JP4063596B2 - Proton conducting polymer compound and proton conducting polymer membrane - Google Patents

Proton conducting polymer compound and proton conducting polymer membrane Download PDF

Info

Publication number
JP4063596B2
JP4063596B2 JP2002161769A JP2002161769A JP4063596B2 JP 4063596 B2 JP4063596 B2 JP 4063596B2 JP 2002161769 A JP2002161769 A JP 2002161769A JP 2002161769 A JP2002161769 A JP 2002161769A JP 4063596 B2 JP4063596 B2 JP 4063596B2
Authority
JP
Japan
Prior art keywords
group
polymer compound
proton
membrane
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161769A
Other languages
Japanese (ja)
Other versions
JP2004010631A (en
Inventor
秀寿 黒松
清之 南村
広作 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002161769A priority Critical patent/JP4063596B2/en
Publication of JP2004010631A publication Critical patent/JP2004010631A/en
Application granted granted Critical
Publication of JP4063596B2 publication Critical patent/JP4063596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池の電解質膜として有用なプロトン伝導性高分子化合物およびそれを使用したプロトン伝導性高分子膜に関するものである。
【0002】
【従来の技術】
プロトン伝導性高分子膜は、固体高分子形燃料電池の主要な構成材料である。現在、固体高分子形燃料電池は、将来の新エネルギー技術の柱の一つとして期待されている。高分子化合物からなるプロトン伝導性膜を用いた固体高分子形燃料電池(PEFCまたはPEMFC)は、低温作動、小型軽量等、他の燃料電池(リン酸型、固体酸化物型、溶融炭酸塩型)にない特徴を有することから、自動車などの移動体、民生用エレクトロニクス機器、家庭用電源への適用が検討されている。特に、固体高分子形燃料電池を搭載した燃料電池自動車は究極のエコロジーカーとして社会的な関心が高まっている。
【0003】
高分子化合物からなるプロトン伝導性高分子膜としては、1950年代に開発されたスチレン系の陽イオン交換膜があるが、燃料電池動作環境下における安定性に乏しく、本膜を用いての実用上、充分な寿命を有する燃料電池を製造するには至っていない。実用的安定性を有するプロトン伝導性高分子膜としては、ナフィオン(Nafion,デュポン社の登録商標。以下同様)に代表されるパーフルオロカーボンスルホン酸膜が開発され、固体高分子形燃料電池を始めとし、他の電気化学素子への応用が提案されている。しかしながら、パーフルオロカーボンスルホン酸膜は、モノマーなどの使用原料が高く、その製造方法も煩雑なため、非常に高価であるのが現状である。そこで、膜抵抗の低減や原料の使用量を減らすため、薄膜化が検討されているものの、より安価なプロトン伝導性高分子膜が要求されているのが現状である。
【0004】
安価なプロトン伝導性高分子膜を得るために、従来のパーフルオロカーボンスルホン酸膜に代わり炭化水素系高分子化合物のプロトン伝導性高分子膜も種々検討・提案されいる。その代表的なものとしては、スルホン化ポリエーテルエーテルケトン(特開平6−93114号公報など)、スルホン化ポリエーテルスルホン(特開平10―45913号公報など)、スルホン化ポリスルホン(特開平9−245818号公報など)、スルホン化ポリフェニレンサルファイド(特表平11−510198号公報など)やスルホン化ポリイミド(特表2000−510511号公報など)などの耐熱芳香族系高分子化合物のスルホン化物、また、特表平10−503788号公報などには、安価で、機械的、化学的に安定とされるSEBS(スチレン−(エチレン−ブチレン)−スチレンの略)のスルホン化体からなるものなどが挙げられる。しかしながら、これらの炭化水素系プロトン伝導性高分子膜は、パーフルオロカーボンスルホン酸膜と比較して、プロトン伝導度が不充分であること、耐加水分解性や耐酸化性などの化学的安定性が不充分であり、未だ実用化されていない。
【0005】
耐酸化性を改善する方法として、スルホン酸基の代わりにリン系の官能基を使用する方法も提案されている(特開2000−11755号公報など)。しかしながら、リン系の官能基はスルホン酸基と比較して、プロトンが解離しにくく、充分なプロトン伝導度が発現しないため、燐官能基の導入反応が複雑であり、未だ実用化されていない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、固体高分子形燃料電池の電解質として有用な、高いプロトン伝導性、耐酸化性に代表される化学的安定性を有するプロトン伝導性高分子化合物およびそれを使用したプロトン伝導性高分子膜を提供することである。
【0007】
【課題を解決するための手段】
すなわち本発明は、下記一般式(1)〜()の群から選択される少なくとも1種の繰り返し単位からなる芳香族高分子化合物と、該芳香族高分子化合物の芳香族単位の少なくとも一部分に置換された、下記一般式(18)で表されるプロトン伝導性置換基と、からなるプロトン伝導性高分子化合物である。
【0008】
【化4】

Figure 0004063596
[式中、ArAr は、それぞれ同一または異なる式(8)〜(17):
【0009】
【化5】
Figure 0004063596
で表される2価の芳香族単位である
X,Y,Zは、それぞれ同一または異なり、−O−,−S−,−SO−,SO−の群から選択される2価の有機基である。
〜R12は、それぞれ同一または異なり、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリル基、アリール基またはフェニル基である。]
【0010】
【化6】
Figure 0004063596
[式中、R13は、エーテルの結合単位からなる2価の有機基]
前記の芳香族高分子化合物は、下記(A)群から選択される少なくとも1種からなるのが好ましい。
(A)群:ポリスルホン(PSU),ポリエーテルスルホン(PES),ポリエーテルエーテルスルホン(PEES),ポリアリールエーテルスルホン(PAS),ポリフェニレンスルホン(PPSU),ポリフェニレンオキシド(PPO),ポリフェニレンスルホキシド(PPSO),ポリフェニレンサルファイド(PPS),ポリフェニレンスルフィドスルホン(PPS/SO
一方、本発明のプロトン伝導性高分子膜は、上記したプロトン伝導性高分子化合物からなるプロトン伝導性高分子膜である。
そして、前記プロトン伝導性高分子膜からなる燃料電池とすることもできる。
【0011】
【発明の実施の形態】
実施の形態のプロトン伝導性高分子化合物は、下記一般式(1)〜(7)の群から選択される少なくとも1種の繰り返し単位からなる芳香族高分子化合物と、該芳香族高分子化合物の芳香族単位の少なくとも一部分に、下記一般式(18)で表されるプロトン伝導性置換基、からなるものである。
【0012】
【化7】
Figure 0004063596
[式中、Ar〜Arは、それぞれ同一または異なる式(8)〜(17):
【0013】
【化8】
Figure 0004063596
で表される2価の芳香族単位である。
Ar〜Arは、同一または異なる4価の芳香族単位である。
X,Y,Zは、それぞれ同一または異なり、−O−,−CO−,−CONH−,−COO−,−S−,−SO−,SO−の群から選択される2価の有機基である。
〜R12は、それぞれ同一または異なり、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリル基、アリール基またはフェニル基である。]
【0014】
【化9】
Figure 0004063596
[式中、R13は、エーテル,アルキレン,ハロゲン化アルキレン,アリーレン,ハロゲン化アリーレンからなる群から選択される少なくとも1種の結合単位からなる2価の有機基]
また、本実施の形態のプロトン伝導性高分子膜は、該プロトン伝導性高分子化合物からなるものである。
【0015】
前記芳香族高分子化合物の中でも、工業的入手の容易さ、ハンドリング性、得られたプロトン伝導性高分子化合物の特性などを考慮すると、ポリベンゾオキサゾール(PBO),ポリベンゾチアゾール(PBT),ポリベンゾイミダゾール(PBI),ポリスルホン(PSU),ポリエーテルスルホン(PES),ポリエーテルエーテルスルホン(PEES),ポリアリールエーテルスルホン(PAS),ポリフェニレンスルホン(PPSU),ポリフェニレンオキシド(PPO),ポリフェニレンスルホキシド(PPSO),ポリフェニレンサルファイド(PPS),ポリフェニレンスルフィドスルホン(PPS/SO),ポリパラフェニレン(PPP),ポリエーテルケトン(PEK),ポリエーテルエーテルケトン(PEEK),ポリエーテルケトンケトン(PEKK)の群から選択される少なくとも1種であることが好ましい。これらは単独、あるいは、2種以上の共重合体、あるいは、必要に応じて2種以上を混合して使用してもよい。
【0016】
プロトン伝導性置換基としては、スルホン酸基、リン酸基、カルボン酸基、フェノール性水酸基などが例示できるが、固体高分子形燃料電池の電解質膜として有用なプロトン伝導性を発現させるといった点から、スルホン酸基であることが好ましい。本実施の形態においては、前記芳香族高分子化合物の芳香族単位の少なくとも一部分に、下記一般式(18)で表される置換基が置換されていることが好ましい。
【0017】
【化10】
Figure 0004063596
[式中、R13は、エーテル,アルキレン,ハロゲン化アルキレン,アリーレン,ハロゲン化アリーレンからなる群から選択される少なくとも1種の結合単位からなる2価の有機基]
このように電子吸引基であるスルホン酸基を芳香族高分子の主鎖から離した構造とすることによって、耐水性,耐酸化性などに代表される化学的安定性が向上し、好ましい。
【0018】
実施の形態のプロトン伝導性高分子化合物を得る方法としては、使用する芳香族高分子化合物やプロトン伝導性置換基の種類などを考慮して、適宜設定する必要がある。芳香族高分子化合物としては、工業的入手可能なものがそのまま使用でき、また、プロトン伝導性置換基が導入しやすくなるように、予めフェノール性水酸基などを有するモノマー成分を使用して、芳香族高分子化合物を重合して使用してもよい。プロトン伝導性置換基の導入方法としては、例えば、フリーデル−クラフツ反応により、無水塩化アルミニウムの存在下で、芳香族高分子化合物に2−クロロメチルスルホン酸ナトリウムなどのハロゲン化アルキスルスルホン酸またはその塩を作用させ、所望のプロトン伝導性置換基を置換する方法や、予め芳香族高分子化合物にフェノール性水酸基を導入しておき、フェノール性水酸基に3−プロパンサルトン,1,4−ブタンサルトン,メタンプロパンサルトンなどを開環付加する方法などが例示できる。このとき、芳香族高分子化合物へのフェノール性水酸基の導入方法としては、芳香族化合物で用いられる公知の方法が利用できる。例えば、スルホン酸塩,ハロゲン、ニトロ基などを予め置換した前駆体を調製してから、水酸化ナトリウムなどの塩基性物質と接触させる方法が例示できる。また、プラズマ処理などの放電処理も条件によっては使用可能である。さらにフェノール性水酸基の水素原子を、水素化リチウムや水素化ナトリウムなどの水素化アルカリ金属類との接触により、アルカリ金属原子と置換して、同様の反応を実施しても良い。
【0019】
実施の形態のプロトン伝導性高分子化合物において、プロトン伝導性置換基に由来するイオン交換容量は、0.5ミリ当量/g以上であることが好ましい。この範囲よりも小さい場合は、固体高分子形燃料電池の電解質膜として必要なプロトン伝導度を発現しない恐れがある。一方、イオン交換容量の上限は、得られたプロトン伝導性高分子化合物の物性や用途により制約される。例えば、固体高分子形燃料電池の電解質膜に使用する場合には、水やメタノールに不溶であり、ハンドリング不可能になるほど膜が膨潤しない値に設定する必要がある。使用する芳香族高分子化合物やプロトン伝導性置換基の種類によって異なるが、概ね3.0ミリ当量/g以下であることが好ましい。
【0020】
実施の形態のプロトン伝導性高分子膜は、上記のプロトン伝導性高分子化合物からなるものである。その製造方法は、プロトン伝導性高分子化合物の特性に応じて適宜設定するのが好ましい。例えば、プロトン伝導性高分子化合物が溶媒溶解性を有する場合、この高分子化合物の溶液を調製し、ガラスなどの支持体上に流延させたのち、適当な条件で溶媒を除去して乾燥すれば、所望のプロトン伝導性高分子膜を得ることができる。また、プロトン伝導性高分子化合物に溶媒溶解性がない場合には、置換基が脱離,変性しない温度以下で高分子化合物を溶融させ、溶融押し出し法により、膜形状に加工することができる。その他、プロトン伝導性置換基を完全に導入する前の前駆体の状態で膜形状に加工た後、プロトン伝導性置換基を導入してもよい。
【0021】
実施の形態のプロトン伝導性高分子膜は、固体高分子形燃料電池の電解質膜としての使用を考慮した場合、実用的な機械的強度や燃料・酸化剤の遮断性を有する範囲で、薄い程良い。イオン交換容量やプロトン伝導度が同等であれば、厚みが薄くなるほど、膜としての抵抗値が低くなるため、概ね5〜200μm、さらには20〜150μmの厚さであることが好ましい。
【0022】
実施の形態のプロトン伝導性高分子膜は、プロトン伝導性、化学的・熱的安定性、機械的特性を備えており、固体高分子形燃料電池の電解質膜として好適に使用可能である。実際に、固体高分子形燃料電池に使用する場合、ナフィオンに代表されるパーフルオロカーボンスルホン酸膜で適用されている公知の方法で、本実施の形態のプロトン伝導性高分子膜と触媒担持ガス拡散電極を接合した膜−電極接合体を製造し、燃料および酸化剤の供給路を備えた1対のセパレータ間に狭持して、固体高分子形燃料電池セルを構成でき、固体高分子形燃料電池の電解質膜として使用可能となる。燃料としては、純水素、メタノール・天然ガス・ガソリンなどの改質ガス、メタノール、エタノール、ジメチルエーテル等の有機液体燃料等が使用可能である。また、必要な出力を得るため、セルを複数枚積層して、スタックを構成し、使用することもできる。
【0023】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更実施可能である。
【0024】
(イオン交換容量の測定方法)
試験体を塩化ナトリウム飽和水溶液に浸漬し、ウォーターバス中で60℃、3時間反応させる。室温まで冷却した後、サンプルをイオン交換水で充分に洗浄し、フェノールフタレイン溶液を指示薬として、0.01Nの水酸化ナトリウム水溶液で滴定し、イオン交換容量を算出した。
【0025】
(プロトン伝導度)
イオン交換水中に保管した試験体(10mm×40mm)を取り出し、試験体表面の水をろ紙で拭き取る。電極間距離30mmで白金電極間に試験体を装着し、2極非密閉系のテフロン(登録商標)製のセルに設置した後、室温下で電圧0.2Vの条件で、交流インピーダンス法(周波数:42Hz〜5MHz)により、試験体の膜抵抗を測定し、プロトン伝導度を算出した。
【0026】
(耐酸化性試験)
3重量%の過酸化水素水に、鉄(II)イオンの濃度が4ppmになるように硫酸アンモニウム鉄(II)六水和物を添加し、フェントン試薬を調製した。フェントン試薬20mLに、約50mgの膜を添加し、60℃のウォーターバス中で振とうした。所定時間後の膜特性(膜外観の目視観察、重量、イオン交換容量、プロトン伝導度)を評価した。
(合成例)
2Lのセパラブルフラスコにポリエーテルスルホン(住友化学製PES−5200P)100gと濃硫酸500mL入れ、30時間攪拌した。次に窒素気流気下でクロロスルホン酸を約1.5時間かけて徐々に滴下した。この溶液をさらに、室温で6時間攪拌した。攪拌後、3Lのイオン交換水中に反応液を徐々に滴下し、生成した沈殿物を回収した。沈殿物を洗浄水が中性になるまで洗浄し、80℃−20時間減圧乾燥し、下記一般式(19)の構造単位を有するスルホン化ポリエーテルスルホンを得た。
【0027】
【化11】
Figure 0004063596
[式中、nは1〜4の整数]
銅製のビーカーに水酸化ナトリウム15g、水酸化カリウム15gを入れて、窒素気流下で加熱し、溶融した。これにスルホン化ポリエーテルスルホンを40g徐々に添加し、加熱して300℃で2時間保持した。3Lの水に反応物を徐々に滴下し、濃塩酸を使用してpHが中性になるように調製した。沈殿物をさらに水洗し、下記一般式(20)の構造単位を有するフェノール性水酸基を有するポリエーテルスルホンを得た。
【0028】
【化12】
Figure 0004063596
[式中、nは1〜4の整数]
次に0.5Lのセパラブルフラスコに上記方法で得られたフェノール性水酸基を有するポリエーテルスルホンを20g、N−メチル−2−ピロリドンを180g入れ、均一な溶液になるまで攪拌した。1,4−ブタンサルトンを14g添加し、80℃で5時間攪拌した。室温に冷却後、この反応液を塩酸20gを添加した2Lメタノール溶液に滴下し、沈殿物を中性になるまで洗浄し、80℃−20時間減圧乾燥し、下記一般式(21)の構造単位を有するプロトン伝導性置換基を有するポリエーテルスルホンを得た。
【0029】
【化13】
Figure 0004063596
[式中、nは1〜4の整数]
(比較例1)
下記一般式(19)の構造単位を有するスルホン化ポリエーテルスルホンの20重量%N−メチル−2−ピロリドン溶液を調製し、ガラス上に300μmの厚みで塗布して、150℃で15時間減圧乾燥し、厚さ約50μmのプロトン伝導性高分子膜を得た。この膜の特性評価結果を表1,2に示した。
【0030】
【化14】
Figure 0004063596
[式中、nは1〜4の整数]
(実施例1)
下記一般式(21)の構造単位を有するプロトン伝導性置換基を有するポリエーテルスルホンの20重量%N−メチル−2−ピロリドン溶液を調製し、ガラス上に300μmの厚みで塗布して、150℃で15時間減圧乾燥し、厚さ約50μmのプロトン伝導性高分子膜を得た。この膜の特性評価結果を表1,2に示した。
【0031】
【化15】
Figure 0004063596
[式中、nは1〜4の整数]
【0032】
【表1】
Figure 0004063596
【0033】
【表2】
Figure 0004063596
表1の実施例1と比較例1の比較から、本発明のプロトン伝導性高分子膜のプロトン伝導度は比較例のものと同等であることが明らかとなった。
【0034】
表2の実施例1と比較例1の比較から、比較例1のプロトン伝導性高分子膜は酸化劣化が生じるのに対して、実施例1のものは顕著な劣化が見られなかった。
【0035】
表1,2の結果から、本発明のプロトン伝導性高分子膜は、優れたプロトン伝導度と耐酸化性を発現し、本発明の有効性が示された。
【0036】
【発明の効果】
本発明のプロトン伝導性高分子膜は、高いプロトン伝導度を発現しつつ、優れた耐酸化性を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proton conductive polymer compound useful as an electrolyte membrane of a polymer electrolyte fuel cell and a proton conductive polymer membrane using the same.
[0002]
[Prior art]
The proton conductive polymer membrane is a main constituent material of the polymer electrolyte fuel cell. Currently, polymer electrolyte fuel cells are expected as one of the pillars of future new energy technologies. A polymer electrolyte fuel cell (PEFC or PEMFC) using a proton conductive membrane made of a polymer compound can be operated at low temperature, small and light, and other fuel cells (phosphoric acid type, solid oxide type, molten carbonate type) Therefore, application to mobile objects such as automobiles, consumer electronics devices, and household power supplies is being studied. In particular, fuel cell vehicles equipped with polymer electrolyte fuel cells are gaining social interest as the ultimate ecological car.
[0003]
Proton-conducting polymer membranes made of polymer compounds include styrene-based cation exchange membranes developed in the 1950s, but they are poorly stable in the fuel cell operating environment and are practical for use with this membrane. However, a fuel cell having a sufficient life has not been produced. As proton-conductive polymer membranes with practical stability, perfluorocarbon sulfonic acid membranes typified by Nafion (registered trademark of Nafion, DuPont, the same applies hereinafter) have been developed, including solid polymer fuel cells. Application to other electrochemical devices has been proposed. However, perfluorocarbon sulfonic acid membranes are very expensive because the raw materials such as monomers are high and the manufacturing method thereof is complicated. Therefore, in order to reduce membrane resistance and reduce the amount of raw materials used, although a reduction in thickness is being studied, a cheaper proton conductive polymer membrane is currently required.
[0004]
In order to obtain an inexpensive proton conducting polymer membrane, various proton conducting polymer membranes of hydrocarbon polymer compounds have been studied and proposed in place of the conventional perfluorocarbon sulfonic acid membrane. Typical examples thereof include sulfonated polyetheretherketone (JP-A-6-93114, etc.), sulfonated polyethersulfone (JP-A-10-45913, etc.), and sulfonated polysulfone (JP-A-9-245818). Etc.), sulfonated polyphenylene sulfide (JP-A-11-510198 etc.) and sulfonated polyimides of heat-resistant aromatic polymer compounds such as sulfonated polyimide (JP-A 2000-510511 etc.), Table 10-10503788 and the like include those made of a sulfonated product of SEBS (styrene- (ethylene-butylene) -styrene) which is inexpensive and mechanically and chemically stable. However, these hydrocarbon-based proton conductive polymer membranes have insufficient proton conductivity and chemical stability such as hydrolysis resistance and oxidation resistance compared to perfluorocarbon sulfonic acid membranes. It is insufficient and has not been put into practical use yet.
[0005]
As a method for improving the oxidation resistance, a method using a phosphorus functional group instead of a sulfonic acid group has also been proposed (Japanese Patent Laid-Open No. 2000-11755, etc.). However, since the phosphorus functional group is less likely to dissociate protons than the sulfonic acid group and does not exhibit sufficient proton conductivity, the introduction reaction of the phosphorus functional group is complicated and has not yet been put into practical use.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a proton conductive polymer compound having chemical stability represented by high proton conductivity and oxidation resistance, useful as an electrolyte for a polymer electrolyte fuel cell, and proton conductivity using the same It is to provide a polymer membrane.
[0007]
[Means for Solving the Problems]
That is, the present invention provides an aromatic polymer compound composed of at least one repeating unit selected from the group of the following general formulas (1) to ( 3 ), and at least a part of the aromatic units of the aromatic polymer compound. A proton-conducting polymer compound comprising a substituted proton-conducting substituent represented by the following general formula (18).
[0008]
[Formula 4]
Figure 0004063596
[Wherein Ar 1 to Ar 3 represent the same or different formulas (8) to (17):
[0009]
[Chemical formula 5]
Figure 0004063596
It is a bivalent aromatic unit represented by these .
X, Y, and Z are the same or different and are divalent organic groups selected from the group of —O—, —S—, —SO—, and SO 2 —.
R 1 to R 12 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group, an allyl group, an aryl group, or a phenyl group. ]
[0010]
[Chemical 6]
Figure 0004063596
[Wherein R 13 is a divalent organic group comprising an ether bond unit]
The aromatic polymer compound is preferably composed of at least one selected from the following group (A).
(A) group: polysulfone (PSU), polyethersulfone (PES), polyetherethersulfone (PEES), polyarylethersulfone (PAS), polyphenylenesulfone (PPSU), polyphenyleneoxide (PPO), polyphenylenesulfoxide (PPSO) , Polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO 2 )
On the other hand, the proton conducting polymer membrane of the present invention is a proton conducting polymer membrane comprising the above-described proton conducting polymer compound.
And it can also be set as the fuel cell which consists of said proton conductive polymer membrane.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The proton conductive polymer compound of the present embodiment includes an aromatic polymer compound comprising at least one repeating unit selected from the group of the following general formulas (1) to (7), and the aromatic polymer compound At least a part of the aromatic unit is composed of a proton conductive substituent represented by the following general formula (18).
[0012]
[Chemical 7]
Figure 0004063596
[Wherein Ar 1 to Ar 4 are the same or different from each other, but are represented by formulas (8) to (17):
[0013]
[Chemical 8]
Figure 0004063596
It is a bivalent aromatic unit represented by these.
Ar 5 to Ar 7 are the same or different tetravalent aromatic units.
X, Y and Z are the same or different and are each a divalent organic group selected from the group of —O—, —CO—, —CONH—, —COO—, —S—, —SO— and SO 2 —. It is.
R 1 to R 12 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group, an allyl group, an aryl group, or a phenyl group. ]
[0014]
[Chemical 9]
Figure 0004063596
[Wherein R 13 is a divalent organic group comprising at least one bond unit selected from the group consisting of ether, alkylene, halogenated alkylene, arylene, and halogenated arylene]
The proton conductive polymer membrane of the present embodiment is made of the proton conductive polymer compound.
[0015]
Among the aromatic polymer compounds, in view of industrial availability, handling properties, characteristics of the obtained proton conductive polymer compound, and the like, polybenzoxazole (PBO), polybenzothiazole (PBT), poly Benzimidazole (PBI), Polysulfone (PSU), Polyethersulfone (PES), Polyetherethersulfone (PEES), Polyarylethersulfone (PAS), Polyphenylenesulfone (PPSU), Polyphenyleneoxide (PPO), Polyphenylenesulfoxide (PPSO) ), polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO 2), polyparaphenylene (PPP), polyetherketone (PEK), polyetheretherketone (PEEK), Is preferably at least one selected from the group of Li ether ketone ketone (PEKK). These may be used singly or as a mixture of two or more kinds, or two or more kinds as necessary.
[0016]
Examples of the proton conductive substituent include a sulfonic acid group, a phosphoric acid group, a carboxylic acid group, and a phenolic hydroxyl group. From the viewpoint of expressing proton conductivity useful as an electrolyte membrane of a polymer electrolyte fuel cell. A sulfonic acid group is preferred. In the present embodiment, it is preferable that a substituent represented by the following general formula (18) is substituted on at least a part of the aromatic unit of the aromatic polymer compound.
[0017]
[Chemical Formula 10]
Figure 0004063596
[Wherein R 13 is a divalent organic group comprising at least one bond unit selected from the group consisting of ether, alkylene, halogenated alkylene, arylene, and halogenated arylene]
Such a structure in which the sulfonic acid group, which is an electron-withdrawing group, is separated from the main chain of the aromatic polymer is preferable because chemical stability typified by water resistance and oxidation resistance is improved.
[0018]
The method for obtaining the proton conductive polymer compound of the present embodiment needs to be appropriately set in consideration of the aromatic polymer compound to be used and the type of proton conductive substituent. As the aromatic polymer compound, those commercially available can be used as they are, and a monomer component having a phenolic hydroxyl group or the like is used in advance so that a proton conductive substituent can be easily introduced. Polymer compounds may be used after polymerization. As a method for introducing a proton-conductive substituent, for example, by an Friedel-Crafts reaction, in the presence of anhydrous aluminum chloride, an aromatic polymer compound such as a halogenated alkyl sulfonic acid such as sodium 2-chloromethylsulfonate or the like A method in which a salt is allowed to act to substitute a desired proton-conductive substituent, or a phenolic hydroxyl group is previously introduced into an aromatic polymer compound, and 3-propane sultone or 1,4-butane sultone is added to the phenolic hydroxyl group. And a method of ring-opening addition of methanepropane sultone and the like. At this time, as a method for introducing a phenolic hydroxyl group into the aromatic polymer compound, a known method used for an aromatic compound can be used. For example, a method of preparing a precursor in which sulfonate, halogen, nitro group or the like is substituted in advance and then contacting with a basic substance such as sodium hydroxide can be exemplified. Further, discharge treatment such as plasma treatment can be used depending on conditions. Further, the same reaction may be carried out by replacing the hydrogen atom of the phenolic hydroxyl group with an alkali metal atom by contact with an alkali metal hydride such as lithium hydride or sodium hydride.
[0019]
In the proton conductive polymer compound of the present embodiment, the ion exchange capacity derived from the proton conductive substituent is preferably 0.5 meq / g or more. If it is smaller than this range, there is a risk that the proton conductivity necessary for the electrolyte membrane of the polymer electrolyte fuel cell will not be exhibited. On the other hand, the upper limit of the ion exchange capacity is restricted by the physical properties and use of the obtained proton conducting polymer compound. For example, when used for an electrolyte membrane of a polymer electrolyte fuel cell, it is necessary to set the value so that the membrane does not swell so that it is insoluble in water and methanol and cannot be handled. Although it varies depending on the type of aromatic polymer compound and proton conductive substituent used, it is preferably approximately 3.0 meq / g or less.
[0020]
The proton conducting polymer membrane of the present embodiment is made of the above proton conducting polymer compound. The production method is preferably set as appropriate according to the characteristics of the proton-conductive polymer compound. For example, when the proton-conducting polymer compound has solvent solubility, after preparing a solution of this polymer compound and casting it on a support such as glass, the solvent is removed under suitable conditions and dried. Thus, a desired proton conductive polymer membrane can be obtained. Further, when the proton-conductive polymer compound is not soluble in a solvent, the polymer compound can be melted at a temperature at which the substituent is not desorbed or modified, and processed into a membrane shape by a melt extrusion method. In addition, after processing into a membrane shape in the state of a precursor before completely introducing the proton conductive substituent, the proton conductive substituent may be introduced.
[0021]
The proton conductive polymer membrane of the present embodiment is thin as long as it has practical mechanical strength and fuel / oxidant barrier properties when considering use as an electrolyte membrane of a polymer electrolyte fuel cell. Moderately good. If the ion exchange capacity and proton conductivity are the same, the thinner the thickness, the lower the resistance value as a membrane. Therefore, the thickness is preferably about 5 to 200 μm, more preferably 20 to 150 μm.
[0022]
The proton conductive polymer membrane of the present embodiment has proton conductivity, chemical / thermal stability, and mechanical properties, and can be suitably used as an electrolyte membrane of a polymer electrolyte fuel cell. In actuality, when used in a polymer electrolyte fuel cell, the proton conductive polymer membrane of this embodiment and the catalyst-supported gas diffusion by a known method applied to a perfluorocarbon sulfonic acid membrane represented by Nafion. A membrane-electrode assembly in which electrodes are joined can be manufactured and sandwiched between a pair of separators equipped with fuel and oxidant supply paths to form a polymer electrolyte fuel cell. It can be used as an electrolyte membrane for a battery. As the fuel, pure hydrogen, reformed gas such as methanol, natural gas, and gasoline, organic liquid fuel such as methanol, ethanol, and dimethyl ether can be used. Moreover, in order to obtain a required output, a plurality of cells can be stacked to form a stack and used.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and various modifications can be made without departing from the spirit of the present invention.
[0024]
(Measurement method of ion exchange capacity)
The test specimen is immersed in a saturated aqueous solution of sodium chloride and reacted in a water bath at 60 ° C. for 3 hours. After cooling to room temperature, the sample was thoroughly washed with ion-exchanged water, titrated with 0.01N aqueous sodium hydroxide solution using a phenolphthalein solution as an indicator, and the ion-exchange capacity was calculated.
[0025]
(Proton conductivity)
A test specimen (10 mm × 40 mm) stored in ion-exchanged water is taken out, and water on the surface of the test specimen is wiped off with a filter paper. A test specimen is mounted between platinum electrodes at a distance of 30 mm between electrodes and placed in a two-pole non-sealed Teflon (registered trademark) cell, and then the AC impedance method (frequency) under the condition of a voltage of 0.2 V at room temperature. : 42 Hz to 5 MHz), the membrane resistance of the test specimen was measured, and the proton conductivity was calculated.
[0026]
(Oxidation resistance test)
Fenton's reagent was prepared by adding ammonium iron (II) sulfate hexahydrate to 3% by weight of hydrogen peroxide so that the concentration of iron (II) ions was 4 ppm. About 20 mg of membrane was added to 20 mL of Fenton reagent, and shaken in a 60 ° C. water bath. Membrane characteristics (visual observation of membrane appearance, weight, ion exchange capacity, proton conductivity) after a predetermined time were evaluated.
(Synthesis example)
100 g of polyethersulfone (Sumitomo Chemical PES-5200P) and 500 mL of concentrated sulfuric acid were placed in a 2 L separable flask and stirred for 30 hours. Next, chlorosulfonic acid was gradually added dropwise over about 1.5 hours under a nitrogen stream. The solution was further stirred at room temperature for 6 hours. After stirring, the reaction solution was gradually dropped into 3 L of ion exchange water, and the generated precipitate was collected. The precipitate was washed until the washing water became neutral, and dried under reduced pressure at 80 ° C. for 20 hours to obtain a sulfonated polyethersulfone having a structural unit of the following general formula (19).
[0027]
Embedded image
Figure 0004063596
[Where n is an integer of 1 to 4]
A copper beaker was charged with 15 g of sodium hydroxide and 15 g of potassium hydroxide, and heated and melted under a nitrogen stream. To this, 40 g of sulfonated polyethersulfone was gradually added, heated and held at 300 ° C. for 2 hours. The reaction was slowly added dropwise to 3 L of water and adjusted to neutral pH using concentrated hydrochloric acid. The precipitate was further washed with water to obtain a polyethersulfone having a phenolic hydroxyl group having a structural unit of the following general formula (20).
[0028]
Embedded image
Figure 0004063596
[Where n is an integer of 1 to 4]
Next, 20 g of polyethersulfone having a phenolic hydroxyl group obtained by the above method and 180 g of N-methyl-2-pyrrolidone obtained by the above method were placed in a 0.5 L separable flask and stirred until a uniform solution was obtained. 14 g of 1,4-butanesultone was added and stirred at 80 ° C. for 5 hours. After cooling to room temperature, the reaction solution was added dropwise to a 2 L methanol solution to which 20 g of hydrochloric acid was added, the precipitate was washed until neutral, dried under reduced pressure at 80 ° C. for 20 hours, and a structural unit of the following general formula (21) A polyethersulfone having a proton-conductive substituent having the following structure was obtained.
[0029]
Embedded image
Figure 0004063596
[Where n is an integer of 1 to 4]
(Comparative Example 1)
A 20% by weight N-methyl-2-pyrrolidone solution of a sulfonated polyethersulfone having the structural unit of the following general formula (19) is prepared, coated on glass at a thickness of 300 μm, and dried under reduced pressure at 150 ° C. for 15 hours. As a result, a proton conductive polymer membrane having a thickness of about 50 μm was obtained. Tables 1 and 2 show the characteristics evaluation results of this film.
[0030]
Embedded image
Figure 0004063596
[Where n is an integer of 1 to 4]
Example 1
A 20% by weight N-methyl-2-pyrrolidone solution of polyethersulfone having a proton-conductive substituent having the structural unit of the following general formula (21) was prepared, applied on a glass with a thickness of 300 μm, and 150 ° C. And dried under reduced pressure for 15 hours to obtain a proton conductive polymer membrane having a thickness of about 50 μm. Tables 1 and 2 show the characteristics evaluation results of this film.
[0031]
Embedded image
Figure 0004063596
[Where n is an integer of 1 to 4]
[0032]
[Table 1]
Figure 0004063596
[0033]
[Table 2]
Figure 0004063596
From the comparison between Example 1 and Comparative Example 1 in Table 1, it was found that the proton conductivity of the proton conducting polymer membrane of the present invention is equivalent to that of the comparative example.
[0034]
From the comparison between Example 1 and Comparative Example 1 in Table 2, the proton conductive polymer membrane of Comparative Example 1 was oxidatively deteriorated, while that of Example 1 was not significantly deteriorated.
[0035]
From the results shown in Tables 1 and 2, the proton conductive polymer membrane of the present invention exhibited excellent proton conductivity and oxidation resistance, indicating the effectiveness of the present invention.
[0036]
【The invention's effect】
The proton conducting polymer membrane of the present invention has excellent oxidation resistance while exhibiting high proton conductivity.

Claims (4)

下記一般式(1)〜()の群から選択される少なくとも1種の繰り返し単位からなる芳香族高分子化合物と、該芳香族高分子化合物の芳香族単位の少なくとも一部分に置換された、下記一般式(18)で表されるプロトン伝導性置換基と、からなるプロトン伝導性高分子化合物。
Figure 0004063596
[式中、ArAr は、それぞれ同一または異なる式(8)〜(17):
Figure 0004063596
で表される2価の芳香族単位である
X,Y,Zは、それぞれ同一または異なり、−O−,−S−,−SO−,SO−の群から選択される2価の有機基である。
〜R12は、それぞれ同一または異なり、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリル基、アリール基またはフェニル基である。]
Figure 0004063596
[式中、R13は、エーテルの結合単位からなる2価の有機基]
An aromatic polymer compound comprising at least one repeating unit selected from the group of the following general formulas (1) to ( 3 ), and at least a part of the aromatic unit of the aromatic polymer compound, A proton conductive polymer compound comprising a proton conductive substituent represented by the general formula (18).
Figure 0004063596
[Wherein Ar 1 to Ar 3 represent the same or different formulas (8) to (17):
Figure 0004063596
It is a bivalent aromatic unit represented by these .
X, Y, and Z are the same or different and are divalent organic groups selected from the group of —O—, —S—, —SO—, and SO 2 —.
R 1 to R 12 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group, an allyl group, an aryl group, or a phenyl group. ]
Figure 0004063596
[Wherein R 13 is a divalent organic group comprising an ether bond unit]
芳香族高分子化合物が、下記(A)群から選択される少なくとも1種である請求項1記載のプロトン伝導性高分子化合物。
(A)群:ポリスルホン(PSU),ポリエーテルスルホン(PES),ポリエーテルエーテルスルホン(PEES),ポリアリールエーテルスルホン(PAS),ポリフェニレンスルホン(PPSU),ポリフェニレンオキシド(PPO),ポリフェニレンスルホキシド(PPSO),ポリフェニレンサルファイド(PPS),ポリフェニレンスルフィドスルホン(PPS/SO
The proton conductive polymer compound according to claim 1, wherein the aromatic polymer compound is at least one selected from the following group (A).
(A) group: polysulfone (PSU), polyethersulfone (PES), polyetherethersulfone (PEES), polyarylethersulfone (PAS), polyphenylenesulfone (PPSU), polyphenyleneoxide (PPO), polyphenylenesulfoxide (PPSO) , Polyphenylene sulfide (PPS), polyphenylene sulfide sulfone (PPS / SO 2 )
請求項1または2に記載のプロトン伝導性高分子化合物からなるプロトン伝導性高分子膜。 A proton conducting polymer membrane comprising the proton conducting polymer compound according to claim 1 . 請求項3記載のプロトン伝導性高分子膜からなる燃料電池。 A fuel cell comprising the proton conducting polymer membrane according to claim 3 .
JP2002161769A 2002-06-03 2002-06-03 Proton conducting polymer compound and proton conducting polymer membrane Expired - Fee Related JP4063596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161769A JP4063596B2 (en) 2002-06-03 2002-06-03 Proton conducting polymer compound and proton conducting polymer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161769A JP4063596B2 (en) 2002-06-03 2002-06-03 Proton conducting polymer compound and proton conducting polymer membrane

Publications (2)

Publication Number Publication Date
JP2004010631A JP2004010631A (en) 2004-01-15
JP4063596B2 true JP4063596B2 (en) 2008-03-19

Family

ID=30430747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161769A Expired - Fee Related JP4063596B2 (en) 2002-06-03 2002-06-03 Proton conducting polymer compound and proton conducting polymer membrane

Country Status (1)

Country Link
JP (1) JP4063596B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087140A (en) 2005-01-28 2006-08-02 삼성에스디아이 주식회사 Polymer electrolyte membrane and fuel cell using the same
DE102005010411A1 (en) * 2005-03-07 2006-09-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Sulfonated poly (arylenes) as hydrolytically and thermo-oxidatively stable polymers
JP5333913B2 (en) * 2009-02-03 2013-11-06 独立行政法人日本原子力研究開発機構 POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL ETHER GRAFT CHAIN AND METHOD FOR PRODUCING THE SAME
WO2013027758A1 (en) 2011-08-22 2013-02-28 東洋紡株式会社 Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery

Also Published As

Publication number Publication date
JP2004010631A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP2004149779A (en) Poly(arylene ether) compound, composition containing the same and method for producing them
JP5720568B2 (en) Solid polymer electrolyte composition, ion exchange membrane, membrane / electrode assembly, fuel cell
KR20060071690A (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
US20120164557A1 (en) Method for producing a polymer electrolyte membrane
JP2007517923A (en) Ion conductive copolymers containing one or more hydrophobic oligomers
JP4929569B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP4063596B2 (en) Proton conducting polymer compound and proton conducting polymer membrane
JP5028736B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP5482507B2 (en) POLYMER ELECTROLYTE MATERIAL AND METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE
KR101865941B1 (en) Sulfonated poly(phenylene sulfide sulfone nitrile) and Membrane for Fuel Cell Application using it
JP4867174B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
JP4836539B2 (en) Fuel cell electrolyte
KR100817554B1 (en) Method of manufacturing acid/base blend membranes using acidic or basic copolymers, its product and direct methanol fuel cell using them
KR100794466B1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
JP2003229143A (en) Proton conductive polymer membrane and fuel cell made thereof
JP2007063533A (en) Sulfonic group-containing polymer, use of the same, and method for producing the same
JP2004083864A (en) Fluorinated proton-conductive polymer membrane and method for producing the same
JP5151051B2 (en) POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE PARTS, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
JP2003068327A (en) Film for fuel cell
WO2013161405A1 (en) Composition for electrolyte membranes, solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, membrane-electrode assembly, solid polymer fuel cell, water electrolysis cell, and water electrolysis system
JP4022833B2 (en) Sulfonic acid group-containing polymer and use thereof
JP3651682B1 (en) Durable ion exchange membrane, membrane electrode assembly, fuel cell
JP5590568B2 (en) Block copolymer and use thereof
JP2009252480A (en) Ion-conducting polymer electrolyte membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees