4. The polymer electrolyte for fuel cells according to claim 1, wherein n is 2 and f is 1. A polymer electrolyte membrane for a fuel cell, comprising the polymer electrolyte according to claim 1.
6). A fuel cell using the polymer electrolyte according to claim 1.

本発明の高分子電解質は、耐酸化性が高く、プロトン伝導性が高く、かつ、力学的性質にも優れた、新規な高分子電解質である。したがって、固体高分子形燃料電池の電解質膜およびバインダーとして好適に使用することができる。   The polymer electrolyte of the present invention is a novel polymer electrolyte having high oxidation resistance, high proton conductivity, and excellent mechanical properties. Therefore, it can be suitably used as an electrolyte membrane and a binder for a polymer electrolyte fuel cell.

以下、本発明について具体的に説明する。
本発明の高分子電解質は下記一般式(1)で表される繰り返し単位を有する。
Hereinafter, the present invention will be specifically described.
The polymer electrolyte of the present invention has a repeating unit represented by the following general formula (1).

Figure 0004836539
Figure 0004836539

上記一般式(1)中、kは通常1〜4の整数であって、好ましくは1または2である。
上記一般式(1)中、Yは(k+2)価の芳香族残基であり、例えば、下記一般式(7)に示す3価の芳香族残基、下記一般式(8)に示す4価の芳香族残基、下記一般式(9)に示す5価の芳香族残基などが挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよい。
In the general formula (1), k is usually an integer of 1 to 4, and preferably 1 or 2.
In the general formula (1), Y is a (k + 2) -valent aromatic residue, for example, a trivalent aromatic residue represented by the following general formula (7), a tetravalent represented by the following general formula (8) And a pentavalent aromatic residue represented by the following general formula (9). The hydrogen atom of these aromatic residues is an alkyl group, a halogen atom, a halogenated alkyl group, an aryl group, a halogenated aryl group, —CN, —NO 2 , —COR, —COOR (where R is a hydrogen atom, an alkyl group, a halogen atom, alkyl group, selected from aryl group), -. CONRR '(R ' is the same as R), -. SO 3 R , -SOR, may be substituted with -SO 2 R.

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

上記一般式(7)〜(9)における2価の基Qは−CO−、−COO−、−O−、−S−、−SO−、−SO2 −、−CCR1 2−(R1 は水素原子、ハロゲン原子、アルキル基
、ハロゲン化アルキル基、アリール基から選ばれる)、単結合から選ばれ、好ましくは−CO−、−O−、−S−、−SO2 −から選ばれる。
上記一般式(1)中、Wは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基であり、好ましくは、−CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であり、さらに好ましくは−CO−、−O−、−S−、−SO−から選ばれる連結基である。
In the general formulas (7) to (9), the divalent group Q is —CO—, —COO—, —O—, —S—, —SO—, —SO 2 —, —CCR 1 2 — (R 1 Is selected from a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group and an aryl group) and a single bond, and preferably selected from —CO—, —O—, —S— and —SO 2 —.
In the general formula (1), W is a linkage selected from —CO—, —O—, —S—, —SO—, —SO 2 —, —CONH—, —C (CF 3 ) 2 —, and a single bond. A linking group selected from —CO—, —O—, —S—, —SO 2 —, —C (CF 3 ) 2 —, and more preferably —CO—, —O—. , —S—, —SO 2 —.

上記一般式(1)中の側鎖部分Zは、一般式(2)で表される。
Z=−L−(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar (2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar
=−〔(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar



n−1=−〔Ar
The side chain portion Z in the general formula (1) is represented by the general formula (2).
Z = -L- (Ar 1 T 1 (B 1)) - (Ar 2 T 2 (B 2)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n (2)
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(Ar 2 T 2 (B 2 )) - (Ar 3 T 3 (B 3)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] F
B 2 = - [(Ar 3 T 3 (B 3 )) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] f



B n−1 = − [Ar n ] f

上記一般式(2)中nはそれぞれ独立に2〜5から選ばれる整数を表し、好ましくは2〜4から選ばれ、さらに好ましくは2〜3から選ばれる。fはそれぞれ独立に0または1である。
上記一般式(2)において、fが1である場合、上記一般式(2)で表される側鎖は芳香族残基Ar〜Arn−1 において分岐構造をとるが、その際、各分岐鎖は各々異なった鎖長および分岐構造をとることもできる。
上記一般式(2)におけるT〜Tn-1は(f+2)価のPOx(xは0〜4の整数)を表し、x=0はホスフィン、x=1はホスフィンオキシド、x=3はホスファイト、x=4はホスフェイトである。T〜Tn-1 は互いに同じであっても異なっていてもよい。
上記一般式(2)におけるAr〜Arn-1は2価の芳香族残基を表し、例えば下記一般式(11)に示す2価の芳香族残基が挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよい。
In the general formula (2), each n independently represents an integer selected from 2 to 5, preferably selected from 2 to 4, and more preferably selected from 2 to 3. Each f is independently 0 or 1.
In the general formula (2), when f is 1, the side chain represented by the general formula (2) has a branched structure in the aromatic residues Ar 1 to Ar n-1 . Each branched chain may have a different chain length and branched structure.
In the general formula (2), T 1 to T n-1 represent (f + 2) -valent POx (x is an integer of 0 to 4), x = 0 is phosphine, x = 1 is phosphine oxide, and x = 3 is Phosphite, x = 4 is phosphate. T 1 to T n-1 may be the same as or different from each other.
Ar 1 to Ar n-1 in the general formula (2) represent a divalent aromatic residue, and examples thereof include a divalent aromatic residue represented by the following general formula (11). The hydrogen atom of these aromatic residues is an alkyl group, a halogen atom, a halogenated alkyl group, an aryl group, a halogenated aryl group, —CN, —NO 2 , —COR, —COOR (where R is a hydrogen atom, an alkyl group, a halogen atom, alkyl group, selected from aryl group), -. CONRR '(R ' is the same as R), -. SO 3 R , -SOR, may be substituted with -SO 2 R.

Figure 0004836539
Figure 0004836539

また上記一般式(2)におけるL は2価の連結基を表し、例えば、−CO−、−CONH−、−(CF2 p −(ここで、pは1〜10の整数である)、−C(CF3 2 −、−COO−、−SO−、−SO2 −などが挙げられ、好ましくは−CO−、−C(CF3 2 −、−SO−、−SO2 −さらに好ましくは−CO−、−SO−、−SO2 −などが用いられる。
さらに上記一般式(1)におけるArは側鎖末端のアリール基を表し、例えば、下記一般式(12)に示すアリール基が挙げられ、当該アリール基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、Arは互いに同じであっても異なっていてもよい。
In addition, L in the general formula (2) Represents a divalent linking group, for example, —CO—, —CONH—, — (CF 2 ) p — (wherein p is an integer of 1 to 10), —C (CF 3 ) 2 —, —COO—, —SO—, —SO 2 — and the like are preferable, preferably —CO—, —C (CF 3 ) 2 —, —SO—, —SO 2 —, more preferably —CO—, —SO—. , —SO 2 — and the like are used.
In addition, Ar n in the general formula (1) represents an aryl group at the end of the side chain, and examples thereof include an aryl group represented by the following general formula (12), and the hydrogen atom of the aryl group is an alkyl group, a halogen atom, a halogen atom. Alkyl group, aryl group, halogenated aryl group, —CN, —NO 2 , —COR, —COOR (R is selected from a hydrogen atom, an alkyl group, a halogenated alkyl group, and an aryl group), —CONRR ′ ( R ′ is the same as R.), —SO 3 R, —SOR, —SO 2 R may be substituted, and Ar n may be the same or different from each other.

Figure 0004836539
Figure 0004836539

本発明では、通常、非分岐型側鎖、分岐型側鎖から選ばれる側鎖が用いられ、好ましくは分岐型側鎖が用いられる。分岐型側鎖は、(i)スルホン化が容易な末端芳香環の数が多く、高分子(主鎖)までの距離が同じスルホン酸基を同一側鎖に複数導入することが可能であり、プロトン伝導性に必要なイオンクラスター構造を形成し易く、それゆえプロトン伝導性が高いものと考えられる。また、(ii)側鎖の形状が嵩高くなるので異なる高分子鎖間の側鎖が互いに絡み合うものと推察され、その結果、電解質膜の強度が高く、寸法安定性も高いものと考えられる。   In the present invention, a side chain selected from an unbranched side chain and a branched side chain is usually used, and a branched side chain is preferably used. The branched side chain (i) has a large number of terminal aromatic rings that can be easily sulfonated, and multiple sulfonic acid groups having the same distance to the polymer (main chain) can be introduced into the same side chain. It is considered that an ion cluster structure necessary for proton conductivity is easily formed, and therefore proton conductivity is high. Further, (ii) since the shape of the side chain becomes bulky, it is presumed that the side chains between different polymer chains are entangled with each other. As a result, the strength of the electrolyte membrane is high and the dimensional stability is also considered high.

本発明の高分子電解質は、少なくとも上記一般式(1)で表される繰り返し単位を有する。本発明の高分子電解質としては、通常、上記一般式(1)で表される繰り返し単位を1〜100モル%、好ましくは5〜95モル%、さらに好ましくは10〜80モル%、特に好ましくは15〜75モル%含み、その重量平均分子量が1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万の重合体である高分子電解質が挙げられる。   The polymer electrolyte of the present invention has at least a repeating unit represented by the general formula (1). As the polymer electrolyte of the present invention, the repeating unit represented by the general formula (1) is usually 1 to 100 mol%, preferably 5 to 95 mol%, more preferably 10 to 80 mol%, particularly preferably. A polymer electrolyte containing 15 to 75 mol% and having a weight average molecular weight of 1,000 to 1,000,000, preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, particularly preferably 30,000 to 400,000 Is mentioned.

本発明の高分子電解質が、従来の高分子電解質と比較して、(1)耐酸化性が高く、(2)プロトン伝導性が高いという、優れた性能を併せ持つ理由はおよそ次のように推定される。
(1)耐酸化性が高い理由:燃料電池運転時には過酸化水素や・OOHラジカルのような酸化性物質が生成することが知られている。そのため、高分子電解質としては化学的に安定な高分子パーフルオロスルホン酸が用いられてきた。従来の炭化水素系高分子スルホン酸では耐酸化性が不十分であるため、例えば特許文献6および7においては、耐酸化性を補うために酸化防止剤を併用することも行われている。しかし、酸化防止剤を添加剤として加える方法ではポリマーとの相溶性の問題があり、添加量には制限がある。加えて加工時や燃料電池運転時に脱落するおそれもある。対して本発明の電解質は主鎖に結合する側鎖自身がホスフィン、ホスファイト、ホスフェイトなどの酸化防止効果を有する構造を持つので、実用上十分な量の酸化防止剤の導入が可能となる。さらに加工時や電池運転時にも実質的に脱落しない。それゆえ、耐酸化性が高いものと考えられる。
The reason why the polymer electrolyte of the present invention has the excellent performance of (1) high oxidation resistance and (2) high proton conductivity compared with the conventional polymer electrolyte is estimated as follows. Is done.
(1) Reason for high oxidation resistance: It is known that oxidizing substances such as hydrogen peroxide and .OOH radicals are generated during fuel cell operation. Therefore, chemically stable polymer perfluorosulfonic acid has been used as the polymer electrolyte. Since conventional hydrocarbon polymer sulfonic acids have insufficient oxidation resistance, for example, in Patent Documents 6 and 7, an antioxidant is also used in combination to supplement the oxidation resistance. However, the method of adding an antioxidant as an additive has a problem of compatibility with the polymer, and the addition amount is limited. In addition, there is a risk of falling off during processing or fuel cell operation. On the other hand, since the electrolyte of the present invention has a structure in which the side chain itself bonded to the main chain has an antioxidant effect such as phosphine, phosphite, and phosphate, a practically sufficient amount of antioxidant can be introduced. Furthermore, it does not drop out substantially during processing or battery operation. Therefore, it is considered that the oxidation resistance is high.

(2)プロトン伝導度が高い理由:本発明では、通常、非分岐型側鎖、分岐型側鎖から選
ばれる側鎖が用いられ、好ましくは分岐型側鎖が用いられる。分岐型側鎖は、(i)スルホン化が容易な末端芳香環の数が多く、高分子(主鎖)までの距離が同じスルホン酸基を同一側鎖に複数導入することが可能であり、プロトン伝導性に必要なイオンクラスター構造を形成し易く、それゆえプロトン伝導性が高いものと考えられる。また、(ii)側鎖の形状が嵩高くなるので異なる高分子鎖間の側鎖が互いに絡み合うものと推察され、その結果、電解質膜の強度が高く、寸法安定性も高いものと考えられる。
(2) Reason for high proton conductivity: In the present invention, a side chain selected from an unbranched side chain and a branched side chain is usually used, and a branched side chain is preferably used. The branched side chain (i) has a large number of terminal aromatic rings that can be easily sulfonated, and multiple sulfonic acid groups having the same distance to the polymer (main chain) can be introduced into the same side chain. It is considered that an ion cluster structure necessary for proton conductivity is easily formed, and therefore proton conductivity is high. Further, (ii) since the shape of the side chain becomes bulky, it is presumed that the side chains between different polymer chains are entangled with each other, and as a result, the strength of the electrolyte membrane is high and the dimensional stability is also considered high.

本発明の高分子電解質の製造方法は特に限定されるものではない。例えば、高分子に側鎖導入剤を反応させて側鎖を導入する方法を用いることができる。すなわち、一般式(1)においてZが置換していない構造に相当する、−Y−W−(Yは2価の芳香族残基、Wは前記のとおり)を繰り返し単位として有する高分子へ側鎖導入剤を反応させてZを導入させても良いし、予め反応性の置換基を導入した−Y(M)−W−(Yは3価の芳香族残基、Mは反応性基、Wは前記のとおり)に、Mと反応する側鎖導入剤を反応させることによりZを導入しても良い。
前記方法で通常用いられる具体例を次に示す。すなわち、下記一般式(3)で表される繰り返し単位を有する高分子と下記一般式(4)で表される側鎖導入剤を反応させることにより、上記一般式(1)で示される高分子電解質を製造することができる。なお、この場合には、上記一般式(2)におけるXは−CO−および−SO−から選ばれる。
The method for producing the polymer electrolyte of the present invention is not particularly limited. For example, a method of introducing a side chain by reacting a polymer with a side chain introducing agent can be used. That is, to the polymer having -Y-W- (Y is a divalent aromatic residue, W is as described above) as a repeating unit corresponding to the structure in which Z is not substituted in the general formula (1). Z may be introduced by reacting a chain introducing agent, or -Y (M) -W- (Y is a trivalent aromatic residue, M is a reactive group, and a reactive substituent is introduced in advance. As described above, W may be introduced by reacting a side chain introducing agent that reacts with M.
Specific examples usually used in the above method are shown below. That is, by reacting a polymer having a repeating unit represented by the following general formula (3) with a side chain introducing agent represented by the following general formula (4), the polymer represented by the above general formula (1). An electrolyte can be manufactured. In this case, X in the general formula (2) is selected from —CO— and —SO 2 —.

Figure 0004836539
Figure 0004836539

上記一般式(3)において、YおよびWは上記一般式(1)に記載のものと同様であり、Uは水素原子、−COX、−SOXから選ばれる反応性基であり、Xはハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれる。
Z’−V (4)
上記一般式(3)のUが水素原子の場合、Vは−COX、−SOXから選ばれる反応性基であり、Uが−COX、−SOXから選ばれる反応性基である場合には、Vは水素原子であり、Z’は下記一般式(5)で表される。
Z’=−(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar (5)
In the general formula (3), Y and W are the same as those described in the general formula (1), U is a reactive group selected from a hydrogen atom, —COX, and —SO 2 X, and X is It is selected from a halogen atom, OR (R is a hydrogen atom, an alkyl group or an aryl group), and a hydroxyl group.
Z'-V (4)
When U in the general formula (3) is a hydrogen atom, V is a reactive group selected from —COX and —SO 2 X, and U is a reactive group selected from —COX and —SO 2 X In the formula, V is a hydrogen atom, and Z ′ is represented by the following general formula (5).
Z '= - (Ar 1 T 1 (B 1)) - (Ar 2 T 2 (B 2)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ( 5)

本発明で使用する、上記一般式(3)で表される繰り返し単位を有する高分子の例を以下に示す。
Uが水素原子のもの:上記一般式(11)で示される残基から選ばれる2価芳香族残基と、−CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基Wの組み合わせからなる高分子が通常用いられ、好ましくは、フェニレン、ナフチレン、ビフェニレンから選ばれる2価芳香族残基と−CO−、−O−、−S−、−SO−から選ばれる連結基Wの組み合わせが用いられ、より好ましくはポリエーテルケトン、ポリエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルエーテルケトンが用いられ、さらに好ましくは、下式で表される高分子においてZが水素原子のものが用いられる。
Examples of the polymer having a repeating unit represented by the general formula (3) used in the present invention are shown below.
U those hydrogen atoms: and a divalent aromatic residue selected from residues represented by the general formula (11), -CO -, - O -, - S -, - SO -, - SO 2 -, A polymer composed of a combination of —CONH—, —C (CF 3 ) 2 — and a linking group W selected from a single bond is usually used, and preferably a divalent aromatic residue selected from phenylene, naphthylene, and biphenylene A combination of linking groups W selected from —CO—, —O—, —S—, —SO 2 — is used, more preferably polyether ketone, polyether sulfone, polythioether ketone, polythioether sulfone, polyether ether. Sulfone and polyetheretherketone are used, and more preferably, a polymer represented by the following formula having Z as a hydrogen atom is used.

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

Uが−COXまたは−SOXのもの:上記一般式(11)で示される残基から選ばれる2価芳香族残基と、−CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基Wの組み合わせからなる高分子に−COXまたは−SOXを導入したものが通常用いられ、好ましくは、フェニレン、ナフチレン、ビフェニレンから選ばれる2価芳香族残基と−CO−、−O−、−S−、−SO−から選ばれる連結基Wの組み合わせの高分子に−COXまたは−SOXを導入したものが用いられ、より好ましくはポリエーテルケトン、ポリエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルエーテルケトンに−COXまたは−SOXを導入したものが用いられる。上記一般式(3)UのCOX、SOXにおけるXは、通常、ハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれ、好ましくは、ハロゲン原子、水酸基から選ばれる。上記一般式(4)で表される側鎖導入剤の例を次に示す。
側鎖導入剤がスルホン酸基またはその前駆体を有し、かつ、側鎖導入剤のXが電子吸引性の連結基であり、さらに、Vが−COX、−SOXから選ばれる反応性基である場合の、好ましいZ’−Vの例を下記式(13)に示す。(式中、−SORはスルホン酸基またはその前駆体を表し、Rは水酸基、アルキル基、アルカリ金属、アルカリ土類金属から選ばれる。)
When U is —COX or —SO 2 X: a divalent aromatic residue selected from the residues represented by the general formula (11), —CO—, —O—, —S—, —SO—, A polymer in which —COX or —SO 2 X is introduced into a polymer composed of a combination of a linking group W selected from —SO 2 —, —CONH—, —C (CF 3 ) 2 —, and a single bond is usually used. Is a polymer of a combination of a divalent aromatic residue selected from phenylene, naphthylene, and biphenylene and a linking group W selected from —CO—, —O—, —S—, and —SO 2 —. which was introduced 2 X is used, more preferably polyether ketone, polyether sulfone, polythioether ketone, polythioether sulfone, polyether ether sulfone, polyether ether ketone Which was introduced COX or -SO 2 X is used. X in the COX and SO 2 X of the general formula (3) U is usually selected from a halogen atom, OR (R is a hydrogen atom, an alkyl group, or an aryl group), and a hydroxyl group, preferably from a halogen atom and a hydroxyl group. To be elected. Examples of the side chain introducing agent represented by the general formula (4) are shown below.
Reactivity in which the side chain introducing agent has a sulfonic acid group or a precursor thereof, X in the side chain introducing agent is an electron-withdrawing linking group, and V is selected from —COX and —SO 2 X An example of preferable Z′-V in the case of a group is shown in the following formula (13). (In the formula, —SO 3 R represents a sulfonic acid group or a precursor thereof, and R is selected from a hydroxyl group, an alkyl group, an alkali metal, and an alkaline earth metal.)

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

側鎖導入剤がスルホン酸基またはその前駆体を有せず、かつ、Vが−COX、−SOXから選ばれる反応性基である場合の、好ましいZ’−Vの例を下記式(14)に示す。
Vが水素原子である場合の好ましいZ’−Vの例を下記式(15)に示す。
Preferred examples of Z′-V in the case where the side chain introducing agent does not have a sulfonic acid group or a precursor thereof and V is a reactive group selected from —COX and —SO 2 X are represented by the following formula ( 14).
An example of preferred Z′-V when V is a hydrogen atom is shown in the following formula (15).

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

上記一般式(4)のVにおけるXは通常、ハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれ、好ましくは、ハロゲン原子、水酸基から選ばれる。
高分子に側鎖導入剤を反応させる際の反応の種類は、特に制限されない。上記一般式(
3)で表される高分子と上記一般式(4)で表される側鎖導入剤を反応させる際の好ましい方法としては次の方法が挙げられる。
X in V in the general formula (4) is usually selected from a halogen atom, OR (R is a hydrogen atom, an alkyl group, or an aryl group), and a hydroxyl group, and preferably selected from a halogen atom and a hydroxyl group.
The type of reaction when the side chain introduction agent is reacted with the polymer is not particularly limited. General formula (
As a preferable method for reacting the polymer represented by 3) with the side chain introducing agent represented by the general formula (4), the following method may be mentioned.

(i)上記一般式(3)のUが水素原子で、式(4)のVが−COX(Xがハロゲン原子または水酸基)であるか、または、上記一般式(3)のUが−COX(Xがハロゲン原子)で、上記一般式(4)のVが水素原子である場合:フリーデル・クラフツ−アシル化反応を用いることができる。
(ii)上記一般式(3)のUが水素原子で、上記一般式(4)のVが−SOX(Xがハロゲン原子または水酸基)であるか、または、上記一般式(3)のUが−SOX(Xがハロゲン原子)で、上記一般式(4)のVが水素原子である場合:フリーデル・クラフツ型スルホニル化反応を用いることができる。
(iii)上記一般式(3)のUが水素原子で、上記一般式(4)のVが−COOHまたは−SOHであるか、または、上記一般式(3)のUが−COOHまたは−SOHで、式(4)のVが水素原子である場合:脱水縮合反応を用いることができる。
(I) U in the general formula (3) is a hydrogen atom, V in the formula (4) is -COX (X is a halogen atom or a hydroxyl group), or U in the general formula (3) is -COX. When X is a halogen atom and V in the general formula (4) is a hydrogen atom: Friedel-Crafts-acylation reaction can be used.
(Ii) U in the general formula (3) is a hydrogen atom, V in the general formula (4) is —SO 2 X (X is a halogen atom or a hydroxyl group), or in the general formula (3) When U is —SO 2 X (X is a halogen atom) and V in the general formula (4) is a hydrogen atom: Friedel-Crafts type sulfonylation reaction can be used.
(Iii) U in the general formula (3) is a hydrogen atom, V in the general formula (4) is —COOH or —SO 3 H, or U in the general formula (3) is —COOH or When —SO 3 H and V in Formula (4) are a hydrogen atom: a dehydration condensation reaction can be used.

本発明の高分子電解質の製造方法において、スルホン酸基を導入する方法として、スルホン基を含有しない高分子をスルホン酸化することにより導入する場合には、スルホン酸化剤による常法のスルホン酸化を用いることができる。スルホン酸基を導入する方法としては、例えば、上記スルホン酸基を有しない高分子を、無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウムなどの公知のスルホン酸化剤を用いて、公知の条件でスルホン酸化することができる(本発明において、スルホン酸化とは、−Hなる基の水素原子をSO3 Hで置換する反応を示す。)。 In the method for producing a polymer electrolyte of the present invention, as a method for introducing a sulfonic acid group, when introducing a polymer not containing a sulfone group by sulfonating, a conventional sulfonation with a sulfonating agent is used. be able to. As a method for introducing a sulfonic acid group, for example, the above-described polymer having no sulfonic acid group is known by using a known sulfonating agent such as sulfuric anhydride, fuming sulfuric acid, chlorosulfonic acid, sulfuric acid, sodium hydrogen sulfite and the like. (In the present invention, sulfonation refers to a reaction in which a hydrogen atom of a group —H is substituted with SO 3 H).

このスルホン酸化の反応条件としては、上記スルホン酸基を有しない高分子を、無溶剤下、あるいは溶剤存在下で、上記スルホン酸化剤と反応させる。溶剤としては、例えばn−ヘキサンなどの炭化水素系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドのような非プロトン系極性溶剤のほか、テトラクロロエタン、ジクロロエタン、クロロホルム、塩化メチレンなどのハロゲン化炭化水素などが挙げられる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。   As the reaction conditions for the sulfonation, the polymer having no sulfonic acid group is reacted with the sulfonated agent in the absence of a solvent or in the presence of a solvent. Examples of the solvent include hydrocarbon solvents such as n-hexane, ether solvents such as tetrahydrofuran and dioxane, aprotic polar solvents such as dimethylacetamide, dimethylformamide, and dimethylsulfoxide, tetrachloroethane, dichloroethane, chloroform, And halogenated hydrocarbons such as methylene chloride. The reaction temperature is not particularly limited, but is usually −50 to 200 ° C., preferably −10 to 100 ° C. Moreover, reaction time is 0.5 to 1,000 hours normally, Preferably it is 1 to 200 hours.

このようにして得られる、本発明のスルホン酸基含有重合体中の、スルホン酸基量は、0.5〜5ミリグラム当量/g、好ましくは0.7〜4ミリグラム当量/g、さらに好ましくは0.8〜3ミリグラム当量/gである。低いスルホン酸基量では、プロトン伝導性が上がらず、一方、スルホン酸基量が高いと、親水性が向上し、構造によっては水溶性ポリマーとなってしまう。上記のスルホン酸基量は、反応条件(温度、時間)や仕込量(組成)により調整することができる。   The amount of sulfonic acid group in the sulfonic acid group-containing polymer of the present invention thus obtained is 0.5 to 5 milligram equivalent / g, preferably 0.7 to 4 milligram equivalent / g, more preferably 0.8-3 milligram equivalent / g. When the amount of sulfonic acid group is low, proton conductivity does not increase. On the other hand, when the amount of sulfonic acid group is high, hydrophilicity is improved, and depending on the structure, a water-soluble polymer is obtained. The amount of the sulfonic acid group can be adjusted by the reaction conditions (temperature, time) and the charged amount (composition).

また、このようにして得られる本発明の高分子電解質の、スルホン酸化前またはスルホン酸の前駆体のポリマーの分子量は、ポリスチレン換算重量平均分子量で、1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万である。1000未満では、成形フィルムが割れ易く、また強度的性質にも問題がある。一方、100万を超えると、溶解性が不充分となり、また溶液粘度が高く、加工性が不良になるなどの問題がある。
次に、本発明の高分子電解質は、上記スルホン酸基含有重合体からなるが、上記スルホン酸基含有重合体以外に、硫酸、リン酸などの無機酸、カルボン酸を含む有機酸、適量の水などを併用しても良い。
The molecular weight of the polymer electrolyte of the present invention thus obtained before sulfonation or sulfonic acid precursor is 1,000 to 1,000,000, preferably 10,000 to 1,000,000 in terms of polystyrene-converted weight average molecular weight. More preferably, it is 20,000 to 800,000, particularly preferably 30,000 to 400,000. If it is less than 1000, the molded film is liable to break, and there is also a problem in strength properties. On the other hand, if it exceeds 1,000,000, there are problems such as insufficient solubility, high solution viscosity, and poor processability.
Next, the polymer electrolyte of the present invention comprises the sulfonic acid group-containing polymer. In addition to the sulfonic acid group-containing polymer, an inorganic acid such as sulfuric acid and phosphoric acid, an organic acid containing a carboxylic acid, an appropriate amount You may use water together.

本発明の高分子電解質をフィルム化するには、例えば本発明のスルホン酸基含有重合体
を溶剤に溶解したのち、塗布によりフィルム状に成形するキャスト法や、溶融成形法などが挙げられる。ここで、キャスト法における溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどの非プロトン系極性溶剤やメタノールなどのアルコール系溶剤などが挙げられる。
本発明の高分子電解質の構造は、例えば、赤外線吸収スペクトルや核磁気共鳴スペクトル(H−NMR、13C−NMR)により確認することができる。また、組成比は元素分析によっても測定でき、スルホン酸の含量は中和滴定によって測定することができる。
In order to form the polymer electrolyte of the present invention into a film, for example, a casting method in which the sulfonic acid group-containing polymer of the present invention is dissolved in a solvent and then formed into a film by coating, a melt molding method, or the like can be mentioned. Here, examples of the solvent in the casting method include aprotic polar solvents such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and dimethylsulfoxide, and alcohol solvents such as methanol.
The structure of the polymer electrolyte of the present invention can be confirmed by, for example, an infrared absorption spectrum or a nuclear magnetic resonance spectrum ( 1 H-NMR, 13 C-NMR). The composition ratio can also be measured by elemental analysis, and the sulfonic acid content can be measured by neutralization titration.

以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の各種の測定項目は、下記のようにして求めた。
[イオン交換容量]得られたポリマーの水洗水が中性になるまで充分に水洗し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解し、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点から、イオン交換容量(スルホン酸化当量)を求めた。
[プロトン伝導度の測定]100%相対湿度下に置かれた厚み40〜60μmのフィルム状試料を、白金電極に挟み、複素インピーダンス測定を行い、プロトン伝導度を算出した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In addition, various measurement items in the examples were obtained as follows.
[Ion exchange capacity] The obtained polymer is sufficiently washed with water until it becomes neutral, dried, weighed in a predetermined amount, dissolved in a THF / water mixed solvent, phenolphthalein as an indicator, NaOH The ion exchange capacity (sulfonated equivalent) was determined from the neutralization point.
[Measurement of proton conductivity] A film sample having a thickness of 40 to 60 µm placed under 100% relative humidity was sandwiched between platinum electrodes, and complex impedance measurement was performed to calculate proton conductivity.

[フェントン試験]過酸化水素濃度が3重量%、且つ硫酸第2鉄・7水和物を鉄イオンの濃度が20ppmになるようにフェントン試薬を調製した。250ccのポリエチレン製容器に200gのフェントン試薬を採取し、3cm×4cm、膜厚40〜60μmに切削した高分子電解膜を投入後、密栓後、50℃の恒温水槽に浸漬させ、6時間のフェントン試験を行った。フェントン試験後、フィルムを取り出し、イオン交換水にて水洗後、25℃・50%RH24時間保持して調湿を行い、重量測定を行った。フェントン試験における重量保持率は、下記の数式により算出した。
フェントン試験における重量保持率(%)=(フェントン試験後のフィルム重量/フェントン試験前のフィルム重量)×100
[Fenton test] A Fenton reagent was prepared so that the hydrogen peroxide concentration was 3% by weight and the ferric sulfate heptahydrate concentration was 20 ppm. 200 g of Fenton reagent was collected in a 250 cc polyethylene container, a polymer electrolyte membrane cut to 3 cm × 4 cm and a film thickness of 40 to 60 μm was added, sealed, and then immersed in a constant temperature water bath at 50 ° C. for 6 hours. A test was conducted. After the Fenton test, the film was taken out, washed with ion-exchanged water, kept at 25 ° C. and 50% RH for 24 hours to adjust the humidity, and weighed. The weight retention rate in the Fenton test was calculated by the following mathematical formula.
Weight retention in Fenton test (%) = (film weight after Fenton test / film weight before Fenton test) × 100

[実施例1]
(1)ポリエーテルエーテルケトンのスルホン化
ポリエーテルエーテルケトン(ヴィクトレックス社製ポリエーテルエーテルケトン Victrex PEEK450PF)20.0gを0.5リットルの反応溶液に入れ、96%硫酸0.25リットルを加え、窒素下室温で2日間攪拌を続けた。得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液のpHが5になるまでポリマーの水洗を繰り返した。乾燥して、23.7g(95%)のスルホン酸化ポリエーテルエーテルケトン[S−PEEK(下記式(16))]を得た。
[Example 1]
(1) Sulfonation of polyetheretherketone 20.0 g of polyetheretherketone (Polyetheretherketone Victrex PEEK450PF manufactured by Victorex) was put into a 0.5 liter reaction solution, and 0.25 liter of 96% sulfuric acid was added, Stirring was continued for 2 days at room temperature under nitrogen. The resulting solution was poured into 5 liters of ion exchange water to precipitate the polymer. The polymer was repeatedly washed with water until the pH of the washing solution reached 5. By drying, 23.7 g (95%) of a sulfonated polyetheretherketone [S-PEEK (the following formula (16))] was obtained.

Figure 0004836539
Figure 0004836539

(2)トリフェニルホスフィンオキシドのS−PEEKへの導入反応
S−PEEK4.5gを三口フラスコに入れ、窒素雰囲気下で攪拌しながら70℃で塩化チオニル50mlを加えて3時間反応させた。過剰の塩化チオニルを減圧留去してスルホニルクロリド化したPEEKを得た。これにスルホラン200mlを加えて溶解した後、
トリフェニルホスフィンオキシド13.9g(50mmol)および塩化アルミニウム2.67g(20mmol)を加えて、90℃で30時間攪拌した。反応溶液を希塩酸(塩酸/水=10:1)1リットルに投入して、析出した固体を粉砕しながら撹拌した。この固体をろ過した後、水およびエタノールで洗浄し、さらにアセチルアセトン2%を含有する酢酸エチル300ml、次いで80℃のトルエン300mlで2回洗浄した後、50℃で5時間真空乾燥してトルフェニルホスフィンオキシドを側鎖として導入したPEEK5.25gを得た。
(2) Reaction of introducing triphenylphosphine oxide into S-PEEK 4.5 g of S-PEEK was placed in a three-necked flask, and 50 ml of thionyl chloride was added at 70 ° C. with stirring under a nitrogen atmosphere for 3 hours. Excess thionyl chloride was distilled off under reduced pressure to obtain sulfonyl chloride PEEK. After adding 200 ml of sulfolane and dissolving it,
13.9 g (50 mmol) of triphenylphosphine oxide and 2.67 g (20 mmol) of aluminum chloride were added and stirred at 90 ° C. for 30 hours. The reaction solution was poured into 1 liter of dilute hydrochloric acid (hydrochloric acid / water = 10: 1), and the precipitated solid was stirred while being pulverized. This solid was filtered, washed with water and ethanol, then washed twice with 300 ml of ethyl acetate containing 2% of acetylacetone and then with 300 ml of toluene at 80 ° C., and then vacuum-dried at 50 ° C. for 5 hours to obtain tolphenylphosphine. 5.25 g of PEEK into which an oxide was introduced as a side chain was obtained.

(3)トルフェニルホスフィンオキシドを側鎖として導入したPEEKのスルホン酸化
トルフェニルホスフィンオキシドを側鎖として導入したPEEK5.00gを三口フラスコに入れ、100mlの96%硫酸を加えて窒素雰囲気下室温で20時間攪拌して得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液のpHが5になるまでポリマーの水洗を繰り返した。乾燥してトルフェニルホスフィンオキシドを側鎖として導入したPEEKのスルホン酸化物(下記式(17))4.50gを得た。
(3) Sulfonation of PEEK with Tolphenylphosphine Oxide as Side Chain 5.00 g of PEEK into which tolphenylphosphine oxide was introduced as a side chain was placed in a three-necked flask, and 100 ml of 96% sulfuric acid was added to it at room temperature under a nitrogen atmosphere. The polymer was precipitated by pouring the solution obtained by stirring for 5 hours into 5 liters of ion exchange water. The polymer was repeatedly washed with water until the pH of the washing solution reached 5. After drying, 4.50 g of PEEK sulfonated oxide (the following formula (17)) into which tolphenylphosphine oxide was introduced as a side chain was obtained.

Figure 0004836539
Figure 0004836539

(4)高分子電解質膜としての評価
上記の高分子電解質の固形分量が30wt%となるように、高分子電解質15gおよびNMPをフラスコに入れて、攪拌しながら80℃で加熱溶解させてポリマーワニスを得た。バーコーター(200μm用)を用い、ガラス基板上に貼り付けたPET薄膜上に塗布後、乾燥器にて80℃、0.5時間予備乾燥させ、塗膜をPET薄膜から剥がした。剥がした塗膜を真空乾燥器で100℃、3時間乾燥した。さらに、塗膜重量の1,000倍量のイオン交換水中に室温で2日間浸漬させることで、NMPを除去したフィルムを得た。次に、フィルムを25℃・50%RH環境に24時間静置することで調湿後、各種物性測定を行った。結果を表1に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示した。この結果は、本発明の高分子電解質が燃料電池用電解質材料として必要な高い耐酸化性と高プロトン伝導性を兼ね備えていることを示す。
(4) Evaluation as a polymer electrolyte membrane 15 g of the polymer electrolyte and NMP are placed in a flask so that the solid content of the polymer electrolyte is 30 wt%, and the polymer varnish is dissolved by heating at 80 ° C. with stirring. Got. Using a bar coater (for 200 μm), after coating on a PET thin film affixed on a glass substrate, it was preliminarily dried at 80 ° C. for 0.5 hours with a dryer, and the coating film was peeled off from the PET thin film. The peeled coating film was dried at 100 ° C. for 3 hours in a vacuum dryer. Furthermore, the film from which NMP was removed was obtained by immersing in ion-exchanged water of 1,000 times the coating weight at room temperature for 2 days. Next, various physical properties were measured after humidity control by allowing the film to stand in an environment of 25 ° C. and 50% RH for 24 hours. The results are shown in Table 1. The obtained polymer electrolyte film showed high resistance to the Fenton test. This result shows that the polymer electrolyte of the present invention has both high oxidation resistance and high proton conductivity required as an electrolyte material for fuel cells.

[実施例2]
(1)トリフェニルホスファイトのS−PEEKへの導入反応
実施例1で得たS−PEEK4.5gを三口フラスコに入れ、窒素雰囲気下で攪拌しながら70℃で塩化チオニル50mlを加えて3時間反応させた。過剰の塩化チオニルを減圧留去してスルホニルクロリド化したPEEKを得た。これにスルホラン200mlを加えて溶解した後、トリフェニルホスファイト15.5g(50mmol)および塩化アルミニウム2.67g(20mmol)を加えて、90℃で30時間攪拌した。反応溶液を希塩酸(塩酸/水=10:1)1リットルに投入して、析出した固体を粉砕しながら撹拌した
。この固体をろ過した後、水およびエタノールで洗浄し、さらにアセチルアセトン2%を含有する酢酸エチル300ml、さらに80℃のトルエン300mlで2回洗浄した後、50℃で5時間真空乾燥してトルフェニルホスファイトを側鎖として導入したPEEK5.78gを得た。
(2)トルフェニルホスファイトを側鎖として導入したPEEKのスルホン酸化
トルフェニルホスファイトを側鎖として導入したPEEK5.00gを三口フラスコに入れ、100mlの96%硫酸を加えて窒素雰囲気下室温で20時間攪拌して得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液のpHが5になるまでポリマーの水洗を繰り返した。乾燥してトルフェニルホスファイトを側鎖として導入したPEEKのスルホン酸化物(下記式(18))4.55gを得た。
[Example 2]
(1) Reaction of introducing triphenyl phosphite into S-PEEK 4.5 g of S-PEEK obtained in Example 1 was placed in a three-necked flask, and 50 ml of thionyl chloride was added at 70 ° C. with stirring in a nitrogen atmosphere for 3 hours. Reacted. Excess thionyl chloride was distilled off under reduced pressure to obtain sulfonyl chloride PEEK. After 200 ml of sulfolane was added and dissolved, 15.5 g (50 mmol) of triphenyl phosphite and 2.67 g (20 mmol) of aluminum chloride were added and stirred at 90 ° C. for 30 hours. The reaction solution was poured into 1 liter of dilute hydrochloric acid (hydrochloric acid / water = 10: 1), and the precipitated solid was stirred while being pulverized. This solid was filtered, washed with water and ethanol, further washed with 300 ml of ethyl acetate containing 2% of acetylacetone and further with 300 ml of toluene at 80 ° C., and then vacuum-dried at 50 ° C. for 5 hours, and then tolphenylphosphine. 5.78 g of PEEK introduced with phyto as a side chain was obtained.
(2) Sulfonation of PEEK introduced with tolphenyl phosphite as a side chain 5.00 g of PEEK introduced with tolphenyl phosphite as a side chain was placed in a three-necked flask, and 100 ml of 96% sulfuric acid was added at room temperature under a nitrogen atmosphere. The polymer was precipitated by pouring the solution obtained by stirring for 5 hours into 5 liters of ion exchange water. The polymer was repeatedly washed with water until the pH of the washing solution reached 5. After drying, 4.55 g of PEEK sulfonated oxide (following formula (18)) into which tolphenyl phosphite was introduced as a side chain was obtained.

Figure 0004836539
Figure 0004836539

(3)高分子電解質膜としての評価
実施例1と同様にして上記の高分子電解質のフィルムを得て、各種物性測定を行った。結果を表1に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示した。この結果は、本発明の高分子電解質が燃料電池用電解質材料として必要な高い耐酸化性と高プロトン伝導性を兼ね備えていることを示す。
(3) Evaluation as a polymer electrolyte membrane In the same manner as in Example 1, the polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 1. The obtained polymer electrolyte film showed high resistance to the Fenton test. This result shows that the polymer electrolyte of the present invention has both high oxidation resistance and high proton conductivity required as an electrolyte material for fuel cells.

[実施例3]
(1)トリフェニルホスフェイトのS−PEEKへの導入反応
実施例1で得たS−PEEK4.5gを三口フラスコに入れ、窒素雰囲気下で攪拌しながら70℃で塩化チオニル50mlを加えて3時間反応させた。過剰の塩化チオニルを減圧留去してスルホニルクロリド化したPEEKを得た。これにスルホラン200mlを加えて溶解した後、トリフェニルホスフェイト16.3g(50mmol)および塩化アルミニウム2.67g(20mmol)を加えて、90℃で30時間攪拌した。反応溶液を希塩酸(塩酸/水=10:1)1リットルに投入して、析出した固体を粉砕しながら撹拌した。この固体をろ過した後、水およびエタノールで洗浄し、さらにアセチルアセトン2%を含有する酢酸エチル300ml、さらに80℃のトルエン300mlで2回洗浄した後、50℃で5時間真空乾燥してトルフェニルホスフェイトを側鎖として導入したPEEK6.12gを得た。
(2)トルフェニルホスフェイトを側鎖として導入したPEEKのスルホン酸化
トルフェニルホスファイトを側鎖として導入したPEEK5.00gを三口フラスコに入れ、100mlの96%硫酸を加えて窒素雰囲気下室温で20時間攪拌して得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液の
pHが5になるまでポリマーの水洗を繰り返した。乾燥してトルフェニルホスフェイトを側鎖として導入したPEEKのスルホン酸化物(下記式(19))4.65gを得た。
[Example 3]
(1) Reaction of introducing triphenyl phosphate into S-PEEK 4.5 g of S-PEEK obtained in Example 1 was put into a three-necked flask, and 50 ml of thionyl chloride was added at 70 ° C. with stirring in a nitrogen atmosphere for 3 hours. Reacted. Excess thionyl chloride was distilled off under reduced pressure to obtain sulfonyl chloride PEEK. After 200 ml of sulfolane was added and dissolved, 16.3 g (50 mmol) of triphenyl phosphate and 2.67 g (20 mmol) of aluminum chloride were added and stirred at 90 ° C. for 30 hours. The reaction solution was poured into 1 liter of dilute hydrochloric acid (hydrochloric acid / water = 10: 1), and the precipitated solid was stirred while being pulverized. This solid was filtered, washed with water and ethanol, further washed with 300 ml of ethyl acetate containing 2% of acetylacetone and further with 300 ml of toluene at 80 ° C., and then vacuum-dried at 50 ° C. for 5 hours, and then tolphenylphosphine. 6.12 g of PEEK introduced with fate as a side chain was obtained.
(2) Sulfonation of PEEK with Tolphenyl Phosphate as Side Chain 5.00 g of PEEK into which tolphenyl phosphite was introduced as a side chain was placed in a three-necked flask, added with 100 ml of 96% sulfuric acid, and added at room temperature under a nitrogen atmosphere at room temperature. The polymer was precipitated by pouring the solution obtained by stirring for 5 hours into 5 liters of ion exchange water. The polymer was repeatedly washed with water until the pH of the washing solution reached 5. After drying, 4.65 g of PEEK sulfonated oxide (the following formula (19)) into which tolphenyl phosphate was introduced as a side chain was obtained.

Figure 0004836539
Figure 0004836539

(3)高分子電解質膜としての評価
実施例1と同様にして上記の高分子電解質のフィルムを得て、各種物性測定を行った。結果を表1に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示した。この結果は、本発明の高分子電解質が燃料電池用電解質材料として必要な高い耐酸化性と高プロトン伝導性を兼ね備えていることを示す。
(3) Evaluation as a polymer electrolyte membrane In the same manner as in Example 1, the polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 1. The obtained polymer electrolyte film showed high resistance to the Fenton test. This result shows that the polymer electrolyte of the present invention has both high oxidation resistance and high proton conductivity required as an electrolyte material for fuel cells.

[実施例4]
(1)テトラフェニル−p−フェニレン−ジフォスファイトのS−PEEKへの導入反応
実施例1で得たS−PEEK4.5gを三口フラスコに入れ、窒素雰囲気下で攪拌しながら70℃で塩化チオニル50mlを加えて3時間反応させた。過剰の塩化チオニルを減圧留去してスルホニルクロリド化したPEEKを得た。これにスルホラン200mlを加えて溶解した後、テトラフェニル−p−フェニレン−ジフォスファイト27.1gおよび塩化アルミニウム2.67g(20mmol)を加えて、90℃で30時間攪拌した。反応溶液を希塩酸(塩酸/水=10:1)1リットルに投入して、析出した固体を粉砕しながら撹拌した。この固体をろ過した後、水およびエタノールで洗浄し、さらにアセチルアセトン2%を含有する酢酸エチル300ml、さらに80℃のトルエン300mlで2回洗浄した後、50℃で5時間真空乾燥してテトラフェニル−p−フェニレン−ジフォスファイトを側鎖として導入したPEEK8.31gを得た。
(2)テトラフェニル−p−フェニレン−ジフォスファイトを側鎖として導入したPEEKのスルホン酸化
テトラフェニル−p−フェニレン−ジフォスファイトを側鎖として導入したPEEK5.00gを三口フラスコに入れ、100mlの96%硫酸を加えて窒素雰囲気下室温で20時間攪拌して得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液のpHが5になるまでポリマーの水洗を繰り返した。乾燥してテトラフェニル−p−フェニレン−ジフォスファイトを側鎖として導入したPEEKのスルホン酸化物(下記式(20))4.60gを得た。
[Example 4]
(1) Reaction of introducing tetraphenyl-p-phenylene-diphosphite into S-PEEK 4.5 g of S-PEEK obtained in Example 1 was placed in a three-necked flask and thionyl chloride at 70 ° C. with stirring in a nitrogen atmosphere. 50 ml was added and reacted for 3 hours. Excess thionyl chloride was distilled off under reduced pressure to obtain sulfonyl chloride PEEK. After 200 ml of sulfolane was added and dissolved therein, 27.1 g of tetraphenyl-p-phenylene-diphosphite and 2.67 g (20 mmol) of aluminum chloride were added and stirred at 90 ° C. for 30 hours. The reaction solution was poured into 1 liter of dilute hydrochloric acid (hydrochloric acid / water = 10: 1), and the precipitated solid was stirred while being pulverized. This solid was filtered, washed with water and ethanol, further washed with 300 ml of ethyl acetate containing 2% of acetylacetone and further with 300 ml of toluene at 80 ° C., and then vacuum-dried at 50 ° C. for 5 hours to give tetraphenyl- 8.31 g of PEEK into which p-phenylene-diphosphite was introduced as a side chain was obtained.
(2) Sulfonation of PEEK introduced with tetraphenyl-p-phenylene-diphosphite as a side chain PEEK 5.00 g introduced with tetraphenyl-p-phenylene-diphosphite as a side chain was placed in a three-necked flask, and 100 ml A solution obtained by adding 96% sulfuric acid and stirring at room temperature for 20 hours under a nitrogen atmosphere was poured into 5 liters of ion-exchanged water to precipitate a polymer. The polymer was repeatedly washed with water until the pH of the washing solution reached 5. After drying, 4.60 g of PEEK sulfonated oxide (following formula (20)) into which tetraphenyl-p-phenylene-diphosphite was introduced as a side chain was obtained.

Figure 0004836539
Figure 0004836539

(3)高分子電解質膜としての評価
実施例1と同様にして上記の高分子電解質のフィルムを得て、各種物性測定を行った。結果を表1に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示した。この結果は、本発明の高分子電解質が燃料電池用電解質材料として必要な高い耐酸化性と高プロトン伝導性を兼ね備えていることを示す。
(3) Evaluation as a polymer electrolyte membrane In the same manner as in Example 1, the polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 1. The obtained polymer electrolyte film showed high resistance to the Fenton test. This result shows that the polymer electrolyte of the present invention has both high oxidation resistance and high proton conductivity required as an electrolyte material for fuel cells.

[比較例1]
特開2003−201403号公報の参考例2に記載の方法で下記式(21)に示すポリマーBのスルホン酸化物を得て、このものの高分子電解質膜としての評価を行った。結果を表1に示す。
[Comparative Example 1]
A sulfone oxide of polymer B represented by the following formula (21) was obtained by the method described in Reference Example 2 of JP-A-2003-20143, and this was evaluated as a polymer electrolyte membrane. The results are shown in Table 1.

Figure 0004836539
(但し、j/k=6.9であり、nは5.5である。)
Figure 0004836539
(However, j / k = 6.9 and n is 5.5.)

[比較例2]
WO2005−76397号の実施例に記載の方法で下記式(22)に示す高分子電解
質を得て、このものの評価を行った。結果を表1に示す。
[Comparative Example 2]
A polymer electrolyte represented by the following formula (22) was obtained by the method described in the examples of WO2005-76397, and this was evaluated. The results are shown in Table 1.

Figure 0004836539
Figure 0004836539

Figure 0004836539
Figure 0004836539

[実施例5]
実施例2で得られた高分子電解質をNMP(N−メチルピロリドン)溶液とし、キャスト法でそれぞれ膜厚50μmのフイルムを作製した。このフイルムの両面を触媒付電極(エレクトロケム製EC−20−10−7)ではさみ、ホットプレスしてMEA(膜電極接合体)を作製した。このMEAを純水に2時間浸漬し吸水させ、評価セル(エレクトロケム製FC−05−01−SP:25cm)に組み込んだ。
[発電特性評価]
80℃に保った上記セルのアノード側へ水素(相対湿度30%)を、カソード側へ空気(相対湿度50%)を供給し、電流密度0.3A/cmで長時間稼動試験を行った。出力電圧が初期電圧の90%になるまでの時間は8000時間であった。
[Example 5]
The polymer electrolyte obtained in Example 2 was used as an NMP (N-methylpyrrolidone) solution, and films each having a thickness of 50 μm were prepared by a casting method. Both sides of this film were sandwiched between electrodes with a catalyst (EC-20-10-7 manufactured by Electrochem) and hot-pressed to prepare MEA (membrane electrode assembly). This MEA was immersed in pure water for 2 hours to absorb water, and incorporated in an evaluation cell (FC-05-01-SP manufactured by Electrochem: 25 cm 2 ).
[Evaluation of power generation characteristics]
Hydrogen (relative humidity 30%) was supplied to the anode side of the cell maintained at 80 ° C., and air (relative humidity 50%) was supplied to the cathode side, and a long-term operation test was performed at a current density of 0.3 A / cm 2 . . The time until the output voltage reached 90% of the initial voltage was 8000 hours.

[比較例3]
比較例1で得られた高分子電解質を用いたほかは、実施例5と同様に発電特性評価を行った。出力電圧が初期電圧の90%になるまでの時間は、280時間であった。この結果は、実施例2で得た電解質膜の耐久性が非常に高いことを示す。
[比較例4]
比較例2で得られた高分子電解質を用いたほかは、実施例5と同様に発電特性評価を行った。出力電圧が初期電圧の90%になるまでの時間は、7000時間であった。この結果は、実施例2で得た電解質膜の耐久性が非常に高いことを示す。
[実施例6]
実施例4で得られた高分子電解質を用いたほかは、実施例5と同様にして発電特性評価を行った。出力電圧が初期電圧の90%になるまでの時間は10000時間以上であった。この結果は、実施例4で得た、より長い耐酸化性側鎖を導入した高分子電解質膜ではさらに高い耐久性を示すことがわかる。
[Comparative Example 3]
The power generation characteristics were evaluated in the same manner as in Example 5 except that the polymer electrolyte obtained in Comparative Example 1 was used. The time until the output voltage reached 90% of the initial voltage was 280 hours. This result shows that the durability of the electrolyte membrane obtained in Example 2 is very high.
[Comparative Example 4]
The power generation characteristics were evaluated in the same manner as in Example 5 except that the polymer electrolyte obtained in Comparative Example 2 was used. The time until the output voltage reached 90% of the initial voltage was 7000 hours. This result shows that the durability of the electrolyte membrane obtained in Example 2 is very high.
[Example 6]
The power generation characteristics were evaluated in the same manner as in Example 5 except that the polymer electrolyte obtained in Example 4 was used. The time until the output voltage became 90% of the initial voltage was 10,000 hours or more. This result shows that the polymer electrolyte membrane obtained by introducing the longer oxidation-resistant side chain obtained in Example 4 has higher durability.

本発明は、固体高分子形燃料電池の電解質およびバインダーとして有用である。   The present invention is useful as an electrolyte and a binder for a polymer electrolyte fuel cell.

Claims (6)

少なくとも下記一般式(1)で表される繰り返し単位を有する事を特徴とする燃料電池用高分子電解質。
Figure 0004836539
(Yは芳香族残基を表し、Wは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基であり、kは1〜4の整数であって、式中の側鎖部分Zは、下記一般式(2)で表される。
Z=−L−(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar ・・・(2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(Ar(B))−(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar
=−〔(Ar(B))−・・・−(Arn−1n−1(Bn−1))−Ar



n−1=−〔Ar
上記一般式(2)中
nは各々独立に2〜5の整数、
fは各々独立に0または1、
Ar〜Arは各々独立に芳香族残基、
〜Tn−1は連結基POx(xは0〜4の整数)であり、
Lは−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−から選ばれる連結基である。
そして、−SOH基が二個以上導入されたZを有する。)
A polymer electrolyte for a fuel cell having at least a repeating unit represented by the following general formula (1).
Figure 0004836539
(Y represents an aromatic residue, and W is selected from —CO—, —O—, —S—, —SO—, —SO 2 —, —CONH—, —C (CF 3 ) 2 —, and a single bond. K is an integer of 1 to 4, and the side chain portion Z in the formula is represented by the following general formula (2).
Z = -L- (Ar 1 T 1 (B 1)) - (Ar 2 T 2 (B 2)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ... (2)
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(Ar 2 T 2 (B 2 )) - (Ar 3 T 3 (B 3)) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] F
B 2 = - [(Ar 3 T 3 (B 3 )) - ··· - (Ar n-1 T n-1 (B n-1)) - Ar n ] f



B n−1 = − [Ar n ] f
In said general formula (2), n is an integer of 2-5 each independently,
f is independently 0 or 1,
Ar 1 to Ar n are each independently an aromatic residue,
T 1 to T n-1 are linking groups POx (x is an integer of 0 to 4),
L is -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO -, - SO 2 - selected from A linking group.
And it has Z in which two or more —SO 3 H groups are introduced. )
Wが −CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であることを特徴とする請求項1記載の燃料電池用高分子電解質。 2. The polymer electrolyte for fuel cells according to claim 1, wherein W is a linking group selected from —CO—, —O—, —S—, —SO 2 —, and —C (CF 3 ) 2 —. . kが1〜2の整数であることを特徴とする請求項1または2記載の燃料電池用高分子電解質。   3. The polymer electrolyte for a fuel cell according to claim 1, wherein k is an integer of 1 to 2. nが2、fが1である請求項1記載の燃料電池用高分子電解質。   2. The polymer electrolyte for a fuel cell according to claim 1, wherein n is 2 and f is 1. 請求項1〜4のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。   A polymer electrolyte membrane for a fuel cell, comprising the polymer electrolyte according to claim 1. 請求項1〜4のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池。

A fuel cell using the polymer electrolyte according to claim 1.

JP2005304521A 2005-10-19 2005-10-19 Fuel cell electrolyte Expired - Fee Related JP4836539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304521A JP4836539B2 (en) 2005-10-19 2005-10-19 Fuel cell electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304521A JP4836539B2 (en) 2005-10-19 2005-10-19 Fuel cell electrolyte

Publications (2)

Publication Number Publication Date
JP2007115476A JP2007115476A (en) 2007-05-10
JP4836539B2 true JP4836539B2 (en) 2011-12-14

Family

ID=38097480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304521A Expired - Fee Related JP4836539B2 (en) 2005-10-19 2005-10-19 Fuel cell electrolyte

Country Status (1)

Country Link
JP (1) JP4836539B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230150B2 (en) * 2013-11-13 2017-11-15 株式会社カネカ POLYMER ELECTROLYTE AND USE THEREOF
CN113948236B (en) * 2021-12-21 2022-03-29 西安宏星电子浆料科技股份有限公司 Thick-film silver-palladium conductor paste for wear-resistant high-precision oil level sensor
WO2024071101A1 (en) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 Phosphorus-containing polycyclic aromatic hydroxy compound, curable resin composition containing same, and method for producing said phosphorus-containing polycyclic aromatic hydroxy compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097260A (en) * 2000-09-22 2002-04-02 Mitsubishi Gas Chem Co Inc Hardening agent, having high durability and flame- resistance
JP3481593B2 (en) * 2001-01-19 2003-12-22 本田技研工業株式会社 Composite polymer electrolyte membrane and fuel cell using the same
JP3934944B2 (en) * 2002-01-15 2007-06-20 住友化学株式会社 POLYMER ELECTROLYTE COMPOSITION AND USE THEREOF
JP3841168B2 (en) * 2002-05-10 2006-11-01 Jsr株式会社 Novel phosphorus-containing aromatic dihalogen compound, polyarylene polymer, sulfonated polyarylene polymer, process for producing these polymers, and proton conducting membrane
JP4655450B2 (en) * 2003-03-06 2011-03-23 東レ株式会社 Polymer solid electrolyte, method for producing the same and polymer electrolyte fuel cell using the same
JP4818579B2 (en) * 2003-09-10 2011-11-16 Jsr株式会社 POLYARRYLENE COPOLYMER HAVING SULFONIC ACID GROUP, PROCESS FOR PRODUCING THE SAME, POLYMER SOLID ELECTROLYTE, PROTON CONDUCTIVE MEMBRANE AND ELECTRODE

Also Published As

Publication number Publication date
JP2007115476A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Lee et al. Preparation and evaluation of sulfonated-fluorinated poly (arylene ether) s membranes for a proton exchange membrane fuel cell (PEMFC)
CN103748137B (en) Block copolymer and manufacture method thereof and use the polymer electrolyte material of this block copolymer, polyelectrolyte molded body and polymer electrolyte fuel cell
KR101566789B1 (en) Sulfonated polyarylene ether copolymer process of manufacturing the same and polymer electrolyte membrane for fuel cell using the copolymer
KR20060071690A (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
JP4706023B2 (en) Sulfonated aromatic polyether, method for producing the same, and electrolyte membrane
KR20060115381A (en) Block copolymer and use thereof
JP2007517923A (en) Ion conductive copolymers containing one or more hydrophobic oligomers
JP4836539B2 (en) Fuel cell electrolyte
JP4993910B2 (en) Fuel cell electrolyte and method for producing the same
EP2617753B1 (en) Triblock copolymer, and electrolyte membrane prepared therefrom
AU2002241152B2 (en) Polymer electrolyte membrane fuel cell
JP4929569B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP3852108B2 (en) Polyarylene polymer and proton conducting membrane
JP2004244517A (en) Polyarylene copolymer, its preparation method and proton conducting membrane
KR100794466B1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
JP4841193B2 (en) Composite ion exchange membrane for fuel cells
JP4867174B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP4895570B2 (en) Polymer electrolyte
JP4063596B2 (en) Proton conducting polymer compound and proton conducting polymer membrane
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof
KR100581753B1 (en) A Polytriazole Electrolyte Membrane for Fuel Cell and It's Preparation Method
KR101684494B1 (en) Polymer electrolyte membrane for fuel cell
JP4945939B2 (en) Polymer electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees